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Abstract

This thesis presents a novel approach for strength sports performance analysis using a
human pose estimation machine learning model. The implemented solution employs the
RTMPose model to estimate keypoints, then derive the barbell position from the wrist
coordinates, and compute performance metrics without requiring specific camera angles
or visible weight plates. The proposed method enhances traditional resistance training
by providing feedback and performance metrics such as mean velocity. The solution was
proved effective in both gym and home environments, even without barbells. Extensive
experiments demonstrate the robustness and wide usability of the solution. Comparison
with the professional system Qualisys confirms the validity of the application results.

Abstrakt

Tato práce představuje nový přístup k analýze výkonu v silových sportech pomocí mod-
elu strojového učení pro odhad lidské pózy. Implementované řešení využívá model RTM-
Pose k odhadu klíčových bodů lidské pózy, následně odvozuje polohu činky ze souřadnic
zápěstí a vypočítává výkonnostní metriky. Konkrétní úhly kamery nebo viditelné kotouče
nejsou vyžadovány. Navrhovaná metoda vylepšuje tradiční silový trénink tím, že posky-
tuje zpětnou vazbu a výkonnostní metriky, jako je průměrná rychlost, a ukazuje se jako
účinná ve veřejných posilovnách i v domácím prostředí, a to i pro cvičení s vlastní vahou
nebo pomůckami jako je např. odporová guma. Rozsáhlé experimenty potvrzují širokou
použitelnost navrhnutého řešení. Srovnání s profesionálním systémem Qualisys prokazuje
dostatečnou kvalitu aplikace.
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Rozšířený abstrakt

Sportovci potřebují vědět, jaký mají ve své sportu výkon. To platí o to více, jedná-li se
o sportovce na závodní úrovni. K zjištění sportovních výkonů lze využít několika různých
způsobů měření. Vytrvalostní sportovci mohou například využít senzory srdečního tepu,
aby věděli, jestli se nachází ve správném pásmu, jestli mají správné tempo apod. Dále
pro ně jsou metrikami výkonu hodnoty jako čas, za který uběhnou či uplavou určitý počet
metrů či délek.

Silové sporty mají ale zcela odlišný záměr. Siloví sportovci tedy sledují například únavu
nebo obtížnost se kterou se potýkají během provádění cviku. Také sledují dynamiku svého
pohybu, respektive rychlost a obtížnost provedení daného cviku. Například u vzpěračů nebo
trojbojařů je důležité, jak rychle pohybují s činkou, kterou drží v dlaních. U strongmanů
se pak může jednat ne jenom o činku, ale třeba o tzv. log lift nebo Atlasův kámen.

Hodnocení sportovního výkonu bývá zpravidla subjektivní, zejména na amatérské nebo
středně profesionální úrovni. Zkušenější siloví sportovci používají k ohodnocení obtížnosti
dané série či opakování škálu RIR nebo RPE. RIR vyznačuje počet opakování v rezervě.
RPE pak na stupnici 0-10 obtížnost, kdy 10 je maximální výkon, zpravidla soutěžní úrovně
a běžná hodnota v tréninzích se pohybuje okolo čísla 6. Posouzení obtížnosti nebo únavy
závisí tedy na pocitech, vjemech a úsudku sportovce. V lepším případě pak více objektivně
nahlížející osoby, a to trenéra či kouče.

Nabízí se tedy otázka, jestli existuje nějaký zcela objektivní způsob, jak změřit únavu,
výkon nebo aktuální stav silového sportovce. K tomu lze využít analýzy rychlosti po-
hybu s použitím fyzických zařízení. Ta se připevní například k čince a pomocí gyroskopů
a akcelerometrů dokáže spočítat rychlosti pohybu. Nejlevnější variantou jsou pak tzv.
lineární převodníky. Ty pomocí namotaného lanka měří pohyb činky. Existují také komerční
kamerové systémy, které však nejsou přenosné a jsou poměrně drahé (např. 3499 $).

Nabídka mobilních aplikací na obchodu Google Play nabízí pouze velmi malé množství ap-
likací, které by fungovaly samy o sobě. Dostupné mobilní aplikace pro Android spoléhají
zpravidla na počítačové vidění, které detekuje kotouče z boku. Dále nesmí být sportovec
moc blízko kamery, ale také ne moc daleko. To omezuje použití takovýchto aplikací, a to
zejména ve společných prostorech, jako jsou fitness centra a veřejné posilovny, kde nelze
obtěžovat ostatní sestavováním vhodných kamerových kompozic. Všechny zkoumané ap-
likace (např. WL Analysis, RepSpeed, Qwik VBT) vyžadují vesměs striktně boční pohled
zaměřený na kotouče. WL Analysis dovoluje 30°odklon.

Jako řešení tohoto problému je představena nová metoda pro výpočet rychlosti pohybu.
Řešení využívá strojové učení, specificky odhad klíčových bodů lidské kostry (pózy). Pro
získání klíčových bodů kostry sportovce je použit model RTMPose z dílny čínské skupiny
MMPose. Myšlenka vychází z faktu, že pro velké množství cviků se činka drží v rukou.
Ze souřadnic zápěstí se tedy vypočítává pohyb činky, a nakonec dopočítá i rychlost.

Byla navržena a implementována aplikace s architekturou klient-server s velmi lehkou An-
droid aplikací. Toho je docíleno zpracováním na straně serveru, která má za úkol provádět
výpočetně náročné úkoly. To je nejenom samotná inference RTMPose modelu, ale i následné
zpracování surových dat, jejich vícenásobné vyhlazení a počítání rychlostí a dalších derivo-
vaných metrik.



Navrhované řešení nevyžaduje po uživateli žádný specifický úhel nebo polohu kamery. Ko-
touče mohou být zcela mimo zorné pole anebo nemusí být vůbec použity. Aplikace posky-
tuje výkonnostní metriky, jako je průměrná rychlost nebo průměrná propulsivní rychlost.

Bylo ukázáno, že pomocí tréninku založeného na sledování rychlosti (VBT) lze dosáhnout
lepších výsledků za stejný čas anebo stejných výsledků s menší únavou nebo v kratším čase,
než jak je tomu u tradičního tréninku založeného na běžném odporovém cvičení.

Kalibrace a převod z pixelů na metrické jednotky je zásadním problémem a prvkem prove-
deného řešení. Aplikace integruje několik heuristik, aby bylo dosaženo co nejvíce přesných
výsledků. Nicméně i tak je zapotřebí dalších úprav a vylepšené kalibrace pro dosažení
robustnějšího řešení.

Aplikace byla porovnána s profesionálním systémem Qualisys a ukázala, že za vhodných
podmínek je schopna dodat velmi uspokojivé výsledky. Aplikace byla průběžně konzul-
tována s uživateli, kteří přispěli k jejímu zdokonalení. Je navrženo několik možností rozšíření
jako např. integrovaný virtuální trenér pro kontrolu správné techniky provedení cviku.
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Chapter 1

Introduction

Athletes need to know how they perform in their sport. Endurance athletes can, for ex-
ample, use heart rate monitors. Strength sports athletes must observe their movement and
lifted object dynamics. For example, how fast they move a barbell for weightlifters and
powerlifters or a log for strongmen.

Sports performance evaluation tends to be subjective, particularly at the amateur or in-
termediate professional levels. Assessment of difficulty or fatigue depends on the athlete’s
(or preferably the coach’s) feelings, sensations, and judgment. Analyzing the velocity of
a movement usually involves using hardware devices that need to be attached to barbells.
Accurate commercial camera systems are not portable and are expensive (e.g. $3499).

On the side of standalone mobile applications, there are very few options on Google Play.
The mobile applications available on the Android market depend on computer vision to
detect weight plates from the side, which restricts their use, especially in communal areas
such as fitness centers. All of the examined applications (e.g. WL Analysis, RepSpeed,
Qwik VBT) require a strict side view pointed to the weight plates.

To address this issue, a novel method for calculating movement velocity is introduced.
RTMPose human pose estimation model is used to obtain the athlete’s skeleton keypoints.
From the wrist coordinates, the movement and finally the velocity are computed. The
server-client architecture with the lightweight Android application and server-side process-
ing that handles computationally intensive tasks.

The proposed solution does not require any specific camera angle or position; the weight
plates could be completely out of view or not used at all. The application provides per-
formance metrics such as mean velocity. The conversion from pixels/s to m/s is crucial
and several heuristics are integrated in the solution to achieve accurate results. Android
application can be installed from Google Play1 after joining Google Group2.

Chapter 2 explores the particular elements of strength sports. Chapter 3 discusses the
sport analysis, camera systems and human pose estimation models. Chapter 4 discusses the
wide topic of mobile development, including computation on edge and model compression
methods. The design and implementation are described in Chapter 5 and 6. The results of
the experiments, limitations, and future development can be explored in Chapter 7.

1https://play.google.com/apps/testing/cz.vut.fit.xklemr00.vbt.app
2https://groups.google.com/g/dyno-coach-testing
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Chapter 2

Challenges in Strength Sports
Training

This chapter describes the problematic of strength sports. It should introduce the reader
to this topic and outline the context.

Strength sports, such as weightlifting, bodybuilding, and powerlifting are a subset of
strength sports that emphasize speed and acceleration as key performance indicators. Spe-
cific aspects of strength sports are discussed as well as strength athlete’s daily routine,
including diet, recovery, mental strategies, and finally the technology use in training ses-
sions. Fitness apps, wearable devices, and training tools that enhance performance, track
progress, and prevent injuries are examined. As the result, implicit requirements and usage
behaviour are gathered as a prerequisite for creation of mobile application for strength sport
athletes.

2.1 Unique Aspects of Strength Sports

Strength sports, a category of resistance training, have unique aspects compared to sports
such as tennis, football, and athletics. Within strength sports, differences exist, such as
strongman’s endurance disciplines. For explaining VBT, weightlifting will be discussed in
detail. Powerlifting is also a focus because the majority of data captured during experiments
is focused on powerlifting disciplines.

Signore [57] compares different sports using power as a comparison tool. The power defi-
nition is P = F * v. Powerlifting emphasizes force, American football balances force and
velocity, and baseball focuses more on velocity. The SAID (Specific Adaptation of Imposed
Demands) principle states that specific activities, loads, and demands are necessary for
optimal performance in each sport. This section discusses weightlifting and powerlifting in
detail to highlight their specific demands and characteristics.

As official Olympic sources [66] describe, Olympic weightlifting, or simply weightlifting, is
a well-established Olympic sport since 1896 and the International Weightlifting Federation
(IWF) was founded in 1905. But until Sydney’s 2000 Olympics, this sport was men only.
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Weightlifting includes the following disciplines: snatch and clean and jerk, both starting
with the bar on the ground and ending overhead. The snatch lifts the bar in one motion,
while the clean and jerk involves lifting to the chest, then overhead. Competitors get three
attempts per lift, with one minute per attempt. Failed attempts must use the same or
higher weight, while successful attempts can increase the weight.

Powerlifting, on the other hand, is not part of the Olympic games despite long-term efforts
to achieve this goal, as Gaston, the president of the International Powerlifting Federation
(IPF), says [49]. But a new highest-level competition has recently been created, named
Sheffield. To be nominated for this competition, an athlete must have won the last world
championship or intentionally hold the world record1.

Powerlifting consists of three disciplines: squat, bench press, and deadlift, as defined by
the IPF2. In the squat, the lifter descends with a barbell on their shoulders and returns
to standing. In the bench press, the lifter lowers a barbell to their chest and presses it
upward. The deadlift involves lifting a barbell from the floor to an upright stance and then
lowering it back down. The number of attempts and time requirements are the same as in
weightlifting. See Figures 2.1, 2.2, and 2.3 for illustrations.

The 60-second time limit to prepare, wait for the command, and start the lift shows that
competition-level attempts are short-time movement. During warm-ups, athletes perform
various sets and repetitions similar to regular training, a common practice in other strength
sports like strongman and bodybuilding.

Figure 2.1: Movement of the squat. Drawing edited from Radenković [51].

Figure 2.2: Movement of the bench press. Drawing edited from Radenković [51].

Figure 2.3: Movement of the deadlift. Drawing edited from Radenković [51].

Radenković discusses the importance of the center of mass during lifts. Figures 2.4a and 2.4b
show different distances from the center of mass to the holding points for the same weight
on a bar. If an athlete’s force isn’t perfectly balanced, a tilt in the bench press increases
the moment of inertia (case b), causing a shift in the force vector. This can lead to a failed
lift due to arm leverage, bench size, and moment of inertia.

1Wildcard possibility applies.
2https://www.powerlifting.sport/about-ipf/disciplines
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(a) Bar a using 15 kg plates.

(b) Bar b using 5 kg plates.

Figure 2.4: Force applying at center of mass for two bars with the same total weight but
different plates usage. Drawings from Radenković [51].

Competition-level calibrated thin plates in powerlifting ensure that the barbell can be
loaded heavily while maintaining stability and safety for the athlete. We want to emphasize
the physics background of sports. Analyzing movement in detail is not only better for
performance, but also a way to prevent injuries in the long term.

2.2 Strength Sport Training Programming

Strength sport programming involves the creation of training schemes and the preparation
for competitions. Parry [50] outlines six pillars: specificity (focus on main exercises – squat,
bench press, deadlift), overload (sufficient load for muscle growth), recovery (avoid over-
training), variation (change exercises, sets, and reps to maintain progress), individualization
(tailor to individual differences), and reversibility (acknowledge performance decline from
not training and the effort needed to regain it).

For specific exercises, do singles at 90% 1RM, doubles and triples at 80% 1RM, and sets
of 5 reps at 70-85%. Accessory exercises such as glute bridge or triceps extension focus on
hypertrophy, not high 1RM percentages. Avoid consecutive heavy squats. Training cycles
include macrocycles (up to a year for major competitions), mesocycles (8-12 weeks, for
major changes), and microcycles (weekly, for minor adjustments).

At the end of macrocycles, training plans must be adjusted for recovery and performance,
known as tapering. Travis et al. [64] highlight the lack of evidence-based tapering protocols
for strength sports, but note that tapering is established for endurance sports. Their
review suggests a 30-50% volume decrease for 1-2 weeks and 2-7 days of training cessation
to improve competition performance in strength sports.

Evaluating technique, form or RPE is better done with a coach than by self-assessment.
Traditionally, this involves in-person sessions, which are time-consuming and costly. Online
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coaching options like Team Rohr3, TSA4, and The Strength Guys5 offer remote coaching,
often using video reports from training sessions for weekly evaluations and adjustments.
These programs typically use spreadsheets with customized formulas and formatting, and
some have their own mobile apps. Athletes are used to record their training sessions on a
daily basis.

2.3 Velocity-Based Training Methodology

Velocity-Based Training (VBT), is a methodological pivot in strength training that empha-
sizes velocity and acceleration as key performance indicators. The primary focus of VBT is
on dynamic strength sports such as weightlifting; however, this methodology is transferable
to other strength sports (powerlifting, strongman, . . . )

Signore [57] investigates the importance of velocity in strength sports. In Table 2.1 it can be
seen the approximate conversions between strength zones, velocity, and 1RM percentage.
The ranges are made with average athlete in mind.

Speed-Strength Strength Speed Accel. Strength Absolute Strength
v[m/s] 1.0-1.3 0.75-1.0 0.5-0.75 <0.5

1RM[%] 20-40 40-60 60-80 85-100

Table 2.1: Conversions between strength zones, velocity and 1RM percentage according to
Signore [57].

Zhang et al. [74] debate optimal velocity loss for strength development. The study examines
velocity loss during velocity-based training (VBT) and its impact on maximum strength
and training efficiency. They reviewed nine controlled trials with 336 trained men, using
1RM gain and 1RM gain per repetition as indicators.

Previous discussions suggest a lower velocity loss threshold for elite athletes. Zhang et al.
support this statement with a non-linear (reverse U-shaped) relationship between velocity
loss and 1RM gain (Figure2.5a), with an optimal range of 20-30%. A negative linear
relationship between velocity loss and 1RM gain per repetition (Figure 2.5b) indicates that
lower velocity losses improve training efficiency.

From a physiological perspective, the differential effects of velocity loss on strength devel-
opment are linked to training-induced muscular adaptations. Excessive velocity loss might
enhance endurance over maximal strength by altering muscle fiber activation, enlarging
slow-twitch fibers at the expense of fast-twitch fibers. Lower velocity losses in VBT can
maintain maximal strength with less training volume, conserving energy and time for other
modalities.

However, limitations include the exclusive focus on male participants, a narrow range of
velocity loss metrics, and a lack of differentiation between lower and upper body exercises.
González-Badillo et al. [14] emphasize the importance of accurately estimating effort in
resistance training. Their study shows that monitoring velocity combats the limitations

3https://www.teamrohr.com/powerlifting-training/
4https://www.thestrengthathlete.com/
5https://thestrengthguys.com/
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(a) Reverse U-shaped correlation between ve-
locity and 1RM.

(b) Negative correlation between velocity loss
and 1RM gain per repetition.

Figure 2.5: Findings about velocity loss and 1RM relationships. Retrieved from [74].

Figure 2.6: Load-velocity relationship. Pre- and Post-performance lines are drawn showing
a 6.1% increase in strength. Drawing taken from González [14].

of subjective effort evaluation, demonstrating a 6.1% improvement in 1RM and increases
in all other loads as can be seen in Figure 2.6. This was consistent across various VBT
interventions with minor differences.

González et al. [14] highlight that velocity-based training (VBT) uses real-time data to
guide training, measuring lift velocity for immediate feedback. This allows precise, individ-
ualized training loads, enhancing strength gains by accounting for daily fluctuations. Unlike
subjective RPE, VBT provides objective data. Velocity thresholds optimize power and min-
imize overtraining, making VBT effective for power-oriented sports such as weightlifting or
powerlifting.

VBT is very closely linked with measuring devices. The most popular is linear encoder that
can be seen in Figure 2.7a. Picture is cropped from Dynamic Sports Training6.

The other popular option is an accelerometer sensor. VBT relies heavily on measuring
devices, such as linear encoders that can be seen in Figure 2.7a and accelerometer sensors,

6https://www.dynamicsportstraining.com/wp-content/uploads/2020/02/1-2.png
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(a) Linear encoder. (b) Bar sensor kit from Eleiko.

Figure 2.7: Examples of velocity measuring equipment.

such as those of Eleiko showed in Figure 2.7b. Image taken from manufacturer7. González
et al. focus on these hardware devices. Camera systems are discussed in Section 3.3.

