
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

SEGMENTATION OF LOGICAL UNITS IN TEXT
DĚLENÍ TEXTU DO LOGICKÝCH CELKŮ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. MARTIN KOSTELNÍK
AUTOR PRÁCE

SUPERVISOR Ing. KAREL BENEŠ
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Graphics and Multimedia (DCGM)

Student: Kostelník Martin, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Machine Learning

Category: Speech and Natural Language Processing

Academic year: 2023/24

Assignment:

Literature:
• Glavaš, Goran, and Swapna Somasundaran. “Two-Level Transformer and Auxiliary Coherence

Modeling for Improved Text Segmentation.” AAAI 2020 NYC (2020).

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Beneš Karel, Ing.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 9.11.2023

Master's Thesis Assignment
155569

Segmentation of logical units in textTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The goal of this project is the topic segmentation of text into coherent units. It builds on
the PERO-OCR software, aiming to improve the processing of Czech historical documents
and information retrieval for librarians and scientists. This included the creation and
annotation of a custom dataset comprised of 4044 pages from books, dictionaries, and
periodicals. I propose an innovative approach treating segmentation as a line clustering
problem. The method involves a two-stage process: initial detection of regions of interest
containing text lines using the YOLOv8 model, followed by joining them using a graph
neural network. This method achieves a V-measure of 77.93 %, 95.79 % and 90.23 % for
books, dictionaries and periodicals, respectively.

Abstrakt
Cílem projektu bylo vytvořit systém pro automatickou segmentaci textu do logických celků.
Práce staví na systému PERO-OCR a cílí na zlepšení zpracovávání českých historických
dokumentů a jejich vyhledávačů používaných knihovníky a vědci. Práce zahrnovala vytvo-
ření a anotace vlastní datové sady složené celkem z 4044 stránek z knih, slovníků a novin.
K problému segmentaci textu je přistoupeno inovativních přístupem, kdy je brán jako
shlukovací problém jednotlivých řádků textu. Metoda je dvoufázová: nejprve probíhá de-
tekce regionů textu pomocí modelu YOLOv8 a následuje jejich spojení grafovou neuronovou
sítí. Vyhodnocení je provedeno pomocí shlukovací metriky V-measure a na testovacím
datasetu dosahuje hodnot 77.93 % pro knihy, 95.79 % pro slovníky a 90.23 % pro noviny.

Keywords
text segmentation, machine learning, optical character recognition, OCR, language models,
graph neural networks, object detection, BERT, YOLOv8, historical documents

Klíčová slova
segmentace textu, strojové učení, optické rozpoznávání znaků, OCR, jazykové modely,
grafové neuronové sítě, detekce objektů, BERT, YOLOv8, historické dokumenty

Reference
KOSTELNÍK, Martin. Segmentation of logical units in text. Brno, 2024. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Karel
Beneš

Rozšířený abstrakt
Tato práce se zaměřuje na tematickou segmentaci historických dokumentů do logických
kusů, jako jsou články, slovníkové záznamy nebo novinky v novinách. Tematická segmen-
tace pomáhá knihovníkům a vědcům, kteří mají k dispozici velké množství nekategorizo-
vaných dat. Práce je také součástí projektu semANT na FIT VUT, který si ve spolupráci
s Ministerstvem kultury České republiky klade za cíl zlepšit schopnosti vyhledávání v digi-
talizovaných dokumentech začleněním sémantického porozumění.

Projekt staví na softwaru PERO-OCR, který poskytuje detekci řádků textu a jejich
přepis, nicméně nezaručuje správné pořadí detekovaných řádků. Proto definuji problém
segmentace textu jako problém shlukování řádků. Každý shluk může představovat buď
titulek nebo textový segment. Navržené metody jsou vyhodnocovány pomocí shlukovacích
metrik: úplnost, homogenita a V-measure.

Vzhledem k tomu, že nebyly nalezeny žádné veřejné datové sady pro tematickou seg-
mentaci v českém jazyce, bylo nutné vytvořit vlastní. V potaz jsou brány tři různé typy
historických dokumentů: knihy, slovníky a periodika. Celkem bylo vybráno 4044 stránek
z historických dokumentů z digitální knihovny k zpracování. S pomocí několika knihovníků
a dalších studentů byly tyto stránky anotovány. Nejtěžší a nejrozmanitější stránky byly poté
vybrány jako validační a testovací datové sady. Validační i testovací sada každá obsahuje
90 stránek.

