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Abstract

This thesis focuses on modelling intermuscular interactions in the context of mus-

cle deformation using the Position Based Dynamics (PBD) method. The deforma-

tion method was extended to improve its consistency during simulation. Passive

intermuscular interaction was introduced and implemented through a general de-

formable collision handling system. Additionally, a system for active muscle interac-

tion was developed for the model, enabling physiologically accurate, motion-based,

and synchronous muscle contractions during arbitrary movements. The results

were rigorously verified against a similar method and evaluated for physiological

accuracy, preservation of shape and volume, and muscle collision avoidance. The

physiologically advanced model seems to hold a real-world application potential.

Abstrakt

Práce je zaměřena na modelování interakce mezi svaly v kontextu deformace svalů

metodou Position Based Dynamics (PBD). Metoda deformace byla rozšířena za

účelem zlepšení konzistence během simulace. Koncept pasivní mezisvalové inter-

akce byl představen a implementován pomocí obecného řešení deformovatelných

kolizí. Kromě toho byl pro model vyvinut systém pro aktivní interakci svalů, který

umožňuje fyziologicky přesné, na pohybu založené a synchronní kontrakce svalů

během libovolných pohybů. Výsledky byly důkladně ověřeny proti podobné metodě

a hodnoceny z hlediska fyziologické přesnosti, zachování tvaru a objemu a vyhýbání

se kolizím svalů. Zdá se, že tento fyziologicky pokročilý model skýtá potenciál pro

aplikaci v reálném prostředí.

Keywords

Extended Position-Based Dynamics •Musculoskeletal system • Deformation • Sim-

ulation •Deformable bodies •Muscle contraction modelling •Deformable collision

detection • Collision detection and resolution •Muscular synergy • C++
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Introduction 1
“In my dreams I have my leg, I’m running. . . I never dream of myself without my

leg”, explains one post-amputation idiographic analysis [Ros
,
+21] participant. One of

the most prevalent skeletal diseases is osteoporosis in 34.3% US and Japanese women

above 50 years of age [Wad+14] causing the brittleness of the bones, possibly leading

to fracture and a cascade of serious health consequences, including amputation.

Helping medical professionals decide whether to perform invasive surgery on

themusculoskeletal system and prevent such consequences can be achieved through

a computerised musculoskeletal model. These models come in varying complexities,

using straight segments to represent muscles [Hei+23], and bone-wrapped segments

may be used for hip area [De +18] muscle modelling. Arguably, non-realistic mus-

cle approximation (e.g. not taking volume preservation into account) may lead to

misleading clinical decision assistance [KČ21]. Hence, the search for a more realistic

computer musculoskeletal model continues.

One such musculoskeletal system based on a Position Based Dynamics method

(PBD) ([KČ21]) exhibits unnatural bending ofmusculus iliacus being passively dragged
in a rag-doll manner during hip flexion. This visual representation is often the

indirect measurement of the model quality due to the lack of systematic modelling

evaluation methods [DT18]. The unrealistic iliacus bending motivates a model better

reflective of the underlyingmuscle physiology, takingmuscle contraction, relaxation

and collaborative interplay into account.

Therefore, the main focus of this thesis is to extend the current PBD-based

simulator to support muscular interactions during various movements, where the

different muscles usually act in different roles, including contraction, relaxation,

fixation and so on. All this while keeping up with the model requirement to exe-

cute simulations in real-time, it seems sensible to implement the muscle interplay

through various PBD particle parameters of the current model. During these muscle

interaction simulations, the muscles should also not intersect each other.
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The physiology of the
skeletal muscle 2
To develop appropriate muscular cooperative movement strategies, it is first crucial

to understand muscle structure and physiology (their function). To know how the

muscles should interact, how they act individually should first be explained. The

muscles being modelled are skeletal muscles mostly made of striated muscle fibres.

These fibres are, as opposed to the smooth muscle fibres, voluntarily controllable

[Gas+24] by the Central Nervous System (CNS) [BC13], specifically through the cra-

nial and spinal nerves under the control of the cerebral cortex [RMT16].

2.1 Striated muscle structure and function
The muscle (illustrated in Figure 2.1), protected from friction by the epimysium,

comprises fascicles groupingmuscle fibres that run in parallel. The fascicles, covered

by another protective layer of connective tissue called perimysium, are made up of

several tens of muscle fibres. The muscle fibre is a cell containing many nuclei (also

called syncytium), anatomically and functionally separated from other muscle fibres

by the sarcolemmamembrane. Among other organelles likemitochondria, the fibres

contain thousands of rod-like myofibrils running in parallel. In turn, the myofibrils

are composed of actin (thin) and myosin (thick) myofilaments. These filaments are

interlaced into basic functional units called sarcomeres, describing the myofibril

segment between two surfacing 𝑍-shaped patterns (Z-lines) that emerge from actin

filaments layoutwhile in between on the surface, there emerges an𝑀-shaped pattern

out of the myosin filaments connectivity (M-line). Myofibril is also covered by the

sarcoplasmic reticulum which regulates the levels of calcium, a crucial element for

contraction. The sarcoplasmic reticulum contains encircling invaginations called

T-tubules propagating contraction signal further the myofibril usually situated at

the place of the Z-line which is also called the Z disc.

The thick filaments contain the myosin proteins that give rise to pairs of heads,

where actin-binding andATP-binding sites exist. The thin filaments then contain the

actin, tropomyosin and troponin proteins [Gas+24]. The actin proteins have myosin-

7



2 The physiology of the skeletal muscle

Actin thin myofilament

Myosin thick myofilament

Z-line

Z-line
M-line

Sarcomere

Sarcoplasmic reticulum

T-tubulus

Mitochondrion

Myofibril
Presynaptic terminal

Neuromuscular 
junction

Nucleus

Sarcolemma

Biceps

Muscle

Muscle fibers

FasciclePerimysium
Epimysium

Figure 2.1: The structure of skeletal muscle, source: [Óla17] (vectorised and modified)

binding sites, which are, in a relaxed state, blocked by the regulatory tropomyosin

proteins. Troponin serves as a kind of transmitter regulatory protein to facilitate

the contraction.

These filaments, according to the sliding filament theory described by Hugh

Huxley and Jean Hanson in 1954, produce electrochemically governed contraction

by trying to slide against each other through myosin pulling onto actin via so-called

cross-bridges [Gas+24], causing the sarcomeres as well as the myofibrils and there-

fore the whole muscles to shorten while maintaining the same muscular tension

(isotonic contraction). Thanks to the elasticity of the muscle due to the titin protein

presence, the contraction is also possible without the length change, where instead,

the muscle tension grows (isometric contraction), which is also the basis for the

isotonic contraction [RMT16]. Further explanation follows in Section 2.1.4.

According to [Gas+24], the contraction is the muscle’s primary function. For this

important locomotion process to begin, though, a signal from the CNS must first

arrive.

2.1.1 Neural signalling
The signal (also called the action potential or cell membrane depolarisation) to con-

tract a muscle, originating either somewhere in the cerebral cortex or just as a part

of some spinal cord reflex, is carried throughmyelinated efferent (motor) nerve cells

(motoneurons).

Themotoneurons can be classified into central (descendent)motoneurons,which

carry the action potential from the cerebral cortex to the spinal cord, and the pe-

ripheral motoneurons, finally joining at the skeletal muscle through the neuromus-

8



2.1.2 Neuromuscular junction

cular junction (Figure 2.1). This one neuron, as shown in the figure, usually innerves

a group of striated muscle fibres called the motor unit. The number of fibres in

the unit influences the speed and precision of the movement activity [RMT16]. For

example, among extraocular muscles, one motoneuron governs only 6 muscle fi-

bres, while on the other hand, musculus biceps brachii contains one motoneuron

governing approximately 750 fibres [RMT16].

2.1.2 Neuromuscular junction
When the action potential reaches the interface between the motoneuron and the

muscle, depicted in Figure 2.2, the neuromuscular junction at the unmyelinated,

widened neuron terminal part called the terminal bouton, is now described as the

presynaptic action potential. It depolarises the axon terminal, causing voltage-gated

[OMB24] calcium𝐶𝑎2+ channels on the presynapticmotoneuronmembrane to open,

letting it inside the cell via concentration gradient, increasing 𝐶𝑎2+ ion concentra-

tion inside the bouton which begins the process of exocytosis of the acetylcholine

(ACh) mediator inside the synaptic vesicles [OMB24].

During the exocytosis, so-called SNARE (Soluble N-Ethylmaleimid-sensitive

fusion protein Attachment protein REcepetor) proteins make the ACh vesicles fuse

with the membrane [OMB24], realising ACh into the synaptic cleft, where it travels

via diffusion towards the cholinergic nicotinic ACh ligand-gated ion channel recep-

tors on the myofibril sarcolemma (postsynaptic membrane) binding sites called the

junctional folds.

Binding two ACh onto the ligand-gated receptor opens the channel and allows

sodium (𝑁𝑎+) ions into the myofibril depolarising the whole membrane. Depolarisa-

tion of the postsynaptic membrane past a certain threshold (also called the end-plate

potential) creates an action potential (∗𝐴𝑃) anywhere on the sarcolemma except for

AP

Ca2+
Sarcolemma

AP

ACh

ACh receptors

Junctional 
folds

Synaptic cleft
Na+

*AP

Motoneuron

Figure 2.2: Simplified illustration of sarcolemma excitation
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2 The physiology of the skeletal muscle

this postsynaptic membrane area which starts to spread in every direction.

2.1.3 Excitation-Contraction coupling
Once the action potential reaches the so-called T-tubule, an invagination in the

sarcoplasmic reticulum on the sarcolemma, it travels down to the so-called triad,

the green union depicted in Figure 2.3. There, a process called excitation-contraction

coupling begins. The first receptor tomeet the action potential is theDihydropyridine
voltage-gaited calcium channel, where it causes a conformational change [Gas+24].

This change in the RHP receptor proteins mechanically causes nearby Ryanondine
receptors to release large amounts of calcium from the calcium storage (dark-blue

area in Figure 2.3) within the sarcoplasmic reticulum. Some of the released calcium

ions make it to the Troponin C protein on the thin filaments, which causes a con-

formal change in the Tropomyosin proteins, uncovering the binding sites on Actin

proteins for Myosin heads. Once the sites are uncovered, the myosin heads use the

ATP and phosphates to form the so-called cross-bridges. To form this connection,

the myosin heads actively extend forward and outwards from the thick filament.

Upon forming the cross-bridge, the myosin head pulls back in a swim-like motion,

Ca2+

D
H
P
R
yR

AP

T-
tu
b
u
le

Sarcolemma

D
H
P Ca2+

R
yRTriad

Sarcoplasmic reticulum

Ca2+

MyosinTropomyosin

Actin

Troponin C, I, T

Figure 2.3: T-tubule Excitation-Contraction coupling scheme (www.wikipedia.

org/wiki/Myofilament graphic used)
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2.1.4 Types of contraction

which is then repeated as long as the calcium is present [Gas+24], causing the mus-

cular tension to rise and finally the contraction to occur.

The relaxation begins when the calcium levels drop, blocking the actin-myosin

binding sites, and making the filaments slide back to the original position, also

thanks to other present elastic proteins. Although relaxation might be an active

process from the point of view of cortical activation in that one can decide to relax

a muscle, in the muscle itself, it probably just is an act of starving the contraction of

calcium. The tension inside the muscle fibres generates different types of contrac-

tion.

2.1.4 Types of contraction
The type of contraction is discriminated by the states of the muscle tension and the

corresponding fibre length, generally into four types.

Rising tension inside of the muscle while it maintains constant overall length is

called the isometric contraction. During this type of contraction, there is nomotion

of the limbs or joints, while the volume of themusclemost probably does not change,

hence the tension is mostly expressed as the raising of the internal pressure, pulling

on the tendons, making the muscle thicker in shape around its belly and thinner in

shape near the tendons. When the tension is constant and the fibre lengths change,

then isotonic contraction emerges (where the muscle volume does not change).

Isotonic concentric contraction occurs when the muscle tension becomes greater

than the external force, shortening the muscle fibres, and causing tension at the

tendons to heighten which in turn moves the bones on the muscle insertion and

stabilises the muscle at its origin. Isotonic eccentric contraction serves to prevent

joint damage by acting as a brake to the concentric contraction [Gas+24].

The direction of the contraction is dictated by the direction of individual mus-

cle fibres. Indeed, inside a fascicle (as illustrated in Figure 2.1) the fibres are always

running in parallel. But the fascicles themselves do not always have to be arranged

in a parallel manner. The fascicles may be arranged in a parallel, convergent, pen-
nate, fusiform, spiral or circular structure. On top of that, the tendons intertwin-
ing the fascicles also emerge in numerous arrangements, further discriminating the

structures and function of the muscles.

But to perform a complex movement, e.g. hip flexion, a spectacular synchronous

orchestra of such different contractions and relaxations usually occurs.

2.2 Roles of muscles in movements
Amain muscle is always responsible for any movement, the so-called primemover
[Bet+13], or the agonist muscle. Each movement caused by an agonist has a so-

11



2 The physiology of the skeletal muscle

biceps brachii
agonist

triceps brachii
antagonist

brachialis
synergist

brachioradialis
synergist

deltoid
fixator

Figure 2.4: Roles of muscles during elbow flexion

called antagonist muscle, usually located on the opposite side of the bone. For

example, if the muscle biceps brachii contracts as a prime mover, its antagonist,

triceps brachiimust relax. On the other hand, if one extends the elbow, triceps brachii
now acts as a prime mover to which biceps brachii opposes by relaxation (from

the former contraction during elbow flexion). Not only does the antagonist relax,

but can also help moderate body and limb positions in space and during rapid

movements [Bet+13].

The rest of the muscles involved in the movement are called the synergists. The
synergistmusclesmay act in variousways to assist the primemover. They contribute

to the contraction and also help prevent unwanted movements [Bet+13]. A type of

synergist muscle is a fixator, stabilising the agonist’s origin (a non-moving bone

area the agonist holds onto). A brachialis muscle together with the brachioradialis
muscle are usually the synergist to the prime mover during elbow flexion (note that

the second muscle is positioned distally from the biceps brachii insertion, across the
elbow joint). The deltoidwould play the role of a fixator in this situation. Themuscles

and their roles during elbow flexion can be seen in the illustration 2.4.

2.2.1 Muscular synergies
Not only do the motoneurons affect many motor units simultaneously, but it is

probable that also these motoneurons are likely not controlled individually, but

12



2.3 Orchestrating complex movement

rather in groups called the muscle synergies [BC13]. This does not oppose the
existence of othermovement sources such as various reflexes. The estimated number

of synergies acting during for example the running orwalkingmovement is between

four and five. At the same time, these synergies aremostly subject-specific and can be

trained, and changed throughout life [BC13]. This may be one of the explanations of

how the CNS can orchestrate such complex movements as e.g. throwing the discus

in such an efficient manner or even how exactly the agonist and antagonist function

simultaneously.

2.3 Orchestrating complex movement
Consider the hip area. Even just keeping the hip joint stable (that is to say, keeping

the femoral head in contact with the hip joint cavity called the acetabulum [KOA19]),

periarticular muscles (around the joint) such as the piriformis, obturator externus,
gluteus maximus, medius, minimus, and more, are co-activated in a group called

the muscular fasteners of the hip joint [KOA19]. Meanwhile, longitudinal muscles

(lengthwise along the body) usually push the femoral head upwards. Many other

muscles try to keep the femoral head well oriented to the acetabulum as this is an

important factor of stabilisation [KOA19].

From this standing position, six basic movements of the femoral bone within the
hip joint are usually described in the joint with three degrees of freedom (movement

in each axis split into two). Respective axes are the transverse axis (up and down),
the sagital axis (left and right), and the vertical axis (roll by the right or left hand).
The movements are described in the 2.1 table with respective ranges of motion

(ROM) in an upright position with an extended knee for an average person [KOA19].

Table 2.1: Movements of the femur within the Hip Joint

Movement Direction ROM [degrees] Axis

Flexion up 0-90 transverse

Extension back 0-20 transverse

Abduction to the side 0-30 sagital

Adduction to the centre 0-30 sagital

Internal (medial) Rotation inwards 0-60* vertical

External (lateral) Rotation away from the body 0-30* vertical

* when lying on the stomach with a flexed knee

These ranges of motion are otherwise highly dependent on other factors, such

as knee flexion, pelvis rotation, the subject’s level of athleticism, injuries, or activity/-

passivity of the movement (passive movement occurs when the rest of the body puts

the joint in that position). For example, hip flexion with the knee bent can usually
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2 The physiology of the skeletal muscle

reach up to 120° thanks to the relaxation of the hamstrings, even more, if the flexion

is passive, and up to 145° if the arms are used to press the knee towards the thorax.

Both hips can also be completely flexed in a slouching sitting position on the ground

with the knees tucked to the chest [KOA19].

With hip abduction, some trained ballerinas can reach active abduction of up to

130° [KOA19]. Thanks to forward pelvic tilting, trained individuals can also reach

the extension of the hip up to 90° (while doing the splits). These movements are

achieved with various muscles acting at various times, often changing the roles they

play in the movement as it progresses.

2.3.1 Hip flexion
The most powerful actors during the hip flexion are the iliacus, the psoas major and
the psoas minor, which together are called the iliopsoas. This muscle also produces

lateral rotation to a degree. The sartorius muscle is also a hip flexor, while the rec-
tus femoris contributes to the flexion dependent on the knee flexion, to which its

contribution to the hip flexion is proportional [KOA19]. Other hip flexion synergist

muscles are the tensor fasciae latae, the pectineus, the adductor longus and the anterior
(the front) fibres of the glutei minimus and medius.

These muscles are further functionally classified into two groups:

1. Flexion - abduction - medial rotation group

• anterior fibres of the glutei minimus and medius

2. Flexion - adduction - lateral rotation group

• the iliopsoas, the pectineus and the adductor longus

which together, in a coordinated fashion, through muscle synergies, have the capa-

bility of producing so-called pure flexion (e.g. during walking) provided they work

as a “balanced set of synergists and antagonists” [KOA19].

2.3.2 Hip extension
The muscles producing hip extensions are classified into two groups depending on

their insertion areas:

1. Muscles inserted into the upper extremity of the femur

• the glutei maximus, minimus and medius

2. Muscles inserted into the vicinity of the knee
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2.3.3 Hip abduction

• the hamstrings, the biceps femoris, the semitendinosus and the semimebra-
nosus

The extension of the knee accelerates the efficiency of the second group’s function

during the hip extension, uncovering the opposing interaction of the hamstrings and
the rectus femoris [KOA19].

Out of all of these muscles, two groups of secondary functions can be defined.

Thosewhich also produce abduction and thosewhich also produce adduction. These

groups roughly correspond to the discrimination by insertions except for the semi-
tendinosus, the semimembranosus and the biceps femoris, where with additional adduc-
tor muscles, the two groups are capable of producing the so-called pure extension,
where, again, the groups must contract in well-balanced synergist-antagonist fash-

ion [KOA19].

An important note is that during the gait on a flat surface, the gluteus maximus
does not actively perform the extension. Instead, the hamstrings take over. On
the other hand, the most powerful muscle extends the hip while walking up a slope,

and also during running or jumping [KOA19]. Other roles of the extensor muscles

include the stabilisation of the pelvis during tilting.

2.3.3 Hip abduction
To abduct the hip, the gluteus medius is the primary mover since it is almost per-

pendicular to the lever arm of the femur head. The synergists here are the gluteus
minimus, the tensor fasciae latae and the highest fibres of the gluteus maximus, along
with the piriformis [KOA19].

Once again, classified into two groups based on their secondary function, these

muscles, given well-synergized interaction, produce pure abduction. The classifi-
cation is as follows [KOA19]:

1. Muscles anterior to the coronal plane (plane slicing the body in half while

looking at it from the side at the centre of the joint), also producing flexion

• the tensor fasciae latae, anterior fibres of the glutei minimus and medius

2. Muscles behind the coronal plane, also producing extension

• posterior (further back) fibres of the glutei minimus andmedius, the semi-
tendinosus and the semimebranosus

The pure abduction can also be facilitated by a synergized contraction of the

so-called deltoid of the hipmade of two muscle bellies, which are the tensor fasciae
latae and the superficial fibres of the gluteus maximus. These both insert into the

border of the iliotibial tract in the thigh [KOA19].
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2 The physiology of the skeletal muscle

The gluteus medius firstly initializes the movement while mostly staying in the

role of stabilizing the joint, progressively acting more and more as an abductor and

less as a stabilizer with a higher degree of abduction, while being the strongest at

approximately 35° abduction [KOA19]. Similar situations are quite normal to occur

even to the most effective prime movers of various movements.

2.3.4 Hip adduction

Once again, the muscles of adduction are mostly governed by kinematic advantages.

The prime example is the adductor magnus, which spans along the majority of the

femur body, along with adductor minimus, adductor longus and adductor brevis, be-
ing able to pull on it across a wide spectre under beneficial angle [KOA19]. Other

muscles contributing to the adduction are the gracilis, the semimembranosus, the
semitendinosus and the biceps femoris (although these muscles are mainly used for

hip and knee flexion), lower fibres of the gluteus maximus, the quadratus femoris and
pectineus (which also take part in lateral rotation), and lastly, the obturator internus
and externus also contribute to the movement as synergists [KOA19]. Of course, to

achieve adduction, all thesemuscles must function in a coordinated fashion together

with other muscles, which e.g. stabilize the joint.

2.3.5 Hip external rotation

Muscles whose primary function is to externally (laterally) rotate the hip are the

piriformis, the obturator internus, and also the obturator externus, which in contrast
to the others, truthfully wraps around the femoral neck. These muscles are called

the pelvitrochanteric (around the hip) muscles. Adding to the collection are the mus-

cles with external rotation as their secondary function, which include the quadratus
femoris, the pectineus (which has already been described to also contribute to ad-

duction and flexion), the posterior fibres of the adductor magnus, and partly also all
glutei [KOA19].

Moreover, when the knee is extended and the femur rotates in a standing posi-
tion, muscles like the biceps femoris, the semitendinosus, the semimembranosus, and
partly the adductors also provide to the lateral rotation but also contribute to the

internal (medial) rotation when the leg rotates inwards. The action of these muscles

depends on their spatial relationship to the femoral vertical axis. When the muscles

are anterior to it, they rotate medially, and while they are posterior to it, they rotate

externally [KOA19].
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2.3.6 Hip internal rotation

2.3.6 Hip internal rotation
Muscles causing the internal (medial) rotation are running anterior to the femoral
vertical axis usually producing about one-third of the force of the external rotators

[KOA19]. The primary muscles are the gluteus medius, the gluteus minimus and the
tensor fasciae latae.

The muscles pectineus and obturator externus lose their function as external ro-
tators at the point of approximately 30-40°, because of their new position directly

under the joint centre, no longer being posterior to the femur. Instead, after full
medial rotation (approximately 60°), these muscles start to act as medial rotators,

while the primary hip internal rotators now become external ones [KOA19].

2.3.7 Muscular action inversion
As described in the previous section, muscle roles in the movements and times of

contractionmay vary greatly due to various conditions. Amuscle causingmovement

in one direction, usually as its secondary function, can change its role to cause

a movement in the opposite direction (e.g. A flexor becomes an extensor).

This is called the inversion of muscular action [KOA19] due to the muscle fibres’

direction and position relative to the joint axes and the surrounding joint orienta-

tions. For example, the iliopsoas can no longer flex the hip at the ballerina’smaximum

120°, since its tendon changes the directions of the fibres. The muscles are usually

recruited successively during whole movements and may stop contributing to the

movement at its fullest [KOA19].

2.4 Summary
It becomes obvious that the actions of the hip muscles can not be studied in detail

without the knowledge of the surrounding conditions such as pelvic tilt, knee flexion

level, the centre of gravity of the body, or the individual’s training level.

On top of that, many muscles act differently under different movements. To

generally capture how exactly the hip muscles should contract during an arbitrary

position is a challenging task. That is why the functions of the muscles are often

better explained through the detection of electrical responses (potentials) to stimuli

using electromyography (EMG). On the surface, the measurement is non-invasive,

but identifying the precise source of the electrical potentials can be problematic,

where approaches like blind source separation can be utilised, similar to identifying

sources of electrical potential on the surface of the brain captured through electroen-

cephalography. To measure the muscle activity directly means to invasively insert

the measuring electrodes into the muscle tissue, which is usually not a standard

procedure for healthy humans.
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2 The physiology of the skeletal muscle

Luckily, many biomechanical simulation methods exist to estimate muscular

activity during movements, some of which are provided by e.g. the OpenSim
(simtk.org/projects/opensim) software. Thesemethods are usuallywell-documented

in their limitations and validated against the EMG ground results.