While velocity monitoring aids performance, it does not ensure optimal results or proper
training. Effective VBT requires careful load and intensity management, enhancing already
well-designed training plans by fine-tuning loads and individualizing programs.

González et al. critique the RT field’s terminology, noting confusion due to inconsistent
use of terms like “periodization”, “maximal strength”, and “power”. This inconsistency
complicates training design and evaluation. The term “periodization” for instance, lacks
a uniform definition, leading to varied practices and reduced effectiveness. This highlights
the need for validated results from sport studies.

2.4 Technology Usage and Habits in Strength Sports

This section explores key aspects of a strength athlete’s daily routine, including diet, recov-
ery, mental strategies, and technology use in training. It examines fitness apps, wearable
devices, and training tools that enhance performance, track progress, and prevent injuries,
highlighting how these can be integrated into mobile applications. The aim is to illustrate
a typical day for a strength athlete, combining technology with traditional methods, to
identify needs for fitness apps, particularly those supporting training.

Nutrition is vital for strength athletes. King et al. [36] surveyed 305 powerlifters, finding
common practices like consuming carbohydrates before/during training and increased pro-
tein intake afterward. Smith [59] discusses the essential habits of powerlifters for long-term
success, focusing on recovery over training. Key factors include adequate sleep, nutrition,
injury prevention, and training at 75-85% intensity to enhance systems and technique.
Long-term dedication, beyond short-term gains, is crucial. Elite athletes cannot miss ses-
sions for minor reasons, and self-belief is vital, especially when training for new personal or
world records without frequent 1RM testing.

7https://eleiko.com/en-cz/equipment/bars/3085286-eleiko-bar-sensor-kit
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Even in strength sports, monitoring of heart rate (HR) is important. Malone [43] suggests a
range of 70-85% of maximum HR for demanding exercise and 50-70% for medium intensity.
Powerlifters monitor HR during training to avoid heart-related problems. Gotcher and
Baraki [24] note that high intra-abdominal pressure in strength sports strains the heart.

Fitness or smart watches can monitor HR, but chest HR trackers are the most accurate.
Upper arm strap devices8 are less restrictive for strength sports, as they avoid interference
with wrist wraps and chest contact with barbells.

For diet tracking, apps such as Strava9 and KalorickéTabulky10 are useful. Sleep, crucial
for recovery, can be optimized with sleep coaching from Samsung11 or Apple12. Velocity
trackers for VBT are discussed in Section 3.2.

From the information provided in this chapter about various aspects of strength sports, it
can be said, that strength sport athletes deal with many optimization during their daily
life, training sessions, and preparation for competitions. In all aspects, mobile applications
offer helpful functionality.

This creates a fertile ground for developing computer vision-based applications because
athletes are already using smartphones as video recording devices on a daily basis as can
be seen in Section 2.2.

8https://www.wired.com/gallery/best-heart-rate-monitors/
9https://www.strava.com/

10https://www.kaloricketabulky.cz/
11https://insights.samsung.com/2023/10/06/7-sleep-and-health-benefits-of-galaxy-watch6/
12https://support.apple.com/en-us/HT211685
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Chapter 3

Sport Activity Analysis

Technology today offers various approaches for analyzing sports activities, primarily fo-
cusing on performance measurements like power in watts or time per distance. These are
quantitative metrics. Qualitative metrics, such as technique quality, are harder to measure
and often rely on subjective judgments by coaches or judges. Tenenbaum and Driscoll [63]
delve into quantitative and qualitative metrics in sport. Objective performance metrics rel-
evant to VBT, such as mean velocity (MV), mean propulsive velocity (MPV), and Impulse,
are discussed in Section 3.1.

Modern devices enable more objective measurements by tracking keypoints of the human
skeleton to define optimal movement patterns. These can then be compared with an ath-
lete’s performance to evaluate qualitative metrics. The following sections discuss devices,
methods, and approaches for measuring both quantitative and qualitative metrics, with
a focus on technological solutions. This includes camera systems, accelerometers, and es-
pecially monocular camera systems that use video recordings without additional hardware.

3.1 Metrics in Strength Sports

The mean propulsive velocity (MPV) [15] focuses on the propulsive phase of the movement
to estimate the load. The propulsive phase was defined as the portion of the concentric
phase during which the measured acceleration α is greater than the acceleration due to
gravity (α ≥ −9.81m · s−2).

According to Carl Valle [65], impulse is the most important metric. The impulse is defined
as the product of force and time. The importance of force is supported by Sarabia et
al. [54]. They conducted a study comparing power-based training with traditional resistance
training. The outcome is that the former group produced the same performance as the
latter group but with less neuromuscular fatigue. Especially good results were found in a
short-term time horizon which is usable for the pre-competition training phase.

The conversion from the theoretical definition of impulse to usable and effective computation
follows. For a continuous time, the impulse is defined as

I =

t2
∫

t1

F (t)dt, (3.1)
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where F (t) is the force (a function of time), and t1 and t2 are the start and end times of
the period over which was measured.

In discrete time, which is also the case for sampled video sequences, the equation can be
rewritten accordingly.

I =

N
∑

i=1

Ii =

N
∑

i=1

(Fi ×∆t)

There is an issue of how to estimate the force without special force plates or other force
measurement-capable hardware. In the context of a standalone mobile application, the
captured video is the only available input that can be measured. To address this issue, we
can apply the 2nd Newton’s law F = mdv

dt
= ma. This equation is usable with the user’s

input of overall weight on the bar. The mass is obtained from the user, and the acceleration
can be computed from the velocity.

However, this would introduce unwanted error propagation. This can be avoided by rewrit-
ing the equation to our advantage. Since a = v d

dt
and v = s d

dt
, we can rewrite the formula

in discrete time:

a =
∆v

∆t
.

Now we can adjust the preceding equation from I = F∆t to I = ma∆t = m∆v
∆t

∆t = m∆v.
This is indeed the impulse-momentum theorem.

3.2 Trackers

For measuring movement speed (velocity) and calculating their derivatives, physical track-
ers are a usual option. The wide spread of this kind of device is supported by usage in
trustworthy sports studies such as one from González et al. [14] where they used a 1000 Hz
linear velocity transducer.

Brooks et al. [4] mention three main types of devices available for VBT purposes. Two of
them are physical trackers, the third one is a camera-based system. Let us now discuss
the linear position transducer (LPT) and inertial measurement unit (IMU/accelerometers).
Camera systems are addressed in Section 3.3.

3.2.1 Linear Position Transducer

Linear Position Transducers (LPTs) measure barbell velocity with high accuracy by quan-
tifying the speed of a pulled tether during the concentric phase of exercises. The spindle’s
rotation, triggered by the tether, provides direct velocity measurements. Design optimiza-
tions minimize friction and safety risks, with the device placed on the floor and the strap
connected to the bar via a magnet or lightweight collar. Recent LPT advancements in-
clude range-of-motion assessments and three-dimensional tracking, crucial for correcting
technique inconsistencies.

LPTs focus on concentric movements, sometimes capturing irrelevant data, but users can
filter this out. Despite higher costs, LPTs are preferred for their accuracy and reliability
in strength training analysis, highlighted by Brooks et al. [4]. Devices like GymAware and
RepOne enhance LPT functionality for performance optimization.
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3.2.2 Accelerometers/Inertial Measurement Units

Accelerometers and Inertial Measurement Units (IMUs) are more affordable than LPTs and
offer adaptable interfaces, initially used in wearable devices and later adapted for barbells.
According to Brooks et al. [4], despite rapid advancements, IMUs lack extensive research
on their validity compared to LPTs.

IMUs calculate velocity and other metrics using algorithms, leading to potential inaccura-
cies versus LPTs. The placement of barbells affects the accelerometer readings, and they
are less reliable for dynamic movements. However, their portability allows them to be used
in various activities beyond weightlifting, such as sprinting or jumping. Both LPTs and
IMUs rely on supportive applications for data computation and output. Companies typ-
ically provide end-user applications, sometimes with dedicated devices for fitness centers.
Examples of LPT and IMU units has been shown in Figures 2.7a and 2.7b.

3.3 Camera Systems

Per Hasan and Alani [28], computer vision is essential in human movement analysis, bal-
ancing, and postural control. Advancements include multi-camera networks for sports
performance and low-cost cameras for tennis tracking. Innovations extend to automatic
sports video event detection using techniques like probabilistic Latent Semantic Analysis
and Conditional Random Field Models. Multi-target tracking, crucial in surveillance and
sports analysis, has progressed with deep learning and support vector machines.

Monocular vision (single camera) limits depth perception and balance, while binocular
vision (two cameras) provides overlapping visual fields. Advances in robotics and sports
science use monocular vision for tasks like tracking racket trajectories and spinning balls in
table tennis, requiring sophisticated image processing. Recognizing human motion in videos,
crucial in computer vision and machine learning, faces challenges in complex backgrounds
and with camera motion. Applications include human-computer interfaces, biometrics, and
surveillance. Traditional movement analysis uses CNNs. Other methods like Multilayer
or Self-Organizing Background Subtraction were used in the past. They are often highly
influenced by factors such as frame rate, lighting, and background movement.

Brooks et al. [4] discuss camera systems like Perch and EliteForm, which use multi-camera
arrays to analyze exercise movements, similar to Microsoft Xbox Kinect. These systems
measure the velocity of the barbell and the athlete and the three-dimensional movements,
capturing multiple points for detailed movement analysis. Despite providing advanced data,
their indirect measurement can be unreliable for bar speed and may result in data loss if the
athlete moves out of frame. The high costs and installation requirements limit accessibility,
though they are used in elite sports. These products offer extensive data and real-time feed-
back without the need to be attached to equipment, but cost and computational demands
restrict widespread use.

The selection and pricing of VBT systems are shown in Table 3.1. Camera systems are the
most expensive, often exceeding $2000. Accelerometers and IMUs are more affordable, and
thus suitable for personal or sport club use. High-tech professional systems such as Vicon
or Qualisys for laboratories can cost more than $100,000. Qualisys, used in the experiments
is detailed in Section 3.3.1.
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Name Company Type Cost [$]

GymAware Kinetic Performance Technology Camera 2750
RepOne Squats and Science Labs LPT 399
Tendo Tendo Sport LPT 1329
Bar Sensei Assess2Perform Acc./IMU 375
Beast Sensor Beast Technologies Acc./IMU 289
FLEX Kinetic Performance Technology Acc./IMU 495
PUSH Band PUSH, Inc. Acc./IMU 449
VMaxPro VBT Tracker SimpliFaster Acc./IMU 329
Perch CataLyft Labs, Inc. Camera 1999

Table 3.1: Selected commercially available VBT systems covering all three main types.
Data taken from Velocity-Based Training: Current Concepts and Future Directions [4].

3.3.1 Qualisys Ű Motion Capture Camera System

Londo et al. [42] discuss motion capture systems. Motion capture systems can track and
record movements in three-dimensional space with high precision. They are used in biome-
chanics, sports science, medical rehabilitation, animation, and industrial research. Optical
systems use high-speed cameras and markers – reflective (passive) or infrared-emitting
(active) – to calculate positions via triangulation. Qualisys provides such systems, with
high-speed cameras and software for real-time visualization, marker labeling, and data
analysis.

In sports science1, Qualisys captures detailed movement data to evaluate athletic tech-
niques, identify improvement areas, and design training programs, reducing the risk of
injury. In medicine2, it evaluates gait patterns and monitors the progress of therapy for
personalized rehabilitation. In entertainment3, it records actor movements for realistic an-
imations in films and games, integrating with Unity and Unreal Engine. Qualisys also
supports industrial uses, including human-robot interaction, UAVs, and automotive solu-
tions.

The Qualisys system was used as a reference for evaluating a human pose estimation model
during in the wild experiments, detailed in Section 7.6.

The kit for sports studies and experiments usually consists of a number of Arqus4 cameras
and a few reference Miqus5 cameras. The setup uses passive reflexive markers. At a distance
of 10 meters, the 3D resolution can be up to 0.03 mm. 3D resolution is the smallest
detectable motion that can be measured at a specific distance6. In Figure 3.1 the setup
available at FEKT BUT laboratory can be observed.

1https://www.qualisys.com/life-sciences/human-biomechanics-and-sports-research/
2https://www.qualisys.com/analysis/gait/
3https://www.qualisys.com/entertainment/animation/
4Arqus is the main camera capturing the movement from reflexive markers.
5Miqus is camera with no captuering capability, it is used to record the movement as casual video

recording to have a visual reference what was happening in the monitored area.
6https://www.qualisys.com/cameras/arqus/#tech-specs
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(a) Sports laboratory at FEKT BUT
with Qualisys motion capture system.

(b) Arqus camera (on the left), con-
nected to next ones in a chain using RJ-
45 connector.

(c) Calibration construction used before
each session to calibrate the Qualisys
system.

(d) Passive reflexive marker placed on
the very end of a barbell.

Figure 3.1: Qualisys motion capture system at FEKT BUT, managed by CESA BUT.

3.4 Human Pose Datasets

There are multiple pose datasets covering the whole human body, human hand, or face,
but also animals or even anything as valid for Pose for Everything [71]. More conventional
datasets focused on the human body are discussed first. Then detail-centric datasets follow,
and other object datasets and specialties like Pose for Everything close the section.

Traditional accuracy and precision metrics used for evaluating the model’s performance can
be used in object detection task. Usually, the average precision (AP) and the average recall
(AR) are used with the popular variant of the mean average precision (mAP) as stated by
the authors of the COCO dataset [41].

For object detection, the tightness of the bounding box is used as a metric, represented by
the Intersection over Union (IoU) value. IoU =

Soverlap

Sunion
is a ratio of overlapping area over

merged area of the predicted and ground-truth bounding boxes. For keypoints localization,
the authors of the COCO dataset prescribe an Object Keypoint Similarity (OKS) metric
that mimics the IoU and is described in more detail in Section 3.4.2.
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(a) Multiple people scene. Taken from [62]. (b) Occluded scenery. Taken from [12].

Figure 3.2: Examples of dataset samples.

3.4.1 Keypoints

In computer vision and human pose estimation, keypoints are specific points on an object
or human body, such as joints and anatomical landmarks, defining shape and pose. De-
tailed pose estimation may include facial expressions or small bones in the hands and feet.
Keypoints are used in tasks such as pose estimation, object detection, and tracking.

Keypoints are detected and localized using deep learning models, particularly convolu-
tional neural networks (CNNs), trained on annotated datasets. These models are discussed
in Section 3.5.2. Understanding the semantic relationship between keypoints is crucial,
especially for multi-person pose estimation where the bounding boxes overlap, as shown
in Figure 3.2a. Keypoint detection faces challenges such as occlusions, varying lighting,
and complex backgrounds as shown in Figure 3.2b.

3.4.2 COCO

Published by Microsoft in 2014, the COCO dataset [40] introduced a novel approach to
object segmentation. The novelty is in annotating each instance, not just each class. The
COCO data set includes more than 200,000 labeled images, covering 80 object categories
and 500,000 instances, including the person class. For human keypoints localization, 250,000
person instances are labeled, generating 1.7 million keypoints. The example can be seen
in Figure 3.3.
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Figure 3.3: Example of keypoint localization labeled images from COCO dataset. Retrieved
from [41].

The keypoint task in the COCO dataset is defined as a joint task of object detection and
keypoint localization. The authors introduce a novel metric for this task while taking
inspiration from the traditional object detection metric. OKS is defined as follows:

OKS =

∑

i e





−d2i
2s2k2i



δ(vi>0)

∑

i δ (vi > 0)
, (3.2)

where di is the i-th Euclidean keypoint distance between the predicted and ground truth,
ki is the i-th keypoint specific weight, s is a scale of an object, and δ(vi) is the i-th keypoint
visibility flag.

In 2020, the DensePose task was added with a tight cooperation with Facebook Research
based on their DensePose model [26]. DensePose model is discussed in more detail in Sec-
tion 3.5.5.

3.4.3 MPII

MPII [2] is a dataset from Max Planck Institutes for Informatics and Intelligent Systems and
Stanford University introduced in 2014. The data source was 3, 913 YouTube videos after
filtering and manual query adjustments. The dataset consists of more than 40,000 images
of people in various situations. The authors state that MPII with 491 unique actions is
complementary to J-HMDB [33] which has 21 distinct actions (and almost 32,000 images).

In Figure 3.4 can be seen the upper body pose skeleton called armlets. In the middle is the
variant from Articulated Pose Estimation Using Discriminative Armlet Classifiers [13] and
on the right is the MPII proposed dataset armlets pose distribution.

The beneficial contribution of the MPII dataset can be seen from the more dispersed dis-
tribution of arms. In contrast, the original Armlets dataset shows an observable pattern of
arms concentrated down along the body as Andriluka et al. [2] point out. For that reason,
the MPII dataset is considered as a valuable contribution to pose estimation tasks.
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Figure 3.4: Upper body pose used in Armlets dataset [13] in the middle and with MPII
variant on the right. Retrieved from [2].

3.4.4 Human3.6M

Human3.6M [32] is a comprehensive benchmark dataset with more than 3.6 million captured
poses of actors performing various activities such as walking, sitting and sports. This
dataset is used for training and testing algorithms in human pose estimation and activity
recognition such MotionBERT 3.5.8, enabling the determination of 3D human poses from
single or multiple camera views.

The dataset includes extensive annotations with 3D and 2D coordinates for human joints,
recorded simultaneously from multiple camera angles, and enriched with high resolution 3D
marker data from a motion capture system. The system used is Vitus Smart LC3 which
is similar to Qualisys discussed in Section 3.3.1. This combination of synchronized video
and motion capture data supports multi-modal learning approaches, integrating visual cues
with precise 3D joint data.

3.4.5 AP-10K

AP-10K [73], released in 2021, is an animal pose dataset with 10,015 images that cover
23 animal families and 53 species, following COCO’s 17 keypoints format. Unlike species-
specific datasets, AP-10K adds the needed variance. The accuracy of the keypoint annota-
tions was manually checked. The authors benchmarked pose models on supervised learning,
cross-domain transfer from human to animal pose estimation, and domain generalization
for unseen animals.

The distribution reflects natural family occurrence, with 913 images for Felidae and 200 for
Procyonidae. Cross-domain transfer learning was less effective, probably due to differences
like clothing vs. fur, but interfamily generalization showed better results. The dataset
covers only a fraction of all families and species. See an example AP-10K labeled sample
in Figure 3.5.
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Figure 3.5: COCO style keypoints annotation on a labeled image of chimpanzee from AP-
10K dataset. Taken from [73].

