
TERRATINKER
Crafting Playful Visualizations
from Geospatial Data

Master Thesis
Jonáš Rosecký

Masaryk University
Faculty of Informatics

Brno, Spring 2024





Declaration

Hereby I declare that this thesis is my original authorial work, which I have worked out on my 
own. All sources, references, and literature used or excerpted during elaboration of this work 
are properly cited and listed in complete reference to the due source.

During the preparation of this thesis, I used GitHub Copilot for advanced code auto-completion. 
I declare that I used this tool in accordance with the principles of academic integrity. I checked 
the content and took full responsibility for it.

Supervisor: RNDr. Vojtěch Brůža
Consultant: doc. RNDr. Barbora Kozlíková, Ph.D.



Acknowledgements

First of all, I would like to thank my supervisor Vojtěch Brůža for his idea of visiting Minecraft 
from the informatics point of view and supervising my HCI project two years ago, that started 
my passion for Minecraft development. Furthermore I would like to thank him for all his guid-
ance during the development and writing of this thesis.

I would like to thank Bára Kozlíková for her kindness, her great feedback, support and for ded-
icating her time towards making this thesis worth writing.

I would like to thank my family, my close friends and my loving girlfriend, who supported me 
through my studies, helped me enjoy every moment I did not spend behind the screen, 
provided me with a lot of hugs and forcefully dragged me out of my chair to get some fresh air, 
when needed.

Thanks to all the amazing people at VisitLab and HCI, that helped with the project in any way 
and most importantly helped me build my love for coffee. I am probably craving one as you are 
reading this.

Furthermore, I must thank all the people involved in the Craft-my-Street project for providing 
me with an amazing opportunity of working on an international project with a real world impact.



Abstract

Despite the popularity of video games and the importance of visualizations, surprisingly little 
research has been conducted on using video games for interactive data visualizations. Such 
approach seems to combine the benefits of interactive visualizations with the engagement 
brought by serious games. The objective of this thesis was to design and develop TerraTinker —
a tool that transforms geospatial data into interactive visualizations within the Minecraft video 
game. The tool allows users to generate Minecraft maps using datasets sourced from Open-
StreetMap or provided by the users themselves. During the creation process the users can cus-
tomize the resulting map using node-based editor that offers options for altering shapes and 
block materials. The thesis includes an evaluation of the tool's functionality and usability. Over-
all, TerraTinker provides an interactive way to generate playful visualizations of the geospatial 
data within Minecraft worlds.

Keywords
Geospatial Data, Minecraft, Visualization, Web Application, Node Graph



1 Introduction 1
1.1 Specifications 2
1.2 Target Groups 3

2 Geospatial Data 5
2.1 Data Types 5
2.2 Coordinate Systems 8
2.3 Working with Geospatial Data 9

3 Game Selection 11
3.1 Game Selection Criteria 11
3.2 Analysis of Games 16

4 Technical Aspects of Minecraft 25

5 Existing Tools 29
5.1 FME by SafeSoftware 29
5.2 Alternatives 31

6 System Design and Requirements 35
6.1 Requirements 35
6.2 Our Approach 37

Contents



7 Technology 47
7.1 Web Client 49
7.2 Server 50
7.3 Package 51

8 User Interface 53
8.1 Region Selection 55
8.2 Layers Design 56
8.3 Preview and Publish 59
8.4 Documentation 61

9 Evaluation Algorithm 63
9.1 Handling the Execution Flow 68
9.2 Stale Data and On-Demand Evaluation 71

10 Usage and Results 73
10.1 Geospatial Datasets 74
10.2 Mathematics and Geometry 81

11 Evaluation 87

12 Future Work 91

13 Conclusion 93

Electronic Attachments 95

Bibliography 97



1

1 Introduction

Video games have become an integral part of the digital world. Thanks to their popularity, they 
have transcended their traditional role as sources of entertainment and have evolved as tools 
for education and conveying information. The so-called serious games have the purpose 
of leveraging the power of computer games to captivate and engage end-users for a specific 
purpose, such as to develop new knowledge and skills [5]. Such engagement is useful in many 
fields and could be advantageous for effective communication of information to young con-
sumers.

One of the use cases of the serious games can be in visualizations. We define visualization 
as the communication of information using graphical representations [1]. Traditionally, pictures 
have been used to convey a message in visualizations. With home computers becoming in-
creasingly more common, visualizations were expanded onto their virtual, interactive 
canvases.

Despite the popularity of video games and the importance of visualizations, surprisingly little 
research has been conducted on using video games for interactive data visualizations. Such 
approach seems to combine the benefits of interactive visualizations with the engagement 
brought by video games.

Addressing this gap, the goal of the thesis was to create TerraTinker — a tool for generating 
visualizations of real world objects and phenomena inside a virtual environment of a video 



game world. Such visualizations can be usually created manually at small scale, but creating 
larger maps or repeating the same process for multiple areas is expensive and time-consum-
ing. TerraTinker aims to automate the process of designing and expanding such visualizations 
while maintaining the freedom of customization.

The maps generated by TerraTinker can be used directly for the exploration of the used geospa-
tial datasets and engagement of public with a specific problem (such as noise level in the city). 
If needed, the creators can further expand the map by building custom scenarios to highlight 
the focus points or gather users opinions.

TerraTinker will be developed in a close collaboration with the team of the Craft-my-Street pro-
ject. The Craft-my-Street project [28] of the University College Dublin aims to provide resources 
for the public sector to implement digital spaces in Minecraft for young people to interact 
with the urban environment and with each other. One of the targets of the Craft-my-Street pro-
ject is to develop a platform that would streamline the creation of such digital spaces for less 
technically proficient users and TerraTinker should be a part of this platform in the future.

1.1 Specifications
To ensure the alignment of personal ideas for the application with the objectives of the Craft-
my-Street project, several meetings over the course of six months were arranged with the par-
ticipation of Ph.D. and postdoctoral researchers from the faculty of Architecture, Planning & 
Environmental Policy at the University College Dublin and a Ph.D. researcher from the Faculty 
of Informatics at the Masaryk University Brno. The meetings took place at the University Col-
lege Dublin as well as online, and they provided an opportunity for dialogue and aided deeper 
understanding of the problem and the target groups of the application.

2



3

According to the meetings, TerraTinker should be an application that allows personnel from 
the public sector to visualize geospatial datasets by transforming them into virtual worlds 
within a video game. Those worlds should serve a goal of fostering interaction among young 
individuals within the digital urban landscapes. The suggested video game for the visualiza-
tions was Minecraft, but research and evaluation of alternative video games should be per-
formed to make sure the most suitable game was selected.

The application should allow its users to select a real-world region of interest for the transform-
ation. Furthermore, the users should be able to change the scale of the real world projection 
inside the virtual world. The users should be able to use their own geospatial datasets on top 
of the publicly available ones and for each dataset define how it should be displayed in 
the game. The application should allow for semi-realistic depiction of the real-world geospatial 
features (buildings, streets, lamp posts) as well as visualization of virtual events and phenom-
ena (noise level, bus routes, solar irradiance). The output of the application should be a static 
map that contains the user-defined features and can be imported into the selected video game.

1.2 Target Groups
When discussing the target user groups of the TerraTinker application, we consider two disjoint 
groups that will interact with the finished product — the creators and the players.

The creators are local authorities personnel, schools, museums, and other workers within 
the public sector. The creators are the direct users of TerraTinker. The application should allow 
them to generate digital environments within a video game, adapt it to their needs and (outside 
of the scope of the project) publish it for the players to interact with.



The term players refers to the target group of the generated visualization. Players will not use 
the system directly, but rather interact with the visualization generated by the creators. This 
group mainly consists of digital natives that might find interacting with data through an immers-
ive video game more entertaining than with traditional approaches. Digital natives are children 
and young adults who have grown up in the information age. They have spent their entire lives 
surrounded by and using computers, video games, digital music players, video cameras, 
cell phones, and all the other toys and tools of the digital age. Today’s average college gradu-
ates have spent fewer than 5,000 hours of their lives reading, but over 10,000 hours playing 
video games [6].

4



2 Geospatial Data

Before the implementation of the TerraTinker application can be discussed, it is important 
to understand the basics of working with geospatial data. Geospatial data is different 
from other types of data as it describes objects (roads, buildings, lamp posts) or phenomena 
(car crashes, bus routes, solar irradiance) with a specific location in the real world [1]. Geospa-
tial data typically combines location information with attribute information — the characterist-
ics of the object, event, or phenomena concerned.

2.1 Data Types
Geospatial data comes in many forms and file formats, however, most of them can be categor-
ized into two general groups — raster and vector datasets. Both groups can contain two 
or three-dimensional data.

Raster datasets assign each point in a given region one or more values. As a simple example, 
any raster image placed on the surface of Earth can be considered a raster dataset with red, 
green, and blue components being the assigned values. Most of geospatial raster data types, 
however, provide inbuilt description for projecting their contents onto the Earth’s surface. 
The most common example of such data type is GeoTIFF (as seen in Figure 2.1).

55



6

Figure 2.1: Solar Irradiance dataset of Brno (in grayscale) on top of OpenStreetMap layer (available 
under the Open Database License), screenshot from QGIS



7

Figure 2.2: Vector features with additional attributes in the OpenStreetMap editor portal

Vector datasets contain a set of features. Features can represent points, lines, polygons, or 
3D objects. Every point of every shape holds its geolocation for mapping it onto the Earth globe. 
Features can additionally contain attributes with arbitrary values. Those can describe, for ex-
ample, type of the feature. An example of a vector file format can be GeoJSON that encodes 
the data in a human-readable format. Vector data can also be obtained from online services, 
such as OpenStreetMap [39] — an open-source mapping project used by many map providers 
(depicted in Figure 2.2).

7

2.5 



8

2.4 2.2 Coordinate Systems
Even if some people disagree, the Earth is a globe and this fact makes working with geospatial 
data very complicated. Since it is impossible to project a sphere onto a flat plane without major 
distortions, we use Geographic Coordinate Systems (GCS) for describing geolocation of real-
world objects. GCSs use angular measurements to describe points on Earth’s surface. The co-
ordinate system used by the Global Positioning System (GPS) is World Geodetic System 
(WGS 84) [14]. Thanks to the GPS, WGS 84 is the most common used GCS for most use cases. 
It describes locations with a pair of latitude and longitude in decimal degrees.

As GCSs use angular measurements, most people do not get intuitive sense for distance and 
size just from looking at the angles. To gain one degree of longitude, one would need to walk 
approximately 1.8 kilometers on the equator (0° of latitude), but less than a single step at 
the poles (±90° of latitude).

Projected coordinate systems (PCS) are planar systems that use linear measurements for 
the coordinates rather than angular units [15]. We can transform data from a GCS to a PCS us-
ing a process called projection and vice versa by so-called inverse projection.

A map projection is the means by which you display the coordinate system and your data on 
a flat surface, such as a piece of paper or a digital screen. Mathematical calculations are used 
to convert coordinates from the coordinate system used on the curved surface of earth to 
the one for a flat surface [15]. When such a transformation is made, some features will always 
be distorted. Some distances, shapes, and areas will be stretched, and others will be com-
pressed [2]. The elimination of such distortions is impossible. However by choosing a suitable 
projection, they can be mitigated. The selection of an appropriate projection for TerraTinker 
is discussed in Section 6.2.1.

