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DiffKemp: Static Analysis of Semantic Differences of Large-scale C Projects

• Some projects must maintain semantic stability between versions, for example:
◦ System libraries (e.g. the standard C library) whose users rely on their functionality.
◦ Functions in the RHEL kernel that are a part of the Kernel Application Binary Interface.

• We want to automatically check that the semantics of certain functions was not modified.
• Tools based on formal methods are very precise but far too slow.
• DiffKemp: open-source highly scalable framework for identifying semantic differences.

Are the following functions semantically equal?

int f(int a) {
int r;
r = 0;
if (a > 100) {

r = a - 10;
} else {

r = f(a + 11);
r = f(r);

}
return r;

}

int f(int x) {
int r;
r = 0;
if (x < 101) {

r = f(11 + x);
r = f(r);

} else {
r = x - 10;

}
return r;

}
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The Basic Comparison Algorithm
The analysis in DiffKemp is built on several concepts:
• The versions are compiled into the LLVM Intermediate

Representation (IR) to make the comparison simpler.
• Where possible, versions are compared instruction-by-

instruction.
• DiffKemp contains a number of pre-defined change pat-

terns that are known to preserve semantics (e.g., refac-
toring a code block into a new function).

Results and Experiments
Evaluated on simple hand-made programs, the EqBench
benchmark and the Linux kernel. EqBench results:

SMT Off SMT On

Correct equal 57 62
Correct not-equal 125 125

Incorrect not-equal 90 85
Incorrect equal 0 0

Integrating Formal Methods into the Analysis Core
• The built-in patterns do not cover all refactorings.
• We aim to check equality of complex arithmetic and

logic changes (e.g., distributive properties).
• When a difference is found and no pattern is avail-

able, encode the equivalence of the following blocks
into a formula:

∧

v1∈InV ar1

v1 = varmap(v1) ∧ Input equality

Block1 ∧ Block2 ∧ Encoded blocks

¬
∧

out1∈OutV ar1

out1 = outmap(out1) Output equality

• Use an SMT solver to check satisfiability.
The blocks are equal iff the formula is unsatisfiable.
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