3.5 Human Pose Models

According to LeCun, Bengio and Hinton [38], recent computer vision machine learning mod-
els use deep learning and are usually based on convolutional neural networks. Researchers
from Princeton University made a breakthrough with their idea of ImageNet [6]. Later in
2012, AlexNet won the ImageNet competition [37] and finally, in 2015, Microsoft dethroned
AlexNet with their ResNet [29]. State-of-the-art models for human pose estimation often
use ResNet as a backbone architecture and are discussed in Section 3.5.2.

3.5.1 Neural Networks in Computer Vision

Fundamentals and preliminaries for deep learning, machine learning oriented computer
vision, convolutional neural networks, and other relevant topics are discussed in various
sources such as the famous Deep Learning by Goodfellow et al. [16]. Only convolutional
neural networks are discussed, as they are used very often in at least backbone architectures
for human pose estimation models. More advanced aspects are mentioned by the examined
model later.

Convolutional Neural Networks (from now on CNNs) are a class of deep neural networks
specifically designed to process structured grid data, such as images. Originating from the
field of computer vision, CNNs have become the core of most image and video recognition
tasks due to their ability to learn spatial hierarchies of features from input images. Other
positives of CNNs are their robustness to translation and distortion of input images and
their scalability to large datasets. The well-known CNN architectures are AlexNet, VGG,
ResNet, or Inception.

CNNs are composed of multiple layers that perform operations on the input data to extract
relevant features. These layers typically include convolutional layers, pooling layers, and
fully connected layers. The convolutional layers apply a set of kernels (learnable filters)
across the input image, performing element-wise convolution (multiplications and sum-
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ming the results) to produce feature maps. These feature maps capture various aspects
of the input image, such as edges, textures, and patterns, at different abstraction levels.
By stacking multiple convolutional layers, CNNs learn increasingly complex and abstract
representations of input data.

Pooling layers, often following convolutional layers, perform down-sampling operations to
reduce the spatial dimensions of feature maps, reducing computational load and controlling
overfitting. Common pooling operations include max pooling, which selects the maximum
value within a pooling window, and average pooling, which computes the average value
within the window. There also exist unpooling and upsampling methods such as dense
upsampling convolution presented by Wang et al. [68].

Fully connected layers, typically towards the end of the CNN architecture, act as classifiers.
They take the high-level features extracted by the convolutional and pooling layers and use
them to produce class scores, which predict the class labels of the input images.

CNNs are trained using backpropagation, where model parameters (filters and weights) are
updated to minimize a loss function, typically using gradient descent-based optimization al-
gorithms. During training, CNNs adjust their filters to detect important features indicative
of target classes, effectively learning to recognize patterns in the data.

3.5.2 Human Pose Models

In researching existing solutions, multiple state-of-the-art models and datasets were exam-
ined, including Ultralytics’ Yolov8, OpenMMLab’s MMPose, and Facebook’s Detectron2.
These models cover not only human full-body poses but also detailed face, hand, animal
poses, and large groups.

Recent models predict keypoint spatial coordinates using deep learning, often with CNNs
or transformers. Earlier approaches, like Felzenszwalb and Huttenlocher’s 2004 Pictorial
Structures for Object Recognition [11], used statistical methods to model poses as skele-
tons from rectangles, predicting object configurations through probabilistic models. Before
discussing specific models, the next section covers metrics for evaluating pose estimation
models.

3.5.3 Model Evaluation Metrics

Percentage of correct keypoints (PCK) is an accuracy metric to measure the deviation
of predicted keypoint and the ground truth. It is described by OECD.AI7. Usually, threshold
variables are used, such as PCKh@0.5 (threshold = 50% of the head bone link8) or PCK@0.2
(distance d between the predicted and the true joint coordinates d < 0.2× torso diameter).
Sometimes, it can be fixed 150 mm distance.

Average Precision or Mean Average Precision represents the area under curve (AUC) of
precision and recall. Furthermore, Mean Average Precision (mAP) is a mean of APs
of each class. For human pose estimation, average precision is measured over OKS metric
defines in Equation 3.2.

7https://oecd.ai/en/catalogue/metrics/percentage-of-correct-keypoints-%28pck%29
8Depending on the dataset, the head bone link is distance from top of the head to the neck or some

similar distance.
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Figure 3.6: Inference latency to average precision comparison of RTMPose and a numerous
of related works. Full circles represent performance using ONNX runtime on the CPU,
void circles represent performance using TensorRT on the GPU. It can be observed that
RTMPose should reach higher precision with lower inference latency for both CPU and
GPU cases in comparison to almost any other example. Please notice the log2 inference
latency axis.

3.5.4 RTMPose

RTMPose [35] is a recent work from 2023 by Tao et al. from the Shanghai AI Laboratory
research institute. RTMPose is built on the MMPose framework9 and solves the task of
multi-person pose estimation. RTMPose has been designed to balance performance and
computational efficiency. It was tested on mobile chipset and it promises production-ready
real-time performance even on edge devices such as smartphones. The inference latency to
the average precision graph can be seen in Figure 3.6.

RTMPose is built on the MMPose framework and incorporates several unique aspects to en-
hance its performance. The input to RTMPose consists of images, a directory with images,
or video frames. The detection model takes square input. This rectangular detection with
a vertical 4:3 aspect ratio emphasizes the dimensions of natural human pose. The model
requires standard preprocessing steps, including normalization and resizing, to prepare the
data for inference. The output of RTMPose includes the coordinates of keypoints for each
detected person for each image or frame.

RTMPose has been trained on several prominent datasets, including COCO and COCO-
WholeBody. Data augmentation techniques using Cutout [7] are used during training to
improve the model’s ability to generalize to new data. Post-processing steps include key-
point refinement to enhance the final output.

In Figure 3.7 is shown RTMPose architecture emphasizing changes to previous architec-
tures. RTMPose employs CSPNeXt (CNN-based neural network, lighter than ResNet50)

9https://github.com/open-mmlab/mmpose/tree/main/projects/rtmpose
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Figure 3.7: High-level architecture pf RTMPose model. The 2D heatmap observable in the
middle of the architecture pipeline represents probability distributions predicted over each
keypoint to achieve label smoothing. Retrieved from [35], edited by redrawing right side of
scheme in higher quality.

in various sizes as its backbone. The detection model to find bounding boxes is Faster-
RCNN, YOLOv3, PicoDet, or RTMDet.

A significant improvement in RTMPose is the integration of SimCC [39] into the keypoint
head component. SimCC directly predicts the x and y coordinates of keypoints. The image
space is divided into discrete bins and the model predicts the probability that each bin con-
tains the keypoint. Although pixels are put in discrete bins, there are multiple bins per pixel
and thus sub-pixel precision is reached. This approach improves the accuracy and efficiency
of the model by providing a more straightforward method for keypoint localization.

On the side of RTMPose model integration in MMPose framework, the specification is
described in MMPose documentation10. Experiments with the RTMPose model in various
scenarios in the context of strength sports are described in Section 5.3.3.

3.5.5 DensePose

DensePose, introduced by Güler et al. [26] from Facebook AI Research in 2018, is built on
Detectron and Mask-RCNN. Later it was integrated into the Detectron2 framework [70].

DensePose predicts a surface-based representation of the human pose using textures rather
than keypoints. It handles real-world scenarios including street, nature, and sports ac-
tivities, for both single and multi-person settings. DensePose was introduced along with
a novel specific COCO dataset DensePose task discussed in Section 3.4.2. This model spe-
cializes on predicting surface-based representation of the human pose. Applications include
augmented reality and semantic 3D object representation.

The DensePose architecture is based on CNNs, originating from DenseReg and Mask-
RCNN. The baseline solution, DensePose-RCNN which can be seen in Figure 3.8 has similar
architecture as Mask-RCNN.

DensePose uses distillation-based ground-truth interpolation, learning full density predic-
tion from sparse annotations (100-150 points). This allows the loss function to cover every
pixel in dense pose estimation.

10https://mmpose.readthedocs.io/en/latest/model_zoo/wholebody_2d_keypoint.html
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Figure 3.8: Base architecture of DensePose-RCNN without cross-cascading and teacher
modules. The patch is used in the transfer learning for inpainting the predicted dense pose
into the original image. The U and V coordinates are x and y axis values respectively for
the fragment surface position. MaskRCNN has output as class labels, bounding box offsets,
and object masks. Scheme edited from [26].

No other models are benchmarked with DensePose on Papers with Code. Güler et al. [26]
showed DensePose outperforming SMPLify. Parsing R-CNN [72], surpassed DensePose-
RCNN in the COCO 2018 DensePose Challenge (AP 64 vs. 56, AP75 75 vs. 64)11. Despite
this, DensePose won in AP75 and API metrics in the ECCV 2018 PoseTrack DensePose
Challenge12.

3.5.6 AlphaPose

AlphaPose [8], was developed by Fang et al. at Shanghai Jiao Tong University in 2022. The
paper is an extension and enhancement of the preliminary work originally published in 2016,
with the latest version [9] from 2018. The model is designed for whole-body multi-person
pose estimation and tracking in real-time.

Along with the model, authors published also a new wholebody dataset named Halpe. Halpe
data samples consist of 136 keypoints and cover the basic pose with detailed keypoints for
the hand and facial. The keypoint labels can be seen in Figure 3.9. Halpe is used also for
specialized face or hand-focused models such as RTMPose variant for hand.

11https://competitions.codalab.org/competitions/19636#results
12https://competitions.codalab.org/competitions/19650#results
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Figure 3.9: Format of annotations in Halpe dataset. On the left are 26 keypoints for body,
on the top right are 68 facial keypoints and on the bottom right is annotated hand with 42
keypoints.

AlphaPose uses a top-down approach, detecting human bounding boxes and then estimating
poses within each box. It integrates Symmetric Integral Keypoint Regression (SIKR) for
fast keypoint localization, Parametric Pose Non-Maximum-Suppression (P-NMS) to remove
redundant detections and Pose Aware Identity Embedding for tracking.

AlphaPose employs advanced methods such as Part-Guided Proposal Generator (PGPG)
and multi-domain knowledge distillation to improve training accuracy. Its pipeline modules
as shown in Figure 3.10 communicate via FIFO queues, enabling parallel computation for
real-time performance.

AlphaPose ensures high detection recall by lowering detection confidence thresholds and
applying Parametric Pose Non-Maximum-Suppression (P-NMS). The model’s performance
depends on the accuracy of the initial detection stage, as errors here affect subsequent
pose estimation. It is available as an open-source model and dataset13. Experiments with
AlphaPose in strength sports scenarios are described in Appendix F.

Figure 3.10: AlphaPose pipeline shown via multiple modules. Modules communicate with
each other via FIFO queues, allowing efficient parallel computation and real-time applica-
tion. Dashed components are optional. Retrieved from [8].

13https://github.com/MVIG-SJTU/AlphaPose/
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Figure 3.11: Pose Anything model pairs of support and query images. Support image
consists of the image itself and the skeleton. The query image has already a predicted
skeleton overlayed.

Figure 3.12: The architecture origins from CapeFormer model, replacing Resnet-50 to
SwinV2-T and removing positional encoding. Furthermore, the authors replaced the original
transformer decoder with their own novel Graph Transformer Decoder. Scheme retrieved
from [31].

3.5.7 Pose Anything

Pose Anything: A Graph-Based Approach for Category-Agnostic Pose Estimation [31] from
2023 is a recent research introducing Graph Transformer Decoder as a novel method to use
keypoints as graph data to predict the custom keypoint structure for any possible object.
The example of inputs and outputs is shown in Figure 3.11. The high-level architecture of
the Pose Anything model can be seen in Figure 3.12.

3.5.8 MotionBERT

Besides traditional 2D pose estimation, there is also 3D pose estimation, which can be done
on monocular input or multiple angles input. For purposes of usage on a single mobile
device, the monocular 3D pose estimation is more relevant. One of the best performing
monocular 3D pose estimation models is MotionBERT [75]. According to the ranking14

MotionBERT is the best performing model. Based on a multiview ranking15 monocular
MotionBERT is the second best and has transposed several multiview models16.

14https://paperswithcode.com/sota/monocular-3d-human-pose-estimation-on-human3
15https://paperswithcode.com/sota/3d-human-pose-estimation-on-human36m
16Leaderbord was sorted by Mean Per Joint Position Error (MPJPE) metric.
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Figure 3.13: The process of learning the token representation of the pose. The codebook
magnitude (between 256 and 2048) is large enough to cover sufficiently every possible pose.
Retrieved from [12].

MotionBERT employs a dual-stage approach: unified pre-training followed by task-specific
fine-tuning. Initially, a motion encoder is trained for the 2D-to-3D lifting task using
DSTformer, which integrates spatial and temporal blocks with Multi-Head Self-Attention
(MHSA). Spatial MHSA (S-MHSA) focuses on relationships among joints within the same
time step, while Temporal MHSA (T-MHSA) models relationships across time steps. After
pre-training, the encoder undergoes fine-tuning for tasks like 3D pose estimation, using 2D
skeleton sequences. Experiments with MotionBERT using the MMPose framework are in
Section 7.2.1.

3.5.9 Human Pose as Compositional Tokens

Geng et al. introduced a novel method to address the issue of occluded scenes with their
publication Human Pose as Compositional Tokens (PCT) [12].

Human pose models using coordinate vectors or heatmap embeddings struggle with oc-
clusions, reducing precision for non-visible joints. The PCT model improves accuracy in
occluded environments by representing poses as compositional tokens, addressing the issue
of independently treated body joints.

PCT uses a compositional encoder to map poses into discrete tokens, each representing
interdependent joints, reducing reconstruction errors and improving efficiency. The pose
is described as M discrete tokens, each indexing a codebook entry for various joint con-
figurations. These tokens are then decoded back into the skeletal representation without
additional post-processing as briefly outlined in Figure 3.13.

The PCT method, developed using COCO and MPII datasets, was also evaluated on oc-
cluded image datasets such as CrowdPose, OCHuman, and SyncOCC. Training involves
joint learning of the encoder, codebook, and decoder to minimize reconstruction errors and
optimize pose data representation. PCT casts pose estimation as a classification prob-
lem, predicting poses through token classification, supported by a learning algorithm that
minimizes reconstruction loss and quantization error.

PCT excels in predicting human poses under various conditions, especially occlusions,
demonstrating a high generalization across datasets. It outperformed models such as HR-
Net, UDP, and ViTPose in occluded tasks with the AP metric and in MPII using PCKh@0.5.
In the COCO dataset, PCT matched accuracy with faster inference speed for the largest
model (Swin-Huge backbone) and surpassed others with the smallest variant (Swin-Base
backbone).
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Chapter 4

Mobile Development and
Server-Client Architecture

This chapter focuses on the fundamentals of mobile development and server-client architec-
ture, as numerous mobile apps interact with servers through APIs, which plays a crucial
role in the entire process. The general approaches and methodologies used in mobile de-
velopment are discussed. Important aspects of a mobile development cover user interface,
storage and databases on mobile platforms, networking and connectivity, and others like
performance or accessibility. In the second part of this chapter, computer vision on edge de-
vices, such as a smartphone is examined. The model compression and optimization methods
are presented at the end of the chapter.

4.1 Fundamentals of Mobile Application Development

Mobile Applications [52] by Randhawa is a recent book published in 2022 discussing various
mobile development aspects. All mobile applications address certain usage needs and thus
must solve similar issues like granting permissions, storing data, calling API calls to the
Internet, responsiveness, etc. Relevant topics are discussed in this section, more complex
or various areas have a dedicated subsection for better clarity.

General aspects of mobile development, common with other software, are discussed in the
first chapter [52]. Broad problem statements, often epics, need clarification. These epics or
user stories, too large for a sprint, define the product from user roles’ perspectives. Each
user story has acceptance criteria in Gherkin’s Given-When-Then (GWT) syntax for test
automation. In GUI-driven applications, user stories and criteria can be supplemented with
wireframes, screen mockups, or storyboards. Wireframes follow user stories, but UX design
is completed before development. An MVP (Minimal Viable Product) comes from user
stories, acceptance criteria, and wireframes.

On the requirements side, it can be distinguished between two basic categories: functional
and nonfunctional requirements. Functional requirements can be defined, for example,
as user stories and UML Use Case Diagrams. Non-functional requirements examples are
various software quality attributes, speed, or other performance metrics, etc. Their impact
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on software architecture and design is significant and must be studied in the very beginning
of the project.

The goal of software development is customer satisfaction. Acceptance Test Driven Devel-
opment (ATDD) is effective, involving initially failing tests and developing code until they
pass. Behavior-Driven Development (BDD), ideal for GUI apps, ensures that tests define
features from the user’s view. Tools like Gherkin in BDD help create business language
tests linked to technical implementation, leading to focused refactoring.

Integration challenges occur when later combined modules are developed independently.
Frequent code submissions, builds, and regression testing can mitigate these issues. How-
ever, resource-intensive automation streamlines the process, allowing developers to focus
on regular code check-ins and simplifying integration and error detection. These practices,
aimed at maintainability, integration, and delivery, are also useful for single-person projects.

4.1.1 User Interface and Experience

As Randhawa [52] noted, mobile apps generally include a GUI, data storage, and network
connectivity. This section combines UI and UX concepts, addresses limitations like small
screens and touch capabilities, and introduces mobile-specific UI controls.

Smartphone GUI frameworks offer a rich array of UI objects for easy integration. In An-
droid, UI elements come from the View class in the android.view package and are displayed
on a Activity from the android.app package. The android.widget package provides a
wide range of GUI objects, enhanced by updates. Developers arrange these elements us-
ing layouts such as constraint, relative, linear, and grid, all descendants of ViewGroup,
which aggregates multiple View objects. Complex interfaces can be created with nested
ViewGroups. User interactions trigger events handled by listeners in the View. Navigation
between Activities is managed by Intent objects.

Android UI can be designed with two different approaches: XML layouts or Jetpack Com-
pose. According to the documentation [20], Jetpack Compose is now the recommended
way to implement the Android user interface. However, since XML layouts have a huge
legacy foundation, and it is always important to understand the history and context of
frameworks, the outline of XML layouts follows.