Nejprve bylo implementováno základní řešení problému bez použití technik strojového
učení, které je založeno pouze na geometrii stránky. Tato metoda nalezne předchůdce
a následníka každého textového řádku pomocí geometrických omezení. Tyto vztahy nemusí
být symetrické a v místě, kde je symetrie porušena, je text rozdělen, což má za následek
vznik menších segmentů.

Byla vytvořena dvě vylepšení základní metody. Segmenty generované základní metodou
jsou dále rozděleny do menších segmentů zavedením heuristické funkce. První heuristika je
čistě geometrická. Rozdělení je provedeno, když vertikální vzdálenost dvou po sobě jdoucích
řádků je větší než průměr pro celou stránku, který je navíc upravený parametrem.

Druhá heuristika je reprezentována jazykovým modelem BERT, který je doladěn pro
predikci návaznosti dvou textových řádků. Podobně jako u heuristiky, založené na vzdále-
nosti, je rozdělení provedeno, když model u dvou řádků predikuje, že na sebe řádky ne-
navazují. Předtrénovaný model CZERT, což je varianta modelu BERT pro český jazyk,
byl doladěn na predikci návaznosti pomocí anotovaných dat. Také byly předtrénovány
vlastní modely BERT na velkém korpusu knižních dat z digitální knihovny. Čtyři modely
s různými velikostmi výstupů byly trénovány ve stejném stylu jako originální model BERT.
Jejich ladění proběhlo stejně jako u modelu CZERT.

Základní metoda funguje poměrně dobře na stránkách, kde každý segment je tvořen
jedním odstavcem a segmenty jsou vizuálně odděleny. Nicméně takových stránek je mi-
nimum. Heuristika založená na vzdálenosti dále tuto schopnost zlepšuje, ale metoda má
potíže s hustými a složitými dokumenty, zejména ve slovnících, kde položky nejsou vizuálně
odděleny. Varianta s jazykovými modely základní metodu také zlepší, ale nejlépe funguje
varianta založená na vzdálenosti, která dostahuje hodnot V-measure 49.77 % pro knihy,
64.67 % pro slovníky a 77.40 % pro periodika. Jazykové modely mají další nevýhodu, a to
je délka zpracování, která se oproti základní metodě zvýší až desetkrát.

Hlavní navržená metoda pracuje ve dvou krocích: počáteční detekce regionů v obrázku
stránky obsahujících textové řádky pomocí vizuálního detektoru YOLOv8, kterou násle-
duje jejich spojení pomocí grafové neuronové sítě. Předtrénované modely YOLOv8 byly
doladěny k detekci textových regionů v textových stránkách. Byly provedeny experimenty

s nano, small a medium variantami modelu YOLOv8, a také s různými rozlišeními vs-
tupních obrázků od 640px do 1400px na dlouhé straně se zachováním poměru stran. Po
natrénování byl vybrán model na základě přesnosti detekce, přesnosti segmentace pomocí
metriky V-measure a rychlosti zpracování. Detekované regiony jsou poté namapovány na
textové řádky z PERO-OCR a mohou být považovány za finální segmenty. YOLOv8
dosahuje hodnot V-measure 65.33 % pro knihy, 93.36 % pro slovníky a 83.93 % pro peri-
odika.

Problém je, že YOLOv8 může detekovat pouze obdelníky zarovnané podle os, a proto
nejsou správě detekovány segmenty, které jsou ve více sloupcích. Z detekovaných regionů
je vytvořen kompletní, neorientovaný graf, který je následně předán grafové neuronové
síti. Uzly grafu jsou reprezentovány detekovanými regiony a jsou popsány geometrickými
příznaky. Hrany jsou reprezentovány jak geometrickými, tak jazykovými přáznaky: eukli-
dovskou vzdáleností dvou regionů a hlavně kosinovou vzdáleností mezi jazykovými příznaky,
které jsou vygenerovány jazykovým modelem CZERT.

Grafová neuronová síť pracuje jako klasifikátor hran. Předpovídá, zda by měly být
dva uzly (regiony) spojeny dohromady. ResGatedGraphConv vrstva je použita jako grafová
vrstva, spolu s normalizací a nelineární aktivační vrstvou tvoří stavební blok pro grafovou
neuronovou síť. Finální grafová síť je tvořena vstupní projekcí s vrstvou dropout, několika
grafových bloků a výstupní projekcí. Spojení regionů detekovaných modelem YOLOv8
dále zvyšuje přesnost segmentace. Metoda dosahuje hodnot V-measure 77.93 % pro knihy,
95.79 % pro slovníky a 90.23 % pro periodika.

