
Parallel Quicksort Algorithm
Ing. Gabriel Hévr, Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

Motivation

Sorting algorithms are essential to computer science, underpinning systems like

databases, search engines, file systems, and networking. Efficient sorting boosts

performance and scalability, impacting everything from query optimization to

database joins. Speeding up sorting improves application performance, reduces

CPU usage, and lowers energy consumption, benefiting both efficiency and the

environment.

The modern approach is to parallelize the sorting routines. This technique max-

imizes the utilization of multi-core CPUs, resulting in significant performance

improvements compared to sequential methods.

Quicksort

Quicksort is a widely used sorting algorithm known for its superior average-case

performance. It is commonly the default choice in many languages and libraries.

Its proven efficiency makes it an ideal candidate for optimization, which is why

we focused on enhancing its performance. New optimizations for quicksort are

still being developed, mostly for the sequential version. We analyze these inno-

vations and identify the ones that are best suited for efficient parallelization.

Existing Solutions

Many popular libraries offer parallel quicksort implementations, but they often

lack the latest optimizations, missing out on the full speed potential of modern

systems. Here are some current state-of-the-art implementations:

GCC BQS: Parallel balanced quicksort from libstdc++

GCC QS: Unbalanced quicksort variant

oneTBB: Parallel quicksort from Intel oneTBB library

cpp11sort: Parallel quicksort based on C++11 threading

AQsort: Parallel multi-array in-place sort with OpenMP

Our Contribution: PPQSort

We have developed PPQSort, a fast parallel quicksort algorithm that combines

and parallelizes novel sequential optimizations. Key features include:

Minimizing Branches: Reduces branching to enhance performance on

modern CPUs with large pipelines.

Detecting Distributions: Adapts to various data patterns, optimizing for

simple cases and adjusting for complex ones.

Additional Optimizations: Includes recursion elimination, insertion sort for

small partitions, memory order tuning, AlphaDev AI code for sorting three

elements, and dynamic parallel-sequential switching.

Publications

[1] HÉVR Gabriel; ŠIMEČEK Ivan. PPQSort: Pattern Parallel Quicksort. In PPAM

conference. 2024. Best student paper.

Thread Pool

PPQSort features a custom thread pool, developed due to C++ lacking a built-

in option. It uses multiple queues, one per thread, where threads ”try” to lock

their preferred queue and, if busy, quickly move to the next, minimizing blocking

and idle times. The same approach applies to task stealing. Additionally, a sleep

mechanism prevents resource waste when no tasks are available.

Task

Scheduler

Task Stealing

Thread 1

Core 1

Thread 2

Core 2

Thread n

Core n

Queue 1

Task

Task

Queue 2

Task

Task

Queue n

Task

Task

Figure 1. Thread Pool diagram.

Implementation

C++20: Complies with the C++20 standard.

No Dependencies: Runs independently without extra libraries.

Header-Only: Easy to integrate as a header-only implementation.

Execution Policies: Supports custom execution policies.

Two Variants: Includes one with OpenMP and one in pure C++.

Public Resources: Comprehensive benchmarks, tests, and implementation

are on GitHub.

Benchmark Results

We benchmarked PPQSort on four clusters, and it consistently outperformed all

current state-of-the-art parallel quicksort implementations.

12 4 8 12 24 48
Threads

0

25

50

75

100

125

150

175

200

So
rti

ng
 T

im
e 

(s
ec

on
ds

)

105.6

52.99

26.91
18.27

10.23 5.84

208.77

107.55

55.01

27.85
19.73

11.52 5.89

208.15

Scalabity
PPQSort C++
PPQSort OMP

Figure 2. Results for 2 × 109 random integers.

(a) Random

data

(b) Ascending

data

(c) Descending

data

(d) Organ pipe

data

Figure 3. Visualization of specific input data distributions.

Algorithm

R
a
n
d
o
m

A
sc
e
n
d
in
g

D
e
sc
e
n
d
in
g

R
o
ta
te
d

O
rg
a
n
P
ip
e

H
e
a
p

T
o
ta
l

R
a
n
k

PPQSort C++ 5.84s 1.84s 4.55s 1.38s 2.96s 5.58s 22.15s 1

GCC BQS 13.72s 4.18s 19.11s 49.89s 8.24s 13.78s 108.92s 4

GCC QS 18.33s 4.1s 14.62s 12.51s 14.01s 19.16s 82.73s 3

oneTBB 43.66s 0.09s 8.62s 13.84s 8.12s 43.9s 118.23s 5

cpp11sort 9.58s 2.47s 2.66s 5.47s 3.42s 9.9s 33.5s 2

AQsort 24.72s 3.66s 23.14s 21.83s 22.6s 25.31s 121.26s 6

Table 1. Results for 2 × 109 random integers.

Conclusion

PPQSort is the fastest parallel quicksort implementation to date and represents

a new state-of-the-art solution.

� https://github.com/GabTux/PPQSort � hevrgabr@fit.cvut.cz

https://github.com/GabTux/PPQSort
mailto:hevrgabr@fit.cvut.cz