Android XML layout documentation [21] describes XML layouts as essential for UI cre-
ation, defining objects, and organizing Views. The XML layout files in res/layout de-
scribe the GUI structure. ViewGroup subclasses like LinearLayout, RelativeLayout,
and ConstraintLayout offer flexible positioning. findViewById() references Views us-
ing unique IDs (@+id/name) or Android resource IDs (@android:id/name). The layout
system supports various screen sizes and densities, ensuring compatibility. Tools like
AutoCompleteTextView, DatePicker, and TimePicker enhance user interaction, ensur-
ing consistent UX. An example of XML layout is shown in Listing 1, with the final UI in
Figure 4.1.

Jetpack Compose, announced in 2019, is now recommended for the development of Android
user interface. Like Swift and React Native, it is fully declarative, meaning the UI is written
in Kotlin and components are structured in modules, composed into larger components. An
example is shown in Listing 2, with the final UI viewable in the Android Studio Compose
Preview tool, and the result in Figure 4.2.
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Listing 1 Example of XML layout definition. Retrieved from [21].
<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical" >

<TextView android:id="@+id/text"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a TextView" />

<Button android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a Button" />

</LinearLayout>

Figure 4.1: Rendered UI from XML layout Listing 1

It is important to understand that the XML layout in Android development serves solely
as a declaration of the UI widget hierarchy (tree). The XML file defines the structure
and relationships between UI components, but does not handle instantiation or event han-
dling. For instance, to create instances of these UI components, assign onClick or other
on<Event> handlers, and manage additional behaviors, you must use a custom View class.
This separation ensures that the XML layout remains a pure definition of the UI structure,
while the View class contains the logic and behavior associated with those UI elements.

In contrast, Jetpack Compose offers a different approach by allowing the integration of
UI declarations and event handlers within the same file, or even inline using anonymous
functions. This means that both the UI structure and its behavior can be defined in
one place. However, this approach shifts the responsibility of maintaining proper code
separation to the developer. It is up to the developer to ensure that the code remains
organized and manageable, adhering to the best practices for the separation of concerns.

4.1.2 Storing Data

This section explores the various methodologies and technologies for data storage in mobile
applications and the specific options on Android devices. Different storage options such as
local storage and cache, cloud storage, and database systems such as the SQLite database
are covered. The focus is on their applicability for diverse data types (data blobs, images)
and application needs.

As Randhawa states [52], smartphones, despite having less disk capacity, offer various
storage options. Data can be stored remotely, though it requires network connectivity. Local
storage is possible via the file system using familiar APIs. Android uses SharedPreferences

for key-value pairs, similar to Windows’ registry. It also includes SQLite for structured data,
with support for third-party SQL or NoSQL databases after installation.

29



Listing 2 Example of Jetpack Compose UI declaration. Retrieved from [20], edited to
show the Android Studio Compose Preview tool.
@Preview

@Composable

fun NamePicker(

header: String="Colleagues",

names: List<String> = listOf("Petr", "Martin"),

onNameClicked: (String) -> Unit = {}

) {

Column {

Text(header, style = MaterialTheme.typography.bodyLarge)

Divider()

LazyColumn {

items(names) { name ->

NamePickerItem(name, onNameClicked)

}

}

}

}

@Composable

private fun NamePickerItem(name: String, onClicked: (String) -> Unit) {

Text(name, Modifier.clickable(onClick = { onClicked(name) }))

}

Figure 4.2: Rendered UI from Jetpack Compose Listing 2

Android’s SharedPreferences stores small collections of key-value pairs. Access it via
getPreferences() for single files or getSharedPreferences() for multiple files. Use
methods like putString() and save with apply() or commit(). SharedPreferences files
can be private or shared, and changes are in-memory with apply() or saved to disk with
commit(). It supports basic data types and complex structures such as strings, requiring se-
rialization for non-basic types. SharedPreferencesChangeListener detects modifications.
An example of saving a URL is in Listing 3.

External storage is accessed via the getExternalFilesDir() function, and shared storage
then via the getExternalStoragePublicDirectory() function. Internal storage is private,
but limited. User permissions for external storage are required and can be granted statically
in the Manifest or dynamically at runtime. The Context for creating objects is obtained
through various methods. Use Android’s FileProvider for secure file sharing. Examples are
shown in Listings 4 and 5.

Database systems improve data management over file systems with efficient structures and
finer data access. Types include RDBMS (Oracle, SQLServer), ODBMS1 (ObjectStore,

1ODBMS = Object database management system
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Listing 3 Example of process of saving preferences. Retrieved from [52]. The common
practice of using et as an abbreviation for edit text can be seen.

SharedPreferences settings = getSharedPreferences("ProgramSettings", 0);

SharedPreferences.Editor editor = settings.edit();

String url = ((EditText) fndViewById(R.id.etURL)).getText().toString();

editor.putString("URL", url);

editor.commit();

Listing 4 Example of definition of content provider in the Android Manifest file. Retrieved
from [52], updated android:name to the most recent package.

<provider

android:name="androidx.core.content.FileProvider"

android:authorities="${applicationId}.fileprovider"

android:exported="false"

android:grantUriPermissions="true">

<meta-data

android:name="android.support.FILE_PROVIDER_PATHS"

android:resource="@xml/file_paths" />

</provider>

Gemstone), and ERDBMS2 (UniSQL). RDBMS uses SQL for tables, ODBMS stores ob-
jects in collections, and ERDBMS combines both for 3D object storage. SQLite, com-
mon on smartphones, supports relational models with SQL, handling data in tables. The
SQLiteDatabase class in Android provides database operations, supporting types like null,
integer, real, text, and blob. SQLiteDatabase class shows database and table creation,
ACID compliance, and role/permission management.

The Data Access Object (DAO) pattern is utilized to abstract and encapsulate all interac-
tions with the database, providing a clear and consistent API for data access. This pattern
is implemented effectively using, for example, the Room persistence library, which serves as
an abstraction layer over SQLite. Room simplifies database access in Android applications
by providing a set of annotations to define SQL queries and database operations. The DAO
pattern is central to Room’s architecture, ensuring a separation between the application’s
data layer and the business logic.

In Room, a DAO is an interface or abstract class annotated with @Dao, which includes meth-
ods that interact with the database. These methods are annotated with special annotations
such as @Insert, @Update, @Delete, and @Query to map them to SQL operations. This
approach allows Room to generate the necessary code for these operations at compile-time,
ensuring type safety and reducing boilerplate code.

The use of DAOs with Room offers several features, such as compiling-time verification of
SQL queries, the guarantee of type safety by matching the parameter of the method and
the return types with the database schema, or the integration with the lifecycle components
of Android, such as ViewModel and LiveData.

2ERDBMS = Extended relational database management system
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Listing 5 Example of usage of content provider in Java language. Retrieved from [52].
Uri photoURI = FileProvider.getUriForFile(

this,

"com.example.photogallery.fleprovider",

photoFile

);

Listing 6 Example of GET request with OkHttp library. Retrieved from [60].
OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {

Request request = new Request.Builder()

.url(url)

.build();

try (Response response = client.newCall(request).execute()) {

return response.body().string();

}

}

4.1.3 Network Communication and API Integration

The essentials of network communication in mobile applications, include the use of APIs
for data exchange between the app and remote servers. Topics such as RESTful services,
data parsing, and handling asynchronous network calls are explored. Security aspects such
as encryption and secure data transmission are addressed in Subsection 4.1.4.

Per Mobile Applications [52], smartphone networking includes cellular, WiFi, Bluetooth,
and NFC interfaces. Communication is similar to other devices, starting with a DNS query
via UDP, followed by a TCP three-way handshake to establish a connection. HTTP requests
and responses are exchanged, ending with a FIN packet exchange. UDP is for small, best-
effort data exchanges like DNS, while TCP ensures reliable, ordered delivery for HTTP
traffic. HTTP supports methods like GET, POST, PUT, and DELETE, with responses
including status codes, headers, and a message body.

Android platform provides APIs such as java.net.InetAddress for domain name resolu-
tion and java.net.HttpUrlConnection for web server communication, supporting GET
and POST requests. HttpUrlConnection handles tasks like uploading images or retrieving
data, while MultipartEntity transfers larger files. Web servers use cookies to maintain
state and identify returning users. Android also provides abstraction libraries for network
communication.

Although HttpUrlConnection is sufficient for communication and data transfer between
servers and mobile clients, developers are required to write a lot of code. Thus, various
libraries with higher level of abstraction were developed, such as OkHttp [60], Volley [18],
or Retrofit [61]. These advanced libraries provide more advanced features such as secure
connection protocols (HTTPS, TLS) with certificate handling, data dispatching, event lis-
teners, scheduling requests, or even caching options. Example GET request using libraries
OkHttp, Volley, and Retrofit can be seen in Listings 6, 7, and 8 respectively.
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Listing 7 Example of GET request with Volley library. Retrieved from [18].
RequestQueue queue = Volley.newRequestQueue(this);

String url = "https://www.google.com";

StringRequest stringRequest = new StringRequest(Request.Method.GET, url,

new Response.Listener<String>() {

@Override

public void onResponse(String response) {

textView.setText("Response is: " + response.substring(0,500));

}

}, new Response.ErrorListener() {

@Override

public void onErrorResponse(VolleyError error) {

textView.setText("That didn't work!");

}

});

queue.add(stringRequest);

Listing 8 Example of GET request with Retrofit library. Retrieved from [61].
public interface GitHubService {

@GET("users/{user}/repos")

Call<List<Repo>> listRepos(@Path("user") String user);

}

Retrofit retrofit = new Retrofit.Builder()

.baseUrl("https://api.github.com/")

.build();

GitHubService service = retrofit.create(GitHubService.class);

Call<List<Repo>> repos = service.listRepos("octocat");

4.1.4 Additional subjects: Security, Accessibility, and Performance

This section examines security and privacy in the development of mobile applications, fo-
cusing on data encryption, authentication, and compliance with privacy laws. Accessibility
for disabled users and the performance of the application are also discussed, with more
information on performance in Section 4.2.

The security of Android devices, well studied since the rise of smartphones, shows that data
protection is user-centered but often inconvenient.

Zaidi et al. [10] in 2016 identified threats such as insufficient API management leading to
security breaches. They created a comprehensive hierarchical structure of possible threats
shown in Fig 1 in Android Security publication [10]. In 2012, defenses against physical
threats were considered inadequate, with suggestions for improving lock screen systems
to increase security and user confidence. High-privilege APIs are targets for attacks, and
wireless networks are vulnerable to data interception. Encrypting communications can
secure Wi-Fi, Bluetooth, cellular, and GPS data. User awareness is key, as malicious apps
can disguise themselves. Backdoors exploit system bugs and insufficient authentication,
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Figure 4.3: Example of non-compliant and compliant solution for accessibility actions. It
is advised to not implement action available solely via gestures or a single type of action.
The right side shows the design where the button serves as the accessibility action option.

while viruses and worms spread through untrusted sources. Malware, posing as legitimate
applications, threatens data security.

Some threats are prevented by Android security patches, but new hazards regularly emerge.
Mayrhofer et al. [44] examine the Android security model in the AOSP. Android requires
explicit user consent for security or privacy actions and includes a global user base and
diverse devices from many OEMs. Google-certified devices undergo firmware checks; AOSP-
based devices do not. The Compatibility Test Suite (CTS) ensures app compatibility, and
apps can be developed in any language but must use Java APIs, necessitating runtime
security checks.

Mobile devices face unique threats due to portability, frequent connections to untrusted
networks, and access to privacy-sensitive data. A layered threat model categorizes risks
by adversary capability. One major threat category is untrusted code, which Android
allows with user consent. This leads to potential attacks like abusing OS or app APIs,
executing untrusted web code without consent, mimicking system interfaces to trick users,
reading content from other apps or the system, injecting input events into other apps,
and exploiting OS bugs. Hardware-level attacks are becoming more popular, necessitating
additional defenses, though often with performance trade-offs. Mayrhofer et al. warn that
inexperienced developers can unintentionally introduce security issues, emphasizing the
need for security awareness.

Inclusive design incorporates features for various user needs, including those with disabil-
ities, and should be considered from the start. The WHO reports that 16% of the global
population is disabled [69], and only 20% of them are sport-active [1], amounting to 3.2%
of the world’s population. Comparatively, 22% of non-disabled people are sport-active [25],
leading to 18.5% of the population. Thus, 15% of sport-active people are disabled, high-
lighting the importance of accessibility in mobile sports apps.

The Android platform supports users with various disabilities with several recommenda-
tions [19]: use scalable pixels (sp) for adjustable fonts, avoid small fonts (below 12 sp), and
maintain a text-background contrast ratio of at least 1:4.5. Android provides guides for
accessible design and implementation of color, sound and audio, with the Material3 design
system emphasizing an accessible-compliant color system.

Figure 4.3 shows an interface with gesture actions that lack alternative actions for accessibil-
ity and a suitable solution. Figure 4.4a shows low contrast that does not meet the 1:3 ratio
for large texts, while Figure 4.4b meets the ratio, which makes button colors appropriate.
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(a) Low contrast ratio. (b) Proper contrast ratio.

Figure 4.4: Examples of sufficient and not sufficient contrast ratios. Retrieved from [17].

Ajayi et al. [47] emphasize that the performance of mobile apps is crucial to user satisfaction.
Though average use cases do not require deep optimization, performance metrics like app
load time, memory, CPU, battery, and network usage are vital, especially for non-native
frameworks, which can be inherently non-optimal. Web-based apps, for example, can have
start times up to 20 times slower.

Android documentation [22] highlights key performance issues:

• Scroll Jank: Visual stutters during scrolling due to slow content rendering. Aim for
at least 90Hz refresh rates.

• Startup Latency: Delay from app launch to content display. Cold starts should be
under 500ms, with analysis on the 95th and 99th percentiles. Warm starts should be
faster. Avoid lengthy IPCs and unnecessary I/O to improve startup time.

• Power Inefficiency: Battery drain due to excessive memory allocations. Modern ART
optimizes this, but excessive allocations, especially in loops, can hinder performance.
Balance maintainability and resource efficiency.

Android Studio’s profiling tools measure CPU and memory usage, with more complex met-
rics available through the Microbenchmark and Macrobenchmark libraries. Figures 4.5
and 4.6 show profiling session examples and frame-tracing benchmark analysis. Mac-
robenchmark tests larger use cases and demanding UI tasks, while Microbenchmark is
for lighter tasks or smaller code blocks.

4.2 Computer Vision on Edge Devices

This section explains the topic of computer vision models in resource-constrained environ-
ments for optimal performance. Edge computing shifts processing from centralized servers
to local devices, such as smartphones, offering reduced network reliance, lower latency, and
improved privacy by processing data locally.
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Figure 4.5: Profiling session in Android Studio. Red dots are touch interactions of the user.
The rise in CPU usage can be seen in the events of user interaction.

(a) Highlighted frame rendering took a
bit longer than for other frames, but still
fitted in the 16.7 ms maximum window,
so it is not considered as an issue.

(b) Rendering took too long and ex-
ceeded the maximum of 16.7 ms, this is
an example of a janky frame that occur
for example in the janky scrolling issue.

Figure 4.6: Visualizations of frame tracing from Macrobenchmark profiling. The 16.7 ms
interval mentioned as the maximum rendering window equals the very minimal 60 Hz refresh
rate. To achieve the recommended refresh rate of 90 Hz, it must be 11.1 ms. Both images
were retrieved from [22], cropped.

Key considerations include hardware and software requirements, power consumption, la-
tency, maintenance, and the need for continuous learning. It also focuses on fine-tuning and
optimizing models for edge deployment, ensuring that they are lightweight and fast. Tech-
niques such as model pruning, quantization, and knowledge distillation to reduce model
size and complexity are explored in Section 4.2.1.

Rohith, Ajeet Sunil, and Mohana [53] predict 50% of industrial data will be processed
by edge computing by 2022, with over 75.4 billion IoT devices by 2025. Edge computing
reduces latency and ensures privacy, with 4.5 billion edge devices already in use for real-time
processing.

Sinha’s 2023 prognosis [58] forecasts 22.2 billion IoT devices by 2025 and 29.7 billion by
2027, showing continued exponential growth. Edge computing processes data close to the
source, enhancing real-time performance and reducing bandwidth and storage needs, opti-
mizing mobile computing for local data.

Key features of edge computing include ultra-low latency, beneficial for immediate data
processing in applications like industrial IoT and self-driving cars. Processing data at the
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(a) Scheme of the system designed by
Jiang et al. [34].

(b) Example output of the system designed by
Jiang et al. [34].

Figure 4.7: Computer Vision and Text Recognition for Assisting Visually Impaired People
using Android Smartphone by Jiang et al. [34].

edge minimizes delays, enhancing response times. Edge computing also offers larger band-
width by managing data locally, reducing the need for continuous cloud transfers, which
is crucial for data-heavy IoT technologies. Additionally, it improves privacy, security, and
cost-effectiveness by decentralizing data processing, adhering to data sovereignty standards,
and reducing data traffic costs. Edge devices in IoT include:

• IoT gates: Handle device security, data processing, and transmit crucial information
to the cloud.

• Edge sensors: Send signals when necessary, reducing unnecessary cloud data traffic.

• Routers: Transfer data packets and may have computing capabilities for edge appli-
cations.

In their research, Gupta et al. [27] highlight the utility of smartphones as edge devices,
exemplified by their use in agricultural machinery health monitoring. Their study demon-
strates how smartphones can detect noise around an oil filter to assess its condition as
depicted in Figure 3 [27].

A natural use of a smartphone as an edge device in computer vision is basic camera use.
Jiang et al. [34] discuss complex computer vision applications, such as helping visually
impaired people navigate their environment using enhanced photo capture, OCR, and TTS.
Their system uses the smartphone’s camera to find signs or tables, detects text, and uses
OCR to convert it to speech with TTS. The result is shown in Figure 4.7b.

Running OCR on edge devices requires significant hardware resources. For example, the
TensorFlow Lite OCR model based on the Keras CRNN architecture combines RNN and
DCNN layers. The CRNN, presented in 2015 [56], optimized the RNNs for a smaller model
size of 8.3 million parameters, using approximately 33 MB of RAM.

4.2.1 Model Compression for Android devices

In deploying machine learning models on Android devices, model compression is necessary
along with the transformation to the appropriate back-end. Although not used in Chapter 5
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and 6, it is relevant for future development 7.9 and experiments with human pose estimation
on mobile devices. Such experiments are described in Section 7.4.