Segmentation of logical units in text

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Karel Beneš. Supplementary information was provided by
Ing. Michal Hradiš, Ph.D. I have listed all the literary sources, publications and other
sources, which were used during the preparation of this thesis.

. .
Martin Kostelník

May 14, 2024

Acknowledgements
I would like to thank my supervisor Ing. Karel Beneš for his expertise and guidance. Fur-
thermore, I would like to express my thanks to Ing. Michal Hradiš, Ph.D. for his valuable
consultations. Lastly, I am deeply grateful to my family and friends for their constant
support and encouragement.

Contents

1 Introduction 2

2 Background 3
2.1 Convolutional Neural Networks . 3
2.2 Graph Neural Networks . 6
2.3 Object Detection . 9
2.4 Transformer Based Language Models . 13
2.5 Overview of Semantic Text Segmentation Methods 15

3 Problem Definition 17
3.1 Evaluation metrics . 17

4 Data 20
4.1 Data Collection . 20
4.2 Data Labelling . 22

5 Proposed Method and Implementation 24
5.1 Page Geometry . 24
5.2 Baseline Solution . 25
5.3 YOLOv8 Detection . 27
5.4 Proto-Bite Joining . 28
5.5 Output File Formats . 31

6 Experiments and Results 33
6.1 Baseline Experiments and Results . 33
6.2 YOLOv8 Experiments and Results . 36
6.3 Graph Neural Network Experiments and Results 39
6.4 Results Overview and Discussion . 41

7 Conclusion 43

Bibliography 44

1

Chapter 1

Introduction

Over the history of humankind, written documents were the most used way of storing and
sharing data. There are billions and billions of all kinds of documents, books, dictionaries,
encyclopedia, newspapers, legal documents and many more. The documents are gathered
and stored by libraries and other institutions. In the information age, a great emphasis is
placed on the digitization of these documents with the aim of preserving the heritage of
society, but due to the sheer quantity of data, this process is extremely slow. The use of
machine learning can massively increase the processing rate, allowing for a faster expansion
of digital libraries.

One step in this digitization process, which is the main goal of this project, is the
segmentation of the documents into logical units like book chapters, dictionary entries or
newspaper articles. The segmentation can serve as a basis for many applications like search
engines, where it could aid finding specific text pages based on the article topic or keywords
or content recommendation systems in platforms focused on historical materials.

Segmentation of documents is usually done directly on text data, but the structure of
individual pages can provide additional information and is often omitted. The challenge here
is the combination of these two different kinds of information to form a robust segmentation
system. The proposition is to use an object detector to isolate regions containing text and
subsequent joining of these regions using a graph neural network that would utilize both
structural and text information.

The work is a part of the semANT project developed at BUT FIT in a collaboration
with the Ministry of Culture Czech Republic, which aims to improve the search capabilities
in digitized documents and the navigation between thematically similar documents.

The text begins with the theoretical background necessary for the understanding of
this project in Chapter 2. Chapter 3 defines the problem this project aims to solve and
the evaluation metrics. Chapter 4 is all about the data used, its origin, acquisition and
labeling. Chapter 5 presents the main methods, their ideas and implementation. Finally,
Chapter 6 describes the experiments with the models and the final results.

2

Chapter 2

Background

This chapter provides an overview of key techniques and concepts crucial for the understand-
ing of this project. It begins with an introduction to two distinct classes of neural networks.
First, it goes over convolutional neural networks, their fundamentals and estabilished archi-
tectures. Then it takes a look at graph neural network, their basics and illustrating several
graph convolution layers. Subsequently, it delves into object detection highlighting several
traditional and deep learning approaches. Lastly, it explores transformer-based language
models and their use cases within the project’s scope.

2.1 Convolutional Neural Networks
Convolutional neural network (CNNs) [20] are a class of deep learning models mainly used
in image and video processing. They have found success because of their ability to capture
spatial features and patterns using layers stacked in a hierarchical architecture. These
layers perform an operation called convolution, extracting features at different levels of
abstraction.

In the context of text segmentation, CNNs are often used as the backbone of OCR
(Optical Character Recognition) systems, which rely on CNNs to detect and recognize text
regions within images and subsequently perform character recognition and text extraction.

