
Author: Ing. Erich Winkler | Supervisor: Ing. David Holas

The development of I/O modules is a complex process that we can 
typically divide into hardware and firmware development. The efficiency 
of this process significantly impacts the profitability of the projects and, 
therefore, of the Company for which the product of this thesis was 
created. 



Efficiency in development is closely tied to the quality and frequency of 
testing the modules under development. In fact, inefficiencies in the 
testing process are the most common reasons for project delays and 
budget overruns. Furthermore, time and hardware limitations often 
prevent comprehensive testing of various edge cases, potentially causing 
issues in production and undermining customer trust.



To deliver high-quality products, a rigorous and time-consuming testing 
process comprising four phases must be completed. Industry standards 
dictate that if a bug is discovered, the testing process must restart from 
the beginning, consuming substantial resources and often causing 
significant delays. 



This thesis examines the testing process and its inefficiencies, proposing 
a virtual testing framework designed to mitigate these issues by 
enhancing the quality, frequency, and accessibility of testing. 

The final set of requirements for the VT framework was derived from the 
requirements of the developers, testers, and the Company’s management. After a 
thorough discussion and analysis, the following requirements were created for the 
VT framework project:



Easily applicable: The VT framework should be applicable in the early stages of the 
project in 2-3 weeks and allow the developers to start with the firmware 
development even before the hardware is available.



Integration with the CI/CD pipeline: Virtual testing should become part of the 
automated testing process to maximize the frequency of testing.



Improved quality of testing: The VT framework should allow developers and testers 
to control the module extremely precisely and verify its behaviour in edge cases and 
under different conditions that are impossible to achieve with the physical hardware.



Lower the necessary resources for testing: The goal of the VT framework is to 
lower the necessary resources for testing by improving its quality and efficiency.


To fulfill all the requirements for the VT framework, the architecture is based on a 
client-server model, where the server is responsible for managing the virtual 
testing environment and the client for running the test cases. 



The architecture of the VT framework is composed of three main components�
� Virtual testing library(DLL): A layer responsible for wrapping the technology 

part of the module and allowing the code to be compilable and executable on 
the Windows platform while allowing access to the technology code of the 
module.�

� Virtual testing app (Server): An exe application that can load the DLL and 
manage the communication between the emulator and the testing client�

� Testing client: Any testing client used within the Company and implements the 
pre-defined interface for the VT framework.



This concept allows us to run the same test cases as on the physical hardware 
without any changes and perform integration testing with no physical hardware. 

The testing process consists of 
four main phases, each with its 
specifics and goals. To 
understand the process as a 
whole and identify its 
inefficiencies, it is necessary to 
understand the following facts 
about each individual phase. 



The CI/CD pipeline is the first 
phase of the testing process and 
does not require any physical 
hardware. However, it offers very 
limited options to test the 
functionality as it can only test 
one individual component at a 
time. 



Integration testing is performed 
by a specialized team of testers 
using a physical module’s HW. 
The goal is to test the 
interoperability of the individual 
components of the module. 


Motivation Virtual Testing Framework

Results & Usage

Conclusion

Requirements for the VT framework

Software architecture of the VT framework

Virtual Testing Framework for Industrial I/O modules

The implemented solution effectively mitigates 
inefficiencies in the testing process, improving code quality 
while reducing the resources needed for testing. That is 
accomplished through a complex architecture composed of 
three individual components, which enables us to run the 
same test sets used for the integration testing on physical 
hardware. 



The trial usage of the VT framework also shows a significant 
decrease in the number of bugs discovered in the later 
phases of the testing process. 



Consequently, the risk of project delays and budget 
overruns is substantially reduced, providing considerable 
business value for the company.

Testing process of the I/O modules
Test phases

System testing is required to be 
performed by an independent 
organization without any 
knowledge provided by the 
developers. This phase is crucial 
for ensuring the proper 
functionality of the final product. 



Acceptance testing is the final 
phase prior to putting the product 
on the market. The goal is to 
verify the electrical safety of the 
product and receive the required 
certifications. 

Usage

The implementation of the VT framework across multiple 
projects has demonstrated a positive impact on the 
development of the IO module. The results of this 
experiment indicate that the VT framework effectively 
enables developers to test newly implemented code 
within the same scope as integration testers, even 
without physical hardware. Early detection of bugs during 
testing leads to significantly increased efficiency and 
improved code quality, which results in lowering 
necessary resources and avoiding project delays.


The primary advantage of the VT framework is that it 
provides developers with frequent and detailed feedback 
comparable to the results obtained from integration 
testing performed by specialized testing teams.



This frequent testing is achieved by integrating the VT 
framework into the CI/CD pipeline, where virtual testing 
has been added as an additional step alongside existing 
steps such as static code analysis and unit testing.

Result