Model compression techniques such as pruning, distillation, and knowledge transfer enhance
the performance and feasibility of complex models on Android and edge devices. Pruning,
as described in [45], reduces the size of the model by removing less significant neurons or
weights, making it more lightweight without a major loss of precision. This is vital for the
efficiency of Android devices.

Pruning neural networks dates back to the early 1990s, using second-order Taylor expan-
sion to select parameters for deletion, improving generalization. However, it can be more
memory and computationally demanding than standard fine-tuning because of the partial
or complete solution of the Hessian matrix.

A recent method for CNNs is structured pruning by Anwar et al. [3], which uses a particle
filtering approach. Naive pruning, which zeros near-zero values, reduces the size of the
model but is unsuitable for parallel computing and hardware-optimized algorithms. Sparse
representation schemes can address this, but introduce computational overhead. Anwar et
al. propose structured pruning to solve this issue; vivid illustration can be found in their
paper.

Molchanov et al. present a Taylor expansion-based criterion for pruning, optimizing by find-
ing parameters with near-flat gradients, indicating low significance in convolutional layers.
Their iterative method allows fine-tuning and re-evaluation, achieving a 200% speedup with
only a 2% accuracy loss.

Molchanov et al. [45] discuss other methods such as combining parameters with correlated
weights, reducing precision, and tensor decomposition. These require separate training or
fine-tuning but can offer additional speedups when combined with their proposed method.
Knowledge Transfer, or Transfer Learning, as discovered by Pan and Yang [48], involves
transferring information from one model to another. This broad category of optimizations
includes many specialized methods, such as knowledge distillation.

Hinton et al. [30] introduce knowledge distillation as the process of transferring knowledge
from a larger, more complex model (teacher) to a smaller, more efficient model (student).
It allows the distilled model to perform similarly to the larger model, but with less compu-
tational demand. They considered softmax the last output layer with temperature T :

qi =
exp(zi/T )

∑

j exp(zj/T )
(4.1)

The higher the T , the softer the output and vice versa. The initial value also used for
inference is T = 1. By softening the output or softening the probability, the model is meant
to be less certain about the output.

Knowledge distillation trains a smaller model using outputs from a larger model at a high
softmax temperature. The distilled model learns from both the soft target distribution and
the correct labels, using a weighted average of cross-entropy with soft targets and correct
labels at T = 1, typically giving lower weight to the latter. Scale the soft target gradients
by 1

T 2 and multiply by T 2 to balance the contributions. In Automatic Speech Recognition,
a distilled model can match the accuracy of an ensemble of 10 models.

Modern model quantization approaches are discussed by Nagel et al. [46]. Model quan-
tization reduces the computational complexity and memory footprint of machine learning
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models, making them more efficient for resource-constrained devices like smartphones, em-
bedded systems, and edge devices. It converts model parameters from high-precision (e.g.,
32-bit floating-point) to lower-precision (e.g., 16-bit floating-point, 8-bit integer) represen-
tations.

There are two main approaches to quantization: post-training quantization (PTQ) and
quantization-aware training (QAT). Post-training quantization converts a pre-trained model
without additional training data, using methods like full integer quantization (8-bit integers)
and float16 quantization (16-bit floating-point). In contrast, QAT trains the model with
simulated lower-precision arithmetic, allowing it to adapt to the quantized representation,
which typically results in better accuracy for complex models.

The quantization process involves calibration, quantization, and evaluation. Calibration
uses a representative (calibration) dataset to determine the range of values for activations
and weights, helping compute the scale and zero-point for converting floating-point values
to integers. The quantization step applies these values to transform the model’s weights
and activations to lower-precision formats. Finally, the quantized model is evaluated to
ensure acceptable performance.

Despite its advantages, quantization can lead to accuracy loss, especially in complex models
or tasks This can be mitigated through QAT. For example BERT-base models loss a lot of
accurac using PTQ, but fit under 1% loss of GLUE sscore using QAT. The effectiveness of
quantization also depends on hardware support for lower-precision operations. Models with
a large dynamic range of activations and weights may experience more significant accuracy
loss when quantized.

In the Android ecosystem, libraries such as TensorFlow Lite3 and PyTorch Mobile4 provide
options to optimize models for mobile devices or edge devices, in general. TensorFlow Lite
offers tools for model optimization as well as support for pruning and knowledge distillation.
PyTorch Mobile is specific for smartphones and also supports model optimization. Its ability
to integrate with Android Studio and the Android Neural Networks API (NNAPI) makes
it a practical choice for deploying compressed models on Android platforms.

Backends such as PyTorch Mobile5, ncnn6, and ONNX7 are essential for deploying and
executing machine learning models on mobile devices. PyTorch, developed by Facebook’s
AI Research lab, is an open-source library offering a flexible framework for building and
training neural networks. It supports dynamic computation graphs and is optimized for
performance on both CPUs and GPUs, suitable for research and production.

ONNX (Open Neural Network Exchange) is an open format for representing machine learn-
ing models, enabling transfer between frameworks like PyTorch and TensorFlow. ONNX
Runtime is a high-performance inference engine designed to execute ONNX models effi-
ciently on various hardware platforms. ncnn, developed by Tencent, is a high-performance
neural network inference framework optimized for mobile platforms. ncnn’s integration
with Vulkan API further boosts performance by leveraging GPU compute capabilities for
accelerated neural network inference on smartphones and embedded devices.

3https://www.tensorflow.org/lite
4https://pytorch.org/mobile/home/
5https://pytorch.org/mobile/home/
6https://github.com/Tencent/ncnn
7https://onnx.ai/
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The Vulkan8 API, developed by the Khronos Group, is a low-overhead, cross-platform 3D
graphics and compute API. It provides high-efficiency, high-performance access to modern
GPUs across PCs, consoles, mobile phones, and embedded platforms. Vulkan’s design
reduces CPU usage and distributes work among multiple CPU cores, ideal for performance-
critical applications like gaming, real-time graphics, or machine-learning.

In machine learning, Vulkan’s compute capabilities can accelerate neural network inference.
Compatibility with inference frameworks like ONNX or ncnn is achieved through Vulkan’s
compute shaders, enabling parallel computation on the GPU. ncnn has integrated Vulkan
to optimize neural network inference on mobile devices, leveraging its efficient GPU com-
pute capabilities for enhanced performance. This integration allows ONNX models to be
executed efficiently on Vulkan-supported hardware, enabling high-performance deployment
of complex AI models across various devices. Vulkan and ncnn were used in experiments
with human pose estimation models on mobile devices described in Section 7.4.

8https://www.vulkan.org/
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Chapter 5

Design of Client-Server
Application for Strength Sports
Training

The approach to creating the solution was based on an iterative development correspond-
ingly as defined by the assignment. For that reason, it is difficult to describe the design
as one all-inclusive chapter. We decided to present the final design. When certain fea-
ture or decision is discussed, it is going to be mentioned that it was the result of iterative
development if applicable.

In the iterative development, multiple user feedback sessions were conducted, and the
notes, comments, and remarks from users were reviewed. Indication of whether user’s
remark is more prone to be a must-have or rather to be a nice-to-have was made for
each user note. Methodology of user evaluation is described in Appendix C. Records
and transcriptions of user evaluation and testing sessions are available as text files in the
App/user_testing/live_sessions/ folder.

Regarding the chapter’s structure, first the high-level design is outlined, followed by the
design of the server’s API. Then preliminary experiments are presented to support the
decisions about the selected human pose estimation model. The integration of human pose
estimation, post-processing, and the computation of metrics are discussed next. Then, the
Android application client is presented. In the end, challenges, interesting improvements,
and other changes done during iterative development are discussed.

5.1 High-Level Architecture

First, the architecture of the system is described at the high level, explaining fundamental
aspects of the whole application. To simplify the naming, by application, the whole system
is meant. The client is Android mobile application and server is Python server which
exposes the API and performs the model inference.

Since majority of models with which the preliminary experiments were performed do not
provide the pretrained model converted to the mobile backend (e.g. ncnn) nor the frame-
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Figure 5.1: Whole application architecture. Client sends the video via API to server.
Inference of RTMPose is performed. Post-processing computes the velocities, smooths the
data and calculates exercise performance metrics. This result is sent back to the client.

work for mobile integration, models were tested solely on desktop GPU or CPU. From this
initial configuration of the development setup, client-server architecture organically arose.
The final design of application’s architecture can be seen in Figure 5.1.

5.2 Server API

REST API in Python language can be implemented in various frameworks, from heavier
and more powerful Django, through all-around capable Flask up to lightweight FastAPI.
Since the requirements on API of the developed application are rather simple than complex,
lightweight FastAPI was chosen.

We want to emphasize that server is used only for processing and it is not storing any
persistent data. All the data are stored only and only on client using local storage options.
For that reason, there is no need for a complex solution for the API.

First, we propose supplementary endpoint /healthcheck for testing purposes. This end-
point can be used for monitoring and observability purposes.

Endpoints for HPE inference should accept video with possibility of accepting another
parameters or data needed for required processing and optional features.

The core endpoint is /graph. In that case, server perform the HPE inference using the
RTMPose model in MMPose framework. All following calculations are also computed on
the server and the complete result is returned back to the client.

Additional usage can be offloading the postprocessing on the client. For that purpose we
propose a second keypoint /keypoints. In this case server only do the HPE inference and
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returns predicted keypoints for each frame in a form of a JSON object. The postprocessing,
velocity, and metrics calculations is then left on the client. This can be beneficial for
scenarios where the client has implemented native interactive graph visualization or similar
features. We concluded that to satisfy the minimal requirement, only one endpoint – /graph

is necessary.

5.3 Preliminary Experiments with Human Pose Estimation

Models

An experiment to verify the human pose estimation model works consistently across differ-
ent mobile devices was performed. The selected devices are Samsung Galaxy Z Flip 4 and
Realme 10. Their relevant specification can be seen in Appendix D. In Figure 5.2 can be
seen a comparison of two repetitions of squat captured on the devices. Data in attached
medium related to the preliminary experiments are denoted with preliminary prefix.

In following sections, results from preliminary experimsnts with HPE models are presetned.
Those models were examined before the dicision which HPE models will be used. After
the decision, research of state-of-the-art models continued. Selected HPE models were
described in Section 3.5 and experiments with them are presented in Appendix F.
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Figure 5.2: Comparison of velocities computed in preliminary experiment. The mean ab-
solute error is 0.04 m/s. The used model was RTMPose-m.

5.3.1 YOLOv8

The very first examined model was YOLOv8. Inference was performed with code cloned
from official Ultralytics repository1. Keypoint prediction for front views (such as shown
in Figure 5.3c and 5.3d) are satisfactory. Complex benchpress scene is recognized at a
level acceptable for exploratory experiments only in a top position where more body parts
(including tracked wrists) are visible. Bottom position is estimated only partially and also
it can be seen the detection model is not as sure with the bounding box prediction as in
the top position.

1https://github.com/ultralytics/ultralytics
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(a) Top position of benchpress. The up-
per body including wrist is recognized
and annotated.

(b) Bottom position of benchpress. The
vanishing whole upper body keypoints
can be observed.

(c) Result for deadlift from lower medium
distance camera position.

(d) Result for SSB from the lower closer
camera position.

Figure 5.3: Examples of experiments with YOLOv8 inference. Benchpress was recorded
from parallel medium distance camera position.
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(a) Result for deadlift from parallel
medium distance camera position.

(b) Result for benchpress from parallel
height, medium distance, 45° horizontal
angle.

Figure 5.4: Examples of experiments with OpenPose inference.

(a) Result for squat from low close
distance camera position.

(b) Result for benchpress from a higher
height, close distance, −45° vertical angle.

Figure 5.5: Examples of experiments with RTMPose inference.
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5.3.2 OpenPose

The second model we investigated was OpenPose [5]. Again, the official repository2 was
used to run the inference. The results can be seen in Figure 5.4a and 5.4b. As can be
observed, the front view shows sufficient prediction accuracy, but the benchpress body
position is not recognized properly.

5.3.3 RTMPose

RTMPose was inspected as a third choice. Based on the paper [35] it promises top-leading
accuracy. The MMPose framework3 provides functional scripts that run inference on the
NVIDIA GPU.

5.4 Server-side Human Pose Estimation

Based on COCO instructions [41] and other papers [35, 5, 8] we can define the human pose
estimation metrics notation as:

• AP or AP50−95: AP at OKS ∈ ⟨0.5, 0.95⟩ with 0.05 step (primary challenge metric)

• AP50 or AP0.5: AP at OKS = 0.50 (loose metric)

• AP75 or AP0.75: AP at OKS = 0.75 (strict metric)

For more details about OKS see Section 3.5.3 and COCO evaluation instructions [41].

Using this unified terminology, we can now compare and evaluate the models examined in
preliminary experiments. Since RTMPose [35] uses only AP50−95, we compared the models
using that metric. YOLOv8 has the performance evaluation on their website4 and RTM-
Pose and OpenPose included evaluation in their papers. See the Table 5.1 bellow. Based
on the performance comparison, which promised high accuracy and MMPose’s convenient
workflow, RTMPose was chosen (after consultation with the supervisor) as the model for
the server-client architecture.

There is a potential for moving RTMPose model on Android with usage of MMDeploy.
More about this is discussed in Section 7.4 where RTMPose and MoveNet deployments on
Android devices are discussed in more detail.

5.4.1 Calibration

The keypoints returned from the RTMPose HPE inference are in a pixel space as [x, y]
coordinates from top left corner of the image. Calibration from the pixel space to the
metric unit space is undoubtedly necessary.

2https://github.com/CMU-Perceptual-Computing-Lab/openpose
3https://github.com/open-mmlab/mmpose
4$\protect\protect\unhbox\voidb@x\hbox{AP}^{50-95}$
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Table 5.1: Comparison of AP and AP50 (if applicable) metric for models participating in
preliminary experiments.

AP AP50

YOLOv8m-pose 65.0 88.8

YOLOv8x-pose 69.2 90.2

OpenPose 64.2 86.2

RTMPose-m 75.3 -

RTMPose-l 76.3 -

The reasonable user input could be user’s height. Asking user for measurement of their
ankle height is possible but asking for measurement of parallel lines touching the top of the
head and crossing their eyes is practically impossible. The idea of calibration is using the
highest and lowest keypoints to approximate the person’s height. The COCO annotation
style labels 17 keypoints. The most top ones are the eyes. The lowest ones are the ankles.

There is an issue with the eyes being the top most keypoints when the distance from the
eyes to the top of the head is unknown. It applies analogously to the ankles. To address
this issue we used an anthropometric study conducted on U.S. Army Personnel [23]. The
data were measured on 11,357 people introducing 94 directly measured dimensions and 39
derived dimensions.

The objective is to find such scale factor which can transform the pixel dimensions to metric
unit dimensions. We use the lateral malleolus5 height and the difference between stature
(regular human height) and eye height6 to find the values which need to be subtracted from
the person’s height to match the erected position of athlete. Other option of top calibration
keypoints could be ears and the equivalent anthropometric dimension tragion7. Additional
details can be found on the OPEN website8.

5.4.2 Post-processing of Raw Data

Data obtained from HPE models, such as RTMPose, have noise due to the flickering of
keypoints even if the athlete is in a very still position. This is a characteristic for all
thinkable solutions, including professional motion capture systems such as Qualisys 3.3.1.

The velocity calculation introduces more errors, which is given by the equation

v(t) =
dx(t)

dt
.

The conclusion is that the data should be smoothed, and we outline two levels of that
procedure. First, a smoothing of the raw position data (coordinates per each frame) can
be done. Second, the velocity of the movement can be smoothed after the calculation.

5lateral malleolus = height from ground to the outer side of the ankle
6Eye height is derived dimension, see Section D16 in [23]
7tragion = height from top of the ear entry to top of the head
8https://www.openlab.psu.edu/ansur2/
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We decided that the smoothing of the final velocity graph is necessary to reduce visual
clutter for the user. This requirement is backed by user evaluation sessions which can be
found in files user_testing/**/s_initial.txt|s_1.txt.

Naive approach of smoothing using the moving average can have a negative impact on the
peaks in the data which are the most important 3.1. Sensitive approach must be taken into
account in the smoothing process.

5.4.3 Metrics

The velocity graph observation provides derived metrics such as fatigue drop or increased
time under tension. Other metrics such as mean velocity (MV) or impulse provide a more
comprehensive understanding. Since MV and other similar metrics are numeric values, it
is faster for a user to compare two numbers than to analyze the entire velocity graph.

The main numeric metric will be MV. However, the mean propulsive velocity (MPV) is
computed in a very similar way to MV. For this reason, we decided to include the MPV
metric as well.

The impulse is considered by Valle [65] as the best overall performance metric. However,
the impulse metric is very sensitive to the accuracy and consistency of the measurement,
even after an effective computation design. Within a stable environment, for advanced
athletes or coaches, it can be a very valuable insight into their training. For that reason,
we expect the impulse to play a more experimental role.

You can see the proposed computation of the metrics in Equations 5.1, 5.2, and 5.3

Vm =
1

n

n
∑

i=1

dci , (5.1)

where dci is i-th concentric phase velocity.

Vmp =
1

m

m
∑

i=1

dpi , (5.2)

where dpi is i-th propulsive phase position difference.

I = m
m
∑

i=1

(

dpi − dpi−1

)

, (5.3)

where dpi is i-th propulsive phase velocity and m is used weight.

The metrics will be computed per repetition and per whole set. The presentation of com-
puted values to the user will be done using numerical values in a visual container.

5.5 Client Ű Android Application

This section discusses the design presented in the early stages of development (between the
first phase and intermediate phase as described in Section 5.6). This design was presented
to users during user evaluation sessions. The final result is then shown in Section 6.6
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5.5.1 Application Layout

Please, see the proposal design for Analysis screen and History screen in Figure 5.6. The
UCD diagram is shown in Appendix B.

The user interface is simply designed, so athletes in gyms in dusty and humid environment
can easily use the main functionality. The History UI elements will also be easy to operate.
Smaller elements are not intended to be used in mid-exercise series.

(a) Proposal of Analysis screen in
client – Android application.

(b) Proposal of History screen in
client – Android application.

Figure 5.6: Semi-mocked design of the Android application.

5.5.2 Local Storage

Android provides native support for SQLite and Room library can be used for object access
(ORM9). Since accessing database from main thread is forbidden on Android, a Data Access
Object (DAO) approach is necessary. Android platform offers a usage of ViewModel in
conjunction with LiveData to observe changes in the database and provide live UI updates.
This approach should be used when presenting data from the database to the user.