8



9

2.3 Working with Geospatial Data
Geography is very old and important science field drawing a lot of research towards improving 
and streamlining the processing of geospatial data. Since the mathematics behind the geo-
graphic coordinate systems and their projections is usually complicated, the power of com-
puters was utilized and in the late 1960s the first Geographic Information System (GIS) did 
emerge [3]. 

There are currently two most commonly used GIS applications for creating and modifying geo-
spatial data — commercial ArcGIS [30] and open-source QGIS [31]. For professional use, most 
businesses utilize ArcGIS for its better stability and wider range of features. QGIS is, however, 
the go-to solution for home users and tinkerers as well as educators.

For processing geospatial data, merging datasets and producing different data formats, applic-
ations like Carto [32] (Figure 2.3) or FME by SafeSoftware [33] exist. Both utilize node-based 
data processing and provide a wide range of node types. Both tools are commercial with only 
a short trial period.

Another group worth mentioning are visualization tools like Tableau [34] (Figure 2.4) or Mi-
crosoft Power BI [35] that also have support for geospatial data. Such tools do not provide 
so much in terms of data processing, but focus more on visually pleasing interactive visualiza-
tions.



1010

Figure 2.4: Screenshot of Tableau visualization tool with lamp posts vector dataset [69]

Figure 2.3: Screenshot of Carto Workflow web interface with an example of processed geospatial 
dataset — a Voronoi diagram of the nearest bus stop in the South Moravian region [70]



11

3 Game Selection

As mentioned in Section 1.2, the target player group are game natives that might find the in-
game world worth exploring and the visualization should spark their interest and a desire 
for deeper understanding of the data (defined as players throughout the thesis). Before the tool 
is implemented, the suitability of Minecraft for this kind of data visualization among the vast 
landscape of video games should be assessed.

3.1 Game Selection Criteria
The spectrum of games is large and the fact that around 40 new games get released on Steam 
(the largest video game store) every day [73], makes it impossible to analyze every single exist-
ing video game. To have a measure of game suitability, a set of criteria was established. The cri-
teria are not strict nor exhaustive. They also do not all have the same weight in the decision 
process. The criteria were, however, used as an initial filter for the game selection.



3.1.1 Technical Criteria

Large player base (G1) — Choosing a game with a large player base is beneficial, as a signific-
ant number of people from the target group already have the game set up and ready to play. 
Thanks to that, the created visualizations can reach a large group of people without additional 
effort. Apart from the reach, the players are also already familiar with the controls and inner-
workings of such game, making the onboarding process easier.

The large player base is also beneficial for the developers and the content creators as older 
games with an active community tend to have better documentation and plethora of download-
able content, usually free of charge.

Download and play (G2) — To reach the broadest audience possible, even outside of the cur-
rent player base, the game must be straightforward to set up. No game modifications (mods) 
should be required as the process of installing such mods can be complicated and could cause 
player drop-off during the setup.

The ideal game would be free-to-play to attract any player interested in this type of visualiza-
tion. However, given game development's complexity and time-consuming nature, it is reason-
able to consider the free-to-play requirement nonessential.

Generating the visualizations (G3) — The manual setup is applicable for a single small-scale 
visualization but would not be scalable for larger or repetitive visualizations. This thesis aims 
to automate this process and provide a simple tool for creating the visualizations fast.

12



13

In order to generate the visualizations automatically, the game needs to provide one of the fol-
lowing:

Allow scripting — Scripts in this context are pieces of code that can modify the game's beha-
vior, allow the modification of the in-game maps, and add or change the behavior of particular 
objects.

Documented and modifiable world files — This allows us to modify the files containing the in-
formation about the game world saves externally and then load the modified files in the game. 
The format can be either documented by the developer or reverse-engineered by the com-
munity.

3.1.2 Gameplay Criteria

Interactivity and engagement (G4) — According to Ward et al. [1], interaction in geovisualiza-
tion is crucial. Exploring the visualization from different perspectives might allow the users 
(in our case the players) to see connections and understand the data more deeply. Especially 
for geospatial data, navigation is very important. It overcomes the limitations of space allowing 
users to see the details and overview within the same visualization [4].

In video games, interactions with the environment form the central part of the experience. 
When combined with the navigation, the player suddenly becomes a part of the visualization, 
is encouraged to interact with it, and get immersed in the virtual world. It is also beneficial 
for the players to be able to modify the virtual world, observe the changes and see the impact 
of their actions.



Grid-based world (G5) — Games that provide complete freedom of object and terrain place-
ments (Astroneer [71], Roblox [72], etc.) might appear complex and hard to grasp. The modific-
ation of such worlds by the players is usually impossible or very imprecise. For those reasons, 
the spectrum of the games is narrowed to grid-based games only.

Grid-based game worlds use a regular grid and a predefined set of tiles placeable on the grid. 
There are three main categories of tile-based worlds depicted in Figure 3.1:

– top-down 2D games have tiles placed along the horizontal axes,

– side-view 2D games have tiles placed on the grid oriented along the up and right directions,

– 3D grid games have tiles placed on the grid in all three dimensions.

We can omit the side-view games since we want to visualize geospatial data with two horizontal 
input dimensions.

14



15

Figure 3.1: Comparison of the tile-based worlds — top-down 2D: Stardew Valley (top left), side-view 
2D: Terraria (top right), 3D grid: Sandbox editor (bottom)

15

3.1.3 



16

3.2 Analysis of Games

Given the criteria defined in the previous section, three strongest candidates are described bel-
low. Apart from Minecraft, two other games — Factorio and OpenTTD — were judged to be 
the most compliant with the rules. After a thorough evaluation, the initial choice of the Mine-
craft video game was approved mainly for its large player base and modification options.

Even though this thesis does not extend the visualizations to other video games, the visualiza-
tion of data in video games is a topic worth exploring, as shown by Cardoso, 2021 [7] 
and Šťastná, 2023 [13].

16



17

3.2.1 Factorio

Factorio [37] (Figure 3.2) is a Czech video game about designing, building, and maintaining 
factories. After crash landing on an alien planet the player has to launch a rocket back to space 
in order to win the game. To achieve this, it is required to automate various processes, which 
comes with its own challenges. These range from space occupying trees, over logistical prob-
lems, to hostile, native inhabitants, which are not happy about the increasing pollution levels 
caused by the ever growing factory [9].

Factorio provides an extensive map editor and the option to write custom game scripts (G3). 
It is also natively multiplayer, providing more immersive group experiences (G4). Its main 
downside is the selection of the tiles. Most of the provided tiles represent a single separate 
building or machinery. This prevents the visualization of custom polygons or linear data. Fur-
thermore, the lack of a third dimension within the game world narrows the visualization op-
tions, making it hard to present additional value related to specific geographic features.

17



1818

Figure 3.2: Example of a Factorio map



1919

Figure 3.3: New OpenTTD world



3.2.2 OpenTTD

OpenTTD [38] (Figure 3.3) is an open-source simulation game based on Transport Tycoon De-
luxe. The main goal of the game is to build and develop your own transport company in such 
a way that it gets the highest possible revenue, thanks to an optimal transport organization, 
transporting as much cargo as possible in the most efficient way [10]. The world of OpenTTD 
is 2D rendered in pixel graphics using an isomeric camera.

The open source aspect of the game is beneficial in multiple criteria (G2, G3). Since the source 
code is provided, multiple game modifications and tools exist for manipulating the save files 
externally. In addition, the game provides inbuilt tools for map creation and a direct option 
to import a height map from the file.

As this game focuses on transportation, it contains detailed mechanics for traveling, roads, rail-
ways etc. However, similarly to Factorio, it contains only non-combinable tiles, making it suit-
able only for geospatial visualizations with small scale.

2020



21

Figure 0.0: This is the description of the figure

21

3.2.3 Minecraft

Minecraft [36] (Figure 3.4) is a multiplayer sandbox game focused on creativity, building, 
and survival. It can be played in singleplayer and multiplayer mode. The game world is proced-
urally generated with cubes arranged in a fixed grid pattern. Cubes are made of different mater-
ials, such as dirt, stone, etc. Players can gather these materials and place them in the world to 
create various constructions or use them to craft other items [8].

With over 300 million sold copies as of 2024, Minecraft is the best-selling video game 
ever (G1). In part, thanks to that, there is already a large number of resources and an ecosys-
tem of modifications around the base game.

As stated in requirement G2, we want the game to be “download and play,” meaning no mods 
on the client side. Fortunately, thanks to the community, the game has a plethora of custom 
server implementations allowing the modification of the game behavior using server-side only 
scripts (more about game modifications is described in Chapter 4). Scripts can be used to alter 
the gameplay, enhance the immersion (G4), and generate the visualizations directly in 
the game (G3).



22

Figure 3.4: Screenshot of Minecraft world generated by the native Minecraft world generator

22



23

3.2.4 Other Analyzed Games

Apart from those mentioned above, five more games were considered in the selection pro-
cess. Stardew Valley [68], Heroes of Might and Magic III [40], and Warcraft III [41] are pop-
ular top-down grid-based video games. All three of them provide an extensive map editor 
for editing the existing maps or creating new ones. Stardew Valley and Warcraft III provide 
tools for scripting, which could help generate the map (G3). However, all three games 
provide only premade tiles, which cannot be customized or changed, similarly to Factorio 
and OpenTTD.

Heroes of Might and Magic III is turn-based, unlike the others mentioned. Turn-based game 
style provides interesting gameplay options, however, it is not ideal for exploring the visualiza-
tions in the game (G4). Both Heroes of Might and Magic III and Warcraft III have a save-file 
format that has been reverse-engineered, which, as explained in G3, enables development 
of an external generator.

Two relaxing games that were analyzed are Townscaper [29] and Dorfromantik [42]. Both  
games supply little in terms of gameplay possibilities (G4). However, they provide simple tools 
for modifying the visualization (G5). In either game, you can zoom out and have an overview 
of the whole map and zoom in to see the details of each tile.

Townscaper allows importing and exporting from text files, which makes it great for the ex-
ternal generation of visualizations. Dorfromantik does not have such a feature, and its save file 
contains only a seed for each tile preventing creation of custom tiles with an external tool.



24



25

4 Technical Aspects of Minecraft

Minecraft is an open-world, voxel-based video game. Its game world is built out of unit cubes 
(blocks) that can represent different materials. Players can destroy (mine) the blocks to obtain 
various items. Those can be placed back in the world or transformed using a process 
called crafting.

As of 2024, three official versions of Minecraft exist [16] — Minecraft Java Edition, Minecraft 
Bedrock Edition, and Minecraft Education Edition. The Java Edition of the game is the original 
Minecraft version. It was created in Java and still has the largest player base above the other 
two mentioned. Thanks to the large player base, there is already an extensive library of user 
content and game modifications.

The Bedrock Edition and Education Edition are both written in C++. They try to closely imitate 
the behavior of the Java Edition and provide some additional features [17]. The Java and Bed-
rock editions are separate programs, but often come bundled with a single purchase. The Edu-
cation edition [43] is sold as a part of the Office 365 suite for schools, making it a popular tool 
for education as many schools already have access to it.

Minecraft Java Edition was selected for this project for its rich library of resources and ease 
of extendibility. If not stated otherwise, this thesis uses the term Minecraft to describe the Java 
Edition of the game.

25



2626

Figure 4.1: Visualization of the Minecraft chunks and regions



27

A single Minecraft game save can contain a virtually unlimited amount of dimensions (worlds) 
stored in separate folders. Only three basic dimensions (Overworld, Nether, and End) can 
be traversed by default within the game.

