
Mgr. Pavel Ježek Ph.D.
Supervisor

Charles University
Faculty of Mathematics and Physics

GitHub fork https://github.com/TomatorCZ/roslyn
Language change pull request https://github.com/dotnet/csharplang/pull/7582#pullrequestreview-2004342942

Tomáš Husák
Author | husaktomas98@gmail.com

Implementation
Implementation is done in the Roslyn fork accompanied
by the set of tests verifying the functionality.

Results
The implementation passed basic Roslyn tests, which
signalizes robustness and no breaking change.
The proposal was presented to the C# language
committee, which gave positive feedback and wanted
to continue with further discussions.
In the state of writing, there were already two language
design meetings discussing the design in detail and
possible alternatives.
There are also a few reactions to this proposal on
GitHub from the C# community.

Language Feature Design
The design has to follow the following goals to make
it more likely to be accepted by the C# language
committee.

● Not introducing a breaking change
● Not to slow down the compilation process

significantly
● Intuitive and coherent syntax and

semantics
These goals are achieved by partial type
inference, introducing an underscore character,
skipping inferrable type arguments in the argument
list of an invocation expression and an object
creation expression, and allowing the specification
of just ambiguous ones.

It also improves the type inference in the case of an
object creation expression by leveraging type
bounds obtained from the target and type parameter
constraint clauses.

Motivation
C# is a strongly typed language utilizing type
inference to save type annotations. However, the
current type inference has several weaknesses.

The strength of the method type inference is lower
than we can see in other programming languages.
Concretely, it uses only arguments' types to deduce
the method's type arguments. We can see the
weakness in cases where type arguments only
depend on target type or type parameter restrictions.
The mentioned weakness is more noticeable
because of the "all or nothing" principle, where the
method type inference infers either all of the type
arguments or nothing.

Another place where type arguments are often used
is a generic object creation where there is no type
inference at all.

The mentioned issues give us a reason to think
about improving type inference. The following
improvement is described as a proposal consisting
of the language feature design and implemented in
a fork of the official C# compiler, Roslyn.

Improving Type Inference in the C# Language

Related Work
An important part of this design is big exploration of
type inference in existing similar languages and
applicability on the C# language which has its own
limitations. We used the Hindley-Milner type inference
theory to observe these limitations. Together with
already existing ideas on GitHub discussions, we
merged them into one language feature proposal
presented in this poster.

M<_, object>(42, null); // _ = int
void M<T1, T2>(T1 t1, T2 t2) { ... }

using System.Collections.Generic;
IList<int> temp = new List<_>(); // _ = int