This project utilizes CNNs as an image processing tool. Apart from being the backbone
of OCR, they are also used as the backbone to visual detector models like YOLO described
later in Section 2.3. For this reason, information provided in this section will assume that
image data is used. It is worth noting that convolution as an operation can be applied in
spaces with any dimensionality, such as 1D for speech, 3D for video, or others.

2.1.1 Components of Convolutional Neural Networks

Convolutional neural network are composed of several key components, each serving their
specific purpose. These are convolutional layers, pooling layers and fully connected layers.
As it is common with other neural networks, activation, normalization and dropout layers
are often present as well.

Convolutional layers are the core building blocks of CNNs. They perform the con-
volution operation on the input data using kernels with trainable weights. These kernels,
also called filters, are small matrices that detect particular features present in the data.
They operate by sliding over the input sample, computing element-wise multiplication of

3

the kernels with a sub-region of the input. The result of applying the kernel across the
sample is called a feature map.

The convolution operation is denoted by the star symbol * and for 1D data it is math-
ematically defined as:

(𝑓 * 𝑔) [𝑛] =
∞∑︁

𝑚=−∞
𝑓 [𝑚] 𝑔 [𝑛−𝑚] ,

where 𝑓 and 𝑔 are two discrete functions and 𝑛 is the time index of the output signal.
In machine learning libraries like PyTorch1 or TensorFlow2, the convolutional layers are

implemented to use cross-correlation instead of convolution. The only difference is that, in
the case of convolution, the kernel is flipped along all spatial dimensions. The operations
become identical when the kernel is symmetrical. The calculation of the values in the
feature map is represented as:

𝑦𝑖,𝑗 = 𝜑

(︃
𝐹∑︁
𝑙=0

𝐹∑︁
𝑚=0

𝑤𝑙,𝑚 · 𝑥𝑖+𝑙,𝑗+𝑚 + 𝑏

)︃
,

where 𝑦𝑖,𝑗 is the output value at position (𝑖, 𝑗), 𝑤𝑙,𝑚 is the weight of the kernel at position
(𝑙,𝑚), 𝑥𝑖+𝑙,𝑗+𝑚 is the value in the input sample, 𝑏 is the bias and 𝜑 is the activation function.
An example of the element-wise multiplication in the convolution calculation can be seen
in Figure 2.1.

1 0 1
0 1 0
1 0 1

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

∗ =

Figure 2.1: Element-wise multiplication in the convolution computation using a 3×3 kernel.
Image taken from [34] and recreated.

Pooling layers are used to reduce the spatial dimensions of feature maps. They are
typically found after convolutional layers and they operate on each feature map indepen-
dently. The most common pooling layer variations are maximum pooling and average
pooling. Both of these variants can be seen in Figure 2.2. Overall, this technique helps to
reduce the computational complexity and also improve the model performance by making
it more robust to small translations in the input image.

Fully connected layers are layers that connect every neuron in the previous layer to
every neuron in the current layer. They are typically used at the end of the network to
produce the desired output in classification tasks.

2.1.2 Estabilished Convolutional Neural Network Architectures

Over the years, many CNNs with varying architectures have been proposed, each with its
unique design principles and architectural innovations. This section introduces some of the

1https://pytorch.org/
2https://www.tensorflow.org/

4

https://pytorch.org/
https://www.tensorflow.org/

3 7 4 8
6 8 11 9
5 3 14 16
2 2 1 5

6 8
3 9

8 11
5 16

Max pooling

Average pooling

Figure 2.2: Example of max and average pooling layers in convolutional neural networks.

most influential CNN architectures, their features and contributions to the field of deep
learning.

LeNet

One of the first CNN architectures, LeNet [22] was developed by Yann LeCun et al. in
1998. It’s original purpose was the recognition of handwritten digits. LeNet features two
convolution layers followed by three fully connected layers (Figure 2.3). The last fully
connected layer uses a softmax activation to output the probability distribution over the
digits. The convolution layers use small kernels and pooling layers to extract features from
the input images. In total, the network has around 60k trainable parameters.

Figure 2.3: Flow of data in LeNet-5 convolutional neural network used for the classification
of handwritten digits. Image taken from [27].

AlexNet

AlexNet [21] was developed by Alex Krizhevsky et al. in 2012. At that time, it achieved
state-of-the-art performance on the ImageNet dataset [3]. The architecture consists of
five convolutional layers and three fully connected layers. Compared to LeNet, it is much
bigger in the number of trainable parameters, which are 62M. It also uses local response
normalization and overlapping pooling layers.

