
EVALUATION OF THREAD POOL IMPLEMENTATIONS
BY RESOLUTION OF WEBSERVER REQUESTS

ING. MARTIN MUCHA SUPERVISOR: ING. DANIEL LANGR, PH.D.

Motivation
With the increasing number of cores in modern CPUs and the
growing popularity of architectures like ARM, which offers a re-
laxed memory model, effective scheduling and synchronization
are critical to unlocking performance benefits.

One well-known design pattern for parallel execution is the
thread pool, a collection of pre-spawned threads available to
execute tasks. This pattern significantly reduces the over-
head of creating new threads for each task, and it has be-
come widespread in areas such as high-performance comput-
ing (HPC) and web servers.

However, the C++23 standard still lacks built-in support for
thread pools or other higher-level parallel constructs, forcing
developers to rely on third-party libraries. These libraries often
present challenges in terms of complexity, performance limita-
tions and integration with modern C++ features. To address
these shortcoming, we developed a custom library (Coros)
with focus on :
• Seamless integration with modern C++.
• High performance across multiple workloads.
• Ease of use, reducing the complexity for developers.

Problem
Our research identified two main design challenges that must
be solved to build a parallel library:
• Representation individual tasks/workload: Simple func-

tions are insufficient when tasks need to be paused and re-
sumed.

• Scheduling/mapping of tasks onto threads: Efficiently
assigning tasks to available threads is critical for perfor-
mance.

Design
To address the first problem, we employed a novel approach
using C++20 coroutines. This method enables straightforward,
cross-platform encapsulation of tasks.
For the scheduling problem, we developed our own paral-
lel constructs and synchronization primitives, leveraging the
coroutine interface. This in combination with a lock-free
work-stealing approach, allows for efficient task schedul-
ing/mapping.

• Zero additional stack space:
Thanks to utilization of
coroutine-to-coroutine con-
trol transfer, no extra stack
space is consumed, compared
to regular function calls.

• Relaxed atomics: These are
a core part of the library, offer-
ing performance gains through
weaker synchronization.

• Memory arena: Since sus-
pension points are known at
compile time, memory can be
reused effectively between indi-
vidual suspension points.

• Exception propagation:
Coroutines allow for easy
exception capture, and when
combined with modern C++
features, this enables elegant
exception propagation to the
user for efficient handling.

Performance
• Evaluated various implementations and their impact on per-

formance.
• Tests covered both scheduling efficiency and memory con-

sumption.
• All tests were performed on an AMD EPYC 7H12 64-Core

Processor.

1 4 8 12 16 20 24 28 32 36 40102

103

104

105

Thread Count (n)

Ti
m

e
(m

ill
is

ec
on

ds
)(

Lo
g

S
ca

le
) Fibonacci number calculation

Coros
libomp

oneTBB

1 4 8 12 16 20 24 28 32 36 40103

104

105

Thread Count (n)

Ti
m

e
(m

ill
is

ec
on

ds
)(

Lo
g

S
ca

le
) Matrix multiplication

Coros
libomp

oneTBB

Conclusion
Coroutines, as a fundamental building block for both par-
allel and asynchronous libraries, have shown promising re-
sults. Our implementation outperforms most of the compared
libraries in various benchmarks. Stress testing under different
server request scenarios demonstrated that, with minor adjust-
ments, our solution can efficiently handle a wide range of work-
loads.

Furthermore, our library proves that with modern C++ standard
tools and careful management of the memory model, a fast
and efficient cross-platform multithreading library can be built.

Publication
The original solution was enhanced by adding
new features and conducting additional testing
on ARM architecture. The library is currently
available as open source.

Server testing
We conducted additional testing with different types of web re-
quests. The results showed:
• Work-stealing within thread pool proved to be a more effi-

cient scaling method compared to horizontal scaling in cer-
tain scenarios.

• Asynchronous workloads can be efficiently handled by
our existing solution with minor modifications, leveraging the
coroutine interface.