Now that themuscular function should be at least partly explained together with

some specific primary and secondary muscle groups during various movements of

the hip joint, it is necessary to note the level of complexity the muscles embody.

Be it the physiological mechanism of how the muscle’s primary function, contrac-
tion, comes to exist, possible structures the muscle may be arranged in, types
of contractions, and finally the muscular interplay and the agonist-antagonist-
synergist-fixator relationships.

The musculoskeletal system can be modelled in different levels of detail depend-

ing on the aim of the research. To model the system, where the muscles are elastic,

maintain their volumes, do not intersect, and can interact (synergistically contract)

is the main challenge of this thesis.
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Modelling deformable
bodies 3
Advances in mechanical modelling, computer graphics, and many other related

fields, have brought a broad array of methods to represent the muscular structure,

which further more or less dictates its possible function. One of the main attributes

of the muscles is that they are elastic and their geometries deform during move-

ments.

But to model a deformable body (object) means to decide on the structure and

the method to deform that structure over time under external (e.g. gravity) or inter-

nal (e.g. tension) forces appropriately. To intuitively imagine the bodies, this chapter

will illustrate the objects and deformations in two or three-dimensional space, al-

though usually, no such dogmatic constraint applies to the structures or methods

themselves.

3.1 Object representation
When a real-world object is computerised (perhaps by a designer, an artist, or an

imaging modality), it can be represented by a set of mathematical functions approx-

imating the real object shape continuously or by a set of discrete samples (often
in the form of a mesh or a point cloud). This representation is usually dependent

on the method of model acquisition and the need for detail. Even though there are

always discrepancies between the model and the real-world objects, the approxima-

tion usually suffices the goal (e.g. to visualise the object, interact with it, or perform

an analysis of the object’s behaviour, etc.).

In case the object is represented by discrete samples, one sample is called the

vertex being associated with a position that can be expressed relative to a global

Cartesian coordinate system origin along with the other vertices.

3.1.1 Mesh-less
If no other information is provided, the representation can be described as amesh-
less one. It can be useful in e.g. fluid modelling, and other models, where the con-

19



3 Modelling deformable bodies

Figure 3.1: Mesh-less representation of the Stanford teapot

nectivity of samples is not important or can not be directly determined. An example

can be seen in Figure 3.1.

One drawback may be that the information about the neighbourhood of one

point is not so straightforward, and usually space partitioning methods, like K-
means have to be used to obtain K-nearest neighbours and even then it is not

obvious if these neighbours all lie on the same side of the underlying surface as the

query point if that is a desirable piece of information.

A popular approach to acquire a mesh-less 3D representation is the LiDAR
method (oceanservice.noaa.gov/facts/lidar.html) which measures sample depth by

shooting a ray towards the surface and elapsing the time it takes for the ray to return

to a receiver. From the set of vertices, generally non-uniform, an approximation of

the surface can be reconstructed. The approximation error is, of course, dependent

on the density of the samples.

3.1.2 Surface mesh

The additional connectivity (also topological or shape) information can be either ex-

plicitlymodelled but also acquired through surface reconstruction, where a pipeline
usually involves some type of segmentation of themesh-less samples and subsequent

surface extraction. It is often represented by a set of polygons (e.g. triangles or quads)

approximating the original real-world surface shape. A surface triangular mesh is

depicted in Figure 3.2.

The main advantage compared to the mesh-less representation is that the soft-

ware structure defining the surface mesh usually provides a query to obtain the

neighbourhood of a query vertex or polygon in a constant time and this relation

between vertices is well-defined through the edges (sides of the polygons).
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3.1.3 Volume mesh

Figure 3.2: Surface mesh representation of the Stanford teapot

3.1.3 Volume mesh
If information about the internal contents of the object is also provided, then the

mesh is volumetric. Imagine the object sliced into small cubes without changes in

positions, then it could be called a voxel volume mesh, one of which is illustrated in

the picture 3.3. Other standardly used primitives are the tetrahedra (as an extension

of the triangular mesh). The tetrahedra can be obtained by slicing the cube through

four of its corners, where one extra tetrahedra forms in the middle of it, producing

five tetrahedra in total, or through slicing of the cube such that the resulting tetra-

hedra share the diagonal of the cube, while the other three points are formed on

three of the cube faces (sharing one mutual vertex) split by respective face diagonals,

Figure 3.3: Volume mesh representation of bones, source: [KČ21]
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3 Modelling deformable bodies

producing six tetrahedra in total.

These structures can be obtained starting with the surface mesh, which can be,

within its borders, filled with the primitives using e.g. the flood-fill algorithm.

On the one hand, these representations are instrumental in inferring various

mechanical properties during their deformations, as even the density of the volume

primitives (which can be heterogeneous) of the object can be expressed. On the

other hand, they may require a lot more memory to be stored, and the visualisation

methods are more complex.

3.2 Deformation methods
Regardless of the body representation, its behaviour during simulation can be viewed

on the spectrum from rigidity to elasticity. Rigid bodies undergo only affine trans-

formations and the relative distances between the vertices do not change. Elastic
bodies, on top of that, can be deformed. Deformation occurs when the relative dis-

tances between the vertices change due to acting forces. In the simulated scene,

bodies can exhibit varying degrees of elasticity and rigidity, reflecting different po-

sitions along this spectrum.

The acting forces can be classified into external forces that are incoming from

the external environment (e.g. gravity or attachment to a rigid body) and the ones

that are generated or propagated on the inside (or across the surface). Propagation

of a force, in this context, means that the force spreads consequently through the

volume or surface, while usually losing magnitude (depending on the underlying

physics of the force and the attributes of the object) due to the dissipation ofmechan-

ical energy to thermal energy. In a way, this energy is to be lost in the surroundings.

The deformation usually starts with an external force, which spreads throughout

the elastic body as an internal force. This force is received by the primitives (e.g. the

vertices, the edges, or maybe the finite volume) it is applied to. Each primitive can

have a propagation-related state associated with it (e.g. the heat at the primitive, or

maybe its elasticity). After being affected by the external force itself, it then, based

on its internal state, propagates the force to connected primitives (often these are

the neighbours), which in turn pass the force wave-likely to their neighbours. This

makes the elastic bodies arguably more difficult to model than the rigid ones, as

each primitive has to be accounted for, as opposed to solving the force propagation

globally for all e.g. vertices at once in a rigid body.

During the deformation, various constraints can be defined over the primitives,

which can permit or cause the propagation of forces and dislocations under specific

rules. In the case the constraint is permitting the propagation, one could imagine

that e.g. neighbouring vertices can not be displaced too far away from each other, the

volume of the finite sub-volume can not change, etc. In the opposite case, an example
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of a constraint that generates an internal force could be that e.g. all primitives must

move outwards the surface mesh due to the growth of internal pressure.

In the case where many elastic objects exist in the scene near each other, these

objects tend to interact greatly, where the deformation of one object may trigger

deformation in the other object and the objects may collide with each other a lot.

The spread of forces and constraints definition possibilities in an elastic (in other

words, deformable) body (object) usually depends on its structure.

3.2.1 Influence of object representation
Whether the object undergoing deformation is mesh-less, a surface mesh, or a vol-

ume mesh allows different levels of information to be taken advantage of, often

resulting in varying deformation results. For example, a representation implicitly

containing topology information, such as the surfacemesh, allows for constraint def-

initions directly on the pairs of positions defined by the edges, using the directions

of the edges as the directions of internal force propagation.

3.2.1.1 Mesh-less methods

With no information about the structure, relying solely on the positions of vertices,

the mesh-less objects must consider all pairs of vertices for force propagation (al-

though using a pseudo-structure such as K-nearest pairs can also be employed),

hence yielding the least computational efficiency of Θ(𝑛2) given 𝑛 vertices.

3.2.1.2 Surface mesh methods

The surface meshes provide information about the neighbourhood of the primi-

tives, and can therefore consider only this neighbourhood during the propagation,

not only cutting down on the computation time but also introducing well-defined

spatial coherence (locality), which may hold more realistic results. On top of that,

the direction of the force can now be estimated or computed using the information

about the directions of the edges the forces are propagated across.

Deformation methods convenient for the surface meshes typically include:

• the Laplacian Editing (LE), which deforms the mesh based on constrained

vertices and in between them, tries to preserve the local mean curvature and

normals,

• theMesh Skinning (MS), which parametrises the vertex positions based on

the inner mesh skeleton,

• the Cage-Based Deformations (CBD), which parameterise the vertex posi-

tions based on the outer mesh skeleton,
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3 Modelling deformable bodies

• theMass Spring System (MSS), where a set of elastic strings connecting the

vertices is defined, constraining them in distance,

• and the PBD, where many types of constraints can be defined, e.g. preserving

the volume, the vertex distances, the dihedral angles of the primitives, etc.

3.2.1.3 Volume mesh methods

The volume meshes can provide the greatest detail, while also only propagating

across neighbours. Adding depth information allows for even better force direction

estimation and hence perhaps a more realistic force propagation. An example could

be pouring boiling water into a metal cup. The cup becomes hot itself even on the

outside very quickly, because not only can the heat be propagated on the surface

of the cup through the collisions of the water with it (conduction), but the heat can

also propagate through the volume of the cup, reaching the other side of the surface

quickly (convection).

SASB

C
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1

Figure 3.4: Tree water propagation model illustration
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3.2.2 Deformation method solvers

Compared with the surface mesh deformation methods, the constraints can also

be defined on the inside of the mesh, typically concerning adjacent e.g. tetrahedra

and hence more vertices.

Consider the example in Figure 3.4, which illustrates how water could be propa-

gated through the trunk of a tree. The primitive, in this case, is each cylinder segment

e.g. 𝑆𝐴 or 𝑆𝐵. The segments are illustrated only for the front four rods. From the bot-

tom of the rods, water may permeate from the ground, depending on the distance

from the 𝐶 centre rods (the central rods are filled the most). These are the inputs

to the propagation model, analogous to external forces during deformation. Each

segment holds a value of its fullness. If it is full and the water rises, it is propagated

to the next upper segment, perhaps even in a non-linear relationship. The water is

constrained not to fall through the segments. Moreover, the volumemesh allows for

surface as well as volume propagation, which happens at the node 𝑆𝐴, where (1) the
water is propagated to node 𝑆𝐵 on the surface, and (2) the water is propagated from
one of the inner nodes to the node 𝑆𝐴, which could not be modelled this precisely

using a surface model.

Besides, volumedeformations can behave heterogeneously,where different prim-

itive densities in different parts of the mesh could influence the magnitude of spread,

practically allowing the 3D modelling of force sources, sinks, saddles, and spirals.

For example, in a simulation of applying gravity to the pelvis with a prosthetic im-

plant to support the bone, this implant’s density and other mechanical properties

could be modelled in contrast to those of the bone to hopefully find the optimal

placement for it to prevent a fracture [Lob+22].

Some of the deformation methods applicable to volume meshes are:

• the Finite Element Method (FEM), where the object is broken down into

finitely small elements, where each vertex holds local system information,

• and also theMSS, where the springs can also be defined on the inside,

• and PBD, behaving similarly to FEM while being computationally efficient.

The MS and CBD methods can also be used to deform volume meshes, since they

deform the space itself, and are therefore representation independent, but probably

mostly used in surface deformations.

3.2.2 Deformation method solvers
Consider the FEM applied to a rod with two vertices in just one dimension. For

each vertex, an equation describing the sum of forces applied to it can be defined

(one external force for the specific vertex and one internal reactionary force of the
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Figure 3.5: 1D FEM system with a unique solution

other vertex). Put together with some constants describing the mechanical prop-

erties of the edge, a system of linearised differential equations describing for each

force, the distribution of displacements of each vertex. Since this system is singular

(determinant of zero), infinite non-unique solutions exist (as long as the forces do

not cancel each other out).

That is why boundary constraints must be introduced to the system, e.g. an-

chor one vertex in one coordinate system dimension. Then, this system has exactly

one unique solution given either known force or displacement of the other vertex.

Illustration can be seen in Figure 3.5, where a rod with the rest-length of 𝐿, the cross-

section of 𝐴, and Young’s elastic modulus 𝐸 is being one-dimensionally deformed

by the external force 𝑁1.

In the general 3D case, the task of the method solver is to find one solution to

the system, but rather its approximation using an iterative numerical method. This

solution is generally not unique and prone to errors of the numerical method or its

lack of convergence. For example, imagine that given heat propagation on a one-

dimensional rod, many distributions of heat across the in-between vertices would

satisfy the two boundary conditions at the tails of the rod (more unknowns than

equations, meaning the system is underdetermined).
Since the displacement problem is divided into small parts of the whole object

problem, where the motion differential equation for each element is linearised, the

solution to the displacement of one e.g. vertex is directly affected only by its neigh-

bours and if added up, these local solutions have the potential to approach the global

solution.

3.2.3 Specific methods

A brief overview of how the mentioned methods work follows.
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3.2.3.1 Laplacian Editing

Inspired by differential geometry, the Laplacian operator takes a scalar function

on the input, computes its gradient, and then takes the divergence of the gradient,

outputting once again a scalar function.

In a discrete setting, for manifold 3D surface meshes, the operator can be

reformulated for a vector function (positions of the vertices flattened into a one-

dimensional vector). It can be shown, that the divergence of the gradient must not

be computed, as in the discrete space an equivalent can be expressed using the mean

curvature and surface normals [Sor05]. For a manifold mesh, the operator is usually

represented in the form of a spare matrix, which usually for each vertex contains

a row of weights representing the contributions of neighbour vertices to the direc-

tion towards smoothing of this row vertex (sum of finite differences of the vertex

with its neighbours). The weights may be just the inverse value of the vertex degree

(combinatorial) or reflect the areas of the neighbouring polygons to overcome ver-

tex distance irregularities, as is done in the case of the cotangent weights (or rather
the mean-value coordinates, mimicking the cotangent weights while avoiding its

drawbacks of negative values and large mesh problems) [Sor05]. Either way, this

matrix expresses the localised geometrical relations between the vertices.

Given this matrix for the rest-position mesh, the mean curvature normals, ex-

pressing the details about local curvature for each vertex, and the constrained ver-

tices (which are transformed by the environment), a sparse, a symmetric linear sys-

tem emerges, which can be pre-factorized at the start of the simulation using e.g.

the Cholesky decomposition and for each solver step, the solution for the vertex

positions can be obtained in linear time via back-substitution [Sor05].

The main goal of this deformation is to keep the object surface smooth [Sor05],

through the parameterisation of the vertices based on the linear system stemming

from the discrete Laplacian operator. However, the details desired to preserve are

not rotation invariant [Sor05], which may lead to distortions in the details during

large rotation transformations. Figure 3.6 shows sample LE deformation result in the

last row (c), illustrating poorly preserved local curvature. The row (a) contains the
original mesh, and the middle row contains the same constraints applied but using

a rotation invariant deformation. The resulting deformation may also self-intersect,

which has to be taken care of.

Interactions of the bodies deformed by LE do not initially seem feasible, as this

approach mainly focuses on the preservation of local mesh geometry, seemingly

ignoring the surrounding geometries in its essence.

However, this problem can be reformulated as a nonlinear energy minimalisa-

tion problem, as Huang et al. [Hua+06] describes. This problem can be solved using

an interactive solver, where e.g. in between the approximations of the solution, the
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Figure 3.6: Detail preservation comparison of the originalmesh (a) deformation by (b)

a rotation-invariant method with (c) Laplacian Editing, source: [Sor05] (vectorised)

surface meshes can be tested and resolved for intersections. In such a reformulation,

not only can more constraints be added, but even non-linear boundary conditions

can be incorporated, which can be, for example, the preservation of the volume

[Hua+06]. In addition, in the paper, the authors first solve the minimalisation prob-

lem on a coarse cage control mesh surrounding the original one and then interpolate

this deformation onto it. This also allowed the authors to define the Laplacian in

a rotation-invariant manner. Given these extensions, this method seems to be a rea-

sonable choice for an interactive scene of deformable bodies.

3.2.3.2 Mesh Skinning

Quite analogous to themusculoskeletal system,Mesh Skinning is away of parametris-

ing the positions of the skin (surface mesh) by a transformation of underlying inner

skeleton bones. The bones can either be manually defined or obtained through mesh

skeletonisation. The affine transformations (translation and rotation) of the bones

are usually defined in a hierarchical system, as can often be seen in computer graph-

ics scenes with objects (each bone has its local transform, but also the transform

of the parent applied to it). A simple example of deforming an object with inner

skeleton bone transformations using the Blender software (www.blender.org) can

be seen in Figure 3.7.

Each of the surface skin vertices is influenced by one or more bones, in which

case these bones usually have weights associated with them for the particular vertex.

To obtain the final position of the parametrised vertex with more than one bone,

linear blending can be used.

For vertex 𝑣, its new position 𝑣′ depending on the bone transformation, is de-

fined in the subsequent linear blend skinning Equation 3.1 [Dom05].
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3.2.3.3 Cage-Based Deformation

Figure 3.7: Mesh Skinning result using Blender

𝑣′ =
𝑛∑︁
𝑖

𝑤𝑖𝑀𝑖𝑣;
∑︁
𝑖

𝑤𝑖 = 1 (3.1)

Where 𝑛 is the number of influencing bones, 𝑤𝑖 is the weight of bone 𝑖 and𝑀𝑖 is the

affine transformation matrix of bone 𝑖.

Since the skeleton can be transformed freely, it happens easily that the mesh

starts to self-intersect, which may not be a big problem during e.g. animation done

by an artist but has to be dynamically taken care of in the case of an interactive

simulation.

The use of this method during interactive simulation also seems to be highly

dependent on the quality of the underlying skeleton. Also, the weights of the bone

influences must be properly tuned to achieve the desired results. Lastly, even the

skeleton deformation, in case it is complex enough to underpin the behaviour, has

to be somehow computed, if not done by hand. On the other hand, with the incor-

poration of e.g. bounding volumes to test for intersections, if the paths of well-built

skeletons were known, relationships between them would be easily manageable, as

the skeletons can provide a great level of simplification of this problem.

3.2.3.3 Cage-Based Deformation

This deformation also depends on a skeleton, only this time, the skeleton is exter-
nal, or an cage. The only presumption needed to fulfil for this method to work is

that the cage must contain all vertices and polygons of the deformed mesh [NS13].

A widely used method to implement the relation between the cage and the ver-

tices on the inside of it is using the Mean Value Coordinates, namely the mean

value theorem coupled with the harmonic coordinates theory [NS13]. The main

problem is to approximate the solution to a harmonic function over the mesh while

satisfyingDirichlet’s boundary conditions [NS13]. Once the solution of the harmonic

function is approximated by a piece-wise linear function, using the Generalized
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Figure 3.8: Cage-Based deformation result using Blender

Barycentric Coordinates concept, the deformations of the mesh can be obtained

through a linear combination of the control points of the cage.

Once again, e.g. if the cage itself self-intersects, the inner mesh self-intersections

must be accounted for. Moreover, obtaining how exactly should the skeleton be

deformed would be an easy task for an animator, but a challenge to implement

in an interactive, dynamic scene. But once again, the merit of this method for the

interaction of many deformable bodies is that this problem could be simplified to

the interaction of the outer skeletons, given the skeletons manage the underlying

complex geometries well. The results for CBD can be seen in Figure 3.8.

3.2.3.4 Mass Spring System

This first physics-based deformation method, an MSS, defines spherical particles

(typically in the vertices of the mesh), holding information about the particle mass,

radius, position, velocity, and even currently applied force. Pairs of particles can be

connected by a spring of a particular stiffness. These springs often create a network,

which is used to propagate forces. Sample MSS structure is depicted in Figure 3.9.

The main drawback of this method is the tuning of the stiffness and designing

the network architecture since the method behaviour heavily depends on both.

Each spring represents a truly mechanical spring, hence solving of second order

differential equation per adjacent spring is needed for the computation of displace-

ments of one pair of vertices.

The method lacks constraints for shape and volume preservation. Moreover,

defining the relationship of interacting bodies through this spring system would

probably be even more architecturally dependent and hard to automatise.
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Figure 3.9: Sample MSS structure, source: [Jan12]

3.2.3.5 Finite Element Method

Another physics-based deformation model, the FEM, has been already briefly de-

scribed when describing the solver in section 3.2.2. The method works by discretiz-

ing the (usually volume) mesh into finitely small elements, where the solution to the

differential motion equations can be linearized and then the global solution can be

built up from these fine elements.

The finer the discretization, usually the better the deformation results. These

Figure 3.10: FEM structural analysis visualisation, source:

featips.com/2022/09/23/the-basic-concepts-of-fea/
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elements can contain various physical properties, such as heat, or other forms of

energy, and propagate them to their neighbourhoods. Heterogenous areas can be

outlined using the varying densities of the elements per volume unit to better reflect

reality. The elements also have stiffness associated with them, which represents,

crudely put, the resistance to the propagation of forces.

A huge pitfall compared to the surface deformationmethods, even usingmodern

accelerationmethods, is the computational time expense. This is because the number

of elements (and there of the equations) is usually much bigger. For example, given

that a sphere has a surface of 4𝜋𝑟2 and a volume of
4

3
𝜋𝑟3, then if sampled with

primitives, the number of primitives for the volume would be roughly
𝑟
3
times more

than the number of surface primitives of the same resolution. If computational

complexity was not a concern, this method would probably be a great candidate for

modelling the interactions of the elastic objects, as it allows a great level of flexibility

in defining its constraints.

A visualisation of a structural analysis (propagation of forces) using the FEM is

shown in Figure 3.10. If deformation were modelled in the visualisation, the most

red parts would deform the most, while the most blue ones would probably deform

the least.

3.2.3.6 Position-Based Dynamics

In the year of 2007, the physics-based PBD deformation method was introduced by

Matthias Müller et al. [Mül+07]. The method overcomes the drawbacks of the MSS

by providing a means of volume preservation and great tuning controls [BMM17]

similar to the FEM but much faster thanks to the use of fast explicit time integration

solver schemes [BMM17]. Compared with the FEM, the element (particle) velocities

are just approximated by a difference in consequent positions, omitting their physics

modelling and solving directly for the positions. The process of applying PBD can

be viewed as a quasi-static one [BMM17], where the forces are applied to the system,

but in very small increments, allowing for the negligence of inertial forces. This

makes the method a great candidate for modelling the interaction of deformable

bodies, providing a comparable level of control over the physical properties as the

FEM while being much faster in execution.

A PBD particle can be represented by an arbitrary primitive, usually though, the

particle is either a sphere or just a point (vertex). Either way, the particle often has

amass (equal to one in the context of this thesis for simplicity reasons), a position
in the coordinate system and a velocity associated with it.

The particles are subject to Newton’s second law of motion, which relates the

particle’s acting forces to its mass and velocity. The solutions to this law can be

approximated using a symplecticEuler integration step (or the generallymore precise,
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second-order in time Störmer-Verlet step), which considers only the current velocity

instead of the starting one [BMM17]. This integration step is unconditionally stable

due to the constraints, keeping the particles in physically valid positions, but it is also

robust and fast. If the particles are dislocated greatly, though, the force propagation

wavesmight be not constrained in one simulation step, which can lead to oscillations

[Mül+07].

The free motion of the particles, if not fixed to an e.g. bone transformation, is re-

stricted using holonomic (velocity independent) PBD constraints, based only on the
positions of the particles. A constraint is represented either by a generally non-linear

equation or by a generally non-linear inequation [BMM17]. The constraint is satis-

fied in case the equation is fulfilled or kept in inequality [Mül+07]. Each constraint

has a stiffness parameter associated with it, describing its strength of influence. To-

gether, the constraint (in)equations form a non-linear system of inequations, which

is solved iteratively (inner iterations) using the Gauss-Seidel scheme [Mül+07] in

each outer simulation step (rather than the locally linearized system of equations

using the Newton-Raphson iteration [BMM17]). The constraints can be of various

types, e.g. preserving particle distances, shapes of the polygons, the volume of amesh,

and the handling of collisions, and the order of solving these constraints should be

constant since the stability of the system is dependent on it in the context of one

outer iteration [Mül+07]. To overcome the instability, various damping schemes
can be employed, e.g. the point velocity damping scheme or the Rayleigh dissipation

potential [MMC16] for constraint damping. On top of that, the projection of these

constraints must conserve the linear and angular momenta of the particles in the

cases of constraints with finite stiffness (for example not the collision constraints)

[Mül+07].

For a single constraint, the linear and angular momenta are preserved implic-

itly if the dislocations of the particles are along the constraint function gradient

if all masses are equal [Mül+07]. This also solves the under-determination of the

whole system [BMM17]. Due to the fact, that the solution to the (in)equation can

be approximated with this gradient, it then has to be normalized and scaled by the

function value (acting as an objective value or constraint violation) in the opposite

direction, which forms de facto a gradient descend 3.2 to obtain the displacements

of the flattened positions vector Δp.