As depicted in Figure 4.1, blocks Ⓓ within each world Ⓐ are separated into chunks Ⓒ. A chunk 
is a column of 16 by 16 blocks reaching from the lower to the upper build limit (-64 to 320 
for Minecraft version 1.19) within each world. Chunks are used for efficient loading of the world. 
The chunks are grouped into regions Ⓑ stored as separate files within the game save. A single 
region file contains 32 by 32 chunks (512×512 blocks). Since the game version 1.2.1, Minecraft 
has used a binary save-file format called Anvil [18].

Each block or entity (animal, item, player, …) has their location specified by three coordinates: 
X, Y, Z. The X and Z coordinates are horizontal and the Y coordinate is vertical. A size of each 
block corresponds to a unit within the coordinate system and should resemble a meter in real 
world.

Minecraft game mechanics run on a server that can be either located away from the player’s 
computers as a dedicated server or started inside the game client for singleplayer or LAN ex-
perience. The original — Vanilla — game mechanics and client behavior can be customized us-
ing mods and plugins.

Mods are game modifications that usually require mutation of all the clients playing together 
as well as the server they are connected to. They require altered client and server implement-
ations like Forge [44], Fabric [45], or Quilt [46]. Mods offer more options than plugins, allowing 
developers to create custom blocks, entities, and user interfaces.

Plugins do not require modification on the client side as they are server-side only. They do not 
allow developers to add blocks or change the default interfaces. However, they provide the op-



tion to modify the game's behavior and inner workings. As all the mechanics are evaluated 
on the server, they can be altered or replaced by a custom implementation. The most common 
dedicated server implementation with plugin support is Bukkit [47] and its modern forks —
PaperMC [48] and Purpur [49].

28



29

5 Existing Tools

A part of this thesis is an analysis of the existing solutions that can be used for transforming 
geospatial data into a Minecraft map. After an extensive search, surprisingly few possible solu-
tions were discovered. As this tool should be accessible even for creators with no coding skills 
and experience, only solutions that do not require coding were considered.

5.1 FME by SafeSoftware
The closest alternative to the goals of TerraTinker is FME by SafeSoftware [33]. FME (Feature 
Manipulation Engine) is a geospatial extract, transformation, and load software platform that 
provides a no-code solution for the abovementioned tasks. FME Workbench, the editor 
for the FME platform, allows the users to create node-based diagrams for repeatable geospa-
tial data transformations. On top of an extensive set of transformations, the FME Workbench 
provides tools for converting a point cloud into a Minecraft map.

As shown in Figure 5.1, the Craft-my-Street project initially used FME to generate the maps. 
Even though FME was capable of fulfilling the requirements of the project, its has proven to 
be problematic for the future usage for the following reasons. The FME suite is very complex
and extensive, which on one hand provides advanced tools for data processing and analysis. 
On the other hand, due to this complexity, the application feels overwhelming and hard to un-



3030

Figure 5.1: FME Workbench with the original project used for GeoMinasCraft [12], later adapted for 
the Craft-my-Street project



31

derstand for the creators. Furthermore, FME is a commercial software with very expensive li-
cense, which is not viable for most creators.

Due to the abovementioned reasons, the leadership of the Craft-my-Street project have de-
cided to implement a custom solution that would replace the FME software in their workflow. 
Despite the problems, FME was an inspiration that helped form the TerraTinker application 
and pinpoint some concepts that would help improve it over FME for the selected use case. 
These concepts are:

– abstract the creators from the coordinate systems and provide unified, user-friendly 
interface for manipulating geolocations,

– no errors while running the generator, all problems need to be indicated to the creators 
before the transformation is started,

– all parameters should be visible, so it is possible to understand what a node is doing just 
from looking at it (unlike in FME where configuration of nodes is hidden inside a menu).

5.2 Alternatives
The most out-of-the-box solution available for generating virtual world of a selected region is 
a commercial WorldBoxer [50] online service. WorldBoxer allows users to select a region of in-
terest and a visual style from a set of templates. There are unfortunately no more customiza-
tion options — mainly the user cannot provide their own dataset for advanced visualizations.

Alternative solution worth-mentioning is a two step process — first generate a 3D model 
and then transform it into Minecraft. For generating the 3D model from real world data a suite 
of tools from ArcGIS includes the commercial ArcGIS CityEngine [51]. CityEngine is a tool 
Figure 0.0: This is the description of the figure



32

Figure 5.2: Model of a building from the ArcGIS CityEngine (left) and the model voxelized by 
FME (right), adapted from [11]



33

for transforming real GIS data into procedurally-generated 3D cities that can be exported into 
various 3D formats. Such model can be then transformed to Minecraft using abovementioned 
FME (Figure 5.2), or free online tools, such as ObjToSchematic [52] or Online Voxelizer [53].

Unlike the WorldBoxer, CityEngine allows users to supply custom datasets. However, the de-
scribed two-step approach is more complicated. Furthermore, CityEngine is a very expensive 
commercial tool not suitable for most use cases of TerraTinker.

The visual results of the CityEngine are very realistic and visually pleasing. On the contrary, 
it is impossible to include intangible phenomena or alternative datasets into such a generated 
3D model. Since the abovementioned solution requires two independent steps, it can be harder 
to replicate for less technically proficient creators. Furthermore, it might be difficult to enforce 
a selected scale to the real world (such as 1 meter ~ 1 block) through this multi-step process.



34



35

6 System Design and Requirements 

In the previous chapters, the main ideas have already been described, the suitability of Mine-
craft for the visualization has been validated, and the existing tools have been analyzed. In this 
chapter, we define the requirements, discuss the coordinate projections, and start to design 
the mechanics of the application.

6.1 Requirements
Before the design and implementation can be described, it is important to establish the formal 
requirements for the application. As the assignment left a lot of freedom for the interpretation 
and implementation, the following requirements have been designed to narrow the possibilit-
ies and to help steer the ideas towards a consistent result. The listed requirements are inten-
ded to be followed alongside the initial specifications described in Section 1.1.

Configure the region (R1) — The user must be able to select the region of interest for the visu-
alization. This selection should be visual and intuitive. TerraTinker must be able to generate 
small visualizations with the size up to at least 500×500 Minecraft blocks. It is hard for a player 
to comprehend a larger map and be able to get an overview of such visualization. Generating 
larger regions can be added to the system during the future work as it might be useful in some 
scenarios.



Choose the datasets (R2) — The creators must be able to choose, which datasets they want 
to use. Both raster and vector geospatial datasets must be accepted. The application must ac-
cept data sources in WGS 84, as it is represents the standard among GCS formats (as described 
in Section 2.2). The support for other GCSs and PCSs is optional. On top of user-provided data-
sets, the application should allow fetching data directly from the OpenStreetMap or alternative 
open-data source.

Customize the visualization (R3) — Each creator should be able to tweak and adapt the Mine-
craft map that will get generated, for their personal needs. This includes choosing a way each 
dataset will be represented in the final in-game map as well as selecting the surrounding envir-
onment. The representation can change in shape (outlines or filled buildings, building height 
or underlaying height map) as well as block material used.

Generate the result (R4) — Output of the TerraTinker application must be a valid Minecraft 
map. It must be possible to import the generated map into the game for either singleplayer 
or multiplayer experience. This process should be simple and straightforward for the creator 
and the player to perform.

Usability (R5) — A creator with a basic knowledge of GIS should be able to independently use 
the system without a personal guidance. This implies that the system should be intuitive 
enough for such users or provide documentation that can help them complete their task.

Web-based (R6) — The system should be implemented as a web application to mitigate 
the need of installation on the users computers. As a web application, it can also be easily ex-
tended into a larger cloud solution in the future.

36



37

6.2 Our Approach
The main idea of the application is to allow creators to transform their geospatial data into 
a Minecraft map to form a geospatial visualization. There are multiple steps to such transform-
ation. As the creator is working with geospatial data, a projection from real-world to in-game 
coordinates must be established. Furthermore, the creator should be able to specify, which 
datasets they want to use within the given project and define their transformation.

6.2.1 Coordinate System Transformation

As mentioned in Section 2.2, map projection is the process of making a portion of a globe fit 
into a flat plane — in our case, a flat Minecraft world. This step is required since it is not possible 
to represent a globe inside a flat world with 1:1 accuracy. Since the visualization will only con-
tain a small area of the globe, the projection can approximately preserve distance, area, 
and local shape. A simple planar projection visualized in Figure 6.1 and defined in Equation 6.1 
makes a good fit in this case.

x = R cos φ sin (λ − λ0)
y = R( cos φ0 sin φ − sin φ0 cos φ cos (λ − λ0 ) )

Equation 6.1: Formula for orthographic planar projection from longitude and latitude (λ, φ) to flat 
coordinates (x, y) were R is the radius of Earth and (λ0, φ0) is the center longitude and latitude 
of the projection (the tangent point)



3838

Figure 6.1: Scheme of the planar orthographic projection and inverse projection

λ

φ R

(0, 0)

(λ, φ)

(λ₀, φ₀)

(x, y)(0, 0)Projected
coordinates
(x, y)

Real world
coordinates
(λ, φ)



Planar projections map the surface of the sphere to a plane that is tangent to the sphere, 
with the tangent point corresponding to the center of the projection [1]. The focal altitude 
of the projection can further differentiate planar projections. For the simplicity and quality 
of the results, the orthographic planar projection with the focal distance in the infinity has been 
selected.

For the TerraTinker application, we want to choose a projection that feels close to reality 
for the player. When they walk through the world in the first person, the scale of the features 
and their shape should match the real world. This should hold for the regions up to 50 km 
(R1, 500×500 blocks at the scale of 1:100). To test that the selected projection matches this 
requirement, a comparison between the two following coordinate calculations (depicted in Fig-
ure 6.2) has been performed:

– A circle with radius δ inverse projected from the selected PCS with tangent point (λ0, φ0)

– Points reachable by walking the distance δ from the point (λ0, φ0)  in every direction along 
the surface of the Earth

The second mentioned approach is close to real world and uses the spherical law of sines 
and cosines to calculate the new latitude and longitude respectively based on the given dis-
tance δ and bearing θ from the starting point (λ0, φ0) . The exact formula is described in Equa-
tion 6.2.

39

Equation 6.2: Formula for calculating coordinates in the experiment

φ′ = arcsin(sin(φ0) cos(δ) + cos(φ0) sin(δ) cos(θ))
λ′ = λ0 + arctan2(sin(θ) sin(δ) cos(φ0), cos(δ) − sin(φ0) sin(φ′))



40

Figure 6.2: A comparison of a circle obtained by the inverse projection (blue) and by the spherical law 
of sines (red), the measured value is the Error between the mentioned approaches

(λ, φ)

(λ', φ')Error

(λ₀, φ₀)

δδ

δδ

θ



41

This formula is applied for a set of 3 600 bearings between 0° and 360° and compared to 3 600 
values obtained from the inverse projection. The spherical distance is then calculated from 
all the tuples of points ((λ, φ), (λ′, φ′)) and the maximum of those distances is returned. This 
value is considered the error in the selected projection.

When comparing the resulting distance of the points, the error of only 0.5 meters can be ob-
served on circles with the radii δ = 50 km. This result is more than sufficient for the needs 
and requirements of the application as the resolution of the Minecraft world is basically only 
one meter. 