VGG

The VGG (Visual Geometry Group) architecture [33], proposed by Karen Simoyan and
Andrew Zisserman in 2014 consists of convolutional layers with small 3× 3 filters followed
by max-pooling layers. The key innovation is the use of a deeper architecture. The VGG16
variant, which is one of the most used variants, has 138M trainable parameters and contains
sixteen layers, compared to eight in AlexNet.

5

ResNet

ResNet (Residual Network) [9], introduced by Kaiming He et al. in 2015, adresses the
problem with training very deep neural networks by introducing residual connections. These
connections allow gradients to flow more directly through the network during training. In
a sub-network with a certain number of stacked layers performing a function 𝐹 (𝑥), where
𝑥 is the input, the residual connection is represented as:

𝑦 = 𝐹 (𝑥) + 𝑥.

Resnet is composed of multiple residual blocks, where each block contains multiple convo-
lutional layers with skip connections that add the original input to the output of the block.
Many variants of this network exist, majority of them are smaller in parameters than pre-
viously introduced architectures. For example, ResNet-50 has roughly 24M parameters.

GoogLeNet

GoogLeNet [35], also known as Inception-v1, was introduced by a team of researchers at
Google in 2014. They proposed an architecture composed of components nicknamed Incep-
tion, which allow for parallel execution of multiple convolutional operations with different
kernel sizes within the same layer. GoogLeNet consists of several of these modules with
occasional max-pooling for downsampling. In addition, it incorporates auxiliary classifiers
at intermediate layers during training to alleviate the vanishing gradient problem.

MobileNet

MobileNet [11], introduced by researchers at Google in 2017, is designed specifically for
mobile and embedded devices with limited computational resources. The key innovation
lies in its depth-wise separable convolutional layers, which significantly reduce the number
of parameters and the computational cost of the convolution calculation. In depth-wise
separable layers, the convolution is split into two separate operations: depth-wise convolu-
tion and point-wise convolution. The depthwise convolution applies a single convolutional
filter per input channel, while the pointwise convolution combines the output channels of
the depthwise convolution using 1× 1 kernels. The depthwise convolution is defined as:

�̂�𝑘,𝑙 =
∑︁
𝑖,𝑗

�̂�𝑖,𝑗 · 𝐹𝑘+𝑖−1,𝑙+𝑗−1,

where �̂� is the output feature map, �̂� is the depth-wise convolutional kernel and 𝐹 is
the input feature map. Various variants of MobileNet exist, each offering improvements in
terms of accuracy, efficiency and model size.

2.2 Graph Neural Networks
Graph structured data allow representation of entities and their relationships. Graph 𝐺 =
(𝑉,𝐸) consists of a set of nodes 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} and a set of edges 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑚}.
Nodes contain feature vectors describing the object they represent relevant to the domain.
Edges connect the nodes, indicating their relationship. They can be either directed or
undirected. The interconnected nature of graphs allows them to model a wide range of real
world scenarios where entities and mainly their interactions play a major role. For example,

6

an analysis of social network, where the graph can represent relationships between people,
or text analysis, where nodes represent words, sentences or entire paragraphs.

Graph neural networks (GNNs) [14] are a class of neural networks that take graphs
as an input. Their strength comes from their ability to model relationships within the
graph structured data. Unlike other methods, GNNs can exploit the explicit dependencies,
connections and contextual information encoded in these graphs.

Objectives for a GNN can fall into one of three categories: node-level tasks, edge-level
tasks and graph-level tasks. Node-level tasks are concerned about predicting certain prop-
erties associated with every node. Relevant use case for this project could be classification
of text paragraphs to multiple classes such as title, text or image description.

Edge-level tasks analyze local interactions and dependencies between pairs of nodes in
a graph. This is the application used in this project, where edge classification is performed
to determine whether two or more paragraphs form one coherent segment. Another use case
could be recommendation systems or edge predictions, where the model would predict the
existence of new edges, discovering potential connections in social networks for example.

Graph-level tasks cover specific cases, where the goal is to discover characteristics
and properties of the entire graph. For example, evaluating new chemical compounds
in molecule analysis or more general applications like graph classification, graph clustering,
which involves partitioning the graph into meaningful subsets or graph regression, associ-
ated with the prediction of continuous-valued attributes associated with the entire graph.