Δp = −𝐶(p)
∇p𝐶(p)
|∇p𝐶(p) |2

(3.2)

Where the 𝐶(p) is the constraint objective function and the ∇𝑝𝐶(p) is the gradient
of this function with respect to the point position p. For individual particles, the
gradient is, instead computed only for the encompassing constraint particles by the

Newton-Raphson iteration step 3.3, providing a prediction p𝑖 for this generally non-
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linear constraint instead of using Gauss-Seidel iterations, which can not handle the

non-linearity [Mül+07]. Equation 3.3 also includes the stiffness term k𝑗 ∈ [0; 1] for
the specific constraint 𝑗.

Δp𝑖 = −𝐶(p1, ..., p𝑛)
∇p𝐶(p1, ..., p𝑛)∑𝑛

𝑗 |∇p𝑗
𝐶(p1, ..., p𝑛) |2

k𝑗 (3.3)

The pseudocode 3.1 shows the algorithm of how the deformation iterations pro-

ceed. Initially, the positions in the last outer step are set to the rest-pose mesh, the

velocities are initialized (usually to zero if the objects are not in movement in the

beginning), and the inverse masses are set up (which in this case are always equal to

one). As another preprocess step, the distance and constraint constraints can be gen-

erated for each muscle edge (6-7) and the volume constraints for each muscle mesh

(9). On the lines (13) and (15), the semi-implicit Störmer-Verlet method is performed

for the prediction of positions pi, while applying point velocity damping scheme

(14). The line (13) adds current velocities computed per Newton’s second law of

motion using the time difference between consecutive outer simulation steps Δ𝑡, the

inverse masses 𝑤𝑖 equal to one in our case and the external forces f𝑒𝑥𝑡 (xi). The line
(15) uses this velocity once again weighted by the time difference (hence the second-

order method) for prediction. Then, the collisions are generated (detected) for each

particle, which in this case is the vertex. The collision detection (16) has the current
position xi with the predicted one pi on the input. Then, theNewton-Raphson inner

iterations commence, while projecting all constraints including collision constraints

(collision resolution) to correct the predictions p𝑖 (20-21). On line (26) the velocities
are approximated by the difference in positions over the simulation time step, and

on line (27), the current positions are substituted for the predicted ones. Lastly, (29)
the velocities should be carried over the next iteration.

Source code 3.1: Pseudocode of Position-Based Dynamics outer iteration overview

[BMM17]

1 for each vertex 𝑖 do
2 initialize x𝑖 = p𝑖, v𝑖 = 0, 𝑚𝑖 = 1

3 end for
4 for each muscle 𝑀 do
5 for each edge 𝑒 in 𝑀 do
6 generateDistanceConstraint(𝑒)

7 generateDihedralAngleConstraint(𝑒)

8 end for
9 generateVolumeConstraint(𝑀)

10 end for
11 loop
12 for each vertex 𝑖 do
13 v𝑖 ← v𝑖 + Δ𝑡𝑤𝑖fext (x𝑖)
14 v𝑖 ← v𝑖 · 𝑐𝑑𝑎𝑚𝑝
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15 p𝑖 ← x𝑖 + Δ𝑡v𝑖

16 generateCollisionConstraints(x𝑖 → p𝑖)

17 end for
18 while i < solverIterations do
19 for each constraint j do
20 compute Δp𝑖 using Equation 3.3

21 p𝑖+1 ← p𝑖 + Δp𝑖

22 end for
23 i ← i + 1

24 end while
25 for each vertex 𝑖 do
26 v𝑖 ← (p𝑖 − x𝑖)/Δ𝑡
27 x𝑖 ← p𝑖

28 end for
29 velocityUpdate(v1, . . . , v𝑁 )

30 end loop

3.2.3.7 Extended Position-Based Dynamics

The extension [MMC16] of the PBDmethod (XPBD) was created to overcome a well-

known problem the PBD method had, which is that the constraint stiffness is non-

linearly dependent on the simulation time elapsed and hence also the iteration count

[MMC16]. This means, that as the simulation time grows to infinity, the constraints

also become infinitely stiff in an unpredictable manner, changing the behaviour of

the constraints. The same happens as the time step decreases [MMC16]. With the

overcoming of this drawback, this method seems an ideal candidate for control-

ling the interaction among deformable bodies in a fast, robust, controllable, and

consistentmanner.

Time-dependent model behaviour is highly undesired in interactive applica-

tions, which should not be limited by time and most importantly, should not behave

differently when e.g. the user does not interact for the next few seconds and then

does the same interaction with the scene as if the simulation had just started, but the

objects behave differently. Namely, with high constraint stiffness, the constraints

become more aggressive, producing larger displacements, and the system may even

start to oscillate. The first problem, simply put, stems from the scaling of constraints

by the constant k𝑗 (Equation 3.3).

In the paper, Miles Macklin et al. [MMC16] came up with a solution to this

problem, which is to redefine the constraint projection 3.3 by incorporating a “well-

defined concept of elastic potential energy” [MMC16]. On top of that, they intro-

duced a Rayleigh dissipation potential to the system, which penalises constraints’

influence on particles with high velocity.
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Instead of the inner iterations (18-24) in 3.1, they propose incorporating a cumu-

lative Lagrange multiplier 𝜆 per constraint, which is always re-set when the outer

iteration starts. The proposed inner loop is depicted in the pseudocode 3.2. The

following equations omit the inverse masses of the particles, as they are all equal to

one.

Source code 3.2: Pseudocode of eXtended PBD inner loop [MMC16]

1 while i < solverIterations do
2 for each constraint j do
3 compute Δ𝜆 𝑗 using Equation 3.5

4 compute Δp𝑖 using Equation 3.6

5 𝜆𝑖+1 ← 𝜆𝑖 + Δ𝜆
6 p𝑖+1 ← p𝑖 + Δp𝑖

7 end for
8 𝑖← 𝑖 + 1
9 end while

Equation 3.5 computes the multiplier change, where the term �̃� 𝑗 represents time-

scaled compliance defined by Equation 3.4. The compliance itself is the multiplica-

tive inverse of this constraint’s stiffness (𝛼 = 1

k ). The term 𝜆𝑖 𝑗 represents the so

far cummulated Lagrange multiplier for this particular constraint 𝑗 at iteration 𝑖

[MMC16].

�̃� 𝑗 =
𝛼

Δ𝑡2
(3.4)

Δ𝜆 𝑗 =
−𝐶 𝑗(p𝑖) − �̃� 𝑗𝜆𝑖 𝑗

|∇𝐶 𝑗 |2 + �̃� 𝑗
(3.5)

Δp𝑖 = ∇𝐶 𝑗(p𝑖)𝑇Δ𝜆 𝑗 (3.6)

The Lagrange multiplier serves as a regularization term, and if the compliance

is set to zero, this term also becomes zero and what is left is the original Newton-

Raphson update defined in Equation 3.2 with the constant scaling [MMC16]. This

makes sense since raising the stiffness to the infinity brings the corresponding com-

pliance to zero. From this observation, a drawback emerges, which is that the stiffer

the constraints are, the more this method resembles the original PBD.

Another merit of this method is an additional constraint-damping scheme. This

scheme reflects the Rayleigh dissipation potential, which lessens the impact of

constraints with fast particles. This means, in a sense, letting the particles finish
a greater movement before constraining them.

With just the addition of one parameter 𝛽 and its time-scaled version
˜𝛽 = Δ𝑡2𝛽,

used for tuning of this damping coefficient, and also the incorporation of current

particle velocities, the damping of constraints changes the Lagrange multiplier up-

date as follows (3.7 [MMC16]), once again with themasses omitted. The∇𝐶 𝑗(p𝑖−x𝑛)
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term represents the change in position compared with the last iteration, in other

words, the discrete approximation of the velocity.

Δ𝜆 𝑗 =
−𝐶 𝑗(p𝑖) − �̃� 𝑗𝜆𝑖 𝑗 − 𝛾 𝑗∇𝐶 𝑗(p𝑖 − x𝑛)

(1 + 𝛾 𝑗) |∇𝐶 𝑗 |2 + �̃� 𝑗
; 𝛾 𝑗 =

�̃� 𝑗 ˜𝛽 𝑗

Δ𝑡
(3.7)

3.3 Deformable collision handling
A collision occurs when two bodies (objects) collide. The collision starts when either

a vertex or an edge starts entering the volume of the other object, up until a whole

triangle intersects it. Depending on the desired precision, a test for collision on all

of these primitives can be made. During a real-time interactive simulation, it usually

suffices that the vertices do not penetrate other objects, as long as the polygons

do not get excessively degenerated (elongated), so much so that the edges start to

penetrate, while the vertices do not. Such a situation can occur when so-called

tunnelling occurs. Tunnelling can occur for various reasons. The main reason is that

during a discrete simulation, the geometriesmay change so rapidly, that between two

consecutive steps, a primitive completely tunnels through the other object, with no

implicitly obtainable piece of information about it being inside of the object. Objects

intersecting is an unrealistic state of the model and should not be present.

Collision handling consists of two phases. Firstly, the collision has to be de-

tected either a priori (before it even occurs) or a posteriori (after it occurs). The two
paradigms are usually described as continuous (as in precise prediction of collision

position on a continuous trajectory) and discrete (as in only concerning discrete

positions of the primitives), respectively. Secondly, the detected collision must be

either avoided (a priori) in a time window or resolved (a posteriori) by generating the
collision forces.

The avoidance is straightforward in case the exact position of an intersection on

the other object surface is known (either with a polygon, edge or directly a vertex),

as the primitive can be set to that position or slightly before it on the trajectory

e.g. to avoid the intersection of its bounding box, in case the primitive has any

dimension, as opposed to a dimension-less vertex, which has no surface nor volume,

and its position directly on the surface of the other object can be deemed valid. This

approach may better reflect the reality but is usually harder to implement and more

computationally expensive.

In case no such precise position of collision is computed, the collision must have

already happened at the time of (discrete) detection. The collision forces to escape the

intersection may be generated from the information about the direction of the col-

lision, the velocities of the primitives, or based on the surface or internal friction of

the colliding objects. Additionally, the position of the primitive before and after the

37



3 Modelling deformable bodies

collision may be known, sometimes containing intersecting local bounding boxes,

the direction and distance of the colliding point to the surface may also be known,

etc. However, utilising the detailed information can be a lengthy process. Therefore,

during real-time interactive simulations, some object properties can be omitted,

e.g. the physics-intensive calculation of friction, or perhaps the self-intersections.

Depending on the desired precision, the objects may intersect by a small amount,

while hoping to be resolved at least in the future.

The collisions must not be necessarily handled on the computational model, but

a more convenient, approximating collision model can be employed. Such a colli-

sion model can represent dimensionless primitives with e.g. cubes with the same

orientations or spheres, which are both suitable for fast collision checking since

all that is needed to test is their distance. 2D polygons, such as triangles, are often

not feasible since too many colliding configurations among such primitives exist,

differing in positions but also orientations. Once collisions are handled on the colli-

sion model representation, the resulting deformations should be propagated to the

perhaps finer detail computational model and any other representations the scene

may contain (e.g. the visualisation layer may differ from the computational one). For

example, in the game industry, it is often the case that the collision model is just

a crude mesh bounding the object (e.g. A convex envelope or maybe the bounding

box).

In a scene with many objects, collision detection is further split into two phases.

The first, broad phase, swiftly prunes the space for candidate objects that might

collide based on e.g. the bounding box overlap. Then, for these candidates (maybe

a small subset of all the objects), a narrow phase commences. The narrow phase

considers the details of the geometries, e.g. at the level of the primitives.

Compared to the collision handling of rigid bodies, elastic bodies can often

intersect at many places at once, and generate considerably more self-intersections.

Hence, various acceleration approaches are often advantageous. However if, for

some reason, the precise primitive-to-primitive collisions need to be handled, just

the narrow detection phase becomes a great time complexity bottleneck.

3.3.1 Continuous collision detection
As previously declared, manymutual configurations of two arbitrary primitives may

exist. One, computationally expensive option, is to perform the a priori collision de-
tection by advancing a trajectory of the primitive from the last time step to pinpoint

exactly where it intersects with the other primitive. A simplified, 2D example with

the primitives of a dimensionless vertex and an AABB of a triangle is shown in the

following Figure 3.11.

In the example, a black triangle of one object on the right is advancing position
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to the blue triangle. One of the new positions in the vertex 𝑃 starts to collide with

an AABB of the other, red mesh on the left. The collision is firstly detected in the

broad phrase, as the point 𝑃 enters the bounding box, and continues in the a priori
precise hit detection. In this most basic approach, the trajectory of the colliding

vertex is discretely approximated by advancing the previous position towards the

new position 𝑃, until the boundary is met. Borrowing from traditional rendering

techniques, this method can be accelerated by using e.g. theRayMarchingmethod

(in the case the signed distance field of the other objects is available). For general

convex primitive configurations, techniques, such as theGilbert-Johnson-Keerthi
algorithm using theMinkowski difference [Gui09] are used to quickly determine

the intersection’s existence and even the closest pair of points on the surfaces of the

primitives together with their distance.

3.3.2 Structure-based methods
Given complex configurations of geometries thatmay emerge from interactive simu-

lation with deformable bodies, collision handling, mainly the detection phase, needs

to be accelerated taking advantage of diverse structures. The generation and updat-

ing of these structures is of great importance [Tes+05], as it is usually the bottleneck

of the method, while the geometries of deformable bodies might change very often.

The structures vary in the collision information provided, but also in their flexibility

to update.

The structures are usually built per object, which they virtually partition into

sub-spaces, where alienated sub-spaces can be quickly rejected for collision detec-

tion since the contained geometries have no way of intersecting. This is analogous

to the broad phase, only this time, not only do the objects define the sub-spaces but

so do their sub-parts.

x(t+Δt) = x(t) + v(t)·Δt

P x(t)

AABB

Δt

Δt

x(t+Δt)

x(t)

Figure 3.11: Point trajectory a priori intersection with a triangle AABB boundary
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3.3.2.1 Binary space partitioning

One of the simplest ways of partitioning the space is using binary space partitioning.

Thismethod uses hyperplanes to recursively subdivide the space into two sub-spaces

until the smallest number of primitives is contained in the hyperspace (e.g. 2), then

that node becomes a leaf. The partitioning is intuitively represented by a binary

tree, hence the name Binary Space Partitioning tree (BSP tree). Depending on if the

tree is balanced, the query for an arbitrary primitive for collision may be Θ(𝑙𝑜𝑔𝑛)
on average or Θ(𝑛) of the tree has its maximal possible depth (given 𝑛 dividing

hyperplanes as the tree nodes). The same computation time complexities stand for

the insertion or the deletion of a hyperplane, which are both needed as the primitives

may change positions relative to the hyperplanes quite often. The construction of

the hyperplanes may respect various criteria such as primitives spatial distribution,

or perhaps symmetry features.

3.3.2.2 Bounding volume hierarchies

These structures are also commonly kept in a tree structure, hence the name Bound-

ing Volume Hierarchy tree (BVH tree). The tree is also constructed recursively, only

by encompassing the primitive sets in their bounds. The bounds may be repre-

sented by spheres (figure 3.12), cylinders, or capsules, but most commonly by the

axis-aligned bounding boxes (AABB), which are especially feasible due to their easy

intersection tests of distances, but also due to efficient updating [Tes+05]. An arbitrar-

ily oriented version of AABB is called the oriented bounded box, which can fit the

primitives more tightly. Compared to partitioning the space with hyperplanes, the

bounding boxes should surpass a BSP tree if the geometries are ill-posed, depending

on the sophistication of the hyperplane construction.

An obvious remark is that if a tree is built for each object, while there are more

objects in the scene, this structure becomes a forest, as with any other tree-like space

partitioning per object. The trees may be appropriate to be built on top of different

primitives and the trees may also be of a different type (octree, n-ary tree, kd-tree,

etc.), which can result in a quite complex structure to represent [Tes+05].

The probability of collision increases for the child nodes if the parent node

indicates so. Thanks to this, the search can be further accelerated by firstly searching

bottom-up in the upper half of the tree, and in case of a potential collision, the

particular sub-tree can be inspected in a top-down manner [Tes+05].

3.3.2.3 Spatial hashing

Amarginally different approach, although also partitioning the space into subspaces,

is spatial hashing, which uses a hash function to map (for example uniform) grid
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Figure 3.12: Bounding volume hierarchy using spheres on a triangular mesh, source:

[Gui09]

voxels to a hash table [Tes+05]. This approach is especially feasible due to its easy im-

plementation compared to the complex hierarchical structures, memory efficiency

and flexibility in the form of possibly irregular grids. The grid resolution has been

found to work the best when one voxel is approximately the size of the primitives

[Tes+05]. This method is designed for volumetric meshes, with the typical primitive

of a tetrahedron.

The spatial hashing table is constructed as follows. First, all object vertices are

mapped to the has table. Then, it alsomaps every volume primitive to the grid cells it

(more generally, its AABB) touches. To check for the collisions, the hash table entry

corresponding to the query primitive is looked up, which may contain a polygon. If

it does, a narrow-phase collision handling follows using the barycentric coordinates

comparison, which also outputs the depth of the penetration. This table can also be

used to detect self-intersections, as the table contains vertices as well as the polygons

of the mesh, then, if both a vertex and the polygon in one entry are of the samemesh,

self-intersection occurs [Tes+05]. A simplified 2D illustration of spatial hashing for

circles can be seen in Figure 3.13.

The time efficiency mainly depends on the grid resolution and the hash function
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Figure 3.13: Simple 2D spatial hashing for spheres, source: carmencincotti.com/2022-

10-31/spatial-hash-maps-part-one (vectorised)

distribution. Small hash tables may produce hash collisions, which would hinder

the performance. The merit of this method is that it is independent of the number

of the objects and their shapes [Tes+05].

3.3.2.4 Signed distance fields

A signed distance field (SDF) is created by either discretizing the space on a single

object into a uniform grid or may be kept in a tree structure, like the BSP tree. Con-

sidering the uniform grid, it samples every grid vertex and computes its distance to

the surface of the object. The distance field is signed, if it also stores the information

about the distance to the surface from the inside or outside the object in the form

of a sign of the distance. For an arbitrary query point, its values are interpolated

from the nearest sample vertices of the grid, which in case of a collision gives useful

information to resolve it (the gradient to the surface). The discretization may also

be adaptive to the level of detail of the underlying object [Tes+05].

Generally, these fields are not suitable for representing interactive deformable

objects but are especially efficient when representing the collision model of a rigid

object. This can be taken advantage of to handle collisions between deformable

and rigid objects without the need for field updating (since the rigid object only

undergoes affine transformations).

3.3.3 Stochastic methods
Due to the already discussed discrepancies between a computer model and a real

object, it may not be fully reasonable to detect all collisions and resolve them, since
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the surfaces are just mere approximations of the original shapes. Instead, collision

handling that is not precise, may sometimes miss some collisions, but handles at

least the majority of them, while being able to resolve the others perhaps later in

the simulation, and is often probability-based, hence the name stochastic methods.

Moreover, the missed collisions (for visualisation) may not be even noticeable by

the observing person or may not affect the computational model significantly (dur-

ing knowledge inference). Often, the more important thing for the user is whether

the deformation is fast [Tes+05].

Stochastic approaches may use the BVH trees to predict only the probability of

collisions of two leaves but never check the actual primitive-to-primitive collisions,

which is usually the bottleneck of a collision handling method. Other stochastic

approaches may try to prevent collisions by pseudo-random sampling the subspaces

while also operating some heuristic criterion, such as the distance of the two sample

leaves.

A stochastic method does not even have to utilise a particular complex structure

but can express the surface relationships just through sample edges between them

whilemeasuring their lengths. The less the length of an edge connecting two surfaces,

the more the probability the connected primitives may collide in the future. Such

a method could be described to avoid the collisions a priori while operating with
discrete values, without the trajectory-primitive intersections tests.
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Previous work 4
In the context of the Muscle Wrapping 2.0 project gitlab.com/besoft/muscle-

wrapping-2.0)which focuses on generatingmuscular lines of actionwrapping around

bones to better estimate various biomechanical properties of a musculoskeletal sys-

tem, a surface muscle mesh deformation method based on the PBD method had

been developed in the C++ programming language. The method, apart from imple-

menting the constraints to preserve vertex distance, the dihedral angles of adjacent

triangles and preserve individual volumes of each muscle mesh, also accounts for

the anisotropy of the muscles (vertex distances on the edges along the direction of

the underlying muscle fibres are stiffer than the ones running perpendicular).

4.1 System
The modelled musculoskeletal system contains a set of rigid bones and deformable

muscles. All these objects are represented by a triangular 3D surface mesh, which

may be a more complicated representation for the muscles as opposed to the com-

monly used one-dimensional Hill-type structures, which are geometrically polylines

running from the muscle’s origin to its origin representing the so-called lines of ac-
tion [KČ21]. But this complication of representation serves a concrete goal, to provide

a more realistic basis for the estimation of the mechanical properties of the muscles,

as the simple lines of action often penetrate the bones and produce errors (up to 75%
using just straight lines) [KČ21].

On the input, apart from the bone and muscle meshes, the bones should also

have a movement associated with them to be executed during the simulation and

the muscles should be supplied with the estimates of their origin and insertion

areas, each defined by a sequence of points enveloping that area. Moreover, internal

muscle fibres can be generated, represented by a set of polylines, usually starting at

the origin and ending in the insertion areas, using e.g. the Kohout & Kukačka [KK14]

method [KČ21].

In the system, the muscle points contained in the origin or insertion areas are

transformedwith the bonewhich contains the attachment site, and unaffected by the
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deformation (other than being fixed to the bone). The other group of muscle vertices

are pronounced to be the PBD particles, which are manipulated by the solver. This

approach is called the inverse kinematics [KČ21], where the displacements of the

muscle vertices are inferred from the locations and movements of the bones at all

times, whereas in reality, the muscles cause the movement of the bones [KČ21].

4.2 Solver
As per the original PBDarticle [Mül+07], the solver is implemented as aGauss–Seidel-

type iterative solver, following the algorithm presented in section 3.1 in the original
paper. This approach defines a PBD particle as a dimensionless, triangular mesh ver-

tex with associated mass, position, and velocity. The method also uses point velocity

damping. Aside from the anisotropy distance constraint stiffness modulation, no

fundamental changes to the algorithm or constraint calculation 3.1 are made.

The modulation of the stiffness k𝑖 for the edge 𝑖 is described by Equation 4.1,

where the u𝑖 is the normalized direction of edge 𝑖 and v𝑖 represents the tangential

direction normal vector of the nearest surface fibre [KČ21]. Due to the dot product,

the resulting stiffness becomes zero if the vectors are collinear, in case the vectors

are perpendicular, the result stays at one [KČ21].

k𝑖 = 1 − u𝑖 · v𝑖 (4.1)

The deformations of muscles are initiated by some of the muscle vertices being

fixed to the bone attachment areas (origin or insertion). The displacement of these

vertices, following the bone transformation, initiates primarily the vertex distance

constraints in the neighbourhood, starting the wave-like propagation of forces also

due to the other constraints.

4.3 Collision handling
Collisions are handled only for the collisions of muscle vertices to the rigid bones.

For each bone, an SDF is created using theDiscregrid library for generating SDFs

for bounded meshes (github.com/InteractiveComputerGraphics/Discregrid). The

process of creating an SDF starts with discretizing a subspace in the scene defined

by the bone’s bounding box, where an optional margin can be added. The resolu-

tion of the discretization is user-defined. Each voxel is represented by a 32-node

Serendipity type. Then, its distance and direction to the closest bounded surface are

computed for each of these nodes. The surface, represented by a triangle mesh, pro-

vides triangle normals to determine the shortest distance in case the closest point

is inside a triangle. Special cases of the nearest point being directly on the edge or

directly in one of the vertices are accounted for. The process of creating the field is
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quite computationally expensive, depending on the resolution, which is generally

desired to be high. This is why the collision handling is done only for the bones to

satisfy the desired quality of the deformation to run ideally in real-time.

Once the discrete grid is generated, an arbitrary point in the subspace can be

queried. The containing voxel is found for this arbitrary point, and the distance

with the gradient is interpolated from the nearest nodes using a cubic Lagrange

polynomial. If the mesh is also at least watertight (edge and vertexmanifold, without

self-intersections), a sign is given to the distance which represents whether the query

point is on the inside or the outside of the bounded mesh. This interpolation holds

a constant time evaluation.

Attempts to solve the tunnelling problem utilising the SDF have been made

([Čer+23]). To remind the reader, tunnelling occurs when the motion of one object

or its part is so fast that it passes through the whole volume of the other object in

one single simulation step, rendering the collision implicitly undetectable. In this

particular case, a muscle object vertex would tunnel through the rigid bone surface.