TerraTinker aims to isolate creators from the specifics of each dataset and provide a common 
format for the data, especially coordinates. All the values of coordinates throughout the system 
are already projected into a custom PCS. The benefit of such approach is twofold:

– The creator does not have to consider hundreds of different coordinate systems. All the data 
is in the same centralized projected coordinate system.

– The PCS uses units corresponding to meters similarly to Minecraft's coordinate system. 
This similarity makes it simpler to understand than angular measurements.

As requested in the requirement R1, the creator is free to manipulate certain parameters 
of the projection to best fit their needs. The most important parameter is the tangent point cor-
responding to the origin (0, 0) of the local coordinate system of the Minecraft map. Further-
more, the creator may want to scale the world in either horizontal or vertical direction to either 
fit a larger area of the map or highlight a detail in a specific smaller region. The system also 
needs the minimum altitude of the world since the size of a Minecraft world is vertically limited. 
The listed parameters are exposed to the creator as a part of the region selection step de-
scribed in Section 8.1.



42

6.2.2 Transforming the Data

Similarly to graphics editors, the TerraTinker application allows creators to define multiple lay-
ers that are independent and get merged into a final Minecraft map at the end. Despite this core 
idea holding through the design process, the principle of creating layers within the application 
has significantly evolved in time.

According to the requirements defined in Section 6.1, the TerraTinker application is supposed 
to be accessible for creators without previous experience with similar tools (R5), yet provides 
advanced options for customization and linking data sources (R2, R3). Such a combination 
is hard to achieve and almost contradictory. During the approach design, the application leaned 
towards the freedom of transformations compensated by comprehensive documentation, 
samples, and help.



43

The initial approach (Figure 6.3) included a set of static generators and data providers that 
could be linked to define individual data layers. The data providers included loading from 
GeoTIFF, OpenStreetMap API [19], or other geographic data files and sources (R2). Generat-
ors were complex actions, such as “Box draw,” rendering a hollow box on each input geometry, 
or “Surface painter”, which colors the surface in different blocks according to the input raster 
dataset (R3).

This approach is straightforward and usable for any creator without experience with similar 
tools (R5). The main flaw of this approach was the specificity of each generator. Since the gen-
erator actions were complex and fixed, the desire for more flexibility in the visual output 
emerged.

Figure 6.3: Original design file of the initial approach — in the right column is the configuration of 
the individual transformations, the rest of the UI is similar to the one described in Chapter 8



44

Some datasets require preprocessing, transformation, or filtering before they can be used 
for the visualization. With the initial approach, modifying the input data before feeding it into 
the generator was impossible.

The second design iteration (Figure 6.4) addressed the latest stated issue. An essential 
change in this version was the introduction of a node graph for defining the layers of the map. 
The node graph provided the needed freedom of data transformation between the data pro-
viders and the generators. The addition of the node graph, however, introduced more complex-
ity and created an entry barrier for new users. This approach also did not solve the issue of pre-
defined complex generators.

Figure 6.4: Design file of the second design iteration with the removal of the right configuration 
column and addition of the node graph, which allows for the transformation of the data between 
the data source and a generator (more about the node graph is in Section 8.2)



45

Version three (Figure 6.5) removed the idea of complex generators and looked at the data sim-
ilarly to vertex and fragment shaders on a GPU. The “vertex” part of the node graph loaded vec-
tor data and manipulated the shapes. The “fragment” part of the node graph manipulated indi-
vidual columns of blocks (set of Minecraft blocks that share the same X and Z coordinates) 
of each shape. The two parts of the node graph were connected with a “Rasterize” node. 
This node turned the vector shape from the “vector part” into a set of (X, Z) coordinate pairs 
that were then used in the “fragment part” of the graph.

When inspecting the third approach, the separation of the node graph appeared arbitrary 
as a single graph can easily contain multiple Rasterize nodes. Instead the final approach (Fig-
ure 6.6) joined both sides together with the “Rasterize” node becoming a regular node that can 
be used anywhere in the node graph. More details about the current implementation can 
be found in Chapter 8.

45



4646Figure 6.6: Final approach with the separation of the raster and vector parts removed

Figure 6.5: Design file of the version three with simple actions and the separation of the vector
(left lighter part) and the raster (right darker part) parts joined with a Rasterize node



47

7 Technology

As mentioned in the requirement R6, the front-end of the system must be served as a web ap-
plication. The computation will be performed on a back-end supplying its functionality through 
a REST API. This creates a natural segregation of the two parts of the application (visualized 
in Figure 7.1):

– Client browsers: User interface, layer creation, configuration

– Minecraft server: Configuration evaluation, world generation

In addition, a middle Manager layer could be added in the future (Figure 7.2). Such an addition 
would open options for creating multiple server instances, allowing for load balancing or creat-
ing dedicated servers for specific users. The manager would also provide missing account man-
agement functionality.

47

Figure 0.0: This is the description of the figure

Figure 0.0: This is the description of the figure



4848

Figure 7.2: Extended system architecture with the addition of Manager

Figure 7.1: Current system architecture

JSON-serialized configuration

Client browsers
React application

Saved configuration

REST API
Java plugin

Evaluation queue

Minecraft server

Generated map files
State information

JSON-serialized configuration

JSON-serialized configuration

User info, authentication

Client browsers
React application REST API

REST API

Java plugin

User management
Load balancing

Minecraft servers

Manager

Generated map files

Generated map files
State information

State information

Evaluation queue
Saved configuration



7.1 Web Client
The front-end of the application provides a User Interface (UI) for setting the coordinate trans-
formation parameters, including the center of the map and scale. It also provides tools 
for node-based layer creation, as mentioned in Section 6.2.2. It additionally presents a preview 
of the generated Minecraft world directly in the browser without the requirement to start 
the game.

The application is created using TypeScript [54] programming language for future extendibility 
and readability. The React JS [55] front-end framework was used as a component-based front-
end framework. Components from ChakraUI [56] component library were utilized for 
the primary user interface elements, such as buttons, tooltips, and drawers.

To allow selecting the size and center of the area that a creator is about to generate the applic-
ation needed a component for displaying a map with a preview of the selected region. The Leaf-
let [57] library for rendering maps was adopted to display the main map component, including 
the interactivity and animations.

React Flow [58] library was included in the project to provide support for node-based graphs. 
React Flow is a customizable React component for building node-based editors and interactive 
diagrams [58]. It provided a strong foundation, and the implementation of the desired function-
ality would be very complicated without its inclusion. However, as the library did not provide 
all the functionality required by the application, it had to be heavily extended. The most import-
ant change was a custom implementation of the data storage system, because the state store 
included with the library was not sufficient.

For the preview of the Minecraft map, I created react-minecraft-viewer [59], a custom library 
for rendering a part of Minecraft region. More information about the library is in Section 8.3.

49



50

7.2 Server
The server implementation must be able to parse the user-created configuration, execute it, 
and, at the end, create a Minecraft world save. The last mentioned task is the trickiest part. 
Minecraft is a closed-source game that is (at the time of writing) under active development. 
Not only are new versions with new block types constantly added, but some technicalities 
of the game might change, and even the current save format might become deprecated. Mul-
tiple projects try to manipulate the save files externally using Python, JavaScript, or other lan-
guages [20]. However, they are community-based projects that do not guarantee any future de-
velopment.

For the best forward compatibility, the back-end of the application has been implemented as 
a plugin for the PaperMC game server (see Chapter 4 for more information). Because PaperMC 
uses the original provided binaries of Minecraft and is currently the most commonly used Mine-
craft server with more than 100,000 running instances [24], Paper quickly ports its code 
to every new Minecraft version. By using it we can pretty much guarantee forward-compatibility 
while being sure the save files are handled correctly. On the contrary, such an approach 
is wasteful of computation resources as the default game mechanics still need to run behind 
our custom plugin.

The PaperMC plugins are written in Java and have to be compiled into a shadowed JAR [60] 
archive containing all the dependencies required by the plugin. Such an archive can then be in-
serted into the server folder, from where it gets loaded on the server startup alongside 
the Vanilla code.



Since the server must contain a simple REST API, the Javalin [61] library provided required 
functionality. It brings a functional approach to creating APIs and is more than sufficient for 
the needs of the project.

Handling the geographical data is complicated and implementing such functionality from 
scratch would be unwise. GDAL [62] is a system library that handles raster and vector geospa-
tial files and thanks to the proj library [63], it supports a wide range of geographical projections 
as well. It is distributed as a standalone tool but contains official bindings for Java [21] and 
multiple other languages [22]. Thanks to that, the application can work with different 
data types without additional struggle with parsing.

7.3 Package
Running the application requires the setup of an extensive set of tools:

– Web: Node.JS, PNPM, dependencies, build, serving

– Server: Java, Gradle, GDAL, PaperMC server

This process makes the application cumbersome to set up for an average user and time-con-
suming to start using on a new machine. To mitigate this problem, the whole system has been 
packaged into two Docker [64] images and set up such that a single Docker Compose com-
mand can install all the dependencies, build and run the whole application. It also provides ad-
ditional functionality for switching the Minecraft version across the system. As the Minecraft 
End User License Agreement (EULA) [23] does not allow redistribution of the server imple-
mentation, the Minecraft server itself gets installed after the container is started and the cre-
ator has agreed to the Minecraft EULA.

51



52



53

Figure 0.0: This is the description of the figure

53

8 User Interface

From the creators point of view, the whole application is controlled through a web interface. 
The  interface provides a wizard-like experience leading the steps of a user from the generic 
setup of the region to previewing and exporting the final map. The wizard consists of four indi-
vidual steps described in the following sections.

The user interface is divided into two columns, as shown in Figure 8.1. In the left smaller 
column Ⓐ, a creator can switch between steps and configure the current step. The right 
column Ⓑ contains a visualization or graphical configuration related to the given step. More 
details are described in the following sections.

The top bar above the two columns contains a status indicator Ⓒ that informs the user about 
the current status of the back-end server as well, as a pair of buttons for saving and loading 
the current configuration Ⓓ. The top right corner of the UI holds two more buttons for opening 
the documentation (more details about the documentation are described in Section 8.4).

The current configuration of the application is stored to browser’s local storage providing 
an easy way to continue, where the user left off. It can be also downloaded as a JSON file 
and transferred to a new machine or browser.



54

Figure 8.1: The overall layout of the user interface of TerraTinker

54



Figure 8.2: Region selection step with the selected region around FI MUNI

55

8.1 Region Selection
The first step in the creation process is the region selection (R1) depicted in Figure 8.2. In this 
step, the creator is presented with a map Ⓐ and a set of options for configuring the map projec-
tion Ⓑ (described in Section 6.2.1).

Live visualization of the selected region is displayed in the map window on the right side Ⓒ. 
The creator can see a real-time impact of changing the parameters of the projection on the size 
of the selected region. They can also drag-and-drop the region directly in the map, improving 
the user experience.



56

8.2 Layers Design
The layer design shown in Figure 8.3 is the core of the whole process. It empowers a creator 
to define multiple independent transformers (layers) Ⓐ using a node graph. The node graph Ⓑ
represents a series of operations applied to the input data. Each layer independently trans-
forms input geospatial data into a common Minecraft map. Layers are evaluated in a bottom-up 
manner, meaning that the bottom-most layer is evaluated first and the top-most layer is evalu-
ated last. This behavior is similar to how layers behave in a graphic editors like Photoshop. This 
empowers the creators to define layers that overwrite the results of the previous ones.

