
Applying formal methods to analysis of semantic differences
between versions of software

Ing. František Nečas
Supervisor: Ing. Viktor Malík, Ph.D.

Applying formal methods to analysis of semantic differences
between versions of software

Ing. František Nečas
Supervisor: Ing. Viktor Malík, Ph.D.

DiffKemp: Static Analysis of Semantic Differences of Large-scale C Projects

• Some projects must maintain semantic stability between versions, for example:
◦ System libraries (e.g. the standard C library) whose users rely on their functionality.
◦ Functions in the RHEL kernel that are a part of the Kernel Application Binary Interface.

• We want to automatically check that the semantics of certain functions was not modified.
• Tools based on formal methods are very precise but far too slow.
• DiffKemp: open-source highly scalable framework for identifying semantic differences.

Are the following functions semantically equal?

int f(int a) {
int r;
r = 0;
if (a > 100) {

r = a - 10;
} else {

r = f(a + 11);
r = f(r);

}
return r;

}

int f(int x) {
int r;
r = 0;
if (x < 101) {

r = f(11 + x);
r = f(r);

} else {
r = x - 10;

}
return r;

}

renamed variable

inverse condition +
swapped branches

The Basic Comparison Algorithm
The analysis in DiffKemp is built on several concepts:
• The versions are compiled into the LLVM Intermediate

Representation (IR) to make the comparison simpler.
• Where possible, versions are compared instruction-by-

instruction.
• DiffKemp contains a number of pre-defined change pat-

terns that are known to preserve semantics (e.g., refac-
toring a code block into a new function).

Results and Experiments
Evaluated on simple hand-made programs, the EqBench
benchmark and the Linux kernel. EqBench results:

SMT Off SMT On

Correct equal 57 62
Correct not-equal 125 125

Incorrect not-equal 90 85
Incorrect equal 0 0

Integrating Formal Methods into the Analysis Core
• The built-in patterns do not cover all refactorings.
• We aim to check equality of complex arithmetic and

logic changes (e.g., distributive properties).
• When a difference is found and no pattern is avail-

able, encode the equivalence of the following blocks
into a formula:

∧

v1∈InV ar1

v1 = varmap(v1) ∧ Input equality

Block1 ∧ Block2 ∧ Encoded blocks

¬
∧

out1∈OutV ar1

out1 = outmap(out1) Output equality

• Use an SMT solver to check satisfiability.
The blocks are equal iff the formula is unsatisfiable.

analysis core

patterns

SMT
solver

equal

not equal

not equal equal

Clang
compiler

LLVM IR

old

new

https://github.com/diffkemp/diffkemp/ The project was supported by Red Hat Research. frantisek.necas@protonmail.com

https://github.com/diffkemp/diffkemp/
mailto:frantisek.necas@protonmail.com