9ORM = Object Relational Mapping
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Data about video and exercise along with data from the server-side analysis will be stored
in SQLite database. Any binary data will not be saved in the database. To provide later
access to the video, its path will be stored in the database only. The velocity graph will be
saved on the device’s disk and its path in the database.

At first, the video URI was considered to be used as the primary key. However, the
automatic replacement of the same video is not intuitive for users. Instead of video URI,
an autogenerated ID is used as the primary key. The proposed database scheme can be
seen in Figure 5.7. The scheme is simple, which corresponds to the idea of keeping the
application simple and clean for ease of use in harsh conditions of gyms and fitness centers.

VideoMetadata

id: INT PK

metricsID: INT FK

exerciseType: STRING

thumbnailPath: STRING

note: STRING

rpe: STRING

pngPath: STRING

resolution: STRING

duration: LONG

uploadDate: LONG

Metrics

id: INT PK

reps: INT

mv: FLOAT

mpv: FLOAT

Figure 5.7: Entity Relationship Diagram for analysis record. VideoMetadata represents
data about video and user inputs. Metrics table represents the metrics values obtained
from the JSON response from the server.

5.6 Iterative Development and User Evaluations

The development methodology used was based on iterative development with incremental
additions and evaluations. Even in a minimalist form, we adhered to the pure Scrum
methodology as defined in The Scrum Guide [55].

In the first phase, the most viable product (MVP) was created and presented to the first
users. From the initial feedback collected, the next steps were refined and enriched with
new ideas. During the second phase, incremental additions and improvements were made
and periodically evaluated with alpha testing users. In the final phase, the application was
presented as “finished” and the user’s impressions and satisfaction with the made changes
were gathered.

The whole process was tracked on a weekly basis in Google Docs with the supervisor. For
personal project management and task tracking, Plane.so10 was used.

10https://plane.so/
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In the context of consultation with users about application UI, functionality and perfor-
mance, the term evaluation is used rather than testing. Especially in the early phases users
were commenting on the proposed UI with limited functionality and not really testing a
production-ready application.

Multiple user testing sessions were conducted during the development of the application in
an iterative way. The first type of user testing session was more exploratory. It was more
challenging for users because they had to work with UI that – in some cases – was not fully
responsive, contained missing titles, or there were occasional crashes of the application, and
so on.

However, the first exploratory sessions were extremely insightful in regards to addressing
the important features and UI and UX aspects from the users’ point of view. The users
were proposing their opinions on what they expected and what they experienced if the
actions resulted in the expected results. If all the titles and names are explanatory enough,
etc.

The following sessions with the users had evaluation and testing scope. For users who
already had the exploratory session, their particular points were re-evaluated after the
second session. Among the improvement proposals, there were crucial points which were
solved accordingly.

There were also points that imply creating a completely new module, such as automatic
depth-of-motion verification. These ideas were not considered to be solved in the scope of
this work for their low value/time spent ratio. Such demanding ideas were evaluated as
possible extensions of the application and can be addressed in the following development;
more details are described in Section 7.9.
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Chapter 6

Implementation of Server-Client
Application for Strength Sports
Training

This chapter discussed the details of the implementation of the application. Practical
documentation for programmers and developers who would like to continue with this work
(including ourselves) is created separately. Android application and server code (placed
in App/ and Server/ directory respectively) have each own README.md files. These
README.md files describe the project more comprehensively and from different point of
view.

The top-level README.md is used as an introduction and a signpost. It is advised to start
there when studying the source codes. In the following text, when referring to folders, it is
always in the context of mentioned root directories.

6.1 Server API

The server part of the client-server architecture is implemented in Python with the FastAPI
library. A brief description of the stack of Python libraries for API is presented next.

ASGI (Asynchronous Server Gateway Interface) is a standard interface between asyn-
chronous Python web servers, frameworks, and applications. It is designed to replace WSGI
(Web Server Gateway Interface) to provide a standard for asynchronous web apps to run
on asynchronous servers, enhancing the capability to handle more concurrent connections.

Uvicorn is a fast ASGI server implementation. Built on uvloop and httptools, Uvicorn
provides a simple and efficient way to deploy and manage asynchronous Python web applica-
tions, such as those built with frameworks like Starlette or FastAPI. It supports automatic
reload, server hooks, and WebSocket handling, serving the needs of modern Python web
development.

Starlette is a lightweight ASGI framework/toolkit for building asynchronous web applica-
tions in Python. Starlette supports requests directly from any ASGI server, offering a robust
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foundation for WebSockets, GraphQL, in-process background tasks, and more. Starlette
middleware is used for custom functionality as can be seen in Listing 9.

FastAPI is a modern, fast web framework for building APIs with Python based on standard
Python type hints. FastAPI is a fast web framework with high performance as can be seen
in the TechEmpower benchmark1. FastAPI2 is built around Starlette3 which is built around
Uvicorn4.

This combination allows FastAPI to offer automatic interactive API documentation (with
Swagger UI and ReDoc) and serialization that is deeply integrated with Pydantic5.

6.1.1 Endpoints

Three endpoints are implemented, the primary and most crucial being /graph. The brief
explanation of endpoints is as follows:

• /healthcheck

– Request: GET method.

– Response: test if the connection to the server is live.

• /keypoints

– Request: POST method with video bytes as multipart/form-data.

– Response: JSON with raw processed keypoints. Not smooth or filtered.

• /graph

– Request: POST method video bytes as multipart/form-data.

– Response: JSON object with base64 encoded velocity graph and metrics values.

To see the webpage UI for API documentation using Swagger UI or Redocly6 respectively,
run the server and visit /docs or /redoc respectively.

To limit automated exploiting requests from foreign countries and keep the setup simple
(e.g. not creating the firewall), IP blocking middleware was created. Starlette provides a
BaseHTTPMidleware class that was extended to limit requests only to Czech IP addresses.

This setup is not optimal for wide scaling on the international market, but in the state the
product is at the moment of writing, it is a sufficient solution. You can see the IP blocking
middleware in Listing 9. The example of blocked requests can be seen in Listing 10.

To have a bit more customized documentation webpages with Swagger UI and Redocly on
paths /docs and /redoc respectively, BaseHTTPMiddleware base class was again utilized to

1https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-

dbdfd7e85911&hw=ph&test=query&l=zik0zj-6bi
2https://fastapi.tiangolo.com/
3https://www.starlette.io/
4https://www.uvicorn.org/
5https://docs.pydantic.dev/
6https://redocly.com
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create CustomSwaggerUIMiddleware and CustomRedoclyMiddleware classes. These mid-
dlewares effectively change the favicon and title of API documentation pages. At the same
time, with usage of middleware, the FastAPI’s HTML template is kept, and a new HTML
template does not have to be created.

Listing 9 Starlette middle-ware for blocking non-Czech IP addresses on Python FastAPI
server. The bogon refers to local network IP addresses and is there to enable usage on
the same network that the server is running on. The response does not contain detailed
information on purpose reflecting famous security by obscurity.
class GeoIPMiddleware(BaseHTTPMiddleware):

async def dispatch(self, request: Request, call_next):

client_ip = request.client.host

async with httpx.AsyncClient() as client:

try:

response = await client.get(

f"https://ipinfo.io/{client_ip}/json?token={API_TOKEN}"

)

response.raise_for_status()

data = response.json()

if not data.get("bogon", False) and data.get("country", "") != "CZ":

return Response(status_code=403)

except httpx.HTTPStatusError:

return Response(status_code=503)

except KeyError:

return Response(status_code=500)

return await call_next(request)

Listing 10 Example of successfully blocked request from Honk Kong, and Oregon and
Virginia, US.
INFO: 152.32.213.68:33536 - "GET / HTTP/1.1" 403 Forbidden

INFO: 152.32.213.68:33780 - "GET /favicon.ico HTTP/1.1" 403 Forbidden

INFO: 152.32.213.68:34026 - "GET /sitemap.xml HTTP/1.1" 403 Forbidden

INFO: 152.32.213.68:34028 - "GET /robots.txt HTTP/1.1" 403 Forbidden

INFO: 15.204.207.48:45322 - "GET / HTTP/1.1" 403 Forbidden

INFO: 15.204.31.10:53524 - "GET / HTTP/1.1" 403 Forbidden

6.2 Human Pose Estimation

MMPose framework offers a quick setup for inference of various models. The use of provided
demo scripts such as inferencer_demo.py with broad customization arguments can bee
seen in Listing 11.

54



Listing 11 Usage options for inferencer_demo.py script. There is a set of predefined
model aliases. Alternatively, users can provide their own configs and model’s weight, both
for detection and pose estimation models. Mention the only one positional argument inputs

at the very end. There can be provided single image, directory with multiple images or a
video.
inferencer_demo.py [-h] [--pose2d POSE2D] [--pose2d-weights POSE2D_WEIGHTS]

[--pose3d POSE3D] [--pose3d-weights POSE3D_WEIGHTS] [--det-model DET_MODEL]

[--det-weights DET_WEIGHTS] [--det-cat-ids DET_CAT_IDS [DET_CAT_IDS ...]]

[--scope SCOPE] [--device DEVICE] [--show-progress] [inputs]

Based on the findings presented in Chapter 7, it has been determined that among the
existing models for human pose estimation, there exists a model that meets the necessary
criteria for accuracy, robustness, and size that are suitable for a client-server application
with various alternatives. Following discussions with the supervisor, the models RTMDet
and RMTPose were selected as adequate, requiring no additional fine-tuning for our specific
needs.

The MMPose framework provides straightforward methods for conducting both training and
inference sessions. Additionally, it maintains a website featuring a variety of pre-trained
models with different sizes and backends (ONNX, ncnn). Therefore, it is also advantageous
for ongoing development and experimentation, particularly for transitioning the model ex-
clusively to a mobile client, to evolve our solution utilizing the MMPose framework.

Since the model was not trained any further, with regard to the model inference topic,
only the integration and usage are discussed in this section. We take the leverage of demo
scripts and use them to run the inference on the incoming request from the client. The
most seamless usage was using a subprocess. You can see how the command is run from
Python script in Listing 12. The code of the MMPose framework is not edited in any way.

Listing 12 RTMPose inference run as a subprocess on the server in incoming request for
video processing from client. The –pose2d argument is specifying the pose estimation alias.
Other arguments are sufficiently self-explanatory. For experiments with detection model
sizes extra parameters –det-model and –det-weights were used.
subprocess.run(

[

"python",

"../inferencer_demo.py",

video_filename.__str__(),

"--pose2d",

"human",

"--vis-out-dir",

"vis_results",

"--pred-out-dir",

"./",

"--draw-bbox",

]

)

To improve inference time, the supplementary scripts for framerate and resolution reduction
(functions resize_video() and reduce_frame_rate()) and resolution were created. The
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current preset values for resolution reduction are lower, medium, and high/original, with
corresponding 256, 512 and original pixels. The API parameter is called quality. The value
defines the length of smaller video side (e.g. 256x756 or 1234x512).

The reduction of FPS provide 5 options – from 10 to 30 FPS. The user has options available
in the settings. This is described in Section 6.6.6.

For debugging purposes, the script get_frames.py can be used to get (undersampled)
frames from the video. It can be used on any video, so by using it on visual video output
from the RTMPose inference, the developer can investigate visually if any anomalies are
happening such as missing or hopping7 bounding box or keypoint hopping8.

6.3 Calibration of Pixel Measurements to Metric Units

The unit of result of the inference of the RTMPose model is pixel. The conversion from
pixels to some metric unit such as centimeter or meter must be done to correspond to the
movement velocity measurement standards. Based on analyzed studies, meters per second
were chosen as a unit of movement velocity. Therefore, the values that describe the position
of keypoints in pixels are converted to meters.

The conversion algorithm is crucial for the accuracy and consistency of the values produced
between different videos. Multiple assumptions, approximations, and robustness enhancing
steps were made.

First, the presumption that the largest person appearing in the video is the main character is
made. We expect that athletes either try to film themselves or at least try to get reasonable
quality via filming from adequate distance and angle. For that reason, we pick the largest
bounding box and use it as a reference.

Then for each frame, the best matching bounding box is found on the basis of the reference
bounding box.

The similarity of the bounding box S is calculated as

S = |xr − xi|+ |yr − yi|+ |wr − wi|+ |hr − hi|,

where x and y are coordinates of the top left corner and w and h are width and height of
the bounding box. r and i indices respectively denote the reference and i-th bounding box.

The next step is to calculate the scale ratio to convert the movement from pixels to meters.
There are two calculations; first the reference bounding box is taken, and since it crops the
person tightly, the height can be considered as the person’s height. The second value is
calculated on the basis of the anthropometric points on the human body and the estimated
pose skeleton. The COCO style labels include the ankles and nose. From statistical anthro-
pology studies, we can take the mean distance from the top of the head to the nose and the
height of the ankles from the ground and subtract these values from the person’s defined
height. We can then measure the distance of the keypoints of the nose and ankle and get

7By bounding box hopping we mean the jump of bounding box from one person to other without detecting
the other person simultaneously. This can happen for example if second person is walking in front of camera.

8By keypoint hopping we mean jump of keypoint label/annotation for example from left knee to right
knee having both keypoints at the same knee. This can happen in occluded or in low-light scenes.
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the second scale ratio. The first ratio can be near 50% larger, because the RTMDet model
adds a 1.25 times area for context in certain cases. By comparing the two, we can decide
whether we need to adjust the first ratio or not. In the end, the two ratios are averaged to
get a more robust approximation of the ground-truth conversion ratio.

The anthropometric points are gender specific. The needed values are obtained from the
ANSUR II study [23] as described in Section 5.4.1. The server uses predefined getters to
obtain the correct values based on the parameters obtained from the request from the client.

6.4 Velocity Computation

Movement velocity is now implemented in a way that supports all possible exercises where
the athlete is holding the bar in hands. The velocity is calculated as yi − yi−1 position
differences in the time of the left and right wrist. The y positions of wrists are np.array

objects so the average can be easily computed with these vectors as

~yavg =
~yleft + ~yright

2
.

This is an approximation of the center of the bar. Please, note two important remarks.
First, if recorded from an angle, the farther wrist is showing a lower velocity on camera,
when in reality it would be the same. Second, movement can be unequal. Typically for
deadlift and mixed grip or in weightlifting, body rotation can happen. Averaging the left
and right positions provides some level of data smoothing. For occluded scenes, it also helps
to reduce the noise generated by the model uncertainty at the occluded body parts.

For data smoothing, the Kalman filter was used. Smoothing is done first on the wrist
coordinates to smooth the raw position data. Then velocities are computed and smoothed
again by the Kalman filter. This combiner approach produces the most visually pleasant
results. Certain experiments with data smoothing are described in Section 7.4.

6.5 Strength Sports Performance Metrics

Sports performance metrics can give a meaningful insight for the athlete just in the training
session or can be useful for micro-cycle planning for coach and the athlete as well. The the-
oretical background including discussion of supportive sport studies discussion is examined
in Section 3.1. In the following sections, the implementation steps of those metrics and the
pre-processing are discussed.

In a personal consultation Bc. Jakub Šigut9 said that from his point of view, MV is the
most valuable metric.

There was not an increased interest in the impulse metric from users or from powerlifting
coaches. Impulse is a sensitive metric and requires another user’s input, the weight used.
For that reason, impulse metric is not implemented.

9Bc. Jakub Šigut is a physiotherapist and personal powerlifting coach in the Revolution Powerlifting
organization (https://linktr.ee/revolution_powerlifting).
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6.5.1 Counting Repetitions

The detection of repetitions again requires some heuristics and approximations emerging
from assumptions based on knowledge of the topic. Having a squat as an example, the
athletes place the bar on their shoulders and upper back.

Then some of them do a few little pushes that look like 10% squat, this could be taken as
repetitions by accident and the algorithm needs to prevent this. The walkout as well as
racking back can be shaky. During the set, the single repetition can again end with a slight
bounce caused by the biomechanics of the athlete’s body.

The described issues are solved in a complex way. First, the smoothing of the data is already
removing the low-magnitude noise, mainly coming from the pose estimation itself but also
covering very small movements. However, it does not solve more prominent movements like
shaky walkout or inter-reps bounce.

To address this problem, a dynamic threshold is set at 10% of the maximum amplitude.
Still, the athlete can bounce so much that it would look like some little range of motion
repetition. For that purpose, half of the average duration of detected repetitions is taken
as the threshold for repetition duration. But then the repetition is defined from zero
crossing points, not from thresholds. You can see the whole algorithm of repetition detection
in Appendix A in Listing 15.

6.5.2 Mean Velocity and Mean Propulsive Velocity

Calculation of mean velocity (MV) and the mean propulsive velocity (MPV) is calculated
for one repetition. We need to first get repetitions as described in Section 6.5.1 and then we
can calculate the metrics. The implementation follows the design proposed in Section 5.4.3.

With the data split into repetitions already, the next step is to get the concentric phase.
This would be a trivial task if the movement would not oscillate around the zero in between
the repetitions.

With that said, the largest amplitude concentric phase is considered as the main concentric
phase. See Listing 13 for the algorithm to find the concentric phase for each repetition.

There could be an issue with paused exercises, where the bar can have a very subtle eccentric
dip and generate two similar peaks. In such case, the concentric phase would be the larger
of these two and the algorithm would produce in fact an incorrect result.

However, this is a very specific aspect, and the solution would be very complex involving
detection of absolute position in the space, athlete’s ranges of motion in various exercises,
etc.

The mean velocity is then computed as a simple mean of the concentric phase c as mv =

np.mean(c). The mean propulsive velocity can be computed easily again thanks to already
prepared concentric phases. The propulsive phase is computed as p = c[: np.argmax(c)

+ 1], then mean propulsive velocity is computed as mpv = np.mean(p).
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Listing 13 Algorithm which finds the concentric phase for one repetition. The amplitudes
of every possible concentric phase are computed and the largest movement is considered as
the main movement.
positive_mask = rep >= 0

padded_mask = np.pad(

positive_mask, (1, 1), mode="constant", constant_values=False

)

diff = np.diff(padded_mask.astype(int))

starts = np.where(diff == 1)[0]

ends = np.where(diff == -1)[0]

amplitudes = [rep[start:end].ptp() for start, end in zip(starts, ends)]

if not amplitudes:

return np.array([])

max_amp_index = np.argmax(amplitudes)

concentrics.append(rep[starts[max_amp_index] : ends[max_amp_index]])

6.6 User Interface

In this section, possible user interactions available in the app are discussed. It has strong
implicit requirements basement in the habits of athletes discussed in more detail in Sec-
tion 2.4. In this section, by application is meant the Android application, not the whole
system.