A single nodeⒸ in the graph represents a basic operation applied to the input data of the node. 
Inputs can either be values or links to an output of other nodes. The application contains three 
general types of nodes (indicated with an icon in the top-right corner):

– Generic node (no icon) Ⓒ performs a generic transformation of data, for one set of inputs 
it produces one set of outputs.

– Fork node Ⓓ can produce multiple sets of outputs for one set of inputs.

– Action node Ⓔ performs an action, like placing a block, and usually does not have any 
outputs.

The application currently contains 45 different nodes. This includes data loaders required 
by R2 (GeoJSON, GeoTIFF, ESRI Shapefile, OpenStreetMap Overpass API), nodes for working 
with numbers, strings, and boolean values, processing vector and raster files, and manipulating 
the Minecraft world (R3). All the nodes contain documentation (R5) with example usage (where 
it is necessary for understanding how the node works). Furthermore, the application contains a 
Comment node Ⓕ that describes the thought processes within the examples and allows 
the creators to document the layers by themselves.



57

Figure 8.3: The layer creation step with four layers after an attempt to create an invalid connection

57



58

Figure 0.0: This is the description of the figure

Links Ⓖ connect inputs and outputs of nodes and represent the flow of the data. Links can 
be connected only between compatible inputs and outputs and must not form cycles. When 
creating a connection, the graph is traversed using the Depth-first search (DFS) to detect any 
cycles, prevent them, and report them to the creator Ⓜ. Each data type (● number, ● boolean, 
● string, ● geometry, ● raster, and ● material) carried by a link is represented with a different 
color of the connection.

If the node has a possibility of outputting a null value, the corresponding output shows a black 
dot ⦿ and its links are rendered using a dashed line Ⓗ. The indication is included to ensure 
correct null value handling, to inform the user about a potential problem and simplify its elim-
ination. This is especially important if a node is unable to work with null values, since such node 
outputs null upon receiving null on any of its inputs.

Execution flow Ⓘ is used to define the order of execution of action nodes. Unlike generic 
or fork nodes, action nodes have an additional input and output at the top and bottom respect-
ively. Those are used to connect the nodes into the execution flow and specify their order of ex-
ecution. The evaluation algorithm described in Chapter 9 guarantees that every action node 
is executed before its successors. Similarly to the layer order, this can be useful for overriding 
outputs of a previous action.

The creator is encouraged to browse provided templates Ⓙ and use them as a scaffolding 
for generating a simple scenery. The templates currently provide layers for buildings, streets, 
and terrain but can be expanded in the future to provide more options for less experienced 
users. Each layer can be also exported Ⓚ and imported Ⓛ for sharing of the creations between 
the creators.

58



59

8.3 Preview and Publish
The last step of the creation process is generating the Minecraft map. On the front-end side, 
the creator requests a generated map from the back-end and after the evaluation is finished, 
they can download a ZIP archive containing the generated world save. This save can then 
be directly extracted into Minecraft’s saves directory or provided to a server for multiplayer 
hosting (R4).

However, generating the map for the whole selected region every time the creator wants to pre-
view and validate the visualization is very inefficient, time-consuming, and importing it into 
the game every time is also inconvenient. For such situation, the creators can use the preview 
step (Figure 8.4), which generates only 4×4 chunks (64×64 blocks) in the center of the selected 
region and provides the creator with a preview directly in the browser.

The preview uses react-minecraft-viewer [59] package I created for TerraTinker. React Mine-
craft Viewer is a simple component for displaying a part of Minecraft region file with React.js. It 
is based on the Deepslate [65] library with a majority of the code extracted from the NBT viewer 
for VS Code extension [66]. The original code from the extension was extracted to a standalone 
package with additional support for touch controls and loading multiple chunks. The library is 
published on the NPM package registry [67] under the MIT License.

59



6060

Figure 8.4: The preview step with the model of Brno around FI MUNI (datasets from Section 10.1.1)



61

Figure 0.0: This is the description of the figure

Figure 0.0: This is the description of the figure

61

8.4 Documentation
As mentioned in Section 6.2.2, the final application had to be accompanied with comprehens-
ive documentation (R5). A user can either open the last visited page and browse the document-
ation (Figure 8.5) through the file tree in the left sidebar Ⓐ, or use context help (Figure 8.6) 
throughout the application. By clicking the help button Ⓔ, an overlay is displayed and a user 
can open the documentation directly for any on-screen component by clicking the blue icon 
in its top right corner Ⓕ. To ensure the best experience for the creators, all nodes include con-
text help that should simplify its understanding and aid the user during the layer creation pro-
cess.

The documentation pages can contain formatted text as well as individual nodes Ⓑ or even 
examples of node graphs. It is structured into chapters with links Ⓒ between them. A user can 
return to a previous page with the back button in the top-left corner of the right panel Ⓓ.



62

Figure 8.6: The help overlay open on the layer creation step

Figure 8.5: The documentation of the Rasterize node

8.5 

62



6363

9 Evaluation Algorithm

After a creator is satisfied with the selected parameters and layers, as defined in Chapter 8, 
the configuration is serialized into a JSON (JavaScript Object Notation) file and an evaluation is 
requested on the back-end. In the current implementation, there is a single server that handles 
all requests sequentially, however, this approach can be extended in the future (see Chapter 7). 
Upon receiving a request, the configuration is enqueued for evaluation and when the server is 
idle, the oldest configuration is dequeued and evaluated.

During the evaluation, each node can receive multiple sets (rows) of inputs and return multiple 
sets of outputs. A row of inputs contains values for all input fields of a given node. For example, 
for a Math node, a row of inputs is a pair of numbers and a row of outputs is a single number 
calculated from the two inputs (depending on the operation specified). For most nodes, 
the number of input and output rows matches. This condition does not have to hold for the fork 
nodes (see Section 8.2 for more details), where the number of output rows can be larger (often) 
or smaller than the number of the input rows. 

Using a simple naïve algorithm, each node would receive an array with all the rows for the in-
puts and would directly output an array of all its output rows. This algorithm is common for sim-
ilar tools, such as Carto. It requires only a single pass through the layer tree, however, it uses 
a very large amount of memory as it needs to store all the resulting values of all the nodes 
at the same time. This algorithm could also cause problems when the number of input and out-
put rows of any node do not match (which is common for fork nodes in TerraTinker). Such situ-



64

Figure 9.1: An example of the problematic scenario for the naïve algorithm — the action node has 
mismatched lengths of the inputs, because the Prime Factorization node outputs multiple primes for 
a single non-prime number

ation is depicted in Figure 9.1, where the inputs of the action node do not match in length. With 
this naïve approach, it is very hard to match the corresponding rows together and this situation 
usually results in an error.

For the listed reasons, an alternative algorithm following the main idea described in Pseudo-
code 9.1 was considered and later selected for a better fit for the application. The programⒶ
including all the nodes and their connections gets recursively traversed Ⓒ from a selected start 
node Ⓑ towards its prerequisites. Upon returning from the recursion, each node is evaluated 
using the values of the prerequisites Ⓓ and its result is stored in a common dictionary called 
tree. If a node is a fork, it cannot be evaluated immediately. Rather it returns a reference to 
itself Ⓔ indicating that a fork has been visited and the rest of the tree needs to be evaluated for 
all the possible outputs of such node Ⓕ. An example of evaluation using this algorithm is depic-
ted in Figure 9.2.

64



65

# The root function, that evaluates the program
# - program: A Dictionary with the individual nodes from the graph
# - startNode: ID of an action node, that the evaluation starts from
function EvaluateProgram(program Ⓐ, startNode Ⓑ)
    tree <- {}
    EvaluateForTree(program, startNode, tree)
end

# A function, that starts the evaluation for a specific result tree, the tree can be empty
# (when calling from EvaluateProgram) or partially full (when calling from EvaluateFork)
# - tree: A dictionary with the results of individual nodes
function EvaluateForTree(program, startNode, tree)
    fork <- program[startNode].Evaluate(program, tree)

if fork != null then
        EvaluateFork(program, startNode, tree, fork)

end
end

# Evaluate the program for all rows of a specific fork node
# - fork: ID of a fork node, for which the node graph will be completely evaluated
function EvaluateFork(program, startNode, tree, fork)
    # While the specified fork node has more values to return, continue the evaluation

while program[fork].EvaluateNext(program, tree.Copy()) do
        EvaluateForTree(program, startNode, treeCopy)

end
end

Pseudocode 9.1: Pseudocode that served as a base for the algorithm implementation (continued 
on page 66)



# A function of fork nodes, sets its next outputs into the tree
# If all values were already evaluated, return false to indicate it
function Node.EvaluateNext(program, tree) Ⓕ

if not evaluated all do
        tree[this.id] <- result

return true
end
return false

end

# Evaluate a specific node
function Node.Evaluate(program, tree)
    # Traverse all the prerequisites and evaluate them, if they are not already

for input in this.input do
if !tree.contains(input) then

            fork <- program[input].Evaluate(program, tree) Ⓒ
if fork != null then

                # If the prerequisites contain an unevaluated fork node,
                # we return its ID

return fork
end

end
end

    # If this node is a fork, it should be evaluated individually,so we return its ID
if this.isFork do

return this.id Ⓔ
end

    # Evaluate the node here using the values stored in the tree (tree[input])
    tree[this.id] <- result Ⓓ

    # This node is not a fork, so we return null
return null

end

66



67

Figure 9.2: Visualization of the algorithm described in the Pseudocode 9.1 for an example with two 
fork nodes (#1, #2) and one action node (#5)

67

#1

#2

#5#3 #4

evaluate(&tree)

evaluate(&tree)

evaluate()
evaluate(&tree)

evaluate(&tree)

evaluate(&tree)

evaluate(&tree)

evaluate(&tree)

evaluate(&tree)

#2.evaluateNext(&tree)

#1.evaluateNext(&tree)

return #2

return #1

return !finished

return !finished

return #2

skip eval of #1

return #1

return #2

return #1

return #2

return #1

run eval with tree copy

run eval with tree copy

if !finished

if !finished

duplicate res tree

duplicate res tree

create result tree

evaluate(&tree)evaluate(&tree)evaluate(&tree)

calculate results

calculate results

invokes action

store results in tree

store results in tree

store results in tree

return null

return  null

return  null



68

Figure 0.0: This is the description of the figure

By implementing the described algorithm, all action nodes get executed for all the combina-
tions of fork node outputs within its prerequisites (cartesian product of all rows outputted from 
the connected fork nodes). This approach might seem inefficient, however, it is the key that 
unlocks the freedom of dataset merging. Furthermore, a set of optimizations was implemented 
to increase the performance.

The algorithm allows for merging of different datasets, their filtering and transformation. Mer-
ging is performed automatically on any node that has two (or more) different fork nodes 
as its prerequisite. Such node is then executed for a cartesian product of its input rows. Filtering 
is applied on the action and fork nodes (that have any input) by an additional input field called 
Ignore. If the value of Ignore is true, the evaluation of that node is preliminarily skipped saving 
expensive computations of values that would be unused at the end. 

9.1 Handling the Execution Flow
Event though the evaluation follows strict rules, there are still different approaches to handling 
multiple action nodes within the same layer. Each approach has different efficiency and each 
one is more suitable in a different situation. In this section, two different variations of the same 
algorithm are explained and compared. Both of those were considered for the final implement-
ation and as both are valid in certain scenarios.

