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1. Motivation

• 

Static analysis is a widely adopted technique in software development for identifying various 
types of errors and security vulnerabilities. Its strength lies in the ability to consider all poten-
tial execution paths, allowing the detection of rare and otherwise elusive issues that might be 
missed during traditional testing processes. This is particularly crucial in high-stakes domains 
such as aerospace, medicine, and cybersecurity, where even minor software defects can lead to 
catastrophic failures or security breaches. However, a signi�cant limitation of static analysis is 
its tendency to generate a large volume of false positives (i.e., false alarms).
This thesis focuses on Meta Infer, a static analysis tool used by companies such as Meta, Micro-
soft, Amazon, and Mozilla. Infer is known to produce over 95 % false positives [1]. The prevalen-
ce of these false positives often results in developers disregarding static analysis results, 
thereby undermining its practical utility, even in critical applications. 
The objective of this thesis is to leverage the power of AI to enhance the e�ectiveness of Meta 
Infer by introducing a ranking system for the reported errors, prioritizing those with a higher 
probability of being true positives (i.e., actual issues and not false alarms).

2. The Reports Ranking System
The reports ranking system utilizes Graph Neural Networks (GNNs). The D2A dataset [5], which 
contains  labeled reports from Infer, serves as a foundation for this work. To convert D2A into 
a graph-based format, a novel Training Pipeline was developed:

At the end of the pipeline, the GNN models, which are constructed from MtAlbis layers—a modi-
�cation of standard VanillaMPNN layers [2]—are trained.
To facilitate the practical use of these models, an Inference Pipeline was also developed. This 
pipeline can connect to a running compilation process of C (and a subset of C++) programs, to 
automatically trigger Infer analysis, ECPGs construction, and model inference.

The pipeline consists of three main phases:
• Bitcode Generation: Each D2A sample is recompiled and LLVM bitcode is generated.
• Graph Construction: For each sample (LLVM bitcode), a raw ECPG graph is constructed.
• Feature Engineering: Feature engineering is applied to each raw ECPG graph, transforming 
  it into a novel graph format—Extended Code Property Graph—which extends existing
  CPGs [4] with additional information such as data types, call graphs, etc.

• An open-source Training Pipeline that transforms D2A from a textual to a graph format.
• The design of a novel graph format — Extended Code Property Graphs, which experiments  
   have shown to be a highly e�ective representation of source code.
• Graph D2A — D2A transformed into the ECPGs, which can support further research in this 
   �eld. Graph D2A has been uploaded to the Zenodo open repository.
• Trained open-source GNN models that are capable of competing with closed-source state-of
   -the-art models. The models can be used for error detection even without a static analyzer.
• An open-source Inference Pipeline that enables fully automated Infer analysis, generation of 
   ECPGs, and model inference during the compilation of any C (and a subset of C++) program.

4. Contributions

For the experimental evaluation, three models with the best validation AUROCC were selected, 
along with ensemble models composed of the top 3 and top 6 models. For comparison, we 
chose the models vote [5], C-BERT [3], and the state-of-the-art model vote-new [3] developed 
by the authors of the D2A dataset (IBM Research). AUROCC was selected as the comparison 
metric, as it was the only common metric since all existing models are closed source.

The experiments show that the developed GNN 
models are capable of matching state-of-the-art 
models, and in the case of the NGINX project, even 
surpassing them. A major drawback of the developed 
models (as well as all compared existing models) is the 
lack of functionality for cross-analysis (i.e., training on 
one project and inference on another). However, the 
results show that the models can be used e�ectively 
for self-analysis (i.e., training on the same project 
where inference is performed) on projects with su�ci-
ent history for dataset generation.

Comparison metric: AUROCC on test data.
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