To detect such an event using the SDF, a simple and fast comparison of gradients

towards the surface of the previous and currentmuscle vertex positions can bemade.

If this gradient changes significantly (e.g. by more than 135°), the directions start to

point towards each other, which means that the particle changed its orientation

relative to the bone surface, hence vertex tunnelling must have occurred. If the first

direction is denoted d𝑖 in iteration 𝑖 and the previous direction vector is defined as

d𝑖−1, the tunnelling test is described by Equation 4.2 [Čer+23].

𝑎𝑟𝑐𝑐𝑜𝑠

���� d𝑖 · d𝑖−1
∥d𝑖∥·∥d𝑖−1∥

���� > 135
◦

(4.2)

The SDF is only computed once (at the start of the simulation) and does not get

translated or changed, as this is a very costly operation. Instead, during the simula-

tion, each muscle vertex is first transformed (by the bone’s inverse transformation

matrix) to the stationary bone space, where the SDF is, queried for collision (which

occurs if the distance is negative), and in the case of collision, the resulting gradient

representing the direction to the surface is transformed back to the moving bone

space, where it is added to the vertex’s positions, which is hence effectively pushed

hopefully outside the bone.

4.4 Critique
The main pitfall of this model is that it is implemented as a pure PBD method, while

the advanced XPBD method exists. This causes the constraints to approach infinite

stiffness in time, causing progressive changes in the deformation behaviour as the

simulation continues. This is not a preferred behaviour of the model, as it can not be
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examined thoroughly since tuning of the stiffnesses only really takes an effect at the

beginning of the simulation. However, studying the model’s behaviour in a greater

time scale allows for the inspection of how exactly the constraints influence the

deformation, allowing further improvements.

Another drawback is the usage of a very small iteration count to satisfy the

computational time efficiency goals. Although these few iterations (3) may yield

somewhat reasonable results for some muscles, as shown in the [KČ21] paper, the

further examination done as semesterwork for the courseKIV/OP showed thatmost

of the constraints exerted very little impact on the deformation, with no room for

proper expression. Rather, the deformation of the vertices was found to be mainly

driven by just the Störmer–Verlet approximation of Newton’s equations of motion.

The solver with these few iterations seemingly has no time (not enough iterations)

to properly react to the fixed vertices displacements, resembling more of a cloth or

fluid behaviour in its rapidity of movement and oscillations.

The software architecture also falls off as the deformation is implemented with-

out the convenience of e.g. expression templates the modern mathematical libraries

provide. On top of that, the constraint projections are mostly implemented only in

their computational forms provided in the appendix of the [Mül+07] paper. This

makes further modifications (such as introducing regularization terms) very hard,

although not impossible.

The deformation was tested on quite a small dataset containing 4 muscles of

the glutei maximus, medius, the iliacus, and the adductor brevis. Out of these muscles,

the results are acceptable except for the iliacus, which, during the hip flexion, gets
passively dragged behind the bone and unrealistically broken in shape near
its insertion area, as is shown in Figure 4.1.

Last but not least, the collision between the muscles, whose interaction be-

comes especially relevant when adding more muscles near each other, is not ad-
dressed at all.

One of the hypotheses of this thesis is that the modelling of active muscular
interactive contractions should fix the unnatural bending of the iliacus. Due
to the comparison between the PBD and the XPBD, this thesis also aims to imple-

ment the deformation using the novel, XPBDmethod, and lastly to quickly and
correctly detect and resolve the collisions between the muscles.
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Figure 4.1: Iliacus unrealistically bending during hip flexion
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Proposed solution 5
This thesis proposes solutions to two problems of the current PBD muscle defor-

mation model [KČ21]. The first problem is the penetration of elastic muscle ob-
jects in the scene, rarely addressed in the state-of-the-art musculoskeletal models,

usually resulting in unrealistic states of the complex muscle geometries. The sec-

ond problem is the absence of active intermuscular interactions facilitated
through governed synchronous activations (contractions) of the muscles,
currently rendering the state-of-the-art muscle models mere passive followers of

the bone movements.

The first problem could presumably be interpreted as unrelated to the muscle

deformation itself, as the forward simulation does not contain explicit knowledge

of where the complex muscle geometries could lie further from the current step.

In this light, the problem of muscle penetrations could be re-defined as a general

problemof avoiding penetrations of dynamic elastic bodies, and therefore applicable

to a broad spectrum of elastic body simulations. On the other hand, the muscles

avoiding penetrations is indeed a form of a passive intermuscular interaction.
The solution to the second problem aspires to extend the concrete PBD model,

exploiting the capabilities of this fast and robust approach and to design and imple-

ment an approach to facilitate active muscle interaction in contraction during

various movements around the hip joint. To achieve this goal, though, fundamental

changes to the current PBD model have to be made.

The first of the changes is to extend this PBD model to its extended version,

called XPBD. There are many reasons for this change. The XPBD method had been

developed to overcome a well-documented shortcoming of the PBD method of

infinite stiffness and is, in consensus, deemed its successor. The infinite stiffness

problem describes the stiffness of the constraints to theoretically reach infinity in the

infinite time step of the simulation. That is the function of the constraints changes

during the simulation and is therefore time-dependent (and thus iteration count

dependent).

The time-dependency of PBD poses a difficult challenge in correctly assessing

model behaviour in terms of the currently implemented constraints, as well as the
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to-be-designed muscle interactions. This is simply due to the reality that the more

iterations the solver is provided, the greater the chance for the solver to reach global

optimum, and the more pronounced individual constraints have a chance to be, but

also the more inconsistent the constraints become.

The need formore solver iterations also calls for amore efficient implementation

enjoying the parallelism potential of the PBD method as well as the use of modern

vectorizable mathematical libraries such as Eigen (eigen.tuxfamily.org) mainly be-

cause of the requirement of the theoretical model to run in real-time, efficiently.

This requirement stems from the proposition, that the scene should be interactive,

and therefore responsive, as the user may rate the quality of experience as worse in

a scene which is precise but slower in contrast to a better experience of a simulation,

that is real-time and responsive [Tes+05]. Moreover, no specialised hardware should

be needed to run this software, as it is meant to enhance the decision-making done

by medical experts, who usually have no access to such hardware.

As these changes to the solver are a form of preparation of the environment for

the development of the active intermuscular interaction, they will be the first to be

described, followed by the main proposals of this thesis.

5.1 Extended Position Based Dynamics
Compared with other deformation methods, the XPBD is still relevant in the area of

deformable bodiesmodelling thanks to the robustness, speed of evaluation, and good

control of the model parameters [BMM17]. Additionally, the Rayleigh dissipation
potential constraint formulation should be implemented, as it provides additional

damping force for the price of just a few, cheap, mathematical operations [MMC16].

As the authors stress [MMC16], the extension from PBD to XPBD should be

straightforward. But the method described in the article [KČ21] has many archi-

tectural backdraws, preventing this easy transition. For example, the constraints

are not represented by an instance of an object, which could hold the state of the

constraint, such as the Lagrange multiplier, and their projection is implemented in

the computational form from the original paper [Mül+07] for each constraint type

independently, making modifications to the projection equation hard to pinpoint,

as opposed to the alternative, where this projection would be implemented just once

for all constraints (as it is mostly the same). On top of that, a mere extension would

make comparisons difficult to navigate and cluster the code base. This is why, a sep-

arate XPBD deformation algorithm should be defined in theMuscleWrapping 2.0
project. The general control flow graph of both methods stays roughly the same,

which in the case of the XPBD, will be as depicted in the scheme in Figure 5.1, with

some details omitted for clarity, e.g. all constraints should also be created in the init
method of the XPBD instance.
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5.1.1 Muscle-to-bone collisions

Figure 5.1: Basic control flow graph of the XPBD algorithm

This implementation should be flexible, easily maintainable and efficient. For

that purpose, the modern C++ programming language provides many tools, such as

static generic classes using the templates, and the Curiously Recurring Template
Pattern (CRTP) possibility to implement static polymorphism. The implementation

should not contain all mathematical operations done from scratch, since this would

probably be a difficult process, which most likely would not match the capabilities

of modern mathematical libraries, such as the Eigen library, which accelerates the

operations using, for example, the expression templates, efficient matrix multipli-

cations, and so on. But first, the solver should also contain the method to solve for

collisions of muscles to bones, as this is an integral part of a scene containing elastic

as well as rigid objects.

5.1.1 Muscle-to-bone collisions

As the Discregrid library used in the current state of the PBD deformation algorithm

works well, there is no immediate reason to choose anything else for this purpose.

One possible modification is to also parallelize this process of querying the SDFs

with each muscle vertex. This is possible due to the fact, that the method of the Dis-

cregrid library used to get the distance, the direction and the sign to the bounded
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surface does not change the state of the underlying signed distance function object.

Compared to the results shown in the PBD paper [KČ21], the results of using Dis-

cregrid for muscle-to-bone collisions can be seen in Figure 4.1 on page 49, where

during the hip flexion, the muscle is no longer caught in between the acetabulum
and the femur head but is instead being unnaturally bent.

5.1.2 Constraint design
This thesis proposes the constraint memory and execution to be done on the CPU

due to the limited scope of this thesis, although aGPU implementation could provide

better time efficiency, given that the individual constraint projections could be done

entirely on the GPUwithout unnecessary copying of positions, whichwould be only

required once at the end of the outer loop. Since matrix multiplication is needed for

the constraint projection, a general-purpose-GPU parallel computing platform such

as theNVIDIA® CUDA® Toolkit (developer.nvidia.com/cuda-toolkit) could be

employed in the future.

Moreover, the CRTP for the constraint centralized functionality (mainly the

Lagrange multiplier and the projection method, containing Equations 3.7 and 3.6) is

proposed. Static polymorphism allows for shared functionality across instances of

deriving classes while avoiding runtime look-ups in the virtual table. With modern

compilers, this may seem like a premature micro-optimisation, but considering the

number of constraints on detailed meshes can reach up to hundreds of thousands

even in moderately populated scenes, and that these constraints are all projected

e.g. 100 times per one simulation frame, the memory spatial locality of the methods

and the class members becomes of great concern, which the compiler might miss

during optimisation if classic inheritance with virtual methods had been used. The

CRTP will be implemented as is shown for the distance constraint (Figure 5.1). All

the constraints (distance, dihedral angle, volume) will hold the same definitions of

the gradient and the cost function as in the original PBD paper [Mül+07].

To foreshadow, the only difference in the distance constraint formulation should

be that the constraints will not necessarily preserve the original distance, but
a desired distance as a dynamic parameter (which can also be the original one). This

will be explained further in the context of muscle contraction modelling.

Each defined constraint must implement the methods for the computation of

the gradient and the cost, as the projection method uses them. One drawback of

this approach is that the number of particles (vertices) must be fixed, which is not

problematic with the distance or dihedral angle constraints, where the number of

particles corresponds to 2 and 4, respectively, but becomes problematic with e.g. the

volume constraint, which may influence an arbitrary number of vertices (since the

number of vertices per muscle mesh most likely varies) and the projection for it has
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to be implemented separately.

Most of the constraint instances should hold a floating point number of a La-

grange multiplier. Those that would not, are desired to be infinitely stiff, without

compliance, e.g. the collision detection and resolution. The volume constraint could

be made a special case, as the volume should be preserved at all times unless some

highly degenerated triangles emerge. Such a behaviour can be modelled by setting

the stiffness of this constraint very high. For this thesis, the decision has been made

not to include the Rayleigh dissipation potential for constraint damping formula-

tion for the volume constraint, since indeed, this constraint is desired to give as

little a compromise as possible, hence the conscious decision to also give it the com-

pliance of zero was made, although the constraint works well even if it is not zero.

This particular projection uses Equation 3.5 for the Δ𝜆 computation.

Source code 5.1: CRTP design of constraint implementation

1 template <typename Derived , int ParticlesNumber >
2 class constraint {
3 double m_lambda = 0;

4

...

5 / / U s e s m e t h o d s grad(. . . ) and cost() o f t h e Derived c l a s s .
6 void project () {
7 . . . compute Δ𝜆 with Equation 3.7

8 m_lambda += Δ𝜆;

9 . . . compute Δx with Equation 3.6
10 x += Δx;
11 }

12 }

13 class distanceConstraint :
14 public constraint <distanceConstraint , 2> {
15 double m_desired_length;

16

...

17 void grad(double∗ grad) const;
18 double cost() const;
19 }

5.1.3 Paralellization
To achieve higher time efficiency of the projection, which in turn allows for more

inner solver iterations while keeping the simulation fast enough at least for the de-

veloper during testing, the projections of constraints can be parallelised using e.g.

the Parallel Standard C++ Library (PSTL, github.com/llvm-mirror/pstl) or the pre-

processor directives of the OpenMP parallelization API (openmp.org/). Of course,

the same parallelization technique can be applied to GPU parallel processing.
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As previously noted in section 3.2.3.6, the order of constraint types projections

has to stay constant to prevent oscillations. Whereas on the level of individual con-

straint type, the constraints of that type can be projected in a parallel fashion, given

those parallel projections do not affect the same particles (vertices) [BMM17]. To do

that, the constraints of each type have to be separated into edge-independent sets,

as illustrated by Figure 5.2, where the independent set for distance constraints is

in green (edges, that do not share a vertex), and for the dihedral angle constraints,

is in blue (closed quadruples, that do not share a vertex). Note, that the illustrated

colours may overlap, as the different types must be projected sequentially. The most

basic way to achieve this is to use a graph-colouring technique.

The graph colouring does not proceed on the mesh itself, but on a graph, where

the nodes are the individual constraints and an edge is present if the other con-

straint affects the same particle (vertex). An example of such a graph for distance

constraints can be seen in Figure 5.3, where three sets of independent distance con-

straints are found. Note, that the nodes in the green overlaying graph correspond

to the edges (one distance constraint per edge). The distance constraints belonging

to the same colour can be processed in parallel. The different colours, though, have

to be processed sequentially. Hence, the example in the figure would produce three

sequential phases of parallel processing.

The situation becomes much more complex when more particles are affected

Figure 5.2: Edge-independent sets of constraints for distance (green) and dihedral

angle (blue) preservation
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Figure 5.3: Coloured distance constraint graph overlaying a mesh

by a single constraint. In the case of the dihedral constraint, the illustration can be

found in Figure 5.4. In the figure, each edge that has two adjacent triangles represents

a constraint. Within a closed fan and any adjacent constraint (the red edges), the

graph is complete (all the constraints share the centre vertex). In the example, this

forces seven colours to be used. The first truly parallel (more than one constraint)

set with the red (or yellow) node colour can be found only within the second ring

of the fan (node with the dark red outgoing edges).

To perform the graph colouring itself, considering the limited scope of this

thesis, greedy colouringwith the smallest-last ordering (SLO)will be used,where
before the start of the greedy colouring, the nodes of the graph are sorted in the

descending order of their node degrees (number of outgoing edges). This greedy

approach can be used, as there is no need to meet a certain upper limit of the colour

counts. The results may be sub-optimal (many colours) but should speed the inner

solver up anyway.

The greedy colouring algorithm keeps asserting the colours to nodes if they are

available (no neighbour shares the same colour) at the current processing step. In

the worst case, this may produce the same number of colours as there are nodes (no

Figure 5.4: Coloured dihedral angle constraint graph overlaying a mesh
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constraints would be processed in parallel).

Further, for the per-muscle mesh volume constraint, the muscle volumes are

independent of each other (no volume constraint pair shares the same particles).

Hence, they can be trivially projected in parallel.

Having presented the modelling environment changes, the two main proposals

of this thesis will continue. The next section describe an approach to avoid muscle

collisions, a form of passive intermuscular interaction.

5.2 Passive intermuscular interactions
Due to the need for a real-time simulator, there is also a need for time-efficient

collision detection among muscles. The efficiency of the collision resolution is then

directly dependent on the type and quantity of detection provided information.

A proposal of a collision-solving algorithm to avoid intermuscular penetration fol-

lows.

5.2.1 Virtual edges
Firstly, preventing the classical collision-solving structures update, the presented

collision-solving algorithm could be described as a structure-less one. An important

starting point is that the muscles change in shape dynamically but only in geometry

while the topology stays the same (no tearing or joining occurs). The following

algorithm could be classified as a stochastic one. In stochastic collision handling

approaches, the detection of just the majority of collisions suffices. The stochasticity

of this proposed algorithm is not so much of a random sense but more of a hopeful

(probable) collision avoidance strategy, while not explicitly defining the probability

of it. The main goal is for the detection to be efficient and the collision response

to resolve the unrealistic behaviour. Another reason for leniency is that even the

meshes are just approximations of the real shapes, moreover, one collision response

could also resolve the collisions in the neighbourhood since the muscles are elastic

objects.

Secondly, exploiting the a priori observation, that a musculoskeletal scene con-

tains muscles usually in an anatomically and physiologically pre-defined rela-
tionship of closeness, the search for collisions in an unknown scene (where for

example the user could move the muscles arbitrarily) can be reduced to the search

in the subspaces of predictable local contacts of the typically close muscle areas and

their neighbourhoods. This observation allows the proposed approach to partially

skip the broad-phase collision detection, as it is often well-predictable.

The fundamental element is the so-called virtual edge ℎ = (𝑎, 𝑏), where the
vertex index 𝑎 lies in one muscle vertex set 𝑀1 while the vertex index 𝑏 lies in
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another muscle vertex set𝑀2. These indexes, in theory, could be chosen arbitrarily
from the sets. The role of this element is to scout its neighbourhood between two

muscle surfaces to find the areas of so-called Contact Distance Proximity (CDP).

CDP is the space between the two meshes, where a collision could potentially occur

in the future. The virtual edges are designed to quickly and dynamically avoid them

based on the assumption, that no undefined muscle behaviour disturbs the scene.

Despite anatomically and physiologically predictable collision areas, no such

explicit information is provided in the musculoskeletal model. Therefore, an initial

configuration resembling the a priori information must be found as the starting

point of a set of virtual edges.

5.2.1.1 Finding virtual edges configuration

There are two scenarios where the configuration of virtual edges needs to be found,

particularly

1. at the beginning of the simulation

2. and during the periodic update during simulation to better reflect the updated

geometries.

Either way, the goal is to find the initial configuration of all virtual edges (across

all elastic objects), which will be the starting point of each virtual edge Zig-Zag de-

scent. More specifically, the problem is to search for vertex index pairs representing

virtual edges among all
𝑁∗(𝑁−1)

2
unique pairs of 𝑁 muscles.

A presumably good solution for one pair of muscles would be to find random

initial virtual edges uniformly distributed across geometries. This seemingly trivial

random initialisation is not so straightforward considering the meshes may contain

many degenerated triangles making uniformity hard to obtain. Some proximity

areas may be completely missed due to the randomness. The corresponding vertices

of such one virtual edge may also be unreasonably too far away from each other

taking too many steps to meet at a proximity area and even arguably introducing

more local optimum deadlocks on the way.

Considering the naivety of the movement of the virtual edge (described in detail

in the next section) let’s, instead, find a more reliable initialisation and update of

the virtual edge configuration method using a more classical approach of space

partitioning. Such one approach could be for example using a BVH with AABBs as

nodes, which are usually implemented to provide quite fast results for point-to-mesh

proximity queries.

In practice, this means taking each unique pair of muscles and for all vertices

of one of the muscles query the BVH built over the other muscle for great enough

closeness proximity. The BVH structure is usually capable of also returning the index
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of the closest vertex in the other muscle within that closeness radius. The closeness

radius is usually a parameter to the query and often helps with search acceleration.

This parameter is then the upper bound of the initial virtual edge lengths and should

be chosen at least bigger than what is the CPD.

Having a way to find one virtual edges configuration it is then possible to update

the virtual edges periodically in each 𝑇 frame of the simulation, while during the

frame solver iterations the virtual edges

1. reset each iteration to the initial configuration

2. or stay where the last iteration left them.

On one hand, the first case limits the virtual edges to the proximity of the muscles

and their near neighbourhood at the time of configuration update. On the other

hand, the second approach allows the virtual edges to travel greater distances, po-

tentially detecting unexpected collisions.
In between the configuration updates, each virtual edge follows the following

Zig-Zag algorithm to scout its neighbourhood for collisions.

5.2.1.2 Zig-Zag algorithm

The first step is to consider index 𝑏 in a 𝑀2 subset with all its neighbouring vertex

indexes 𝛿 (𝑏) of the size 𝑠 = |𝛿 (𝑏) |, hence considering vertex indices {𝑏∪ 𝛿 (𝑏)}. For
each of them, calculate the distance 𝑑𝑎

0,1,2,...,𝑠,𝑠+1 to the reference vertex index 𝑎. From

these distances, pick the minimum and the corresponding vertex index. Change the

index 𝑏 to this minimising neighbour 𝑏 = argmin𝑖∈{0,1,2,...,𝑠,𝑠+1} 𝑑
𝑎
𝑖
(or let it stay in

case it is the minimal one).

The second step is the same as the first one, only this time it is vertex index 𝑎

which might get changed to its minimising neighbour in respect to the reference

vertex with the index 𝑏. The first step is visualised by the image 5.5. Vertex index 𝑏

is swapped for its neighbour who minimises the virtual edge length. The next step

probably swaps the vertex index 𝑎 also.

Since the distance serves only for relative comparison it is not needed for it

to have a physical correspondence, therefore arbitrary squared Euclidean distance

between vertices was chosen. This distance 𝑑
𝑝
𝑞 between two vertices 𝑝 and 𝑞 is given

by Equation 5.1 and is chosen as the computationally feasible variant of the classical

Euclidean distance, where the computation of the squared root is needed.

𝑑
𝑝
𝑞 =

𝑛∑︁
𝑖=1

(𝑞𝑖 − 𝑝𝑖)2 (5.1)

This can be regarded as a gradient descent method where every time a vertex

index of the virtual edge is changed, the objective function changes (because it is the
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a

b

Figure 5.5: The first step of the Zig-Zag virtual edge algorithm

distance to the referential vertex). This Zig-Zag step is repeated in many iterations.

The convergence criteria (depicted by Figure 5.6) are either

1. reaching the maximum iteration count max_iter,

2. local minimum stagnation (none of the two Zig-Zag steps change the virtual

edge and the geometry does not change until the next solver iteration)

3. or the sufficiently small length of the virtual edge is reached 𝑑(ℎ) < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

where a collision can be expected and prevented. This user-defined threshold

is defined as the CPD.

Figure 5.6 depicts the first step of the Zig-Zag algorithm of the vertex index 𝑎move-

ment and the possible ending states of that movement. On the left, the vertex gets

caught up in a local minima while not being able to recover from it until the neigh-

bouring geometry changes. In the middle of the figure, the vertex with index 𝑎

converges up to the proximity of the vertex with index 𝑏. The last illustration in

Figure 5.6 depicts a scenario where the moving vertex of the virtual edge stops due

to it reaching maximal iterations.

If many such virtual edges undergo the Zig-Zag iterations concurrently for the

same geometry, probably, some of them (with the presumption of enough iterations)

converge to the vertices which are close to the contact distance between the two

muscles, in other words, their distance is less than CPD. This is where the collision

is to be expected, hence this method could be classified as a priori collision detection

method.

It is also presumable, that many of the virtual edges lay stagnant in the local

minima (especially with the complex muscle geometries).

There is no less chance that a collision will be missed. Imagine the geometry

changes rapidly in a short time. By the time the virtual edges converge to the new

minima if at all, the muscle intersection could be so massive the collision would

become impossible to repair. This is why it is also needed to periodically update the
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a

b

a

b

a

b

Figure 5.6: Possible endings of virtual edge movement

initial configuration of the virtual edges. It is possible to randomly add new virtual

edges or use some structure-aware more precise algorithm using for example space

partitioning.