Approach A: Each action is independent — As the name suggests, in this approach, each ac-
tion node is evaluated as if no other action is present in a given layer. The whole program 
is evaluated independently for each action node from the top to the bottom, guaranteeing 
the order of the actions.

68



69

Approach B: Actions are prerequisites of each other — Using this approach, only the last 
node in the execution flow is evaluated. Each action has then one additional prerequisite being 
the previous node in the flow. This way the order of action nodes is guaranteed and the results 
from the rest of the tree are shared between the actions.

We can compare the listed approaches in two problematic scenarios:

Scenario 1
In this scenario, the program contains a single data source that is processed by a computation-
ally expensive node and then used by two separate action nodes, as shown in Figure 9.3.

Approach A performs poorly in this situation as the computationally expensive operation gets 
performed twice for each row of the data source (once for each action). On the contrary, using 
Approach B, the expensive operation is performed only once for each row as the results 
of it are shared between both actions. The Approach B is thus a better fit for this scenario.

Figure 9.3: Scheme of Scenario 1 with a single fork node used by two different actions

Computationally
expensive

node



Scenario 2
The contrasting scenario uses two independent data sources and two actions, where each one 
uses only a single data source, as shown in Figure 9.4.

Approach B considers the upper action as the prerequisite of the lower one thus performing 
the lower action for each combination of the input rows, as described in the algorithm. That 
is very inefficient, as the bottom action is not dependent on any value of the upper data source. 
Approach A considers each action independently, thus eliminating the mentioned problem.

When using TerraTinker as intended and defining separate layers for separate data sources, 
Scenario 2 is basically eliminated making Scenario 1 more problematic. Due to that, the imple-
mentation of Approach B was selected for the current implementation of the evaluation al-
gorithm. However, it might be beneficial to give creators ability to switch between them in 
the future.

70

Figure 9.4: Scheme of Scenario 2 with two fork nodes used each by one action node



71

9.2 Stale Data and On-Demand Evaluation
Another problem with the described algorithm is that some nodes cannot be evaluated in ad-
vance. Consider a situation when a creator wants to place 100 blocks randomly inside a given 
region. They can use a Random number node to generate the coordinates, such as in Figure 9.5. 
However, this node could be evaluated in advance, before any fork node would cause the pro-
gram to split (the Sequence node in our example). In such case, the block would get placed 
on the same coordinates 100 times.

Figure 9.5: A layer for placing 100 blocks randomly in the region



To mitigate this problem, TeraTinker does not evaluate the nodes immediately, but rather 
stores lambda functions containing the evaluation algorithm. With this approach, the actual 
output values will be obtained only when it is necessary — when an action node or a fork node 
will get evaluated.

This workaround is unfortunately also not perfect. The creator would expect that for a single 
execution of an action node an output of any node would be consistent. That is not true with 
this approach, as the value is obtained on demand for every input field of each node separately. 
This problem can be solved by adding a cache during the evaluation step, but as so little nodes 
are non-deterministic in this way, the implementation of such cache will be left for future work.

72



73

10 Usage and Results

TerraTinker at its early stage has been used by the Craft-my-Shore project at the Faculty of Ar-
chitecture, Planning & Environmental Policy at the University College Dublin to generate virtual 
version of multiple areas of coastal Dublin and neighboring towns (Figure 10.1). This project 
tries to demonstrate the impact of the water level rising, embrace young players to improve 
the situation and shape the coast to mitigate the effect of flooding.

73



74

10.1 Geospatial Datasets
As already stated, the primary usage and the goal of the TerraTinker application is to visualize 
geospatial datasets inside a Minecraft world. This section contains examples of such Minecraft 
maps generated with TerraTinker. Each example includes a short description of the configura-
tion and layers and the list of used datasets.

Figure 10.1: The town of Bray generated by the early stages of the TerraTinker application (top), 
comparison with the OpenStreetMap of the same area (bottom) 74



75

Figure 0.0: This is the description of the figure

75

Figure 10.2: The base model generated with the terrain, building and streets layers



76

Figure 10.3: The part of the layer for the building generation that handles calculation of the height 
of buildings

10.1.1 Base Model

This model utilizes three layers available as the templates. The first layer uses a GeoTIFF file 
to generate the terrain. The two additional layers both use OpenStreetMap to visualize roads 
and buildings (Figures 10.2 and 10.3).

Datasets
– MERIT DEM (Multi-Error-Removed Improved-Terrain Digital Elevation Model) by 

the Institute of Industrial Sciences, The University of Tokyo [27] — used for the terrain data

– OpenStreetMap (available under the Open Database License) [39] — streets and buildings

Configuration
This configuration without the datasets is available in the source code under
samples/Configurations/base.json.

76

Figure 0.0: This is the description of the figure



77

Figure 0.0: This is the description of the figure

77

Figure 10.4: A map visualizing the noise levels in the Brno city center



78

Figure 10.5: Layer for coloring the existing map according to the raster dataset containing the noise 
data

10.1.2 Noise Levels

This map visualizes the noise levels in the Brno city. The model utilizes the base model de-
scribed in the previous section. The map is then colored according to a raster containing 
the noise heatmap (Figures 10.4 and 10.5).

Datasets
– Noise level 2022 [26] available under the public license by the data.Brno portal

– MERIT DEM [27] — used for the terrain data

– OpenStreetMap [39] — used for the buildings

Configuration
This configuration without the datasets is available in the source code under
samples/Configurations/noise level.json.

78

Figure 0.0: This is the description of the figure



79

Figure 0.0: This is the description of the figure

79

Figure 10.6: A visualization of the number of people living at addresses around the Lužánky park, Brno



80

Figure 10.7: Section of the layer, that determines, if an address from the GeoJSON containing the 
number of people corresponds to location of a building from the OpenStreetMap

10.1.3 Number of Citizens

This model visualizes the number of people living at addresses throughout Brno. The number 
of people is displayed as height of the different buildings. The terrain layer is not utilized to 
provide clear comparison between the building heights (Figures 10.6 and 10.7).

Datasets
– Number of people living at the adresses [25] available under the public license 

by the data.Brno portal

– OpenStreetMap [39] — used for the building outlines

Configuration
This configuration without the datasets is available in the source code under
samples/Configurations/number of citizens.json.

80

Figure 0.0: This is the description of the figure



81

Figure 0.0: This is the description of the figure

81

10.2 Mathematics and Geometry

Apart from the geospatial data visualization, the TerraTinker application can be useful in other 
education fields. In particular, you can see examples of usage for plotting functions and visual-
izing mathematical definitions of geometric bodies. Even though such use case was not inten-
ded, it can be very useful and definitely worth exploring.

For the described use case, one can use Sequence nodes Ⓒ, which generate an arbitrary se-
quence of numbers. Multiple Sequence nodes can be mapped to individual axes of the coordin-
ate space and their combination can then be inputted to a mathematical formula. The formula 
generates either value for the remaining unused axis Ⓐ or it can be used for filtering the placed 
blocks Ⓑ.

The values from a Sequence node usually require scaling ⒹⒺ, as most of the functions are not 
plotted nicely with a step of one. An example of a configuration with two axis input (X, Z) and 
a single output (Y) is depicted in Figure 10.8.



82

Figure 10.8: Scaffolding for a mathematical and geometrical functions in TerraTinker. The red nodes 
can be replaced with an arbitrary amount of number-processing nodes. 82



8383

Figure 10.9: The function y = sin     x2 + z2 plotted using TerraTinker



84

Figure 10.10: The equation defining the plotted function

10.2.1 Function Plots

TerraTinker can be used to plot 2D and 3D functions. In this example, we can see a plot of 
a 3D function y = sin    x2 + z2. This function creates rippled surface from the origin. The ap-
proach in TerraTinker is very simple as for every pair of (x, z) coordinates, the application can 
calculate the remaining y coordinate and use it to plot a 3D function (Figures 10.9 and 10.10).

Configuration
This configuration without the datasets is available in the source code under
samples/Configurations/math.json.

84



8585

Figure 10.11: A sphere generated by the described layer



86

Figure 10.12: The layer mathematically describing the sphere

10.2.2 Definition of Geometric Bodies

Thanks to the Ignore parameter of the action nodes described in Chapter 9, we can only set 
blocks from a given region that fit within specified rules and ignore the rest. As an example 
of such rules, we can use the equation of a sphere     x2 + y 2 + z2 ≤ r. By rewriting this equation 
in TerraTinker layer, we can create mathematically defined spheres, however, still built from 
cubes (Figures 10.11 and 10.12).

Configuration
This configuration without the datasets is available in the source code under
samples/Configurations/geometry.json.

86



8787

11 Evaluation

To pinpoint the problematic parts of the thought process during the map generation as well 
as test the functionality of the implemented features, a small-scale user evaluation was per-
formed at the University College Dublin (UCD) and the Masaryk University Brno (MUNI). In total, 
the application was evaluated with five individual participants with different backgrounds 
and education levels, described in the Table 11.1. The study has been anonymized, but all par-
ticipants agreed with publishing all the details from the study. The audio and screen capture 
from each session was recorded for future reference.

At the start of the evaluation, the basic concept of the application was explained to the parti-
cipants (similarly to Section 1.1). They were then walked through the creation steps, each step 
was briefly described, and participants were pointed to the documentation for further refer-
ence. During this phase, the participants were encouraged to manipulate the UI and ask ques-
tions.

In the following part, basic concepts were slowly introduced to the participants through a set 
of simple tasks. The participants worked on a prepared layers and configuration that they were 
asked to modify according to the tasks. The structure of the evaluation was the following (in the 
brackets are the concepts that the given steps are supposed to introduce and test):



88

Table 11.1: A list of participants in the user evaluation and their background

11.1 

88

Participant ID Faculty Current post Experience 
with GIS

Experience 
with node-
based editors

Experience 
with 
Minecraft

Participant A Faculty of 
Informatics, 
MUNI

Ph.D. student No Blender,
Scratch

Basic
(Player)

Participant B Faculty of 
Architecture, 
Planning & 
Environmental 
Policy, UCD

Postdoctoral 
researcher

Yes FME,
Carto,
Blender

Advanced 
(Server 
management)

Participant C Faculty of 
Architecture, 
Planning & 
Environmental 
Policy, UCD

Ph.D. student No No None

Participant D Faculty of 
Architecture, 
Planning & 
Environmental 
Policy, UCD

Postdoctoral 
researcher

Yes FME,
Blender,
Scratch

Advanced 
(Server 
management)

Participant E Faculty of 
Informatics, 
MUNI

Ph.D. student No Unity Shader 
Graph, 
Scratch, …

Expert
(Plugin 
development)



Model 1 - Roads
Starting with a simple configuration that loads roads from OSM and draws them at Y = 0.

– Select different area (region selection, understanding map).

– Change the scale so the preview fits more roads (region selection).

– Change the block the roads are built from (parameter modification, understanding 
the graph).

– Change the thickness of the roads (parameter modification).

Model 2 - Terrain
Starting with a simple configuration that renders a single layer of blocks on a terrain loaded 
from a GeoTIFF.

– Change the scale so that the variations in terrain are more prominent (region selection).

– Fill the rest of the map under the terrain with dirt (execution flow).

– Modify the “Roads” layer so the buildings are placed on the terrain (adding multiple nodes, 
complex graph).

