
Evaluating Reliability of Static Analysis Results Using Machine Learning
Author: Ing. Tomáš Beránek Supervisor: prof. Ing. Tomáš Vojnar, Ph.D. The presented system was developed

with �nancial support from Red Hat.

1. Motivation

•

Static analysis is a widely adopted technique in software development for identifying various
types of errors and security vulnerabilities. Its strength lies in the ability to consider all poten-
tial execution paths, allowing the detection of rare and otherwise elusive issues that might be
missed during traditional testing processes. This is particularly crucial in high-stakes domains
such as aerospace, medicine, and cybersecurity, where even minor software defects can lead to
catastrophic failures or security breaches. However, a signi�cant limitation of static analysis is
its tendency to generate a large volume of false positives (i.e., false alarms).
This thesis focuses on Meta Infer, a static analysis tool used by companies such as Meta, Micro-
soft, Amazon, and Mozilla. Infer is known to produce over 95 % false positives [1]. The prevalen-
ce of these false positives often results in developers disregarding static analysis results,
thereby undermining its practical utility, even in critical applications.
The objective of this thesis is to leverage the power of AI to enhance the e�ectiveness of Meta
Infer by introducing a ranking system for the reported errors, prioritizing those with a higher
probability of being true positives (i.e., actual issues and not false alarms).

2. The Reports Ranking System
The reports ranking system utilizes Graph Neural Networks (GNNs). The D2A dataset [5], which
contains labeled reports from Infer, serves as a foundation for this work. To convert D2A into
a graph-based format, a novel Training Pipeline was developed:

At the end of the pipeline, the GNN models, which are constructed from MtAlbis layers—a modi-
�cation of standard VanillaMPNN layers [2]—are trained.
To facilitate the practical use of these models, an Inference Pipeline was also developed. This
pipeline can connect to a running compilation process of C (and a subset of C++) programs, to
automatically trigger Infer analysis, ECPGs construction, and model inference.

The pipeline consists of three main phases:
• Bitcode Generation: Each D2A sample is recompiled and LLVM bitcode is generated.
• Graph Construction: For each sample (LLVM bitcode), a raw ECPG graph is constructed.
• Feature Engineering: Feature engineering is applied to each raw ECPG graph, transforming
 it into a novel graph format—Extended Code Property Graph—which extends existing
 CPGs [4] with additional information such as data types, call graphs, etc.

• An open-source Training Pipeline that transforms D2A from a textual to a graph format.
• The design of a novel graph format — Extended Code Property Graphs, which experiments
 have shown to be a highly e�ective representation of source code.
• Graph D2A — D2A transformed into the ECPGs, which can support further research in this
 �eld. Graph D2A has been uploaded to the Zenodo open repository.
• Trained open-source GNN models that are capable of competing with closed-source state-of
 -the-art models. The models can be used for error detection even without a static analyzer.
• An open-source Inference Pipeline that enables fully automated Infer analysis, generation of
 ECPGs, and model inference during the compilation of any C (and a subset of C++) program.

4. Contributions

For the experimental evaluation, three models with the best validation AUROCC were selected,
along with ensemble models composed of the top 3 and top 6 models. For comparison, we
chose the models vote [5], C-BERT [3], and the state-of-the-art model vote-new [3] developed
by the authors of the D2A dataset (IBM Research). AUROCC was selected as the comparison
metric, as it was the only common metric since all existing models are closed source.

The experiments show that the developed GNN
models are capable of matching state-of-the-art
models, and in the case of the NGINX project, even
surpassing them. A major drawback of the developed
models (as well as all compared existing models) is the
lack of functionality for cross-analysis (i.e., training on
one project and inference on another). However, the
results show that the models can be used e�ectively
for self-analysis (i.e., training on the same project
where inference is performed) on projects with su�ci-
ent history for dataset generation.

Comparison metric: AUROCC on test data.

3. Experimental Evaluation

[1] Beránek, T. Practical Application of Facebook Infer on Systems Code. Brno, CZ, 2021. Bakalářská práce.
 Vysoké učení technické v Brně, Fakulta informačních technologií. Available at:
 https://www.�t.vut.cz/study/thesis/24187/.
[2] Ferludin, O.; Eigenwillig, A.; Blais, M.; Zelle, D.; Pfeifer, J. et al. Tf-gnn: Graph neural networks in tensor�ow.
 ArXiv preprint arXiv:2207.03522, 2022.
[3] Pujar, S.; Zheng, Y.; Buratti, L.; Lewis, B.; Chen, Y. et al. Analyzing source code vulnerabilities in the D2A
 dataset with ML ensembles and C-BERT. Empirical Software Engineering. Springer, 2024, vol. 29, no. 2,
 p. 48. Available at: https://link.springer.com/article/10.1007/s10664-023-10405-9.
[4] Yamaguchi, F.; Golde, N.; Arp, D. and Rieck, K. Modeling and discovering vulnerabilities with code property
 graphs. In: IEEE. 2014 IEEE Symposium on Security and Privacy. 2014, p. 590–604.
[5] Zheng, Y.; Pujar, S.; Lewis, B.; Buratti, L.; Epstein, E. et al. D2A: A dataset built for ai-based vulnerability
 detection methods using differential analysis. In: IEEE. 2021 IEEE/ACM 43rd International Conference on
 Software Engineering: Software Engineering in Practice (ICSE-SEIP). 2021, p. 111–120.

5. References