Android application serves the purpose of the client in the designed server-client applica-
tion. There are multiple modules that are structured into folder structure based on the
functionality they have. The latest (release candidate) Kotlin version 2.0.0-RC1(RC2) and
the latest compatible libraries are used.

The application is a single activity application with Jetpack Compose UI components. The
implementation uses declarative Compose code10 instead of XML layouts. The top level
UI consists of Scafold layout with top and bottom bars and a side drawer on the right.
Transition between different screen is made through the NavHost component which sets the
correct content.

The top bar is CenterAlignedTopAppBar component providing access to Settings in the
right drawer. The drawer us implemented using ModalNavigationDrawer component and
visibility is controlled by drawerState. The bottom bar is NavigationBar component
providing Analysis and History tabs via NavHostController class.

All UI components are in ui/ folder, where ui/common/ contains common components such
as RowPick, InputChip, or Dropdown. Main Analysis screen, History, and simpler Settings
and Help are all at top level /ui or in own subdirectory e.g. /ui/History/.

An important part of the UI is the ability to play videos. Users must be able to see
what they have selected and are going to upload to the server, even though it is stateless
processing, and video recordings are not stored. The video player is implemented with the
ExoPlayer interface. It is used in Analysis screen and in recording detail in History screen.

10Compose code is a domain-specific language different from pure Kotlin.
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6.6.1 Analysis Screen

Analysis screen enables user to pick a video from the gallery. If the user did not provide
the permissions with the first application run after installation, the application asks again.
The latest permission handling for Android 14 (API level 34+) is implemented. This means
that the user can give only partial permissions for certain files (videos).

After the video is selected, the user can adjust the RPE value and select from the three
predefined exercises. Currently, only the three powerlifting exercises are supported.

(a) Analysis screen with already se-
lected video from gallery. Optional val-
ues RPE, and exercise type are chosen.
Now, the user can send the video to the
server for analysis.

(b) Detailed information about analysis
in History screen. All data available af-
ter analysis at the Analysis screen are
also presented here.

Figure 6.1: Primary UI screens.
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6.6.2 History Screen

A LazyColumn was utilized to list each video processing record, with each item displayed
in a card format containing the video thumbnail, creation date, and video duration. The
video duration is important so that the user can easily distinguish between sets recorded
from the same spot. This is a specific requirement for this application that comes from the
unique usage and habits of strength sport athletes. More about athlete technology habits
is discussed in Section 2.4.

History screen shows the previously analyzed videos in LazyColumn. The component
LazyColumn renders items on demand, so for a large number of videos, it does not ren-
der all of them at the time. It corresponds to RecycleView in XML layout.

Each item in History is a HistoryCard showing basic information and thumbnail of video.
HistoryCard items can be enlarged into the HistoryCardDetail observable in Figure 6.1b.

HistoryCardDetail shows detail information about the analysis. The VideoPlayer com-
ponent is embedded into video thumbnail picture User can replay the video from the past.
The video is not stored redundantly in the database but is accessed through its path, which
is saved in the database. For that reason a permanent access to such files has to be requested
with FLAG_GRANT_READ_URI_PERMISSION flag.

The metrics visible also in exercise detail are implemented as a fixed layout and length
component with regular Column and Card base component with one nested level. The user
can delete the analysis only from the HistoryCardDetail component. Delete confirmation
dialog prevents accidental deletions.

6.6.3 Secondary Screens

Settings screen provides input fields for personal information and other settings. It is
implemented as a right-hand drawer that supports swipes from right to left. The access is
also provided through the settings icon.

Help can be shown using the question mark in the top left corner. It gives instructions on
how to use the application and emphasizes the importance of setting up personal informa-
tion for proper calibration.

In Figure 6.2a dark themed Settings screen for user’s height and other parameters adjust-
ments is shown. In Figure 6.2b can be seen the Help screen with instructions on how to
use the application.
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(a) Settings screen. (b) Help screen with instructions.

Figure 6.2: Secondary UI screens.

6.6.4 API Requests and Response Decoding

For application API connectivity the API service singleton is created featuring a logging In-
terceptor for logging purposes. The API-related code is implemented with usage of OkHttp3
and Retrofit2 libraries.

There most important endpoint is /graph as reasoned in Section 5.2. The request body
contains video footage and thus a MultipartBody type of parameter is used for that. The
response from server is more complex, containing the image with the plotted velocities and
a JSON with metrics data. Custom Response type is defines as Response<ResponseData>.
ResponseData data class contains serializable Metrics data class, which wraps the actual
values of metrics.
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6.6.5 Storing Analyzed Data on Local Device

Storage possibilities on the Android platform were discussed in Section 4.1.2. The primary
objective was to efficiently store video metadata, which consists of thumbnail, upload date,
video duration, and file paths of an associated result graph. ERD diagram can be seen
in Figure 5.7.

For faster database operation, the thumbnail and result graph are stored only in the form
of their respective paths. This approach enables fast data retrieval and display, which, with
the usage of lazy rendering, leads to a user-friendly experience.

The chosen storage solution involved the use of SQLite, a lightweight relational database de-
scribed more in the Section 4.1.2. For the manipulation with the database in the application,
Room11 library, a higher-level abstraction provided by Android for database management,
was used. Room allowed for compile-time verification of SQL queries, reducing errors and
simplifying database interactions through annotated objects and methods.

Handling the java.time.Duration type, which is not natively supported by SQLite. The
duration is stored as a long integer representing seconds, which is then converted back to
Duration upon retrieval.

For fetching and displaying these data, Android’s recommended architecture patterns12

are used. This ensures a maintainable and responsive application. The combination of
asynchronous database operations and lazy rendering results in an efficient, and more im-
portantly scalable, approach to handling video analysis history in the application.

6.6.6 Settings and Information About User

All settings user can tweak are displayed in a Settings screen which is containerized in a
right drawer. Shared preferences are used as the storage method for these settings.

The user enters personal information such as height and gender, which is used in the server
calibration process described in Section 6.3. Another customization option is to choose
from 4 levels of processing quality and from a scale of FPS allowed from [10, 15, 20, 25, 30].

The quality option are LOW, MEDIUM, HIGH, and ORIGINAL. The last two represent
the same value, and the duplicity serves only UX purposes. Having 4 options, users select
between 2 and 3. Having 3 options, users tend to the middle one.

FPS lower than 10 and quality lower than 256 pixels for shorter side (LOW settings)
produce questionably reliable results even for good light, front view and erected poses.
Limiting FPS to 30 which is also a initial value, is beneficial to processing time if someone
has preset 60 FPS on their device.

6.7 Android Application Deployment on Google Play

The release of the application even for closed testing is conditioned by several requirements.
The content related requirements are: setting a privacy policy, app access, ads, content

11https://developer.android.com/jetpack/androidx/releases/room
12https://developer.android.com/reference/androidx/lifecycle/LiveData
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rating, target audience, news apps, COVID-19 contact tracing and status apps, data safety,
government apps, financial features, and health. For managing the app’s organization and
presentation, selecting an app category and providing contact details, as well as setting up
your store listing is required. All the mentioned steps were completed. The explanation of
these steps is described on the Google Play Console support websites13.

The Set privacy policy step requires a functional active online website with a declaration of
how the application collects and handles user data. This requirement was accomplished by
using personal GitHub Pages. The application’s Privacy Policy website is deployed here:
https://richardklem.github.io/Dyno-Coach-Privacy-Policy/.

6.8 Internal and Closed Testing on Google Play Platform

Internal and closed testing were performed. Recent changes in Google’s policies14 now re-
quire at least 20 external testers to test the application before it can be published publicly.
There must be performed Google’s own manual inspection of the application. The appli-
cation must not hide anything behind the account creation. For Google’s inspection, demo
accounts must be created in advance and provided for the Google’s inspectors. External
testers must be opted-in in closed testing for at least 14 days. For both closed testing and
public publishing, the privacy police website must be provided.

In the first round, the internal testing was performed as it fortunately does not require
anything special. The application must be uploaded as an android application bundle (.abb)
signed with upload key. The application then can be published as optimized .apk signed
with Google generated automatically managed key, which is preferable way.

The necessary steps for closed testing and public publish were done, providing all the
required information, statements, graphics and declarations. The review should be done
in 7 days, but it can take longer. In case of our Dyno Coach application, it took 3 days.
However, the application does not require almost any permission and has only one activity
and two screens. For applications requiring many permissions and complex functionality,
it is reasonable to expect a longer review. After providing a supplementary graphics, we
could start the closed testing track. Closed testing is the testing stage where there is a
requirement for 20 testers for 14 consecutive days.

An invitation was created for closed testing15. Relevant users were asked to opt-in as testers
for closed testing. However, we were not able to pass the requirement completely yet.

13https://support.google.com/googleplay/android-developer/answer/9859455
14https://support.google.com/googleplay/android-developer/answer/14151465
15https://play.google.com/apps/testing/cz.vut.fit.xklemr00.vbt.app
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Chapter 7

Experiments with Human Pose
Estimation

During the exploration phase at the beginning and also later on, many different machine-
learning models for human pose estimation were examined. Because we have results of
experiments from 13 different models and one motion capture system (Qualisys), only
models with the most different approach or architecture are presented in this chapter and
others are attached in Appendix F.

More theoretical details on human pose estimation are described in Section 3.5. For some
experiments there is a Jupyter notebook in the attached media as complementary source
of results.

7.1 RTMDet models sizes

The MMPose framework provides two configurations for the RTMDet detection mod-
els, trained on human body detection on the COCO dataset. The configurations in-
clude a smaller nano version – rtmdet_nano_320-8xb32_coco-person.py, and a standard
medium version – rtmdet_m_640-8xb32_coco-person.py. We fixed the remaining system
parameters at high settings to achieve the clearest possible outcomes in the tests.

The parameters were set to FPS = 30, resolution = original, and RTMPose model =
rtmpose-m_simcc-body7_pt-body7_420e-256x192. Manual qualitative assessments were
conducted, visually evaluating the outcome videos with displayed bounding boxes.

Throughout all evaluations, the nano size detection model was consistently underperforming
compared to the medium size model. To be more specific, the nano model was detecting
people where they were not. The detection of the main character was on par with medium
model.

Typically, even in well-lit scenes without any obstructions, several artifact individuals were
identified for a short period of time. However, our main person tracking algorithm man-
aged to maintain unaffected processing. An example of this detection can be observed
in Figure 7.1.
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As an example for all, the most complicated scene with low light level and a person occluded
with obstacles with even mirrors in the sight reflecting lights and movements was chosen
to be shown. You can see the result of detection in Figure 7.1. However, the nano model
was less stable and the slight flickering affected the following RTMPose inference. Together
with the negligible inference time difference in the entire pipeline, we kept using RTMDet
medium.

(a) RTMDet-m (b) RTMDet-n

Figure 7.1: Comparison of the medium and the nano RTMDet model sizes. The detection
is on par and usable for our solution.

7.2 Experiments with Models of Various Architectures

In Chapter 5 multiple experiments are shown with human pose estimation models. However,
more experiments were conducted along the way. Here we show results from experiments
with such models which address some special issue or aspect such as occlusion or 3D scene.
The rest of the experiments with even more human pose estimation models is attached
in Appendix F.

7.2.1 MotionBert

Experiments with MotionBERT produced mixed results. In some cases, the 3D recon-
struction was precise. However, the results cannot be better than 2D pose HPE since it is
the input for MotionBERT. The idea of using MotionBERT for self-supervised training for
complex exercises such as benchpress is not promising.
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(a) Screenshot from SSB exercise.

(b) Screenshot from benchpress exercise.

Figure 7.2: The result of MotionBERT is up to as good as the 2D pose estimation input.
See original generated videos for the complete results.

Listing 14 Bash command for running MotionBERT inference from MMPose framework.
python demo/body3d_pose_lifter_demo.py

demo/mmdetection_cfg/rtmdet_m_640-8xb32_coco-person.py

rtmdet_m_8xb32-100e_coco-obj365-person-235e8209.pth

rtmpose-m_8xb256-420e_body8-256x192.py

rtmpose-m_simcc-body7_pt-body7_420e-256x192-e48f03d0_20230504.pth

video-pose-lift_tcn-243frm-supv-cpn-ft_8xb128-200e_h36m.py

videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth

--input ssb_front.mp4

--output-root

vis_results

7.2.2 MoveNet

MoveNet [67] presented by Google Research is human pose estimation model created for
real-time applications. The backbone is based on MobileNetV2. MoveNet uses 192x192
inputs for Lightning (less accurate) and 256x256 for Thunder (more accurate), with intel-
ligent cropping based on previous frame detections to maintain focus on the main subject.
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Temporal filtering is applied to smooth keypoint estimates, reducing noise and lag during
fast motions. Both variants achieve frame rates exceeding 30 FPS on modern hardware.

MoveNet is used also in experiments with HPE model inference on mobile devices which
are described separately in Section 7.4.

(a) Result of int8 quantized lightning light
MoveNet model size for SSB from parallel
medium distance camera position.

(b) Result of thunder heavier MoveNet model
size for SSB from parallel medium distance
camera position.

Figure 7.3: Examples of experiments with MoveNet inference.

7.3 Smoothing Methods

Since position input data looked cleaner than computed velocities, we tried to smooth the
velocities first. The baseline naive approach was the moving average. We tried different
parameters with different sliding windows.

Other evaluated methods include the Savitzky-Golay filter, local regression (Lowess), and
the Kalman filter. Kalman filter was used at the end of the solution. Highly experimental
experiments were conducted with the Fourier transformation and a combination of tech-
niques.

In Jupyter notebook calibration_and_smoothening.ipynb it was evaluated how different
methods and algorithm can reduce noise, smooth data, and what side effects each method
brings with it. In Figure 7.4 it can be seen the comparison of the selected smoothing
methods. Although smoothing of velocity only is shown, the final solution uses smoothing
of both movement positions and calculated velocities as mentioned in Section 6.3.
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Figure 7.4: Comparison of (a) raw velocities, (b) moving average and (c) Kalman filter
smoothing. Dashed lines note values 0.25 and 0.5 m/s.

7.4 Inference on Mobile

Original RTMPose paper [35] also refers to the performance of model on the Snapdragon
865 chipset. The documentation for deploying models on the Android platform is provided
in MMDeploy repository1. However, the reference example is missing and in Issue #22982,
there is a reference for a separate repository PoseTracker-Android-Prototype3. The actual
deployment refers to different tools and their build. It is not trivial nor straightforward
process. On some places, the instructions for dependent tools or utility are in conflict with
instructions of MMDeploy or the example application.

Detailed instructions about compilation and whole setup can be found in Appendix E.
I was able to run the application and select the video for processing from the gallery.
Unfortunately, an invalid memory reference error was thrown when the model inference
was about to start. Most likely it is linked to the native code compiled for OpenCV or
MMDeploy SDK. Despite all efforts to debug and track the issue, seeking for help in all
referenced projects and on other internet sources, I was not able to solve this error. You
can see the application’s main screen (/experiments/PoseTracker/main_screen.jpg) in
supplementary materials.

7.4.1 MoveNet CPU and GPU on ncnn Backend

The second attempt of running the human pose estimation inference on mobile devices
was made using MoveNet 7.4.1. In contrast to MMDeoploy, this time an unofficial im-
plementation was used. The starting point was open-source GitHub repository4 of user
FeiGeChuanShu. It has two dependencies, first, Tencent’s ncnn framework pre-build for
usage on Android with Vulkan API for Arm’s Adreno GPU. The second dependency is
opencv library for Android from opencv-mobile repository5 from user nihui.

1https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/docs/en/01-how-to-build/android.md
2https://github.com/open-mmlab/mmdeploy/issues/2298#issuecomment-1653306717
3https://github.com/hanrui1sensetime/PoseTracker-Android-Prototype
4https://github.com/FeiGeChuanShu/ncnn_Android_MoveNet/tree/main
5https://github.com/nihui/opencv-mobile
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Figure 7.5: Screenshot from demo application using MoveNet HPE models.

Multiple adjustments were made mainly regarding the used versions, from CMake, through
Gradle to Android Sdk and Ndk. Java files were converted to Kotlin and severe depreciations
were resolved. All changes made were proposed to merge in pull request6 in the original
repository.

There is available both CPU and GPU inference runtimes for two sizes of the MoveNet
model – smaller and faster lightning and bigger and slower thunder. Both front and back
cameras are supported. For multiple person model, there are three resolution options with
the highest resolution crashing the application on a Samsung Galaxy Z Flip 4 smartphone.
Despite the intuition that GPU runtime should be faster, that is not the case for this
application and CPU runtime is on par with GPU in all lightning model version scenarios.
GPU is surprisingly slower by around 30% for a thunder version of MoveNet for a singlepose
type of application.

Bellow in Figure 7.5 can be seen the example of MoveNet inference in a gym environment.
Specifically, this is a variant for multiperson HPE which uses MoveNet lightning model.

7.5 Other exercises

Experiments on other exercises than squat, deadlift and benchpress were conducted to
find out if different body positions and movements are estimated good enough to produce
reliable results.

In Figure 7.6 can be seen the example of overhead press (OHP) exercise jointly evaluating
other exercise and not traditional position of camera. The position of the camera was height
of 3 meters, negative vertical angle 30°. From the velocity graph, during the 5th repetition,

6https://github.com/FeiGeChuanShu/ncnn_Android_MoveNet/pull/13/files
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(a) Capture of OHP exercise.
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(b) Velocity graph of OHP exercise.

Figure 7.6: Examples of experiments with OHP exercise and nontraditional camera place-
ment.

(a) Snapshot from annotated
video.
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(b) Velocity graph with 3 repetitions.

Figure 7.7: Squat with no weight and crossed arms.

the sticking point can be seen in the middle of the concentric phase which is typical for
OHP. The barbell is the heaviest at around 90°in the elbows.

To see how RTMPose estimated the athlete’s pose in even more other exercises, please look
in Appendix G.

In Figure 7.8 and 7.7 can be seen examples of home exercises: biceps curl with a resistance
band and squat with crossed hands on the chest. As is evident from the velocity graphs,
our solution is applicable even in home exercises completely without barbells and weight
plates.