Model 3 - Buildings
Depending on the time, add buildings on your own, using the provided steps or use a template.

a. Load terrain from GeoTIFF and place buildings on top of it.

b. Buildings should be loaded from OpenStreetMaps using “building” key.

c. Buildings should be drawn as boxes with height 5 relative to the lowest point of the terrain.

89



During the evaluation, the functionality of the system was validated. The system is capable 
of generating Minecraft maps from user-provided datasets as well as with features from 
the OpenStreetMap. Users did not discover any major flaws with the design nor the implement-
ation and they were seriously interested in the future of the project. Members of the Craft-my-
Street project were part of the testing and they were very satisfied with the resulting applica-
tion.

The additional goal of the evaluation was to pinpoint the problematic concepts with the selec-
ted design process. No major flaws were discovered, however, it could be observed that the fol-
lowing four concepts took more time to grasp than other tasks:

– The concept of the rasterization — users must get used to looking at 2D raster and vector 
shapes in the 3D world.

– The vertical scale — this concept was not used in the first model.

– Adding the first ever node on their own — this is to be expected with any node-based 
programming tool.

– The technicalities of Minecraft, especially the fact that the lower building limit of Minecraft 
is not at Y=0 — this was more a thing users did not realize.

None of the abovementioned concepts are very problematic and all of them can be explained 
by extending specific documentation sections. After completing all the previous tasks, every 
participant managed to complete Model 3 without any assistance by using one of the possible 
approaches. The evaluation validated the functionality of TerraTinker and provided valuable 
feedback for future development.

90



91

12 Future Work

The next step in the near future is to extend the library of available nodes. This can be achieved 
in two ways — expanding the core library and allowing creators to create custom nodes. 
The core library of nodes can be expanded to provide more transformations and to accept 
more types of input files, such as CSV and JSON. The tool could be simply adapted to even ac-
cept input files that do not include geospatial data at all.

The second way is to allow creators to define their own custom nodes. Such nodes would 
group multiple operations together providing advanced functionality wrapped inside a single 
node. The grouping would not provide new functionality, but rather make advanced transform-
ations more approachable for less technically proficient users. The created custom nodes 
could be shared between creators virtually expanding the library of available templates.

As intended by the Craft-my-Street project, TerraTinker should be a part of a larger cloud solu-
tion in the future. The resulting application should allow the creators to create virtual education 
scenarios based on the real-world data. TerraTinker currently represents the first step 
of the creation process. At the moment, however, the application does not include any user 
authentication, project management, or data retention across multiple devices. The result-
ing platform for the Craft-my-Street project must include those features to be deployable 
for the general public.



As mentioned in Chapter 7, the evaluation is currently handled by a single back-end server. 
To increase the performance, additional servers can be deployed. Such servers would have 
to be connected by a Manager that would handle the load balancing.

92



93

13 Conclusion

This thesis aimed to create a web-based tool for transforming geospatial data into playable 
Minecraft worlds. The goal was to create a universal tool that provides freedom in both 
the dataset selection and the final visualization.

In the beginning, a set of meetings with the Craft-my-Street project management was organ-
ized. The meetings provided needed insight into the problem and offered a platform for 
the alignment of ideas and understanding of the target groups. As this project heavily focuses 
on working with the geospatial data, further research was conducted in this field including 
the analysis of the dataset types and the geographic coordinate systems.

The usage of Minecraft for the project was not compulsory, so a set of criteria was established 
and seven alternative video games were evaluated. After detailed analysis of the selected video 
games, Minecraft was confirmed to best fit the needs of the project.

Not to reinvent the wheel, the analysis of the existing tools was performed, yielding FME 
by SafeSoftware as by far the most comparative tool. Even though FME does not fulfill all 
the needs of the Craft-my-Street project, it provided valuable insight for defining formal re-
quirements and designing TerraTinker.

The TerraTinker application consists of separate front-end and back-end parts. The back-end 
is built as a Minecraft server plugin with a Rest API. The front-end provides a wizard-like user 
experience leading the user through the process of designing their map. The users make use 



of node-based design tool for defining the data transformations. Furthermore, the front-end 
allows users to preview the generated map using a created library. Both parts of the application 
can be easily deployed using Docker.

To test the TerraTinker application, the evaluation with five users was performed. During 
the evaluation, the functionality of the system was validated and the evaluation provided valu-
able feedback for future development.

TerraTinker is capable of generating playful visualizations of geospatial data in the form 
of Minecraft maps. The application fulfills all the requirements setup for the project and the 
Craft-my-Street project members are very satisfied with the resulting application. The quality-
of-life features, such as the preview, make the application pleasant to use. The inclusion 
of documentation helps users getting acquainted with the design process.

TerraTinker has been successfully used in real-world applications, as demonstrated by 
the Craft-my-Street project at the University College Dublin. The tool was used to generate 
a virtual version of the Dublin Docklands area, showcasing the potential impact of rising water 
levels.

The application of TerraTinker extends beyond just geospatial data visualization. It can also 
be utilized in other educational fields, such as plotting functions and visualizing mathematical 
definitions of geometric bodies. Despite these applications not being the primary focus during 
the tool's development, they offer great potential and are definitely worth exploring in the fu-
ture.

94



95

Electronic Attachments

The archive in the Masaryk University Information System attached to this thesis contains:

– The source code of the application attached as a ZIP file

– Two Docker container images of the front-end and the back-end

– A Docker compose file for launching the application automatically with the docker images 
uploaded to the GitHub repository of TerraTinker

– The Minecraft world saves of the examples described in Chapter 10

Running the Application
The application can be run using multiple approaches. While the repository with the images 
is available at GitHub, the suggested way of launching the application is using the provided 
Docker compose file. If the repository is unavailable, the source code contains a development 
version of a Docker compose file intended for local build.



Using Prebuilt Images (recomended)

This project uses Docker and Docker Compose to run the application. You need to install 
and enable Docker from the official website. Download the provided docker-compose.yml file 
from the thesis archive.

Before running the application, you need to agree to Minecraft EULA [23]. To do so you need to 
create a file .env in the root of the project with the following content:

EULA=true

To start the application, run the following command:

docker compose up

Using the Source Code

Similarly to the previous option, you need to instal Docker and agree to Minecraft EULA.

To build and run the application using the provided source code, run the following command:

docker compose -f docker-compose.dev.yml up --build

Developing Individual Applications

The guide for running the front-end and the back-end separately is in the readme of the indi-
vidual applications in the source code archive.

96

https://www.minecraft.net/en-us/eula


97

Bibliography

1. WARD, Matthew O., GRINSTEIN, Georges and KEIM, Daniel. Interactive data 
visualization: Foundations, techniques, and applications. 2nd ed. CRC PRESS, 2021. 
ISBN 9781482257373.

2. CAIRO, Alberto. The Truthful Art: Data, Charts, and Maps for Communication. New 
Riders, 2016. ISBN 9780321934079.

3. BERNHARDSEN, Tor. Geographic Information Systems: An Introduction. 3rd ed. Wiley, 
2002. ISBN 9780471419686.

4. KIRK, Andy. Data Visualisation: A Handbook for Data Driven Design. 2nd ed. SAGE 
Publications Ltd, 2019. ISBN 9781526468925.

5. CORTI, Kevin. Games-based Learning; a serious business application. Informe de 
PixelLearning. 2006. Vol. 34, no. 6, p. 1–20.

6. PRENSKY, Marc. Digital natives, digital immigrants. On the horizon. 2001. Vol. 9, no. 5, 
p. 1–6.

7. CARDOSO, Bruno, COHN, Neil, TRUYEN, Frederik and BROSENS, Koenraad. Explore 
Data, Enjoy Yourself - KUbism, A Playful Approach to Data Exploration. In: 2021. p. 43–
64. ISBN 9783030856120.



8. CANOSSA, Alessandro, MARTINEZ, Josep B. and TOGELIUS, Julian. Give me a reason to 
dig Minecraft and psychology of motivation. In: 2013 IEEE Conference on Computational 
Inteligence in Games (CIG). 2013. p. 1–8. DOI 10.1109/CIG.2013.6633612.

9. LEUE, Andre. Verification of Factorio belt balancers using Petri nets. Bachelor thesis. 
2021. Available from: https://d-nb.info/123465766X/34

10. WISNIEWSKI, Maciej. Artificial intelligence for the OpenTTD game. Master thesis. 2011. 
Available from: https://www2.imm.dtu.dk/pubdb/edoc/imm6091.pdf

11. BAGH, Dmitri, DE VOGEL, Brian and LUTZ, Dale. Esri CityEngine & Minecraft: Engaging 
Citizens in 3D City Planning. Online. 2015. Available from: https://proceedings.esri.com/
library/userconf/proc15/papers/997_696.pdf. Esri User Conference

12. SENA, Ítalo, POPLIN, Alenka and ANDRADE, Bruno. GeoMinasCraft: A Serious Geogame 
for Geographical Visualization and Exploration. In: 2021. p. 613–632. 
ISBN 9783030760588.

13. ŠŤASTNÁ, Tereza. Playful visualization: Evaluating data visualization in video games. 
Online. Brno, 2023. Available from: https://is.muni.cz/th/td5tv/

14. World Geodetic System (WGS84). Online. 2024. [Accessed 5 May 2024]. Available from: 
https://gisgeography.com/wgs84-world-geodetic-system/

15. Coordinate systems, map projections, and transformations. Online. 2023. 
[Accessed 5 May 2024]. Available from: https://pro.arcgis.com/en/pro-app/3.1/help/
mapping/properties/coordinate-systems-and-projections.htm

16. Minecraft: Java & Bedrock Edition Deluxe Collection | Compare Key Features of 
Minecraft Java and Bedrock Editions. Online. 2024. [Accessed 5 May 2024]. Available 
from: https://www.minecraft.net/en-us/store/minecraft-deluxe-collection-pc#title-
486066bf42

98

https://doi.org/10.1109/CIG.2013.6633612
https://d-nb.info/123465766X/34
https://www2.imm.dtu.dk/pubdb/edoc/imm6091.pdf
https://proceedings.esri.com/library/userconf/proc15/papers/997_696.pdf
https://proceedings.esri.com/library/userconf/proc15/papers/997_696.pdf
https://is.muni.cz/th/td5tv/
https://gisgeography.com/wgs84-world-geodetic-system/
https://pro.arcgis.com/en/pro-app/3.1/help/mapping/properties/coordinate-systems-and-projections.htm
https://pro.arcgis.com/en/pro-app/3.1/help/mapping/properties/coordinate-systems-and-projections.htm
https://www.minecraft.net/en-us/store/minecraft-deluxe-collection-pc#title-486066bf42
https://www.minecraft.net/en-us/store/minecraft-deluxe-collection-pc#title-486066bf42


99

17. Differences Between Minecraft: Bedrock Edition and Minecraft: Java Edition. Online. 
2024. [Accessed 5 May 2024]. Available from: https://learn.microsoft.com/en-us/
minecraft/creator/documents/differencesbetweenbedrockandjava

18. Anvil file format. Online. 2018–2023. [Accessed 5 May 2024]. Available from:
https://minecraft.fandom.com/wiki/Anvil_file_format

19. Overpass API. Online. 2009–2023. [Accessed 5 May 2024]. Available from:
https://wiki.openstreetmap.org/wiki/Overpass_API