5.2.1.3 Degenerated edges

There are three initially distinct virtual edges ℎ𝑖 = (𝑎𝑖, 𝑏); 𝑖 = 1, 2, 3 illustrated

in Figure 5.7 which all degenerate into just one virtual edge ℎ𝑛𝑒𝑤 = (𝑎𝑛𝑒𝑤, 𝑏). It is
the case that these degenerated virtual edges are not going to escape degeneracy

(representing just one virtual edge while being computed three times) until the

next virtual edge configuration update even if the geometry changes. At most, this

particular virtual edge would be provided thrice more Zig-Zag iterations in case

of sequential processing. One solution would be to detect this phenomenon and

remove the redundant edges completely, another option could involve letting this

degenerated edge enjoy more Zig-Zag iterations while synchronicity is provided or

wemight consider taking advantage of this problem to accelerate collision detection

using so-called wormholes.

a1

b

a2

a3

anew

Figure 5.7: Three virtual edges about to become degenerated into one
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5.2.1.4 Exploiting degenerated edges as wormholes

Consider sequential processing of virtual edges Zig-Zag iterations as in one virtual

edge ends in one of the three states Figure 5.6 shows and then the next one is pro-

cessed and so on. Such sequential processing of two virtual edges is described in

Figure 5.8. If the first one to get processed would be the edge ℎ2 and then the edge

ℎ1 which due to chance ends up in the starting position of ℎ2 after the first step of

Zig-Zag it is obvious that ℎ1 would end up in the position ℎ′
2
if it had enough itera-

tions, even potentially degenerating there. What could accelerate the space search

of the virtual edges as a whole would then be to teleport edge ℎ1 through the whole

path of ℎ2 and let it continue with its iterations further and hopefully detect the

dangerously close vertices 𝑎 and 𝑏. On the other hand, in case the edge ℎ′
2
is in local

minimum this warp would degenerate ℎ1 with ℎ2. Furthermore, if the edge ℎ′
2
would

signal detection of contact proximity and this contact would be resolved as a part

of ℎ2 processing, the warp would provide a chance to detect more close encounters

of the two muscles.

Moreover, cases could emerge where letting the edge ℎ1 end upon reaching

maximal iteration count somewhere on the path of ℎ2 would be beneficial since it

is probable that in the next simulation step, the geometry changes and these two

virtual edges would then diverge from each other, providing better distribution of

these contact detectors.

Due to the need for synchronisation, this exploitationwould be unfeasible to par-

allelise. Various barriers for read/write global memory operations would be needed

since the virtual edges can virtually wind up in arbitrary positions. In other words,

b
h2

a2

b2=b1b2'

a2'

h1'

Figure 5.8: Wormhole warping of one virtual edge
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many virtual edges from all over the meshes can gather at one specific area, making

them all dependent on each other during such synchronous wormhole warping

operations.

Evenwithout using thewormholes, when the collisions are sequentially avoided,
the next virtual edges incoming to the already resolved position operate on differ-

ent geometry, providing more opportunities to find the next near-collision. In

this scenario, these degenerated edges would not be entirely degenerated, but rather
useful.

5.2.2 Virtual edge collision resolution
When the distance between two virtual edges becomes shorter than the CPD set by

the user, it indicates that there could be a collision between the vertices. To prevent

this collision, a straightforward solution is to only consider the vertices themselves

and ignore their topology or geometry neighbourhood. By pushing these vertices

away from each other, a safe distance can be created between them, effectively avoid-

ing the collision (which may not have happened in the first place).

Such trivial resolution is illustrated in Figure 5.9, where the virtual edge ℎ =

(𝑎, 𝑏) becomes so short it may indicate an upcoming collision (𝑑(ℎ) < 𝐶𝑃𝐷). The

resolution is to push the vertex with index 𝑎 by the vector
−→
𝑏𝑎 and the vertex with

index 𝑏 by the
−→
𝑎𝑏 vector, each by the distance

√︃
1

𝑑(ℎ) ∗ 𝐶𝑃𝐷 ∗ 0.5, where the first
term norms the vector, the second term multiplies it by (at least) the desired safe

distance and the last term distributes the shift among the two vertices.

The immediate downfall of this resolution is if the CPD is set too small and

the external forces acting on the particles represented by these vertices are greater

than CPD, the externally pushed vertex penetrates the surface as is illustrated in

Figure 5.10. Starting with the vertex at position 1, the external force 𝑒𝑥𝑡1 acts on it

a b

CPD

Figure 5.9: Trivial virtual edge collision resolution
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5

4

I

II

ext1

ext2

1

2

3

Figure 5.10: Trivial solution fails to prevent collision among muscles

and pushes it to position 2. Collision I with the purple vertex on the muscle surface

is detected and successfully resolved by pushing the vertex away from the surface

into position 3. There, however, another external force 𝑒𝑥𝑡2 acts in the next iteration

of the solver and the vertex is pushed under the muscle surface (4). Trivial solution

II incorrectly pushes the vertex even deeper into the muscle (5), and the blue vertex

on the surface of the muscle, in turn, is incorrectly pushed outwards.

Adaptive CPD could be employed to reflect the magnitudes of external forces

better to prevent this failure of resolution. Another idea is to develop a resolution

algorithm reflective of the vertex’s previous position. This idea is sketched out in

Figure 5.11.

In Figure 5.11, the updated positions of the virtual edge ℎ = (𝑎′, 𝑏′ = 𝑏) are
examined following the detection of a possible collision. Vertex 𝑎′ has undergone

significant changes in its spatial relationship to 𝑏 in comparison to its prior position

𝑎 (which can be quantified by the angle between the three positions). Consequently,

it is probable that the boundary of muscle 𝑀2 may have been breached. Correcting

the position to 𝑎𝑐1 would not resolve the collision. A more effective approach entails

computing the vector
−→
𝑣 =
−−→
𝑆𝑎𝑐1 and the vector

−→
𝑎 =
−→
𝑎′𝑎, followed by either summing

the normalized vectors using Equation 5.2 to obtain

−→
𝑐2, or summing and normalizing

using Equation 5.3 to obtain

−→
𝑐3. The resulting position 𝑎𝑐𝑖, where 𝑖 = 2 or 3, is then

expressed as Equation 5.4. To preserve the CPD, it becomes imperative to relocate

the opposite vertex 𝑏 towards the position 𝑏𝑐𝑖, where 𝑖 = 2 or 3, or compute the

same correction for this vertex and average the two resulting directions (with one

of them negated) to obtain an average direction the new positions must travel (one

of them in the negative direction) to meet the boundary of the circle and preserve
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Figure 5.11: Previous position reflective collision solving

the CPD. Both variations of the more intricate correction method would effectively

resolve the collision in this instance, surpassing the simplistic solution.

−→
𝑐2 =

−→
𝑣

|−→𝑣 |
+
−→
𝑎

|−→𝑎 |
(5.2)

−→
𝑐3 =

−→
𝑣 + −→𝑎
|−→𝑣 + −→𝑎 |

(5.3)

𝑎𝑐𝑖 =
𝑎′ + −→𝑐𝑖
|𝑎′ + −→𝑐𝑖 |

× 𝐶𝑃𝐷 (5.4)

5.3 Active intermuscular interaction
The last proposal on top of the creation of an in-theory-advanced XPBD model

compared to the former PBD and the passive intermuscular interaction, is the fa-

cilitation of active muscle interaction in the form of synchronised, contractions

dependent on the current orientation of the underlying joint. In this context, the

terms muscle activation and muscle contraction will be used interchangeably.
Although a motoneuron model, where the activations of muscles could be gath-

ered using the EMG, would probably be themost realistic to simulate the interacting

contractions of the muscles (or even just the contracting parts of them), a simplified
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model of the muscle activations patterns can be used, as this proposition is more

a proof of concept than a final product.

This is why, as of now, the model of muscular interaction will be realised, in this

context of inverse kinematics, as a joint-orientation-governed orchestration
of the muscles (that would, in reality, lead the movement) to simulate their acti-
vations through the use of dynamic XPBD distance constraints (with varying
parameters).

5.3.1 Movement-inducing joint representation
Although a physiological joint does not move, rather the bone which is situated

inside of it, in the context of modelling the active muscular interactions, a joint has

been chosen to represent the centre of control for the muscles around it, moving

the bone the joint contains. This is not supposed to be a physiological analogy,

but rather a conceptualisation of the centralised control over the active muscle

interactions, where the muscles surrounding the joint interact primarily to move

the bone, but also to stabilise the joint and its surroundings (in the case of the hip

joint, the pelvis bone is often incorporated into the movement of the femur as the
pelvis represents the non-moving base of the joint, which needs to be stabilised and

the femur represents the bone movable relatively to the pelvis, which needs to be

moved). The joint is not the source of the movement, nor the moved object, but

rather the space,where the movement occurs. From this point on, such a control

centre will be denoted as the Joint Control Unit ( JCU).
This JCU (as a centre of control of the active muscle interaction), to fulfil its

function of governing the surrounding muscles under a specific movement of the

bone (e.g. hip flexion, where the femur changes its orientation in one of its three

degrees of motion) must

1. be aware of which muscles should cause the movement of the bone,

2. know the current orientation of the bone,

3. own for each concerned muscle a set of dynamic distance constraints cor-
responding to detailed surface fibres of this muscle to be able to contract

it,

4. and know the information about all concerned muscle activations un-
der various orientations (samples based upon which to decide what activa-

tions to impose on the muscles it governs under a specific orientation of the

bone).

The first requirement is easily obtainable either from literature [KOA19], from

the specifications of the prime and the most powerful synergistic movers or, as an al-
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ternativewith the focus on the hip area, one of themanywell-documentedmodels of

the lower extremity, such as the one presented in the paper [Raj+16] by Rajagopal et al.

and later modified by Uhlrich et al. [Uhl+22] (available at simtk.org/projects/fbmod-

passivecal) which had been successfully used to perform amuscle-driven simulation

of the gait movement. The results of this simulation corresponded qualitatively to

important characteristics of EMG data [Raj+16], and therefore, it can be deemed

physiologically accurate enough for this work.

Secondly, the current orientation is implicitly available in theMuscleWrapping
2.0 project on the input. The only hurdle to overcome is the injection of it into the

XPBD deformation algorithm, containing the JCUs.

Thirdly, to obtain the detailed surface fibres needed for contracting the muscle

surface, the given option to also generate inner muscle fibres for each muscle of

the original approach [KČ21] can be utilised. These inner muscle fibres can be used

to estimate the surface fibres by snapping each point of the fibre polyline to the

nearest surface mesh point. As the resolution of these fibres is usually lower than

the number of edges when traversing the surface along the fibre, more detailed paths

connecting these sparse surface fibre positions must be found to ensure a smooth

muscle contraction. These detailed surface fibres are sufficient to find only at the

start of the deformation, as in this state, the muscles should be in their original shape

[KČ21], hopefully reflecting the anatomy with the best precision.

In regards to the fourth (and last) point of requirements (to gather samples about

muscle activations under various bone orientations), a tool to estimate muscle acti-

vations called the static optimization during arbitrary movements is available in

theOpenSim (simtk.org/projects/opensim). Used on the detailed model Rajagopal

et al. created [Raj+16] and Uhlrich et al. modified [Uhl+22], this tool should provide

sufficient muscle activations as a good starting point for this proposed proof of

concept (given the right tuning of the tool). Further explanation of points 3. and 4.
follows.

5.3.1.1 Detailed surface fibres extraction

Given the generated inner surface fibres by e.g. the Kohout & Kukačka [KK14] algo-

rithm, a surface representation of them should be made, because the XPBD operates

on a surface mesh in this case. An alternative would be to select a fibre running

through the centre of the volume (or an average fibre) and to use that for contrac-

tions while parametrising the positions of the surrounding vertices as can be done

using Mesh Skinning described 3.2.3.2 on the page 28. Nevertheless, a pure surface-

based representation has been chosen due to its simplicity. Here, the assumption is

made that the resolution of the inner fibres is less than that of the mesh.

For each of the inner fibre polyline vertices, the closest point on the muscle
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Figure 5.12: Crease formation due to sparse surface fibres contraction

surface is found. The connectivity of the fibres stays the same. In case the dynamic

distance constraints would be made for each of these sparse polyline edges and

these constraints would contract (try to minimise the distance of the two concerned

vertices), a crease would start to form between these two vertices, as illustrated in

Figure 5.12 by the dashed, red curve. In the example, the inner fibre is illustrated

in red, the surface fibre is illustrated in blue, and the blue arrows represent the

propagated forces causing the crease. This is because of the propagation of forces

during XPBD deformation.

To overcome this behaviour, every inner fibre segment can be approximated by

a polyline, whose points form a minimal distance path between the original surface

points on the mesh, as Figure 5.13 depicts using the same colours. To find such a path

between two points on a mesh, theDijsktra algorithm can be utilised. With these

detailed surface fibre segments, the shortening or lengthening of the constrained

edges would most probably happen only locally, while not disturbing the overall

shape of the muscle in the majority of the cases. The cases, where even this approach

would fail to produce adequate dynamic constraints, can happen if e.g. the mesh

contains degenerate triangles.

Figure 5.13: Detailed surface fibre approximating the sparse inner fibre
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Figure 5.14: Shortest distance path producing perpendicular surface segments

Another ill-posed case for this method of generating detailed surface fibres is

when the two vertices of an inner fibre segment find their closest mesh vertices on

the opposite sides of the mesh. This situation arises typically near the attachment

area of the muscle or near thin muscle areas. A 2D example of this situation is

depicted in Figure 5.14, where the leftmost red inner fibre vertex is attached to the

grey bone but continues to the right on the other side of the muscle. The resulting

detailed surface fibres for this first inner segment are forces to wrap around the

muscle, possibly running perpendicular to the original inner fibre direction. A naive

solution would be to generate the inner fibres with higher resolution or count in

hopes that they would follow the surface more closely.

It should be noted, that these surface fibres are not supposed to represent the

physiological fibres, which, as discussed in section 2.1.4 on the page 11, are not always

running in parallel. Rather, these fibres represent the estimations of directions of

forces the muscle can generate.

5.3.1.2 JCU bone orientation sampling

For a single JCU governing surrounding muscles, samples of all concerned muscle

activations under various orientations (movements) should be made. These samples

will later serve to infer the activations for an arbitrary hip movement using direct

correspondence to the sampled activations or interpolation of the orientation.

If considering the example of the femur, it has three DOFs. It can flex or extend,

abduct or adduct, and internally or externally rotate. Therefore, any orientation

of the hip joint can be expressed by three scalar values, representing the degree of

rotation around each of the axes. This is the space where the samples should be

collected (Figure 5.15).

This space is theoretically limited by the ranges of motion, but in reality, the

bounds are not defined by a rectangular prism (as the figure shows), but rather by

a deformed ellipsoid, accounting for muscle imbalances or injuries.
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flexion
90°20°

30°

30°

30°

60°

extension

internal
rotation

external
rotation

adduction

abduction

Figure 5.15: The parametric space of a JCU’s bone’s orientations limited by theoretical

ranges of motion

5.3.1.3 Activation estimations

As previously described, the OpenSim software provides a tool for estimating mus-

cle activations during movements called the Static Optimization Tool. Various
explanations about the tool can be found in

a. the OpenSim Frequently Asked Questions (FAQs) on the web page

opensim.stanford.edu/downloads/WebinarMarch2011FAQ.pdf,

b. the OpenSim Documentation available at opensimconfluence.atlassian.net

under

1. User’s Guide→ Static Optimization,

2. Examples and Tutorials→ Intermediate Examples→
→Working with Static Optimization,

c. the complementary lecture videos for the book Biomechanics of Movement

[UD21] by Uchida & Delp,

d. and the article done by Andreson & Pandy [AP01], which also compares it with

a dynamic optimization approach.

The prerequisite to static optimization is the computation of net forces and

moments in each joint. In reality, the joint is moved by many complex biological

structures, such as the muscles or ligaments. This is modelled using an equivalent

(but simplified) representation of net (sum of individual) joint forces and net joint

moments. The joint forces correspond to when the muscle contracts and the joint

moments correspond to the forces causing joint rotation [UD21].

To compute the net joint moments and forces, an inverse dynamicsmodel is

used. For each segment of the motion (e.g. each bone), motion equations are formed
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for the positions of end vertices, velocities and accelerations (the latter two by the

differentiation of the positions). Then Newton’s second law is used to compute the

moments and forces for this segment concerning the centre of mass of the segment

(to simplify the moment computation) [UD21].

Now, knowing the net force and net moment for a particular joint, analogously

to when the body has to decide which muscles to active for this resulting force and

moment, so has the model. This problem may be called the problem of muscle
force distribution [UD21].

A net ankle moment (in flexion/extension range of motion) distribution will be

used as an example. In the problem, the net momentM is equal to the sum of the

moments of flexion across all major flexorsminus the sum of all extension moments

across all major extensors (Equation 5.5) [UD21].

M =

𝑛𝑓∑︁
𝑓=1

F𝑓r𝑓 −
𝑛𝑒∑︁
𝑒=1

F𝑒r𝑒 (5.5)

Where nf and ne denote the number of flexors and extensors, respectively, F𝑓 is
the force of the flexor 𝑓 , r𝑓 is the moment arm of the flexor 𝑓 , and the force and

moment arm for extensor 𝑒 is defined analogously. Given one equation, where the

𝑀 is a known variable and the rest (𝑛𝑓 + 𝑛𝑒) are unknown variables, the system is

underdetermined [UD21].

A naive way of finding the solution would be to reduce the number of unknowns

by preventing the correspondingmuscles from acting ormaking their contributions

constant. Another solution would be to add equations assuming a group of muscles

would generate the same force. Generally, an optimization formulation is needed,

where an objective function is minimalised while satisfying inequality, equality, and

boundary constraints (similar to the XPBD method). The boundary constraints for

this system would be the limits of forces every muscle can generate [UD21].

The objective function present in theOpenSimStaticOptimizationTool (SOT)
(opensimconfluence.atlassian.net/wiki/spaces/OpenSim/pages/53089619/How+Static-

+Optimization+Works) is defined as Equation 5.6. Minimalisation of this function

would mean the minimalisation of overall muscle activations a𝑚, raised to the user-
defined exponent 𝑝. The objective function can also represent the total muscle

stress, instead of total muscle activations, as mentioned in the lectures by Thomas

K. Uchida, Ph.D., P.Eng. [UD21], which could provide better results, but the official

documentation of the OpenSim describes the objective function in this form, which

may relate to the muscle stress in the end, as will be later discussed.

J =
𝑛∑︁

𝑚=1

(a𝑚)𝑝 (5.6)
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For the minimalisation of the objection function 5.6, the Equation 5.5 now serves

as one of the constraints on the system [UD21]. In a general case, over many joints,

it can be re-written while incorporating the limit force constraints as Equation 5.8

(provided in the OpenSim SOT documentation) representing the constraint relative

the (generalized) net force 𝜏 𝑗 to the joint axis 𝑗, where 𝑛 is the number of concerned

muscles, a𝑚 is the activation ofmuscle𝑚, F0𝑚 is themaximum isometric forcemuscle

𝑚 can produce, and r𝑚,𝑗 is the moment arm of muscle 𝑚, as before, only this time

specified to the 𝑗𝑡ℎ joint axis. In this formulation of the constraint, each muscle

would play the role of a ideal force generator [AP01].
The correspondence between Equation 5.5 and 5.8 is explained by Equation 5.7

[AP01]. Andreson & Pandy note, that in this ideal force generator case, arguably not

correspondent to reality, the muscle activation a𝑚 of muscle 𝑚 is in fact “equal to

muscle stress multiplied by some proportionality constant” [AP01]. In the Equation

5.7, 𝑘 denotes this proportionality constant, while 𝑃𝐶𝑆𝐴 denotes the physiological

cross-sectional area, making the relation
F𝑚

𝑃𝐶𝑆𝐴
express muscular stress [AP01].

a𝑚 =
F𝑚
F0𝑚

= 𝑘
F𝑚

𝑃𝐶𝑆𝐴
(5.7)

𝜏 𝑗 =

𝑛∑︁
𝑚=1

(a𝑚F0𝑚)r𝑚,𝑗 (5.8)

𝜏 𝑗 =

𝑛∑︁
𝑚=1

[a𝑚f(F0𝑚, l𝑚, v𝑚)]r𝑚,𝑗 (5.9)

An alternative way of constricting the muscles during optimization is to incor-

porate the force-length-velocity properties. Equation 5.9 describes this alternative

constraint, where l𝑚 is the length of muscle 𝑚, v𝑚 is its shortening velocity, and the

function 𝑓 (F0𝑚, l𝑚, v𝑚) represents the force-length-velocity surface for this muscle

[AP01]. In the context of this thesis, this alternative constraint can be viewed as more

physiologically plausible [AP01].

The last thing the SOT needs to estimate the muscle activities during movement

is the actuators. Each muscle represents an actuator. An actuator in the context of

muscular activation can be interpreted as the converter of action potential to theme-

chanical contraction of the sarcomeres (a process described in section 2.1 on page 7). In
the OpenSim SOT, the actuators serve the same purpose, without them specified, the

muscles can not exert enough force for the tool to provide plausible results, as is dis-

cussed in the intermediate example at the https://opensimconfluence.atlassian.net/-

wiki/spaces/OpenSim/pages/53085189/Working+with+Static+Optimizationweb pa-

ge. The documentation also discusses the residual actuators, which should have
little impact on the estimation. Further, a modification is suggested that the motion
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5 Proposed solution

kinematics (bone and muscle positions during movement) are filtered at a 6 Hz
cut-off frequency before the SOT run to prevent noise in the results.

The user interface panel of the tool is depicted in Figures 5.16 and 5.17. As can be

seen in theMain Settings panel, for the loaded model, the tool should have a desired

motion loaded (e.g. from a file), and the option to filter the input coordinates is avail-

able. In theObjective Function setting, there is the possibility to change the exponent
𝑝 value (Equation 5.6) from the default value of 2. Under the exponent parameter,

there is a check-box with the option to Use muscle force-length-velocity rela-
tion which if left checked, uses the constraint 5.9, otherwise the 5.8 constraint will

be used. On the second Actuators and External Loads panel (Figure 5.17), under
the Actuators setting, an Additional force set files parameter should be supplied

with the file containing actuator settings. These actuators should be Appended to
model’s force set, as the other option would overwrite all other actuators present

in the model (e.g. the tendon ones). External Loads can be added in case of the

desire to include e.g. gravity or ground resistance.

Figure 5.16: The graphical user interface of the SOT main panel
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5.3.2 Arbitrary movement activations inference

5.3.2 Arbitrary movement activations inference
If every sampled JCU bone orientation has an arbitrarily big vector of the mag-

nitudes of muscle activations, and the activations are desired to be known at an

arbitrary orientation in the 3D space, often, if this arbitrary orientation is not one of

the sampled ones, the activations must be guessed based on the given orientation. If

the samples cover enough orientations, interpolation can be used. The three DOFs

of the JCU bone define a parametric space for this interpolation (Figure 5.15).

Since the OpenSim SOT uses inverse dynamics to compute the net joint forces

and moments to estimate the muscle activations between individual steps of the

movements, the quality and physiological correspondence of the resulting activa-

tions for an arbitrary orientation most likely depends (apart from the SOT configu-

ration) on

• the resolution of the sampled movements (the amount of orientation change

between two consecutive motion steps),

• and the order of the sampled movements (as the next sample values may

depend on the current sample values).

As an example, consider the samples in Figure 5.18. The figure depicts possible

sample orientations with grey spheres. Each sphere has an arbitrary dimensional

vector (the number of concerned muscles) of scalar values representing the activa-

tion for each muscle. On the left, the illustration shows the axes of the parametric

space, extending to the limits of ranges ofmotion, completely covered in the samples.

These samples are chosen as the first choice since they represent all the puremotions

(no influence of other rotations) [KOA19]. From this point on, on the right of the

figure, the next sampling could, for example, continue cross-like from the maximal

flexion. As the figure becomes cluttered, it is up to the viewer to also imagine the

Figure 5.17: The graphical user interface of the SOT secondary panel
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5 Proposed solution

crosses growing from each of the remaining limit orientations shown in respective

axis colours.

If such crosses would also spur from each of the pure motion orientations, this

space would become uniformly sampled (in the nodes of a 3D uniform grid). In that

case, the interpolation of activations for an arbitrary rotation could be done by e.g.

basic bilinear interpolation, or even using the nearest-neighbour method, if the grid

was dense enough. But in this thesis, the uniform grid will not be used, because

1. the order of the samples may hinder physiological correspondence of the

activations,

2. and the acquisition of the samples is a lengthy process.

Instead, the idea is that only the most typical and physiologically relevant move-

ments should be sampled to provide the most accurate results. Perhaps, in future

work, these typical movements could be identified, most likely resulting in smoothly

transitioning curves of samples in the orientation parametric space.

5.3.2.1 Nearest neighbour search

The chosen distribution of the activation samples is sparse and non-uniform in

the parametric space. Since for example, the activations during maximal extension

should not influence the activations near maximal flexion, only a subset of the
samples will be used for the interpolation. Moreover, interpolating across the

whole space could become computationally unfeasible, since this interpolation is

done in each of the outer XPBD solver iterations (when the orientations of the JCU

bones may change).
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Figure 5.18: Pure motion sampling on the left, cross extension for maximal flexion

on the right
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5.3.2.2 Radial basis functions for activation interpolation

For an arbitrary orientation, an influencing subset of samples must be found

in an adequate time. This problem can be solved using the k-nearest neighbours
algorithm. To accelerate the algorithm, a kd-tree (in this case, 𝑘 = 3) structure is

proposed due to its efficiency and ease of understanding. The structure has to be

created only once, as the samples do not change during the simulation. Since the

simulated motions are usually advancing in small JCU bone orientation changes,

a better approach could be utilised to take advantage of this. But in the context of

this work, the kd-tree suffices, as the only operation being done during simulation

is finding k-nearest neighbours, where a balanced kd-tree provides the search in

Θ(𝑘 𝑙𝑜𝑔(𝑛)) time complexity, where the 𝑛 is the number of samples, which should

currently be only up to a few hundred.