In Figure 7.9 typical bodybuilding exercise Hacken squat is subjected to experiments. The
velocity is naturally not tracking the path of the machine. However, the detection and
results are consistent. If the athlete keeps a similar camera setup, the velocity metrics
would be informative in a long-term comparison even in the current state of the application.
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(a) Snapshot from annotated
video.
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(b) Velocity graph with 4 repetitions.

Figure 7.8: Biceps curl with a resistance band.

(a) Snapshot from annotated
video.
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(b) Velocity graph with 8 repetitions.

Figure 7.9: Exercises on certain machines such as Hacken squat can be also analyzed
successfully.

7.6 Qualisys Comparison

Experiments with the Qualisys system in a controlled environment were carried out at
FEKT faculty in a sports laboratory7. To verify the accuracy of our developed solution.
In our case, the system was built from 13 Arqus cameras and one Miqus camera for visual
reference. The calibration achieved in our measurement session was 3.4mm.

7Facilities and equipment for Qualisys measurements had been arranged by Mgr. Jan Šťastný, Ph.D.
from CESA BUT.
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(a) Comparison of velocities on multiple devices.
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(b) Absolute deviation from Qualisys reference.

Figure 7.10: Results from comparison experiments with Qualisys motion capture system.
The recordings were recorded with the main back camera in preset modes. Computed
from three repetitions of deadlift exercise. The black dashed line indicates the Qualisys
measurement, which is assumed to be a ground truth.

In Figure 7.10 it can be seen the results of the velocity calculated on multiple devices along
with the measurement of Qualisys and the absolute deviation from the measurement of
Qualisys. Details about used devices are described in Appendix D.

7.7 Discovered Limitations

During experiments with multiple devices in Section 7.10 deviation from ground truth was
found. After the examination of the devices, a possible correlation was discovered between
the focal length of the camera and the magnitude of the deviation. You can inspect the
devices’ specifications in Table D.1 in Appendix D.

After different evaluations of OHP exercises from different session, it was obvious that the
camera focal length does not impact the deviation, or at least it is not the major issue.
Experiments in the wild have shown completely different results. Theoretical computations
in the GeoGebra tool8 can be found in Appendix H. We found out that the main problem
is probably the different angle and perspective changes caused by this factor.

A prominent limitation could be that users cannot define their own tracking points. Al-
lowing users to do this would give them more control and could provide greater value to
certain users.

There can be recognized two other eminent limitations. First, video recording right from
the application. An automatic cropping mechanism should be implemented, probably using
the HPE model, which will definitely be resource-demanding.

Second, HPE inference on the mobile device. Together with the previous points, the mobile
device would be under a significant computational load. Other potential limitations are
actually opportunities for improving the basic functionality rather than true limitations.

8https://www.geogebra.org/
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7.8 Evaluation of Results

Multiple types of experiments were conducted to evaluate the robustness, accuracy and
consistency of the human pose estimation. Different exercises, environments, camera angles
and placements were examined.

Comparison with professional motion capture system Qualisys was performed. The results
of experiments are encouraging and prove that human pose estimation models are capable
alternative to more traditional computer vision and other methods for sport analysis usage.
Solution was also evaluated across multiple mobile devices.

All experiments confirmed the usability of the designed and implemented solution. The
limitations were discovered and will be addressed in further work. Significant achievement is
comparison with professional system Qualisys. This experiment verified the solution under
compliant conditions can produce near same result as could be seen from Figure 7.10b.

7.9 Future Development

Numerous models and approaches were evaluated during the experiments. Similarly, some
limitations were discovered. These topics can be addressed in further development. A list
of possible extensions and additions to this work is briefly explained next.

All the improvements mentioned were proposed to the user as possible additions, and users
agreed that they would appreciate that feature or the idea was brought up directly by users.
Details can be found in user evaluation sessions log files in the supplementary medium in
/user_sessions/live_sessions/ folder.

• Advanced Calibration – More accurate calibration is needed to achieve the best pos-
sible consistency and especially robustness. The main issue is different view angle,
distance from the athlete, and camera position height. Using the device’s gyroscope
sensors to calculate the view angle can highly compensate for the error. This is the
most important point.

• RPE Estimation – Strength sport athletes are used to use RPE metric to evaluate
their training sessions. VBT analysis gives valuable information. However, it can
be difficult to self-coached athletes to understand the relationships, context, and the
whole problematic completely. Using velocity measurements and metrics to estimate
the RPE from measured data can bring data-backed insights in a form of traditional
and widely recognized metric such as RPE.

• Technique Guidance and Validation – From consultation during the Excel@FIT con-
ference, there was a demand for a technique validation or guidance in the application.
The technique guidance and correction can be achieved using keypoints of reference
movement and actual estimated movement of the user.

• Custom Exercise – User could be able to define own keypoints to track. This would
enable users to create custom exercises. The benefit for a developer is that the
responsibility is left to the user.
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Chapter 8

Conclusion

In this thesis, a novel method for strength sports performance analysis was introduced.
Based on theoretical studies, appropriate tools and approaches were chosen and preliminary
experiments verified the initial decisions.

The approach uses human pose estimation (HPE) with the RTMPose model to approximate
barbell movement from wrist coordinates obtained from estimated keypoints. Metrics such
as mean velocity are calculated, providing feedback without strict requirements on camera
angles or visible weight plates.

The Android application offers objective insights into the performance of strength sport
athletes by providing the computed data in simple yet complete native user interface. It is
suitable for strength sports like weightlifting and powerlifting, and with minor adjustments,
can be used by bodybuilders, calisthenics athletes, or strongmen. Currently, the setup
involves a Python server for HPE inference, but steps toward edge inference have been
made. Calibration and conversion from pixels to metric units are crucial, with several
integrated heuristics for precision, though further calibration adjustments are needed for
increased consistency.

The application was developed iteratively with user feedback, ensuring practical usability
and continuous improvement. Extensive testing confirmed the robustness, accuracy, and
consistency of the RMTPose model in both public gyms and home environments. The solu-
tion is effective even without barbells, supporting exercises with body weight or equipment
such as resistance bands, demonstrating its potential as an alternative to traditional sports
analysis methods. Android application can be installed from closed testing Google Play1

after joining the Google Group2.

The application was benchmarked against the professional Qualisys system, showing very
good performance under appropriate conditions and satisfactory overall results. The solu-
tion was evaluated on multiple mobile devices.

Future improvements have been outlined and will be addressed soon. Overall, this work
showcases a significant advancement in sports performance analysis, combining human pose
estimation with modern software development to provide a powerful, flexible tool for ath-
letes and coaches of strength sports, or for all inquisitive users.

1https://play.google.com/apps/testing/cz.vut.fit.xklemr00.vbt.app
2https://groups.google.com/g/dyno-coach-testing
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Appendix A

Code References

Listing 15 Repetition detection from velocity data. The threshold for minimal magnitude
of movement and minimal repetition duration is calculated to filter out noise and irrelevant
movements.
x = np.arange(v.shape[0])

reps = []

roots = []

# Determine the threshold based on the amplitude of the signal

amplitude = max(v) - min(v)

delta = amplitude * 0.1

zero_at = None

for i in range(1, len(v)):

# Detect zero crossing

if np.sign(v[i - 1]) != np.sign(v[i]):

zero_at = i

# If the value in/decreased enough, approve the zero crossing and reset

if zero_at and abs(v[i] - v[zero_at]) > delta:

roots.append(zero_at)

zero_at = None

roots.append(len(v) - 1)

if len(roots) > 1:

average_duration = np.mean(np.diff(x[roots]))

min_duration = average_duration * 0.5

start_index = roots[0]

for i in range(0, len(roots), 2):

if (x[roots[i]] - x[roots[i - 1]]) > min_duration:

end_index = roots[i]

if end_index == len(v):

end_index = roots[-1]

reps.append(v[start_index:end_index])

# Set up the start index for the next rep

start_index = end_index

return np.array(reps, dtype=object)
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Appendix B

Android Application Use Case
Diagram
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Figure B.1: Use Case Diagram for user’s interactions in the application.
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Appendix C

User Evaluation and Testing
Methodology

In all types of sessions, users were asked to comment on their expectations before taking
action and (dis)satisfaction with the result. This section is a formal version of verbal
descriptions of user evaluation transcriptions present in attached media. There were three
types of user evaluation sessions:

1. Proposal User Evaluation – This session type was conducted at the very beginning
with MVP version of application. The application provided video selection and upload
to the server, processing and data simple visualization. History was mocked.

2. Iterative User Testing – Many relevant remarks from the initial user evaluation were
integrated. In this type of sessions, users should tell if the issues are now resolved.
Also they were asked for further ideas or notes. Some users attended multiple iterative
user testing sessions.

3. Final evaluation – Users were asked to give feedback on the final design and function-
ality of the application.

The first type of user evaluation was showing signs, that users do not know what to expect
and thus giving only few ideas for improvements. The main focus of user was watched by
UI with prepared visual elements for planned functionality, but which was not implemented
at that time. The most valuable result was to be sure the UI elements are responsive and
do some action if present. Also some ambiguity in button names or labels was discovered.

The second phase brought many new ideas from users. Some of them were integrated during
the development, other relevant not operational thoughts are expanded in Section 7.9.

Third type of session produced affirmative results in essence. Users has been made familiar
with the final version of the application. Users declared they would use such application
to get better understanding of their training session and to support their current methods
of evaluation. From one coach’s perspective, we obtained the opinion, he would like to use
the applicaiton for managing fatigue drop for his clients.
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Appendix D

Mobile Devices Used in
Experiments

Table D.1: Summary of devices used in experiments and evaluation sessions. Focal length
is important because it has an impact on perspective and field of view and it affects the
distances traveled in the capture hence impacting the velocity and acceleration.

model focal length [mm] Qualisys In the wild

Samsung
S22 Ultra 23 ✓ ✓

Note 9 26 ✓ ✓

Z Flip 4 24 ✓ ✓

Apple
iPhone X 28 ✓ ✓

iPhone SE (2020) 28 ✓ ✓

Google Pixel 6 25 ✗ ✓

Catepillar CAT S60 unknown ✗ ✓

LG Nexus 5X unknown ✗ ✓

Realme 10 27 ✓ ✗

Xiaomi Mi 5 Pro 29.3 ✓ ✓
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Appendix E

Mobile Inference Setup

The setup of mobile inference using MMDeploy for experiments described in Section 7.4
was cumbersome. For that reason, a guide to pursue is presented. The complete setup
includes the following steps:

• Clone example repository - PoseTracker-Android-Prototype.

• Download OpenCV-android SDK and set it as Java module. Disable OpenCV-android
Kotlin language plugin.

• Clone the MMDeploy repository. (another project and documentation)1

• Download cmake >= 3.14.0 and create a symlink. Download Android NDK >= 19.0
and export its path.

• Export OpenCV-android SDK path.

• Clone the ncnn repository and compile it.

– Assume proper paths and destinations.

• Build Java API (yet another project and documentation)2

– Assume proper paths and destinations.

– Warning, do not follow fully the instructions, return back to MMDeploy docu-
mentation before actually compiling the MMDeploy SDK for CPU and ncnn.

• Compile MMDeploy SDK for CPU and ncnn. Copy relevant libraries into jniLibs
folder as described.

• Build and Run the application.

This procedure, while following the referenced links to the documentations, should lead
you into demo application deploying RTMDet and RTMPose models with ncnn backend on
Android platform. You can adjust the models either converting your own or on yor own or
downloading some ncnn backend model from OpenMMLab Deploee websites3.

1https://github.com/open-mmlab/mmdeploy/blob/dev-1.x/docs/en/01-how-to-build/android.md
2https://github.com/open-mmlab/mmdeploy/blob/1.x/csrc/mmdeploy/apis/java/README.md
3https://platform.openmmlab.com/deploee
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Appendix F

Experiments with Various Human
Pose Estimation Models

AlphaPose

Additional example of investigated HPE model. AlphaPose produced mixed quality results
for tested scenes as can be seen in Figure F.1.

(a) Result for back squat from
lower back close camera posi-
tion.

(b) Result for benchpress from parallel medium distance
camera position.

Figure F.1: Examples of experiments with AlphaPose inference.
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DWPose

DWPose is one of models in MMPose framework model zoo. It aims on RTMPose as a
main competitor, while promising higher AP with the same computational complexity as
RTMPose in a wholebody task. even though wholebody task is more complex as it covers
more details/landmarks on a human body, it is not significant advantage in our context.
We investigated the performance anyway.

From experiments done in an OpenXLab online environment1 as the GitHub documenta-
tion2 suggests, we found out, that indeed wholebody pose estimation did not bring better
accuracy in comparison to RTMPose body model. Erected poses are estimated good enough
to consider usage in the wild but complex body positions like in benchpress are not esti-
mated properly as you can see in FigureF.2

(a) Erected pose is estimated success-
fully.

(b) Not satisfactory predictions for bench-
press.

Figure F.2: Results from experiments with DWPose model.

Hand Model

The main issue are occlueded scenes and unnatural body position. The secodn case is
also an issue with benchpress exercise. The idea of overcoming this issues it to not detect
the whole body but just the wrists with a hand model. Hand models are specialized on
detectioon very fine details such as finger parts but this is not an issue for our usage if the
model produce reliable resutls.

The results of experiments with the hand model can be seen in Figure F.3. Unfortunately,
it is a chicken-and-egg problem. The model is able to predict the correct keypoints for a
hand and fingers, but only if the hand is already the main object in the scene, as can be

1https://openxlab.org.cn/apps/detail/mmpose/RTMPose
2https://github.com/idea-research/dwpose
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seen in Figure F.3a. If there is a regular scene with no crop just to the hand, it cannot find
the hand properly and cannot predict the keypoints. The unsuccessful prediction is shown
in Figure F.3b.

(a) On the cropped image, hand
keypoints are correctly predicted.

(b) On not cropped image, hand
keypoints are incorrectly predicted.

Figure F.3: Experiments with RTMPose model fine-tuned for detailed hand detection.

UniPose

Experiments with UniPose were conducted in the OpenXLab online environment3. The
results were not satisfactory, largely because UniPose is not a traditional human pose
estimation model. It uses joint input of an image and a textual prompt describing the type
of pose, such as person, animal, car, etc. It is sensitive to bounding box and IoU thresholds,
with lower values producing more instances but without a clear best option.

For example, the benchpress from the top view might seem correct, but there is a false
prediction that legs are the left arm. As seen in Figure F.4b and F.4c, legs can often be
folded into arms.

(a) Even not erected pose
is estimated without error
– see left wrist.

(b) Result for benchpress are not
usable in the production solu-
tion.

(c) Results from side view are
again not reliable.

3https://openxlab.org.cn/apps/detail/IDEA-Research/IDEA
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Appendix G

Experiments with RTMPose on
Other Exercises

Additional exercises are presented. GHD and hyperextension have similar movements. In
shown case in Figure G.1 and G.3 you can see such movements without any additional
weight. The dumbbell press (free weight dumbbells) presented in Figure G.2 shows an
example of a set with fatigue drop.

Finally, strongman exercise log lift is shown in Figure G.4. Please note, that log loft consists
of three movements: transition from ground onto kneees, transition from knees to upper
chest, and final push above head where the “concentric” phase of the movement finishes.
After that the log is drop back to the ground, this is also observable in the velocity graph
by the huge velicyt drop. You can also see significant feature of the processing and this is
the asymetric y axis which is extra useful in such exercises.

(a) Video snapshot of GHD. (b) Velocity graph with 9 repetitions.

Figure G.1: GHD exercise.
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(a) Video snapshot of dumbbell press. (b) Velocity graph with 11 repetitions.

Figure G.2: Dumbell press exercise. Fatigue drop is observable from velocity loss and
prolonged repetition time.

(a) Video snapshot of hyperex-
tension.
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(b) Velocity graph with 9 repetitions.

Figure G.3: Hyperextension exercise. During the video recording, two people went in front
of the camera, thus the unexpected spikes in the velocity graph.

(a) Snapshot from annotated
video of log lift.

0 2 4 6 8 10 12 14

-4.0

-3.0

-2.0

-1.0

0.0

0.3

0.6

0.9

1.2

time [s]

ve
lo

ci
ty

 [m
/s

]

(b) Velocity graph with a single repetition.

Figure G.4: Strongman exercise log lift. Note the three phases of the exercise. The last one
is usually the most crucial.
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Appendix H

Camera Angle Consequences

Naive calculation of the distortion implied in the capture of d video footage due to the
position and perspective of the camera. No image warping caused by different focal length
of camera len is not used.

Please see Figure H.1 where closer position is captured. In Figure H.2 where the athlete is
1 meter farther from camera, significant drop in distorition is observable. The two sections
pairs represent OHP and squat exercises.

The red line is denoting the camera view angle bisection. Sections SO and TN are perpen-
dicular to red line bisection and represent the capturem video footage. Sections PO and
ON are perpendicular to x axis and represent the actual movement length.

It can be seen the closer the athlete to camera the bigger the distortion. Similar the closer
the movement to the edges of the camera view, in other words the farther from camera
view center, again the larger the distortion.

93



0.10.1 0.20.2 0.30.3 0.40.4 0.50.5 0.60.6 0.70.7 0.80.8 0.90.9 11 1.11.1 1.21.2 1.31.3 1.41.4 1.51.5 1.61.6 1.71.7 1.81.8 1.91.9 22 2.12.1 2.22.2 2.32.3 2.42.4 2.52.5 2.62.6 2.72.7 2.82.8 2.92.9 33 3.13.1 3.23.2 3.33.3 3.43.4 3.53.5

-0.1-0.1

0.10.1

0.20.2

0.30.3

0.40.4

0.50.5

0.60.6

0.70.7

0.80.8

0.90.9

11

1.11.1

1.21.2

1.31.3

1.41.4

1.51.5

1.61.6

1.71.7

1.81.8

1.91.9

22

2.12.1

2.22.2

2.32.3

00

MM

NN

OO

PP

SS

TT

PO = 0.55

SO = 0.477

TN = 0.633

ON = 0.7

Figure H.1: Impact of camera angle on perceived length of the movement. Distance of
camera at 2 meters from athlete. For above head movement, the distortion can get up to
−13%.
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Figure H.2: Impact of camera angle on perceived length of the movement. Distance of
camera at 3 meters from athlete. For above head movement, the distortion can get up to
−9%.
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