20. Tutorials/Programs and Editors/Mapping | Map Editors. Online. 2012–2024. 
[Accessed 5 May 2024]. Available from: https://minecraft.fandom.com/wiki/Tutorials/
Programs_and_editors/Mapping#Map_editors

21. GDAL: Java bindings. Online. 1998–2024. [Accessed 5 May 2024]. Available from: 
https://gdal.org/api/java/index.html

22. GDAL: GDAL/OGR in Other languages. Online. 1998–2024. [Accessed 5 May 2024]. 
Available from: https://gdal.org/api/index.html#gdal-ogr-in-other-languages

23. Minecraft End-User License Agreement. Online. 2023. [Accessed 5 May 2024]. Available 
from: https://www.minecraft.net/en-us/eula

24. Paper. Online. 2024. [Accessed 5 May 2024]. Available from:
https://bstats.org/plugin/server-implementation/Paper/580

25. Number of people living at the adresses. Online. 6 February 2024. 
[Accessed 5 May 2024]. Available from: https://data.brno.cz/datasets/
923cbe09f11c4999bedeb0bc20905964_0/explore

26. Noise level 2022. Online. 8 May 2024. [Accessed 5 May 2024]. Available from:
https://data.brno.cz/datasets/a5ad8e597ff64bfb8a0d794e78c10512_0/explore

https://learn.microsoft.com/en-us/minecraft/creator/documents/differencesbetweenbedrockandjava
https://learn.microsoft.com/en-us/minecraft/creator/documents/differencesbetweenbedrockandjava
https://minecraft.fandom.com/wiki/Anvil_file_format
https://wiki.openstreetmap.org/wiki/Overpass_API
https://minecraft.fandom.com/wiki/Tutorials/Programs_and_editors/Mapping#Map_editors
https://minecraft.fandom.com/wiki/Tutorials/Programs_and_editors/Mapping#Map_editors
https://gdal.org/api/java/index.html
https://gdal.org/api/index.html#gdal-ogr-in-other-languages
https://www.minecraft.net/en-us/eula
https://bstats.org/plugin/server-implementation/Paper/580
https://data.brno.cz/datasets/923cbe09f11c4999bedeb0bc20905964_0/explore
https://data.brno.cz/datasets/923cbe09f11c4999bedeb0bc20905964_0/explore
https://data.brno.cz/datasets/a5ad8e597ff64bfb8a0d794e78c10512_0/explore


27. YAMAZAKI, Dai, IKESHIMA, Daiki, TAWATARI, Ryunosuke, YAMAGUCHI, Tomohiro, 
O’LOUGHLIN, Fiachra, NEAL, Jeffery C., SAMPSON, Christopher C., KANAE, Shinjiro and 
BATES, Paul D. A high-accuracy map of global terrain elevations. Geophysical research 
letters. 2017. Vol. 44, no. 11, p. 5844–5853. DOI 10.1002/2017GL072874.

28. Craft my Street. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.craftmystreet.com/

29. GOG:Townscaper. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.gog.com/en/game/townscaper

30. ArcGIS. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.arcgis.com/

31. QGIS. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.qgis.org/en/site/

32. Carto. Online. 2024. [Accessed 5 May 2024]. Available from: https://carto.com/

33. FME by SafeSoftware. Online. 2024. [Accessed 5 May 2024]. Available from:
https://fme.safe.com/

34. Tableau. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.tableau.com/

35. Power BI. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.microsoft.com/en-us/power-platform/products/power-bi

36. Minecraft. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.minecraft.net/en-us

37. Factorio. Online. 2015–2024. [Accessed 5 May 2024]. Available from:
https://factorio.com/

100

http://doi.org/10.1002/2017GL072874
https://www.craftmystreet.com/
https://www.gog.com/en/game/townscaper
https://www.arcgis.com/
https://www.qgis.org/en/site/
https://carto.com/
https://fme.safe.com/
https://www.tableau.com/
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://www.minecraft.net/en-us
https://factorio.com/


101

38. OpenTTD. Online. 2005–2024. [Accessed 5 May 2024]. Available from:
https://www.openttd.org/

39. OpenStreetMap. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.openstreetmap.org/

40. GOG: Heroes of Might and Magic® 3: Complete. Online. 2024. [Accessed 5 May 2024]. 
Available from:
https://www.gog.com/game/heroes_of_might_and_magic_3_complete_edition

41. Warcraft III: Reforged. Online. 2024. [Accessed 5 May 2024]. Available from:
https://warcraft3.blizzard.com/en-us/

42. GOG: Dorfromantik. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.gog.com/en/game/dorfromantik

43. Minecraft Education. Online. 2024. [Accessed 5 May 2024]. Available from:
https://education.minecraft.net/en-us

44. Downloads for Minecraft Forge. Online. 2018–2024. [Accessed 5 May 2024]. Available 
from: https://files.minecraftforge.net/net/minecraftforge/forge/

45. Fabric Loader. Online. 2024. [Accessed 5 May 2024]. Available from:
https://fabricmc.net/

46. The Quilt Project. Online. 2024. [Accessed 5 May 2024]. Available from:
https://quiltmc.org/en/

47. Bukkit. Online. 2021. [Accessed 5 May 2024]. Available from: https://dev.bukkit.org/

48. PaperMC. Online. 2024. [Accessed 5 May 2024]. Available from: https://papermc.io/

https://www.openttd.org/
https://www.openstreetmap.org/
https://www.gog.com/game/heroes_of_might_and_magic_3_complete_edition
https://warcraft3.blizzard.com/en-us/
https://www.gog.com/en/game/dorfromantik
https://education.minecraft.net/en-us
https://files.minecraftforge.net/net/minecraftforge/forge/
https://fabricmc.net/
https://quiltmc.org/en/
https://dev.bukkit.org/
https://papermc.io/


49. Purpur. Online. 2019–2024. [Accessed 5 May 2024]. Available from:
https://purpurmc.org/

50. WorldBoxer. Online. 2018. [Accessed 5 May 2024]. Available from:
https://geoboxers.com/worldbloxer/

51. ArcGIS CityEngine. Online. 2020–2024. [Accessed 5 May 2024]. Available from:
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview

52. ObjToSchematic. Online. 2024. [Accessed 5 May 2024]. Available from:
https://objtoschematic.com/

53. Online Voxelizer. Online. 2023. [Accessed 5 May 2024]. Available from:
https://drububu.com/miscellaneous/voxelizer/?out=min

54. TypeScript. Online. 2012–2024. [Accessed 5 May 2024]. Available from:
https://www.typescriptlang.org/

55. React. Online. 2024. [Accessed 5 May 2024]. Available from: https://react.dev/

56. chakra. Online. 2024. [Accessed 5 May 2024]. Available from: https://v2.chakra-ui.com/

57. Leaflet. Online. 2010–2024. [Accessed 5 May 2024]. Available from:
https://leafletjs.com/

58. React Flow. Online. 2024. [Accessed 5 May 2024]. Available from: https://reactflow.dev/

59. react-minecraft-viewer. Online. 2024. [Accessed 5 May 2024]. Available from:
https://www.npmjs.com/package/react-minecraft-viewer

60. Gradle Shadow Plugin. Online. 2024. [Accessed 5 May 2024]. Available from:
https://imperceptiblethoughts.com/shadow/

61. javalin. Online. 2024. [Accessed 5 May 2024]. Available from: https://javalin.io/

102

https://purpurmc.org/
https://geoboxers.com/worldbloxer/
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://objtoschematic.com/
https://drububu.com/miscellaneous/voxelizer/?out=min
https://www.typescriptlang.org/
https://react.dev/
https://v2.chakra-ui.com/
https://leafletjs.com/
https://reactflow.dev/
https://www.npmjs.com/package/react-minecraft-viewer
https://imperceptiblethoughts.com/shadow/
https://javalin.io/


103

62. GDAL. Online. 1998–2024. [Accessed 5 May 2024]. Available from:
https://gdal.org/index.html

63. PROJ. Online. 1983–2024. [Accessed 5 May 2024]. Available from:
https://proj.org/en/9.4/

64. docker. Online. 2024. [Accessed 5 May 2024]. Available from: https://www.docker.com/

65. deepslate. Online. 2024. [Accessed 5 May 2024]. Available from:
https://github.com/misode/deepslate

66. vscode-nbt. Online. 2024. [Accessed 5 May 2024]. Available from:
https://github.com/misode/vscode-nbt/tree/master

67. NPM. Online. 2024. [Accessed 5 May 2024]. Available from: https://www.npmjs.com/

68. Stardew Valley. Online. 2016–2024. [Accessed 5 May 2024]. Available from:
https://www.stardewvalley.net/

69. Street lights. Online. 14 March 2024. [Accessed 5 May 2024]. Available from:
https://data.brno.cz/datasets/462d3e4e68984538a29e715a885d770e_0/explore

70. Public transport stops. Online. 1 September 2020. [Accessed 5 May 2024]. Available 
from: https://data.brno.cz/maps/747a824783044377b6d07a8060e7769d

71. Astroneer. Online. 2024. [Accessed 5 May 2024]. Available from:
https://astroneer.space/

72. Roblox. Online. 2024. [Accessed 5 May 2024]. Available from: https://www.roblox.com/

73. Games Released in Previous Months. 2024. [Accessed 5 May 2024]. Available from:
https://steamspy.com/year/

https://gdal.org/index.html
https://proj.org/en/9.4/
https://www.docker.com/
https://github.com/misode/deepslate
https://github.com/misode/vscode-nbt/tree/master
https://www.npmjs.com/
https://www.stardewvalley.net/
https://data.brno.cz/datasets/462d3e4e68984538a29e715a885d770e_0/explore
https://data.brno.cz/maps/747a824783044377b6d07a8060e7769d
https://astroneer.space/
https://www.roblox.com/
https://steamspy.com/year/


104



is.muni.cz/th/ru3xf

http://is.muni.cz/th/ru3xf

	Declaration 
	Acknowledgements
	Abstract
	Contents
	1 Introduction
	1.1 Specifications
	1.2 Target Groups 

	2 Geospatial Data
	2.1 Data types
	2.2 Coordinate Systems
	2.3 Working with Geospatial Data

	3 Game Selection
	3.1 Game Selection Criteria
	3.1.1 Technical Criteria
	3.1.2 Gameplay Criteria

	3.2 Analysis of Games
	3.2.1 Factorio
	3.2.2 OpenTTD
	3.2.3 Minecraft
	3.2.4 Other Analyzed Games


	4 Technical Aspects of Minecraft
	5 Existing Tools
	5.1 FME by SafeSoftware
	5.2 Alternatives

	6 System Design and Requirements
	6.1 Requirements
	6.2 Our Approach
	6.2.1 Coordinate System Transformation
	6.2.2 Transforming the Data


	7 Technology
	7.1 Web Client
	7.2 Server
	7.3 Package

	8 User Interface
	8.1 Region Selection
	8.2 Layers Design
	8.3 Preview and Publish
	8.4 Documentation

	9 Evaluation Algorithm
	9.1 Handling the Execution Flow
	9.2 Stale Data and On-Demand Evaluation

	10 Usage and Results
	10.1 Geospatial Datasets
	10.1.1 Base Model
	10.1.2 Noise Levels
	10.1.3 Number of Citizens

	10.2 Mathematics and Geometry
	10.2.1 Function Plots
	10.2.2 Definition of Geometric Bodies


	11 Evaluation
	12 Future Work
	13 Conclusion
	Electronic attachments
	Bibliography