This structure introduces one new parameter K representing the number of

nearest neighbours which should be found to interpolate among. This parameter

should be chosen based on the density of the samples in the parametric space. Figure

?? illustrates the result of a search for the 10 nearest pink neighbours of a query

orientation in black.

5.3.2.2 Radial basis functions for activation interpolation

Having k-nearest neighbours to the queried bone orientation, their values must be

interpolated. Radial basis functions (RBF) are proposed to perform the interpo-

lation since the number of neighbours may vary and may also be of an arbitrary

magnitude, depending on the density of the samples. Another reason for this type

of interpolation is that the further the neighbour is, the less impact it should have

on the interpolated value. Narrowing the interpolation space to the neighbour sub-

space also raises the feasibility of this method, considering the required evaluation

of an exponential function per neighbour per outer XPBD iteration.

Each neighbour represents a Gaussian kernel which is proposed arbitrarily as
the default one. Each of these neighbour kernels 𝑛 gets a weightw𝑛 asserted to them

based on a basic exponential function 5.10, where F (otherwise usually denoted as 𝜆)

refers to the fall-off rate of the exponential andd2𝑞,𝑛 represents the Euclidean distance
between the parameter space orientations 𝑞 to the query orientation (otherwise

usually denoted as r for radius) and 𝑛 for the neighbour orientation.

w𝑛 = 𝑒−Fd
2

𝑞,𝑛
(5.10)

These weights are then normalised and used for interpolation of the correspond-

ing neighbour muscle activations (for each muscle activation, a weighted sum of

all neighbours). In the case, the distance to any of the neighbours d2𝑞,𝑛 smaller, than

a sample difference 𝜖 between two floating-type scalars, the activations across mus-

cles, for that particular neighbour, are returned directly with the weight of one, as

this query is nearly identical to one of the sampled orientations.
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5 Proposed solution

5.3.2.3 The contraction

Under a specific JCU bone orientation, having activation levels (contraction magni-

tude) for each of the muscles, the JCU modifies the desired lengths of the distance

constraints representing detailed surface fibres of corresponding muscles.

Each constraint is analogous to a sarcomere in that when the whole fibre con-

tracts, the whole muscle contracts, as described with sarcomeres in section 2.1 on

page 7. As the activation levels on the output of the OpenSim SOT come from the

[0; 1] range, then a mapping must be defined to change the original distance of the

contraction distance constraints, since for example, if the original length was simply

multiplied by the complement of one of this activation level, then a contraction level

of one would completely shrink the approximating sarcomere to a single point.
As [RMT16] notes, on average, a sarcomere contracts by 30 − 50% of its resting

length (resulting in 50 − 70% of its resting length). Even though this change of

length probably varies a lot across the body’s different muscles, to reach the goal of

not letting the mesh collapse to a point, the lower bound of this very rough estimate

can be used. Therefore, the mapping describing how much a contracting distance

constraint belonging to a specific muscle should change its length in the current

simulation step is given by the scale 5.11, whereL𝑑 is the desired length of the distance

constraint, L0 is the original length of this constraint, and a is the interpolated

activation for the muscle in the current simulation step.

L𝑑 = L0.𝑚𝑎𝑥{1.0 − a, 0.7} (5.11)
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Model
implementation 6
The proposed model was implemented in the context of theMuscle Wrapping 2.0
project, which is an OpenSim plugin to simulate a musculoskeletal system. During

the implementation, attentionwas paid to the flexibility, readability and efficiency of

implementation. In comparison with the PBD implementation [KČ21], greater effort

has been made to utilise the capabilities of modern C++ programming language

and well-optimised C++ libraries. The aim was also to create a well-structured basis

for future research on this method, allowing for extensions in the forms of novel

concepts to be easily introduced to the system.

The implementation is partially based on the former approach of the PBD

method [KČ21]. Mainly in the part of parsing outer structures to internal structures.

The description of the implementation will follow a chronological order of the

development and explanations of decisions made along the way regarding unex-

pected hurdles and attempts to solve them.

6.1 Attempts to keep muscle-bone
proximity

At the very beginning of this project, in the context of a precursor course to this

thesis, the KIV/OP in the year 2022 at the University of West Bohemia, Faculty of

Applied Sciences, an attempt to keep the muscles near the bones was made using

an SDF, effectively letting the muscles slide across the surfaces of the bones. The

structure keeping track of these trapped muscle vertices is shown in Source code

6.1. This structure is a map containing for each bone a vector of vertices which

are trapped in the proximity of the bone. Together with the muscle vertex index,

the original distance to the bone surface is also kept. This structure is built at the

beginning of the simulation. During the simulation, each of the trapped muscle

vertices is inspected to determine whether or not it has been distanced too far from

the bone surface. If so, it is pushed towards the bone so that the original distance is

kept, while being able to deform in other directions, resulting in a sliding motion.
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6 Model implementation

Source code 6.1: Structure

1 std::map <size_t , std::vector <std::pair <size_t , double >>>
m_SDF_trapped_points {};

As an alternative, the idea of introducing virtual PBD distance constraints be-

tween the muscles and the bones came. Currently, this concept was re-purposed for

solving collisions between elastic muscles.

On top of that, to obtain a better understanding of the PBD solver, visualisation

of the vertex displacements by constraint per inner iteration for one outer iteration

was made, keeping the position advancements in a quite complex structure, which

currently looks like Source code 6.2 shows. This structure keeps a collection of forces

for one outer solver iteration. The forces are represented by a vector (element for

each sub-iteration) where the element is a snapshot of all the vertex positions and

the corresponding constraint_type of force (produced by a constraint) that caused
this displacement. These constraint forces are visualised in different colours so that

visual distinction between the constraint type influence in a particular area can be

made.

Source code 6.2: Structure of the constraint displacement forces to visualise

1 typedef
2 std::vector <std::pair <std::vector <Eigen ::Vector3d >,

constraint_type >> forces;

The results of the KIV/OP project were partially showcased and discussed by

a conference paper [Čer+23] in the year 2022.

6.2 First XPBD, solver acceleration and
virtual edges

Later, the coursework of the subject KIV/PPR concerning parallel programming

was joinedwith the topic of this thesis. An attempt wasmade to extend the PBD algo-

rithm [KČ21] into the XPBD algorithm, while keeping the original structure of it. But

soon, this approach showed significant drawbacks, as the resulting implementation

was too complex and hard to understand.

Many acceleration strategies were implemented, like refactoring the structures

for better sequential spatial data localitywith direct access, while also allowing
better memory contiguity, since the arrays of structures were refactored to a

structure of arrays, where SIMD vectorised operations can be utilised. Tactics

like unrolling of the loops were used to accelerate the bottlenecks of constraint
projection, and the parallel C++ standard library was employed in various places

for CPU parallelisation.

80



6.3 Extended Position Based Dynamics

The first proof-of-concept of using virtual edges for muscle collisions was
implemented in many modalities (on the CPU, on the GPU, partly on the GPU, and

minimally on the GPU), all of which were implemented to run in parallel. The CPU

parts of the implementations were also able to switch to run sequentially, to better

compare the results of the efficiency and functionality of each approach.

The proof-of-concept showed, that unless the whole solver runs on the GPU,

unnecessary copying mainly of the positions is not amortised by any of the GPU

implementations. On top of that, the sequential, progressive avoidance of found

contact distance proximities typically showed the best results in terms of collision

handling. The algorithm of the collision handling will be disclosed later in this text

in its current state.

From this point onwards, all the corresponding described methodologies (Chap-

ter 5 on page 51) and implementations were designed and completed in the course

of this thesis.

6.3 Extended Position Based Dynamics
The task was to design the XPBD deformation algorithm (described in detail in

Section 5.1 on page 52) all over from the start while separating it from the PBD

method. While the basic method algorithm 3.1 stays very similar (with the change of

the inner loop 3.2), the constraints were chosen to be represented by the Curiously
Recurring Template Pattern (cppreference.com/w/cpp/language/crtp), and the

Eigen C++ template library for linear algebra (eigen.tuxfamily.org) was utilised.

The implementation of the XPBD algorithm and constraints was done according

to the proposed designs shown by Figure 5.1 on page 53 and Source code 5.1 on page

55, respectively. In addition, during the init()method, the muscle handling instance

and the graph instance are not the only things created. Furthermore, in this method,

the SDFs usingDiscregrid are also created for each bone, some of themuscle vertices

are fixed to an appropriate bone, and all the constraints are generated.

6.3.1 Constraints
The distance and dihedral constraints were implemented as soft constraints, mean-

ing non-zero compliance and the presence of the constraint dissipation potential

regularisation. The volume constraints have been implemented as semi-hard con-
straints since their compliance is very close to zero (e.g. 1𝑒−10), but are not regulated

by the vertex velocities. The hard constraints (infinite stiffness, no compliance) are

the collision constraints.

For the implementation ofRayleigh’s dissipation potential constraint regular-
isation for the distance and dihedral constraints (in the CRTP), the current velocities
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6 Model implementation

of the concerned particles are needed. These velocities need to be updated just once

before the first inner solver iterations, which is done explicitly when re-setting the

Lagrange multipliers, without keeping the references to the vertices in each con-

straint.

In theCRTP, the parent class called constraint provides amethodvoidproject(),
the full body of which is provided in Source code 6.3. Most of the variables are kept

as class members to prevent unnecessary memory allocation. In the source code,

line (1) casts its reference to the reference of the derived instance, which on line

(2) provides the current cost of its objective function. Sometimes, the cost does not

make sense to compute, e.g. when it exceeds physical limits or zero division occurs.

In that case, the deriving instance should return the constant ms_do_not_solve
to avoid undefined constraint behaviour or redundant computation of the gradient

(perhaps the cost is nearly zero, meaning the constraint is already satisfied). On

line (8), the deriving class instance provides the gradient of this constraint. Lines
(9-12) compute the change of Lagrange multiplier using time-weighted compliance

m_alpha_tilde, previousm_lambda, the regularisation termm_gamma and its
pre-computed plus one version, along with the vector of current simulation step

velocities. These lines are the implementation of Equation 3.7 on page 37. In the next

line, the Lagrange multiplier is accumulated to the current outer iteration sum. The

line (14) computes Equation 3.6. Lines (16-17) project the displacements onto the

particle references.

Source code 6.3: Implementation of the constraint projection method

1 void project ()
2 {

3 const auto derived = (static_cast <const Derived∗>(this));
4 const double cost = derived −>cost();
5 if (cost == ms_do_not_solve)
6 return;
7

8 derived −>grad(m_grad.data());

9 const auto grad_transposed = m_grad.transpose ();
10

11 const double delta_lambda = (−cost − m_alpha_tilde ∗
m_lambda − m_gamma ∗ grad_transposed ∗

m_flattened_velocities) / (m_one_plus_gamma ∗

grad_transposed ∗ m_grad + m_alpha_tilde);

12

13 m_lambda += delta_lambda;

14 m_delta_x = m_grad ∗ delta_lambda;

15

16 for (size_t i = 0; i < ParticlesNumber; ++i)
17 m_particles[i].get() += m_delta_x.segment (3 ∗ i, 3);

18 }

82



6.3.2 Major structures

The proposition of parallelization in section 5.1.3 on page 55 was also imple-

mented. In particular, during the creation of the constraints a map is also created,

where the key is the index of the influenced vertex, and the value is a container of

all constraint indices of that particular type that influence this vertex. Then, out

of this 𝑣𝑒𝑟𝑡𝑒𝑥_𝑡𝑜_𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 mapping, the constraint graph is created, where the

constraints are the nodes and an edge exists between the constraints if they share an

influenced vertex, which is the information in the map. This graph is then coloured

greedily using the SLO pre-sorting of vertices based on their degrees, and finally,

for each found colour, the corresponding constraints of that colour are assigned to

a colour group, which can later be run in parallel using PSTL. Volume constraints

are trivially parallelizable and were not further accelerated, as they did not show to

be the efficiency bottleneck.

On the other hand, efficiency tests done along the implementation using the

Visual Studio Profiler kept showing that the true bottleneck is the dihedral angle
constraint projection.With the use of Eigen, themost problematic partwas the calcu-

lation of arcus cosinus, which has been solved by approximating this functionwith
the function provided by Nvidia at the web page developer.download.nvidia.com/-

cg/acos.html with an approximate error of just≈ 0.00384◦. During the implementa-

tion of the dihedral constraints, another problem occurred, resulting in themuscle
explosion.

6.3.2 Major structures
The main properties the algorithm needs are kept in containers of Eigen::Vector3d
instances, as the space of the musculoskeletal system is expected to be three-dimen-

sional. These are the currently predicted positionsp, velocities of these particleswith
the same indexing v, currently acting forces f. The constraints may also generate

some additional forces (e.g. the collision constraints could generate a proportional

force on the penetrating vertices in the opposite direction of their movement) the

solver would propagate into the next outer simulation iteration called previous_f.
This additional force propagation was implemented as a reaction to an emerging

problem of rapid muscle motion, which will be described in detail later in the

text. These properties belong directly to the XPBD simulator instance, hence no

indirect access is done when traversing them in the solver methods. Note also the

structure of arrays scheme of the members, as opposed to representing the PBD

particles explicitly and traversing them with inefficient stride due to inefficient

memory contiguity, etc.

Sadly, since C++ provides no efficient container that would be able to hold dif-

ferently templated parent class instances, the constraints have to be kept in separate
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containers, as shown in Source code 6.4. It is important to remind the reader, that

the volume constraints (per eachmusclemesh of various influenced vertex numbers)

are not subject to the CRTP scheme due to the drawback, where the CRTP deriving

constraint class must specify a fixed number of particles it influences, which, in case

of the volume constraint, is mostly different for each of the constraints.

Source code 6.4: Containers of the constraints

1 std::vector <distanceConstraint > m_distance_constraints;

2 std::vector <dihedralAngleConstraint >

m_dihedral_angle_constraints;

3 std::vector <volumeConstraint > m_volume_constraints;

6.3.3 More muscles
As this implementation allowed for more inner solver iterations (for example 70)

while keeping the constraint projection consistent, the musculoskeletal model has

been enriched by 16 new possible muscle geometries, together with their insertions

and origins, to be able to observe the XPBD deformation behaviour in more situa-

tions. This data was sourced from the LHPBuilder VPHOPWP10 DEMO applica-

tion downloadable at the address mi.kiv.zcu.cz/en/research/musculoskeletal.html.

The added muscles include the adductor longus, the adductor magnus, the gluteus
minimus, the gracilis, the obturator externus and internus, the pectineus, the piriformis,
the psoas, the rectus femoris, the sartorius, the semimembranosus, the semitendinosus,
the tensor fasciae latae, the vastus lateralis and medialis. The muscles together with

the already present iliacus, glutei maximus and medius, and adductor brevis are all
rendered in Figures A.1 and A.2 from different views. All these muscles belong to

the right side of the body and should cover all the muscle groups used for various

movements of the lower extremity in the hip area.

For some of the muscles, some attachment areas were not available in the down-

loadable dataset. To be able to use these muscles in the system during deformation,

themissing attachment areaswere picked by hand in theBlender (www.blender.org)
3D modelling tool.

As the plugin defines an XML setup file, where the muscle geometries and at-

tachment areas are defined, each of these hand-picked, anatomically inaccurate
attachment areas, has a warning comment associated, hopefully alerting the user

from making any physiological inferences using these attachments. A configuration

named setup_MuscleGeneratorTool_All_Hip.xml has been created to incorpo-
rate all the muscles.

With this addition to the scene, in a similar spirit as the unnatural bending of

the iliacus, some of themuscles attached to the distal part of the femur or even
below the knee, attached e.g. to the tibia, would lag behind the movement of
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6.4 Muscle collision handling

the bone greatly, in a wave-like fashion. This situation will be discussed in the next
chapter.

6.4 Muscle collision handling
Since the proof-of-concept showed, that an iterative refinement of the positions

might be beneficial to early collision avoidance, muscle collision handling was im-

plemented using the virtual edges processed sequentially, while in case the CPD is

met by the current virtual edge, it resolves it right away, changing the geometry of

both muscle surfaces, allowing the next processed virtual edge to help avoid col-

lisions in different areas, or refine the position the previous virtual edge tried to

solve.

Two approaches to avoiding the collisions were implemented, where one works

by pushing each vertex of the virtual edge of length less than CPD away from each

other by the shortest distance possible so that they stay in that CPD distance. The

other approach is more complex as it also uses information about the particular

virtual edge starting position. The algorithm is described in the section 5.2.1 on page

58. Both the simple resolution (avoidance) and the more complex one are described

in the section 5.2.2 on page 64.

Since unexpected pitfalls with the simple collision resolution were identified

(example given in Figure 5.10), the default implemented approach is the one con-
cerning the previous positions of the virtual edge, according to Equations 5.3
and 5.4.

The algorithm of the Zig-Zag iterations of virtual edges can be seen in Source

code 6.5. Definition for virtual edge 𝑖 is taken from the two containers on lines (3-4),
where one container at a given index contains the virtual edge 𝑎 point in one muscle

mesh, and the other container, at the same given index, contains the node 𝑏 for

the same virtual edge, belonging to another muscle mesh. These indices of muscle

nodes are saved on the lines (5-6) as the former ones, later used for resolution.

Next, on the lines (7-11), the current squared distance of the positions on the indices
𝑎 and 𝑏 is computed, and loop-controlling variables are prepared. At line (12-13),
the Zig-Zag loop does not stop until a local optimum is reached or the edge has

“collided” (met CPD), then the iterations can also end by reaching the user-defined

maximum iterations. Line (15) represents the Zig step, while line 16 represents the

Zag step while continuing with the possibly changed distance returned by the first
step, 𝐿2_𝑎. A local minimum is reached (18) when the length of the edge has not

changed with Zig nor Zag. Comparing the double values like this can fail due to

numerical errors and floating point number representation but is left like this for

the sake of simplicity. On line (20), the distance is updated to the last one computed,

and on the next line, a contact proximity distance test is made. At the end of the Zig-
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Zag iterations, the possibly newly found indices for this virtual edge are updated

to the global containers on lines (22-23), and if a collision occurred (the virtual

edge reached the minimum allowed CPD), this collision is resolved concerning the

former virtual edge position.

Source code 6.5: The Zig-Zag algorithm

1 for (size_t i = 0; i < m_virtual_edge_count; i++)
2 {

3 uint32_t a = m_virtual_edges_a[i];

4 uint32_t b = m_virtual_edges_b[i];

5 const size_t a_former = a;
6 const size_t b_former = b;
7 const auto diff = m_ps[a].get() − m_ps[b].get();
8 double L2 = diff.squaredNorm ();
9 bool collided = false;
10 bool local_optimum = false;
11 uint32_t iter = 0;

12 while (!( local_optimum || collided) &&
13 iter++ < m_max_iter)

14 {

15 double L2_a = find_minimizing_neighbour (&a, b, L2);
16 double L2_b = find_minimizing_neighbour (&b, a, L2_a);
17

18 local_optimum = (L2_a == L2) && (L2 == L2_b);

19 L2 = L2_b;

20 collided = L2 < CPD_SQUARED;

21 }

22 m_virtual_edges_a[i] = a;

23 m_virtual_edges_b[i] = b;

24

25 if (collided)
26 resolve_collision_with_respect_to_prior(a, b,

27 a_former , b_former , L2);

28

29 }

The find_minimizing_neighbour(&a, b, L2)method checks the topological

neighbours of node a, moving the node a to their position would make the squared

distance L2 lesser. The L2 is the squared distance to the referential point with index
b. The resolve_collision_with_respect_to_prior(a, b, a_former, b_former, L2)
method implements the collision resolution according to Equations 5.3 and 5.4.

6.5 Angle-driven muscle interaction
The last implemented part of this thesis is the realisation of muscle interaction

through synchronous contractions based on bone orientations. First, the activations
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must be acquired. For that purpose, OpenSim of version 4.5 Static Optimization

Tool was used.

6.5.1 Activations acquisition
To run the SOT, amodelmust be specified. Amodel that has been used for activations

acquisitions in this thesis is themodel done by [Raj+16] and later updated by [Uhl+22],

as this model contains the majority of the muscles needed for various motions

influencing the hip area. This model also comes with the basic OpenSim 4.5 package

download.

Next, the model needs a motion to execute. The example picked for this task is

the hip flexion. To describe the motions of the bones, OpenSim accepts the format

.mot, which begins with a header in the following format:

1 hip_flexion # The name of the motion

2 version =1

3 nRows =11 # Number of table rows

4 nColumns =10 # Number of table columns

5 inDegrees=yes # Angles defined in...
6

7 Units are S.I. units (second , meters , Newtons , ...)

8 Angles are in degrees.
9

10 endheader

Table 6.1: Example motion file table for flexion of the right hip

time . . . hip_flexion_r hip_adduction_r hip_rotation_r

0.05 . . . 0 0 0

0.055 . . . 1 0 0

0.06 . . . 2 0 0

0.065 . . . 3 0 0

0.07 . . . 4 0 0

...
...

...
...

0.50 . . . 90 0 0

After that, a table begins. The columns describe different types of motions of

the bones and even transformations of the whole system, and each row represents

a time entry with values of each bone movement. For example, a table for pure right

hip flexion from 0.05 to 0.5 seconds would contain non-zero values only for the

columns of time and hip_flexion_r which would look like in Table 6.1. The time
column is always the first one and its values should form a non-decreasing sequence.
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This table can be loaded into the OpenSim Storage object (simtk.org/api_docs/-

opensim/api_docs/classOpenSim_1_1Storage.html), where each row of the table

corresponds to one so-called state vector of the Storage.

The last thing that is needed is the file defining settings for actuators. In all of the

measurements of activations presented for this thesis, the actuators from controlled

muscle control (CMC) for walking dynamics, supplied with this model, were used.

The tool, given such actuators, can be run with the use of the muscle force-

length-velocity constraint function. When the SOT tool is done, the muscles on

the model should be coloured from blue to red, describing how much the muscle

is activated in the current pose. Blue muscles are passive, while the more red the

muscle, the more it activates. The animation of the movement can be played to see

the dynamics of the activations during the movement.

An output file is generated with the suffix StaticOptimization_activation.sto.
This file has the same structure as the .mot file described above, while the table 6.1,
instead of having the motions of joints as columns, the columns are now activations

for a particular muscle. One row represents a vector of activations for all model

muscles for a specific time (the same one as in the input motion file).

The file structure that has been chosen in this thesis for joining the movement

information with the activations is the following. The first column is the time. The
next three columns describe themotion of the bone (e.g. x, y, z), what follows are the
columns for the model muscles, containing activations corresponding to the given

bone movement. It is the operation of joining the two tables by the time column.

What might be problematic, is that the model often contains e.g. three different

representations (fibres), and therefore on the output, there are now three columns

for one muscle, while in the Muscle Wrapping 2.0 musculoskeletal model, this

muscle is represented as a mesh. One option could be to partition each muscle by

these fibres, but that is beyond the scope of this thesis. A simple sum across these

three columns is used to generate one activation column for each split muscle. This

could be feasible even from the bio-mechanical point of view, since in the first

place, the activations were distributed across these three fibres by the optimization

process.

A Python script to look through two sub-folders, where if one contains the .mot
motion files, the other contains the resulting .sto files, where the corresponding files
have the same name, the script joins all these into one big table, where the time no
longermatters (as the activations correspond to the bonemotion columns). The split

activations are summed together, and the motions themselves are joined by rows.

Given the muscle names of the columns correspond to an expected nomenclature,

this file now represents the samples discussed in Section 5.3.2.

88

https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Storage.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Storage.html


6.5.2 Activations as the input of the system

6.5.2 Activations as the input of the system
As previously noted, theMuscleWrapping 2.0 is a plugin to theOpenSim software,

which defines an XML file, where apart from the muscle geometries, motion file

definition, etc. One of these definitions is for the kinematics_fibre_algorithm.

A new possible entry has been created for the XPBD deformation method in this

thesis. An example of the entry is given in Source code 6.6.

Source code 6.6: Kinematics fibre algorithm specification for muscle interactions

around hip joint

1 <kinematics_fibre_algorithm >

2 <Havlicek2024XPBDAlgorithm >

3 <joint_interaction_information >

4 <!−− I n f o r m a t i o n d e s c r i b i n g t h e i n t e r a c t i o n s o f a j o i n t
u n d e r v a r i o u s a n g l e s . −−>

5 <JointInteractionInformation name="hip_r">

6 <body>femur_r </body>

7 <!−− The p o s i t i o n o f t h e p h y s i o l o g i c a l j o i n t c e n t r e .
−−>

8 <centre >143.797 243.457 −432.585</centre >

9 <!−− The o r i e n t a t i o n o f t h e p h y s i o l o g i c a l j o i n t
c e n t r e . −−>

10 <orientation > −0.3626 −1.5127 −2.0524</orientation >

11 <!−− S c a l e f a c t o r s o f t h e c e n t r e c o o r d i n a t e s i n X , Y ,
and Z d i r e c t i o n s r e s p e c t i v e l y . −−>

12 <scale_factors >0.001 0.001 0.001</scale_factors >

13 <!−− Mu s c l e s i n v o l v e d i n t h e m o v em e n t s o f t h i s j o i n t .
−−>

14 <muscles_involved >

15 GluteusMaximus GluteusMedius GluteusMinimus

Piriformis Sartorius TensorFasciaLatae Gracialis Iliacus

Pectineus Psoas Semitendinosus Semimembranosus

BicepsFemoris RectusFemoris AdductorMagnus AdductorLongus

AdductorBrevis

16 </muscles_involved >

17 <!−− A . s t o f i l e c o n t a i n i n g t h e a c t i v a t i o n s o f
m u s c l e s f o r v a r i o u s a n g l e s . −−>

18 <muscle_activations_file >hip_activations.sto</

muscle_activations_file >

19 </JointInteractionInformation >

20 </joint_interaction_information >

21 </Havlicek2024XPBDAlgorithm >

22 </kinematics_fibre_algorithm >

In the example source code, theHavlicek2024XPBDAlgorithm element presence

specifies that the deformation system presented in this thesis will be used. This algo-

rithm element has only one child, which is a list of joint_interaction_information.
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This list can contain as many joint interaction (JCU) definitions as desired, but as

of now, only one such entry is defined with the element JointInteractionInfor-
mation, containing the name of the joint suffixed by the indication of the body

side this joint belongs to, in this example hip_r specifies the right hip joint. The

JointInteractionInformation element contains six child elements:

• body - the transformation object in the scene to which the joint should be

attached

• centre - the physiological centre of the bone inside of the joint, currently
used only for visualisation purposes

• orientation - the physiological orientation of a bone inside of the joint (in

this case this is the orientation of femur head), currently not used

• scale_factors - the scale the centre should be subjected to

• muscles_involved - the list of names of muscles (these names are given to

the muscle definitions further in the XML) that should be involved in the

movement

• muscle_activations_file - the path to the samples .sto file generated in the

previous section

The centre and the orientation in this example were obtained using themsk-
STAPLEMatlab tool (github.com/modenaxe/msk-STAPLE) done by Modenese &

Renault in 2021 under the CC BY-NC 4.0 license (creativecommons.org/licenses/-

by-nc/4.0).

This algorithm entry is then appropriately parsed by the system to a correspond-

ing OpenSim plugin model definition, also created in the context of this thesis. The

model is then passed to the deformation algorithm itself, and interaction joint rep-

resentations are created.

6.5.3 Internal JCU representation
On the initialisation, theXPBDdeformation algorithm receives a container of parsed

models representing the information needed to facilitate joint-governed muscle

interactions. On top of the information that is found in the previous section, the

XPBDmethod also receives for each JCU, the whole information about the motions

of this JCU’s bones during simulation (extracted from the .mot file), so that the JCU
knows which orientation to interpolate for at a given simulation step.

From this container, an internal container is created, with the instances of the

XPBDJoint class, responsible for the muscle contractions and relaxation controls
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6.5.3 Internal JCU representation

(a relaxation of a muscle in this context means that a muscle is leaving a contraction,

as the desired lengths of contraction distance constraints become longer, up to their

original lengths) around a particular JCU during its movement.

The JCU keeps track of a plethora of information, as has been described in

Section 5.3.1 on page 67. The major members are to be seen in Source code 6.7.

Source code 6.7: Major member variables of the XPBDJoint class
1 vtkSmartPointer <vtkKdTree > m_tree;

2 std::vector <std::vector <distanceConstraint >>

m_contractions_by_muscles;

3 const std::vector <std::vector <double >> m_activations;
4 const std::vector <Eigen::Vector3d > m_angles;
5 const std::vector <Eigen::Vector3d > m_motion_data;
6 const std::vector <std::string > m_muscle_names;
7 std::vector <double > m_current_activations;
8 std::vector <double > m_current_weights;
9 const std:: string m_body;
10 static constexpr size_t s_K_neighbours = 10;

Starting from the vtkKdTree pointer on line (1), this is a reference to an implemen-

tation of the kd-tree provided by the Visualisation Toolkit (VTK, vtk.org). VTK
is the toolkitMuscle Wrapping 2.0 uses to manipulate and visualise the 3D data,

e.g. all screenshots from the simulation in the following chapter are done using this

toolkit and the vtkVisualDebugger library (gitlab.com/besoft/vtkVisualDebugger)

done by Kohout & Hájková in 2009 under the APACHE LICENSE, VERSION 2.0
(apache.org/licenses/LICENSE-2.0). The kd-tree is created in the XPBDJoint con-
structor out of them_angles vector on line (4), representing the sequence of the
sampled JCU bone orientations. The kd-tree uses these angles as a point cloud, as

visualised in Figure 5.18 on page 76. On line (3), the member represents the table of

sampledmuscle activations corresponding to the angles. On line (5), the member

stands for the sequence of the orientations of this joint for each simulation step.

Line (6) contains the names of the muscles involved from the XML element. Line

(2) represents the vector of involved muscles, where each muscle has a vector of dis-

tance constraints associated with it, representing the detailed surface fibres. These

constraints are generated for this JCU from the detailed surface fibres if an involved

muscle the surface fibre belongs to is one of the muscles involved in this JCU. Line

(9) contains a string representing the transformation object this JCU is attached

to, used for deciding if this JCU should update the desired lengths of muscle con-

traction distance constraints during the simulation. Line (10) defines the number

of closest neighbours which should be interpolated for. Lines (7-8) represent the
activations and weights, respectively, of all the sampled muscle activations, used

primarily for visualisation purposes.
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6 Model implementation

The interpolation of involved muscle activations and subsequent modification

of desired lengths of contractile distance constraints is done once per outer solver

iterations, as the JCU bone orientations change. The joint can project its constraints

by calling the project() method 6.3 on each of them. The JCU contractions are

projected as any other constraint, in the loop defined in Source code 3.2 on page 36.

6.6 Problems encountered along the way
During the development, various problems arose. Some of the problems may have

stemmed from the algorithms proposed, others due to lack of detailed information

in a particular area.

6.6.1 Detailed surface fibres running perpendicular
The observation made in Section 5.3.1.1 of the surface fibres being generated in the

wrong directions can be visualised directly on the muscle data, as Figure 6.1 shows

for the resulting detailed surface fibres of the gluteus maximus (in dark greed for

better contrast). The figure shows the majority of fibres in the muscle’s centre being

generated well, but the ones that are near the lateral part of the muscle (on its right

edge from the dorsal view), a lot of the fibres must cross to the other side of the

muscle, where the next nearest point to the inner fibre was found.

This may not be so problematic if there are also correct fibres running along

the area, but consider the following Figure 6.2. In the figure, a blue iliacusmuscle is

Figure 6.1: Perpendicularly running detailed surface fibres
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Figure 6.2: Iliacus insertion area not covered by fibres using low-resolution inner

fibres

shown, covered in just a few detailed surface fibres. The number of fibres is a param-

eter to the system (when defining the muscle in the XML), and should be carefully
considered when using this method of detailed surface fibre extraction since

big areas of the muscle could be left out. The more problematic area in the figure

is the insertion into femur. There, the same situation as illustrated in Figure ?? on
page ?? happens, where the fibres also skip a bulk of the muscle due to the majority

of fibres, which should cover it, running in perpendicular to the inner muscle fi-

bres, instead. This problem can be solved bymaking the resolution of the fibres
higher, which is the second parameter in the configuration. Otherwise, the muscle

volume will unrealistically accumulate in this area during a contraction.

A possible solution to this problem is not only the usage of higher inner fibre

resolution and count, but the fibres can also be picked by hand, which should

generally result in more plausible contraction results. The last possible solution to

this problem could be to use a differentmethod for obtaining the surface fibre details,

e.g. with the shortest geodesic distance path search, which has been previously
implemented in theMuscle Wrapping 2.0 project.

6.6.2 Muscle explosion

The explosion of deformed muscles can happen for multiple reasons. In this section,

one of the cases will be described, specifically the case of gluteus maximus under
a high degree of flexion (90°).
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Figure 6.3: Progression of edge penetration near muscle attachment area (from left

to right)

6.6.2.1 Problem description & Possible causes

Looking at the first detail of its insertion into femur, at approximately 80° of flexion
(Figure 6.3 on the left), a few visible triangle edges penetrate the bone near the

attachment, as the attachment is pulling onto the muscle, while it tries to preserve

its shape. This is an expected behaviour, at least to an extent. However, the resulting

degenerated triangles, as will be uncovered, can result in a bigger problem. For

clarity, the view is situated from the attachment towards the femoral neck with

lowered bone opacity.

What can be seen at the same time from the inside of the muscle (centre image in

Figure 6.3), looking in the opposing direction, it is obvious, that some vertices were

left on the other side of the bone, while most of the rest of the surface is embracing

the bone well, resulting in the edges-bone penetration. It should be noted, that no

visible vertex-to-bone penetration occurs.

Looking at the view from above of the attachment (right image in Figure 6.3),

it can be seen that the vertices on the other side are the ones attached to the femur

Figure 6.4: Edge penetration and internal constraint forces at work (from left to

right)
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(highlighted in blue polyline).

As the flexion continues (left image in Figure 6.5) up to approximately 87°, these
degenerated triangles get longer, as the attached vertices keep being pushed, while

the vertices on the other side keep being kept from the bone, being constrained

mainly by the collision constraints, as well as the distance and the dihedral angle

ones. The number of penetrating edges grows with the flexion, as even the attached

vertices further down the insertion get estranged from their original surface area,

which is constrained on the other side of the bone.

Taking a closer look at the constraints acting on the interface between the bone

and the muscle surfaces (centre and right image in Figure 6.5), it can be seen, that the

yellow distance constraints are trying to correct the vertices towards the attachment,

and the black contraction distance constraints, trying to achieve the same. Acting

in the opposite direction, the orange displacements representing the bone collision

response are keeping them on the bone surface. At the same time, the dihedral angle

constraints (in pink) are desperately trying to fix the nearly planar deformation,

counter-productively pushing the whole muscle neighbourhood inside of the bone.

As this continues, the dihedral constraints become unstable, as can be seen in

the top image in Figure 6.4, pushing the vertices inside of the bone. The instability

Figure 6.5: Inspection of the forces (top and bottom) leading up to explosion (on the

bottom) under flexion bigger than 90°
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eventually causes at least one of the vertices to finally satisfy some of the dihedral

angle constraints, the position of which can get instantly pushed to the other side

of the bone, generating a great internal force (in blue, highlighted by the parallel

red line in the lower image of Figure 6.4), leading up to the explosion of the muscle,

eventually the tunnelling of it to the other side.

This is not the only situation where the problem can emerge. Consider, for

example, the attachment area which is, instead, pushed into by a bone. Easily, the

dihedral angle constraints could all of a sudden gain great cost, as the angles between

trianglesmay even invert this way. Perhaps in any situation, where the dihedral angle

constraints are largely violated and outweigh the distance constraints (which try

to prevent the explosion), the dihedral constraints may start the explosion of the

muscle, trying to resolve their original angles.

6.6.3 Possible solutions
Trying to fine-tune the system to prevent this behaviour globally would most prob-

ably go at the expense of deformation quality in other places. Nor is the solution

to turn off the tunnelling detection, since the problem gets only postponed (as the

muscle mesh is then allowed to slide across the bone surface a little). This problem

is the result of all the constraints acting in response to each other. Compared with

the previous PBD approach [KČ21], this situation probably emerges because of the

pronunciation of the XPBD constraints, making the muscles react more lively to the

bone movements, which could otherwise be a desired property of the deformation.

Nevertheless, it may be the cause of this emerging problem.

One of the plausible solutions could be to prevent the edges from penetrating

the bone in the first place. As one of the edge vertices would be fixed, the other one

would be forced to resolve the collision. In the example shown above, the gluteus
maximus could potentially be prevented from exploding, since the muscle surface

could be forced to move further underneath the femur, preventing the formation

of degenerated triangles and the following crude violation of the dihedral angle

constraints.

Another approach could be to prevent the dihedral angle constraints from acting

on degenerated triangles or keep them from trying to fix extremely deformed angles,

the latter of which has been implemented in this thesis simply by not solving the

dihedral angle constraint if its cost is unreasonably large. However, this does not

solve the problem completely.

Lastly, the number and stiffness of the contraction distance constraints can be re-

duced, since these constraints not only facilitate the contractions and relaxations but

also duplicate the basic distance constraints behaviour, if no contraction happens.

The solution could be to not project those contraction distance constraints, which
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Figure 6.6: OpenSimSOT results, wheremuscles counter-intuitively contract during

40° hip extension

are desired to preserve their original lengths, but only those, where contraction

takes place.

6.6.4 Pelvic tilting during activations acquisition

On the output, the OpenSim SOT seems to give, at first glance, counter-intuitive

results near the limits of ranges of motion. At the limits, suddenly, muscles that

should be the most relaxed, start to contract. But as has been discussed in Section

2.3, a lot of the muscles play an important role in stabilising the pelvis and
the joint. This is the proposed explanation for this kind of behaviour. As will be

described in the following chapter, these activations will cause undesired muscle

deformations. A screenshot from the application is given in Figure 6.6, where the

most activated muscles are in red, and the relaxing ones are in blue. The red muscles

are probably trying to stabilise or actuate the pelvis tilt caused by the extreme hip

extension.
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6.6.5 Stiffness tuning
To tune the main parameters of the XPBD deformation method (which are the

constraint stiffnesses) for the specific purpose of simulation muscle behaviour was a

challenging task. To explain the process, Equations 6.1-6.3 remind the reader of the

equations of constraint projection using the XPBD method, where 𝛼 is equal to one

over the constraints (
1

𝑘
) stiffness and the time step of the simulation Δ𝑡 = 0.001.

�̃� 𝑗 =
𝛼

Δ𝑡2
(6.1)

Δ𝜆 𝑗 =
−𝐶 𝑗(p𝑖) − �̃� 𝑗𝜆𝑖 𝑗

|∇𝐶 𝑗 |2 + �̃� 𝑗
(6.2)

Δp𝑖 = ∇𝐶 𝑗(p𝑖)𝑇Δ𝜆 𝑗 (6.3)

If, for example, the distance constraint 𝑗 between two vertices 𝑎 and 𝑏 is consid-

ered, then the cost of the constraint is defined as the next equation says.

𝐶 𝑗(a) = 𝐶 𝑗(b) = ∥(
−→
ab)∥2 − d,

where d is the desired length (in this case, the original length). Now consider that

the positions of vertices in theMuscle Wrapping 2.0 project are often expressed

in meters. The computed average distance between two neighbouring vertices is

therefore roughly equal to 0.00235 meters (computed across 11 different muscle

meshes). If this is the original length of the edge (a, b), and it is prolonged two times,

therefore its current length is equal to 0.0047meters, then the cost for each vertex

is equal to the following expression.

∥(−→ab)∥2 − d = 0.0047 − 0.00235 = 0.00235

With this mathematical basis, it can be inferred and experimentally observed,

that during the simulation, unless the constraint stiffness is set to a very large num-

ber, e.g. 1e15
, then the change in the Lagrange multiplier Δ𝜆 𝑗 is so big just after

the first outer iteration, that all the muscles immediately explode across the scene.

Tuning the stiffnesses in these large magnitudes to work well together a produce

the desired result proved to be next to impossible during the development.

Therefore, a simplification was made to represent the time difference ∆t equal
to one in the context of projecting distance and dihedral angle constraints. Then,

a combination of distance and dihedral angle stiffness was found (1𝑒2 and 1𝑒8, respec-

tively) which produced the expected behaviour of the muscles. This also simplified

the choosing of the parameter 𝛽 of Rayleigh’s dissipation potential constraint reg-

ularisation term, as it no longer had to be chosen in the terms of e.g. 1𝑒−25, rather

it was found to work the best with the value of 𝛽 = 0.01, while showing a positive

impact on the results in damping the constraints who’s vertices moved too fast.
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It is important to note, that this simulation time step Δ𝑡 simplification only
affects the projection of these two types of constraints and is completely
independent from the real-time step Δ𝑡 used in the computation of vertex
velocities and applied force displacements, if fine-tuned properly. There may

not be a direct correspondence of the stiffnesses to the mechanical properties of

the parts of the muscles, but this simplification can be easily retracted to find the

parameters in their realistic ranges.

99





Results 7
Firstly, the fourmuscles of the glutei maximus andmedius, the iliacus, and the adductor
brevis are verified. These muscles have been chosen because they are the initially

available muscle models of this project and also to isolate the results for better

comparison with the results provided in paper [KČ21]. Solution on more muscles

will be presented later in section 7.2.

Later, a few more results will be shown concerning intentionally chosen special

cases. in the next chapters, these results will be analysed and critically evaluated.

7.1 Verification of solution
The four muscles are presented during the motions of hip flexion, extension, ab-

duction and internal rotation in appendix Figures A.5-A.14 from various views. The

views have been chosen to make the pronounced behaviour of the muscles visible

under specific movements. Each figure has five sub-figures, wherein each of them

in the down-left corner, a number in red is shown, which is the simulation step

during which the screenshot was made. In every sub-figure, the simulation step
minus one is the angle of the motion in degrees. This is due to the indexing

of the steps from one. Three hand-picked snapshots under the most interesting de-

formation results from a particular view are added to each movement verification

description. Moreover, full animations (containing all simulation steps) for each of

these verification motions are available in the electronic attachment of this thesis

in the sub-folder Results\Animations in the .gif format. The reader is strongly

advised to observe the animations for a more complete understanding of the results.

The XML OpenSim plugin set-up file used was the same for all motions, except

for changing themotion_file element to the appropriate .mot file. Both the XML
configuration and the motions are available in the sub-folder Sources\muscle-

wrapping-2.0\Data\XPBDHavlicek2024 and must be extracted to the upper-level

folder for the provided test solution to recognise.

The programme parameters used for these results are defined in Table B.1. They

have been chosen through iterative experimental fine-tuning. And were the ones
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used for every motion results. The surface fibres used for all the results are shown

from the ventral and lateral views in Figures A.3 and A.4 in the appendix figures.

The resolution and count of the fibres for each of the muscles are both set to 100.
The verification in the context of this approach to muscle modelling was chosen

to be done mainly from the views of

1. visual plausibility of the results,

2. correspondence to the theoretical body of muscle interaction physiol-
ogy,

3. correspondence to the results present in paper [KČ21] (in a form of com-

parison),

4. preserving of the shape and the volume,

5. and existence of the amount of muscle penetration.

7.1.1 Hip flexion
Figure 7.1 shows the progression of hip flexion under degrees 20°, 50°, and 90° from
the ventral view. The detailed progression of the movement can be also found in the

appendix in Figures A.5 and A.6 in the range of motion from 0° to 90° from a ventral

and lateral point of view, respectively.

What is remarkable about these results is that the implemented contraction in-

teraction solution shows an advancement in the form of the iliacusmuscle properly

following the femur as if it caused the movement. It is one of the prime movers dur-

ing hip flexion, after all. Its contraction can be seen to start under 20° from ventral

view. Moreover, in between this and the first sub-figure in the figure, the iliacus

Figure 7.1: Ventral view of 20°, 50°, and 90° hip flexion
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7.1.1 Hip flexion

Figure 7.2: Figure (12) from the paper [KČ21], obtained through courtesy of Doc. Ing.

Josef Kohout, Ph.D.

contracts progressively, as can be seen in one of the animations in the supporting

materials of this work. The contraction is also supported throughout the whole

body of the muscle, pulling at the attachments as if tendons were present. Because

of this, the muscle deforms a bit unnaturally near its origin at the pelvis. It properly
keeps its original volume, as do all the muscles shown in this thesis, as can
be observed over all the appended figures.

The synergistic pair of muscles, both of the glutei, show no immediate signs of

contraction to support the movement, probably because their contribution to the

movement is very little, as only particular fibres physiologically do so. Nevertheless,

Figure 7.3: Figure (8), bottom-right corner sub-figure from the paper [KČ21], obtained

through courtesy of Doc. Ing. Josef Kohout, Ph.D.
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these supporting muscles seem to be deforming properly, as they both keep their

shape well. The gluteus maximus also enters bellow the joint and pelvis area with its
volume, which seems to be the physiologically accurate space for it to go, as opposed

to staying almost rigidly in its origin position, only the part near its insertion being

deformed, as can be seen in Figure 12 in the work [KČ21] or Figure 7.2. Its whole

shape is deformed actively. This deformation, though, seems to be starting to cause

a cavity forming under 90° of flexion at the bottom of the belly of the maximus
muscle (best seen from the lateral view). After closer inspection, this cavity is also

present in the original shape, thus it is not clear whether or not this is a failing or

a desired behaviour.

The adductor brevis muscle keeps its shape arguably a little bit better than the

result in Figure 8 in the article or Figure 7.3, as once again, not only is the area

near its insertion into femur deformed, but also its whole surface. But similar to

the iliacus, near the insertion, the muscle is being unnaturally deformed by forming

degenerated (elongated) triangles, this time due to the bone dragging it, as themuscle

is passive in the movement.

Despite the gluteus maximus being pulled towards the joint, it successfully keeps
its original distance to the gluteus mediuswithout any penetration. Lastly, compared

to Figure 13 in the paper [KČ21], the corresponding lateral view shows the gluteus
medius behaving very similarly, while compared with Figure 14[KČ21], the iliacus
deformation (the ventral view) also surpasses the former solution visually.

7.1.2 Hip extension

Figure 7.4 shows the progression of hip extension under degrees 10°, 30°, and 40°
from the dorsal view. The detailed progression of the movement can be also found

in the appendix in Figures A.7, A.8, and A.9 in the range of motion from 0° to 40°
from a ventral, lateral, and dorsal point of view, respectively.

This movement shows some problematic areas of themethod.Mainly the gluteus

Figure 7.4: Dorsal view of 10°, 30°, and 40° hip extension
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maximus is being pushed into itself from the 20° extension on. This is, as described

in Section 2.3.2, an expected situation, as the muscle should stay relatively passive

during hip extension with the extended knee (which this model has), but the results

are not acceptable. This may be largely due to the shape of the muscle, where the

area near its insertion into femur is very thin and bent even in the rest position.

Preserving this shape during the extension makes the muscle eventually intersect

itself, which starts to happen at approximately 20° of extension. The question is

if the muscle would stabilise towards the correct position if the simulation was

left running in e.g. the maximal extension state, as the overall shape seems to be

on the right path to the correct state (observe the gluteus maximus deformation

progress from a lateral view). Nevertheless, during the movement, the muscle does

not deform the way one could imagine a real muscle deform.

A possible solution to obtain better results for the gluteus maximus could be to
represent it by a better shape, possibly inserting into the femur under a more medial

angle, which would result in less bending in the rest-pose of the muscle. This could

even potentially prevent its explosion described in Section 6.6.2 on page 93, as the

attached vertices would most likely lay on the correct side of the mesh during the

hip flexion, then no edge penetration would occur.

Another one of the seemingly problematic behaviours can be observed from the

ventral view in the last simulation step. There, the iliacus starts to contract during its
biggest elongation, and so does the adductor brevis. This is, however, most probably

a physiologically accurate synergistic muscle interaction example, where the mus-

cles are trying to stabilise or actuate the pelvis tilting (see Section 6.6.4 for associated
activations), which indeed seems to be a movement typically accompanying bigger

degrees of hip extension. Up to the last simulation step, these muscles seem to be

deformed plausibly in shape, while correctly preserving their volumes.

Overall, the results for this kind of motion seem to be improved since e.g. the

results presented in paper [Čer+23], but can not be deemed satisfactory from the

deformation point of view, mainly due to the gluteus maximus issue.

7.1.3 Hip abduction
Figure 7.5 shows the progression of hip abduction under degrees 10°, 35°, and 45°
from the ventral view. The detailed progression of the movement can be also found

in the appendix in Figures A.10, A.11 and A.12 in the range of motion from 0° to 45°
from a ventral, lateral, and dorsal point of view, respectively.

The majority of muscle deformations of this motion yield a satisfactory result.

For example, the gluteus medius seems to be the most pro-active muscle, while being

most contracted, visibly, at approximately 35° of adduction (see simulation step

36 from a lateral view), and then relaxing slightly at the maximal adduction (the
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Figure 7.5: Ventral view of 10°, 35°, and 45° hip abduction

following sub-figure in the same view). This follows the theory of this muscle’s role

in the movement precisely, which has been described in Section 2.3.3 on page 15.

Another example is the adductor brevis seen from the ventral view, which seems to

be correctly stretched across the space while keeping a plausible composure. Having

said that, anomalies near its attachments are once again visible, possibly due to the

distances of vertices being well-kept,

Additionally, the iliacus synergises the movement interactively to support the

gluteus medius in raising the femur. Finally, the gluteus maximus seen during defor-
mation from the dorsal view, preserves its shape well, while effectively moving with

the bone once again, not just its vertices near the insertion area.

7.1.4 Hip internal rotation
Figure 7.6 shows the progression of hip internal rotation under degrees 15°, 45°, and
60° from the Ventral-medial view. The detailed progression of the movement can

be also found in the appendix in Figures A.13 and A.14 in the range of motion from

0° to 35° from a ventral-medial and lateral view, respectively. The ventral-medial

view shows the muscles acting overall correctly, except for the maximal rotation

simulation step, where the attachment-pulling anomalies are once more visible, this

time at the insertion of gluteus medius into femur.
On the other hand, physiological accuracy can be observed. The adductor brevis

is one of the muscles running anterior to the femoral vertical axis, as described in

Section 2.3.6 on page 17 and as such, should, and indeed does, contract during this

movement, as can be seen in its details from the ventral-medial point of view.

However, in the lateral view sub-figures, a rapture between the glutei is apparent.
The gluteus medius seems to be correctly involved in the movement, as its shape

continuously follows the rotation, indicating its physiological role as one of the

prime movers. Whereas the gluteus maximus is considerably left behind below. This
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Figure 7.6: Ventral-medial view of 15°, 45°, and 60° hip internal rotation

causes a rupture between the muscles to form, which most probably should not be

there from the physiological point of view. Perhaps, this unsightly rapture indicates

a need for distance constraints between the muscles.

7.2 Added muscles
After adding all the muscles shown in Figures A.1 and A.2, immediate fine-tuning of

the scene had to be made for the case of hip flexion, as a few of the muscles started

exploding immediately under the same parameters (Table B.1) which were used for

verification of the four basic muscles. Eachmuscle had 100 inner fibres of resolution
100 generated.

These muscles started to explode in the first iterations, since as opposed to the

truthful rest-position shown in Figure A.1, the simulation starts with the femur bone
under a slightly different rotation. This causes the bone to appear colliding with the

muscles, which is usually not a problem for the muscles near the pelvis, but at the
distal parts of the femur, this slight change of rotation introduces a large change in

the bone’s end position. Therefore, it makes sense, that the exploding muscles were

indeed the ones attached to the distal part of the femur, or even under the knee. The
significant difference in spatial relations of the muscles and the femur is illustrated
in Figure 7.7 compared with the rest-pose muscles.

To avoid the initial explosion, the stiffness of distance constraintswas raised
to the value of 1𝑒5, resulting in the progression depicted in Figure 7.8. In the fig-

ure, the majority of the muscles running near the knee can be seen hanging lowly

and unrealistically. With these muscles, it is debatable, whether they even are mus-

cles still in that area and not mostly just tendons and should therefore behave like

tendons. Their true rest-pose composure around the knee (Figure A.2) breaks up
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Figure 7.7: Difference between true rest-pose of the muscles versus the simulation

start causing collisions, with a problematic area highlighted in red dashed rectangle

completely even before the simulation even starts (due to the femur transformation).

Next, the up-most red psoasmuscle is visibly on the verge of an explosion under the

limit flexion of 90° (image on the right in Figure 7.8). Moreover, in the figure, the

Figure 7.8: Ventral view of 0°, 50°, and 90° hip flexion of all muscles with higher

distance constraint stiffness
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Figure 7.9: Ventral view of 0°, 50°, and 90° hip flexion ofmanymuscles with original

parameters

gluteus maximus can be seen in red in the background for the first two snapshots but
vanishes in the right-most one. This is because of the previously discussed problem

of muscle explosion (see Section 6.6.2 on page 93). This is mostly explainable by

the higher distance stiffness parameter, which constrains the gluteus maximusmore,

resulting in the sooner emergence of the penetrating edges.

The solution to the low-hanging muscles might be to model them heteroge-

neously with the incorporation of some level of rigidity near the knee attachment

areas based on their underlying anatomy (to decide which parts should be more

rigid). These muscles will no longer be accounted for in the following results due

to the obvious violations of their non-trivial shapes.

The solution of the psoas exploding was solved by the observation, that it is con-
tracted too harshly. Lowering the number of inner fibres from 100 to just 16 shows

the psoas working properly during the hip flexion in Figure 7.9 throughout the sim-

ulation. With the original parameters defined in Table B.1 and the removal of the

problematic muscles, the remaining muscles seem to deform somewhat adequately.

The most problematic is the rectus femoris, which keeps up with the bone movement

well (as it is being pushed upwards) until approximately 50° of flexion, where it starts
to slide down to the side (centre image in Figure 7.9). Moreover, the biceps femoris is
also not following the movement of the bone well enough, even though it is attached

at many positions near the knee area. But what this scenario shows the best, is that

the collisions between the muscles are avoided very well. The reader is invited to

see the attached electronic sources, where an animation of a detailed view of these

muscles avoiding penetrations is available on the path Results\Animations\All-

muscles\muscle_collision_handling_detail.gif.
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7.3 Critical evaluation & Discussion
A part of the critical evaluation has already been done during the validation of

the results, as many interesting situations were observed, which could be hardly

put into any other context than that of them being compared with the theoretical

physiology (which the method is trying to reach) and practical results from the

canonical PBD article [KČ21] (uponwhich themethod is based). Nevertheless, amore

general evaluation of the method is in place, as many problematic topics have also

been touched upon during the description of the development of this model.

7.3.1 Drawbacks
The main problematic areas of this proposed solution seem to be stemming from

1. a too naive of a detailed surface fibre extraction method,

2. and a possible over-constriction of the muscles.

These two sources of problems often interact with each other. For example, the less

numerous the surface fibres, the less chance of the muscle being over-constrained

during contraction, e.g. in the case of the psoasmuscle (Figure 7.8 on the right) up

to the point of the muscle explosion initiation. A very similar situation happens

in the case of the gluteus maximus muscle, which seems to be over-constrained in

the sense that it is keeping its shape almost too well near its insertion into femur,
where it should perhaps allow more shape deformation, also eventually leading up

to a muscle explosion.

Both cases of registered explosions happen at rather extreme cases, considering

100 surface fibres for such a thin muscle as the psoas, or the occurrence of such badly
degenerated triangles of the gluteus maximus, penetrating a bone quite severely as
has been shown in the immediate reflection on the problem.

In the case of the psoas, it can be argued that this explosion is caused by the

contraction of the surface fibres, which, for example, run chaotically from side

to side around this very thin muscle area, and when contracted at the same time,

choke the muscle so much, that the dihedral angle constraints become unstable and

start generating great costs, which result in greater internal forces generated, which

often produces the dihedral angle violations again, repeating the cycle until the area

explodes.

The situation seems to be more complicated concerning the near-attachment

area of the muscles. There are two main counter-acting effects at play. As the ver-

ification of the four basic muscles has shown, the muscles preserve their shapes

and volumes very well while also expressing a high level of elasticity (for example
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they generally follow the moving bone closely with their shape), which is a desired

property of the system.

But at the same time, due to this property, themuscles often showcase an anomaly

of degenerated triangles forming near the attachments, mostly when the bone pulls

on them, but also in other cases, e.g. when the muscle contracts a lot. Sometimes,

these degenerated triangles enter the bone with their edges, as no edge collision

handling is being done, and eventually, such internal forces are generated, that the

muscle can tunnel through the bone suddenly (in just a few simulation steps) in an

explosive manner.

One situation is probably solvable by carefully designing unique surface fibres

per muscle, e.g. by hand or by the change of the parameters (fibres count and their

resolution). The other situation is perhaps solvable by avoiding edge collisions with

the bones.

However, adding newparameters to the systemmay start tomake it too complex,

so it would be best for these problems to be solved by tuning the parameters already

present. This leads to the third problem, which is the sensitivity to parameters.
In other words, there does not seem to be a fit-for-all global configuration for the

method as of now, such that it behaves correctly in all cases, apart from fine-tuning

the parameters (maybe even for individual muscles).

One of the main battles happening during the muscle explosion is the argument

of the constraints. For example, making the distance constraint stiffer will prevent

some of the explosions where no bone is present in the near, but it will also make

the explosions likely to happen sooner near the attachments.

7.3.2 Merits
While the majority of analysis of the results has so far been done on the drawbacks

of the model, it also shows many promising results. The main positive properties of

the system are

1. the successful realization of the intermuscular interactions

• through the avoidance of muscle penetrations,

• and active, synergistic, physiologically corresponding contractions of

muscles,

2. the resolution of iliacus unnatural bending during hip flexion,

3. the introduction of simulation-time independent constraint behaviour

Incorporating more muscles may have not put the deformation method on

a pedestal, as it was developedmainly for themuscles verified, but instead, the results
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on thesemuscles have showcased surprisingly well-avoided penetrations of themus-

cles, even in a scene, wheremany pairs ofmuscles come to contact proximity at once,

even from an unexpected direction (see the electronic attachment of this thesis at

Results\Animations\All-muscles\muscle_collision_handling_detail.gif).

In most of the presented results, visible showcases of the physiologically accu-

rate behaviour of the muscles can be observed. The resulting deformations seem

surprisingly correct not only in the literature-corresponding timing of contraction

but also in visually plausible contraction expression, where the muscle when it is

supposed to contract, its whole surface contracts also, often forming visible bel-

lies, at the places where one would expect the volume of the muscle to accumulate.

An exemplary muscle regarding this topic is the gluteus medius during hip abduc-

tion. Based on OpenSim’s SOT activations, which are in theory just estimates based

on very rough muscle approximations by polylines, the activations of this muscle

during hip abduction seem to behave as if cut out from the [KOA19] physiology

book. A part of these results may be attributed to the anisotropy distance constraint

modification concept brought forward in the research of the original PBD method

[KČ21].

Furthermore, the historically problematic behaviour of the iliacusmuscle during

hip flexion seems to be resolved by the proposed method. The muscle, either being

caught in between the hip joint cavity, as results in paper [KČ21] present, or being

unnaturally bent at its insertion into femur when using the Discregrid for muscle-

bone collision handling, neither of these problems is present.

The lively scenes, where almost no muscle stays rigidly idle, are also possible

thanks to the implemented XPBDmethod, which ensures the muscles stay dynamic

across the movement simulation, consistently. Adding to that, the efficiency of the

implementation allows for higher solver iteration counts, giving the constraints

enough room for expression, making the muscles preserve their shape well, as well

as their volume and vertex distances.

The final aspect to evaluate is how well the reconstructed inner fibres change

their lengths according to the expected deformation, and also compared to the

original PBD approach [KČ21].

7.3.3 Fibre lengths
The fibre lengths have all been measured on the same muscle configuration, which

is to use 100 fibres per muscle, which are each divided into 15 segments while

parametrised by the deformed surface throughMean Value Interpolation [KČ21].

As opposed to the results shown, where each fibre is split into 100 segments, to fairly

compare the methods, even though the XPBDmethod uses the number of segments

to do the deformation itself and is dependent on it.
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Figures 7.10 and 7.11 each show a pair of muscles, where the fibre lengths are

measured. Figure 7.10 shows in the first row the gluteus maximus and in the second

row the gluteus medius, while Figure 7.11 shows the adductor brevis in the first row,

while the second row contains the fibre lengths of the iliacus. The reconstructed
fibre lengths are estimated for each simulation step of hip flexion from 0° to 90°,
advancing the femur rotation by 1° per simulation step. An important difference is

that the PBD solver used here uses 3 internal solver iterations, where it provides

plausible results and the value is set as the default for the method, whereas with the

XPBD method, utilising the consistency of constraints during high iteration count,

will be left at 70 internal iterations, as this is the (so far) default for the XPBD.

What is notable about the right column in Figure 7.10 are the fibre lengths elon-

gation in the last simulation steps near the degree of 90. There, the broadly discussed
muscle explosion starts to happen, as the vertices start to tunnel through the femoral
bone near the attachments. The results for the XPBD method seem to correspond

well to the results of the PBD, where as noted by the authors of the paper [KČ21],

the gluteus maximus behaves expectedly, as mostly its deep fibres lengthen. These

Figure 7.10:Gluteus maximus (top row) and gluteus medius (bottom row) fibre lengths

during simulation of hip flexion, left column is the XPBDmethod results in red, right

column contains the same results for XPBD in red with PBD method results in blue
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deep fibres can be identified by the group of fibres lengthening more than the oth-

ers. At the same time, the whole muscle lengthens. Further, as the authors note, the

expected behaviour with gluteus medius is that only its surface fibres extend, while
in the plot, a group of fibres is also shortening, these are probably the deep fibres

of the gluteus medius. Compared with the results in the right column, the fibres of

gluteus maximus extend much more sharply using the PBD method, maybe even the

speed of their lengthening is rising, compared with the XPBD method. this can be

due to the observation, that the XPBD method moves the whole shape of the mus-

cle much more dynamically and also keeps the elasticity of the muscle consistent,

while the PBD method, in a sense, prevents the muscle from entering into the joint

area, forcing the fibres to extend more to reach the attachment. Moreover, there

is a chance that the change in the lengthening speed of the methods is due to the

possibility, that the PBD method exerts less elasticity than the XPBD method, while

the stiffer parts of the muscle force the externally pushed parts to extend more. The

fibre lengths in gluteus medius follow a similar trend, but using XPBD, the fibres are

ever-so-slightly shorter during the whole movement, possibly because of letting the

muscle move more freely and adapt to the external forces more responsively.

Both cases make sense, as the XPBD provides more iterations of solving, but

the same number of iterations (70) could have not been compared with the PBD

method, as it failed to complete the simulation in keeping the gluteus maximus in an
acceptable shape using the higher number of iterations.
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Figure 7.11: Adductor brevis (top row) and iliacus (bottom row) fibre lengths during

simulation of hip flexion, left column is the XPBD method results in red, right

column contains the same results for XPBD in red with PBD method results in blue

In Figure 7.11, the results of the XPBD method for the muscles adductor brevis
(top) and iliacus (bottom), seem feasible. For the adductor brevis, this result could be
explained due to its anatomical position about the femur. First, the muscle is picked

up at the start of the motion, causing it to bend a little to face the femur. When

the adductor brevis is directed perpendicularly to the femur (at 20°), the distance
between its attachments is the lowest across the movement. From that point on, the

muscle insertion is pulled upwards by the femur, making the muscle stretch. For the

iliacus, the result is also expected (and corresponding to the results shown in the

article, where the voxelisation collision handling is used instead of the Discregrid), as

the muscle should contract continuously, being one of the two prime movers of hip

flexion, although the fibres are shorter comparedwith the result in the original paper

by approximately 1 centimetre. Compared with the current version of PBD using

the same collision handling as the XPBD, a marginal difference can be observed, as

the passive dragging of the iliacus by the PBDmethod, while the fibres even lengthen

a little, the XPBD method effectively contracts the muscle, shortening the fibres as

expected.
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Conclusion 8
A fast and efficient approach to detecting and avoiding collisions of deformable

bodies, based on stochastic methods was designed and implemented. The original

deformation approach [KČ21] has been refactored and extended into its successor

method to overcome a well-known problem of time dependency. This extension

enabled the development of a proposed model for active intermuscular interactions

under arbitrary movements, maintained through physiologically-based parameter

management to reflect each muscle’s role in the movement.

The results were rigorously verified for visual plausibility, adherence to the phys-

iology of muscle interaction, correspondence to the results of a similar method, and

the preservation of muscle shapes and volumes. The quality of the proposed muscle

penetration avoidance method was also assessed. The verification was conducted

on four of the provided muscles of the glutei maximus and medius, the adductor bre-
vis, and the iliacus during five basic leg movements of flexion, extension, abduction

and internal rotation. Additionally, all identified drawbacks were analysed exhaus-

tively, and possible solutions were discussed. Moreover, the scene was enriched by

16 new muscle models. In the end, the most relevant weaknesses and merits of the

proposed method were critically evaluated, as well as the final comparison with the

former method in terms of the plausibility of the inner fibres reconstructed from

the deformed muscles was made. Based on this information, the assignment can be

considered fulfilled.

All the implemented propositions proved to be successful in their original am-

bitions, surpassing the idea of the method being a mere proof of concept, as its

outcomes seem to show great signs of applicability to real, bio-mechanical systems.

The method still lacks a robust mechanism to do that, but advancing this research

by e.g. approximating the inner muscle fibres more accurately on the surface mesh,

handling muscle edge-to-bone collisions properly, or maybe even validating the

outputs against real EMG data, could eventually resolve these drawbacks.
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A Figures

Figure A.1: Dorsal (left) and lateral (right) views of all possible muscles
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Figure A.2: Ventral (left) and medial (right) views of all possible muscles
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Figure A.3: Ventral view of the surface fibres used for verification
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Figure A.4: Lateral view of the surface fibres used for verification
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Figure A.5: Ventral view of hip flexion
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Figure A.6: Lateral view of hip flexion
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Figure A.7: Ventral view of hip extension
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Figure A.8: Lateral view of hip extension
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Figure A.9: Dorsal view of hip extension
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Figure A.10: Ventral view of hip adduction
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Figure A.11: Lateral view of hip adduction
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Figure A.12: Dorsal view of hip adduction
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Figure A.13: Ventral-medial view of internal rotation
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Figure A.14: Lateral view of internal rotation
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Tables B
Table B.1: Parameters used to obtain the verification results

Parameter Value

XPBD.h:m_time_diff 0.001

XPBD.h:m_damp 0.9

XPBD.h:m_solver_iterations 70

XPBD.h:m_gravity 0

XPBD.h:m_virtual_edges_distance 0.02

XPBD.h:m_virtual_edge_update_period 5

XPBDjoint.h:s_K_neighbours 10

XPBDjoint.h:s_minimal_sarcomere_shortening_percent 0.7

muscle_cd_cr.h:m_resolution_factor 1

muscle_cd_cr.h:m_default_collision_threshold 0.002

muscle_cd_cr.h:m_zero_iteration_collision_threshold 0.002

muscle_cd_cr.h:m_default_max_iter 100

constraint.h:s_time_diff 1

constraint.h:s_beta 0.01

constraint.h:ms_do_not_solve 0

constraint.h:ms_distance_stiffness 1𝑒2

constraint.h:ms_dihedral_angle_stiffness 1𝑒8

volumeConstraint.h:m_pressure 1

volumeConstraint.h:m_time_diff 0.001

volumeConstraint.h:s_compliance 0

SDF.h:m_resolution (128,128,128)

SDF.h:m_domain_margin_multiplier 1.5

SDF.h:m_collision_bone_margin 0.001
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User’s guide C
In the folder Input_data, there is one important sub-folder and three important

files the user should note.

• MOT/ – the sub-folder contains motions files, which can be generated e.g. in

a spreadsheet editor, and then inputted into the system.

• setup_MuscleGeneratorTool.xml – the main setup configuration file the

results were done with.

• setup_MuscleGeneratorTool_More_muscles.xml – a setup file contain-
ing more of the muscles.

• setup_MuscleGeneratorTool_fibres_low_res_low_count.xml – a setup
file with the four basic muscles with sparse fibres generated

A closer look at the setup_MuscleGeneratorTool.xml file reveals a few im-

portant elements that can be tuned.

• motion_file – specifies the used motion.

• MuscleGenerator – the user can add or remove muscles.

• num_of_lines – the number of inner fibres to generate.

• line_res – the resolution of each of the fibres.

These parameters can all be tuned to an extent.

In theMOT sub-folder, one can find all the verified motions plus a flexion up

to 70 degrees and then back, while leaving time for stabilization. The user is invited

to try that one as it gives interesting results.

The supplied electronic attachment also contains a folder called the Aplica-

tion_and_libraries, containing the scriptRunInteraction.cmd. By clicking this
script, the user gets to choose from 10, 30, 50, and 70 inner solver iterations the

XPBD should have. Then, the application starts, where the user can navigate the
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scene (using mouse manipulation, switching from Solid toWireframe) and skip to

the next frame using an ESC button. If the ESC key is pressed and then pulled up,

the simulation stops at approximately the simulation the key is upped. If the key, is

instead pressed repeatedly, the simulation steps queue and the number of clicks will

be simulated, unless the calling process is stopped.

If the desire to change the XML setup file occurs, the user must open the script

in a text editor, and change the first string in the file to that desired path.

To build the application, it is best to pull it from GIT gitlab.com/besoft/muscle-

wrapping-2.0 (the branch containing Havlicek2024 in its name) and follow the di-

rections there. But in other cases, the application can be built usingCMake from the

rootCMakefile on the path Aplication_and_libraries\Sources\CMakeLists.txt,
as specified on the GIT page.
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Overview of abbreviations

1. PBD – Position BasedDynamics, amethod for simulating deformable and rigid

bodies defining constraints based on immediate vertex positions.

2. CNS – Central Nervous System, brain and spinal cord.

3. ATP – Adenosine TriPhosphate, a nucleotide that provides energy to living

cell processes.

4. ACh – AcetylCholine, a neurotransmitter.

5. SNARE – Soluble N-Ethylmaleimid-sensitive fusion protein Attachment pro-

tein REcepetor, a protein making the ACh vesicles fuse within cell membrane

on a neuromuscular junction.

6. AP – Action Potential, electrical potential as a result of cell membrane depo-

larisation.

7. DHP – DiHydro Pyrine, a voltage-gated calcium channel.

8. RyR – Ryanondine Receptor, a receptor within the sarcoplasmic reticulum.

9. ROM – Range Of Motion, the limits within bone rotation in the respective

degree of freedom.

10. ° – a degree, unit of a rotation.

11. EMG –ElectroMyoGraphy, ameasuring technique to detect electrical responses

to stimuli in muscles or on their surface.

12. LiDAR – Light Detection and Ranging, a remote sensing method to collect

depth-information point clouds.

13. 3D – Three-dimensional, having the dimension of three.

14. LE – Laplacian Editing, a deformation method based on the Laplacian opera-

tor.
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15. MS – Mesh Skinning, a deformation method based on the internal skeleton.

16. CBD – Cage-Based Deformations, a deformation method based on the outer

skeleton.

17. FEM – Finite Element Method, a deformation method based on discretizing

the object.

18. MSS – Mass Spring System, a deformation method based on a set of elastic

strings.

19. XPBD – eXtended PBD, a version of PBD where the constraints are not depen-

dent on the simulation time.

20. BSP – Binary Space Partitioning, a binary tree used for recursive space sub-

division to accelerate collision detection.

21. BVH – Bounding Volume Hierarchy, usually a tree structure used to accelerate

collision detection.

22. AABB – Axis-Aligned-Bounding-Box, a rectangular prism parallel to one of

the system axes in each of its faces, used for collision detection acceleration.

23. SDF – Signed Distance Field, information about distances to a watertight sur-

face, where the information about outside and inside is known at every sam-

pled position, used for collision detection acceleration.

24. CRTP – Curiously Recurring Template Pattern, a design pattern that allows

static polymorphism in the C++ programming language.

25. GPU –Graphics ProcessingUnit, a processor originally specialised for graphics

rendering.

26. PSTL – Parallel Standard C++ Library, a C++ programming language standard

library parallelization library.

27. SLO – Smallest-Last Ordering, a strategy to accelerate greedy graph colouring

by presorting the nodes by vertex degrees in a descendent fashion.

28. CDP – Contact Distance Proximity, the distance of a virtual edge where it can

be deemed to approach collision.

29. JCU – Joint Control Unit, the abstraction over a joint and a bone inside of it

capable of rotation relative to the joint, used a structure.
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30. SOT – Static Optimization Tool, a tool provided by the OpenSim software to

estimate muscle activations during movement.

31. PCSA – Physiological Cross-Sectional Area, the cross-sectional area of a mus-

cle fibre, usually used in biomechanics.

32. kd-tree – K-dimensional tree, a structure used for K-nearest neighbours

search acceleration.

33. RBF –Radial Basis Functions, and interpolation technique based on non-linear

distance.

34. SIMD – Single Instruction Multiple Data, a set of instructions for a specific

software architecture utilising vectorisation computation acceleration.

35. CPU – Central Processing Unit, the main processor on a computer.

36. XML – Extensible Markup Language, a structured data format using a hierar-

chy.
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