2.2.1 GNN Computation Process

When a graph is fed to a GNN, node feature vectors are iteratively updated. During each
iteration, a node gathers information from its neighboring nodes and edges, transforming it
using a message passing algorithm. This updated information is then incorporated to the
original node representation, either by augmenting it through skip connections or replacing
it entirely. More precisely, after the first iteration, each node embedding holds information
from neighboring nodes within a distance of 𝑑 = 1. After second iteration, each embedding
contains information of nodes withing a distance of 𝑑 ≤ 2. Generally, after k-th iteration,
each node includes data from nodes withing a distance of 𝑑 ≤ 𝑘.

Similarly to other neural networks, GNNs also contain multiple layers, which is illus-
trated in Figure 2.4. Each layer can contain skip connections, sampling operator, convolu-
tional, recurrent or attention operator and pooling. Some operators are introduced in the
next section.

2.2.2 Existing GNN Layers

The main strength of GNNs is the use of the message passing algorithm aggregating feature
vectors of neighboring nodes together. This can be done in many ways. Over time, many
aggregating mechanisms were introduced. This section gives a brief overview of some of
them:

GCNConv

Graph Convolutional Operator (GCNConv) [15] is a convolutional operator first developed
for semi-supervised classification in graph neural networks. It uses an layer-wise propagation
rule based on approximation of spectral convolution on graphs. It is mathematically defined

7

Figure 2.4: Structure of a graph neural network, which takes graphs as an input and
propagates node information to its neighbors. Each layer can be composed of multiple
components. Output is a new graph with modified node features. Image taken from [40]
and edited.

as:
𝑍 = �̂�− 1

2𝐴�̃�− 1
2Θ,

where 𝑍 ∈ R𝑁×𝐹 is the convolved signal matrix, Θ ∈ R𝐶×𝐹 is a matrix of of filter parame-
ters, 𝐴 = 𝐴+ 𝐼 denotes the adjacency matrix with inserted self-loops and �̂�𝑖𝑖 =

∑︀
𝑗=0

𝐴𝑖𝑗 its

diagonal degree matrix. It can also be defined node-wise as

𝑥′𝑖 = Θ𝑇
∑︁

𝑗∈𝑁(𝑖)∪{𝑖}

𝑒𝑖,𝑗√︁
𝑑𝑗𝑑𝑖

𝑥𝑗 ,

with 𝑑𝑖 = 1 +
∑︀

𝑗∈𝑁(𝑖)

𝑒𝑗,𝑖, where 𝑒𝑗,𝑖 is the edge weight from node 𝑗 to node 𝑖.

ResGatedGraphConv

Residual gated graph convolutional operator (ResGatedGraphConv) [1] is also a convolu-
tional operator, which introduced gates [25] and residual connections to the computation.
In graph neural networks, residuality can play a significant role in improving performance
when using multi-layer architectures. It’s node wise definition is:

𝑥′𝑖 = 𝑊1𝑥𝑖 +
∑︁

𝑗∈𝑁(𝑖)

𝜂𝑖,𝑗 ⊙𝑊2𝑥𝑗 ,

𝜂𝑖,𝑗 = 𝜎 (𝑊3𝑥𝑖 +𝑊4𝑥𝑗) ,

where 𝜂𝑖,𝑗 is the gate and 𝜎 denotes the sigmoid function.

GATConv

Graph attentional operator (GATConv) [38] is an operator that uses self-attention instead of
convolution. It attempts to overcome the shortcomings of convolution or its approximation

8

by leveraging self-attentional layers. Unlike traditional convolutional approaches that utilize
fixed-weight kernels, GATConv implicitly allows for specifying different weights to different
neighboring nodes. Another strength is easy parallelization and the reduction of costly
matrix operations like inversion. The node wise definition is:

𝑥′𝑖 = 𝛼𝑖,𝑖Θ𝑠𝑥𝑖 +
∑︁

𝑗∈𝑁(𝑖)

𝛼𝑖,𝑗Θ𝑡𝑥𝑗 ,

where the attention coefficients 𝛼𝑖,𝑗 are calculated as:

𝛼𝑖,𝑗 =
exp

(︀
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(︀
𝑎⊤𝑠 Θ𝑠𝑥𝑖 + 𝑎⊤𝑡 Θ𝑡𝑥𝑗

)︀)︀∑︀
𝑘∈𝑁(𝑖)∪{𝑖}

exp
(︀
𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈

(︀
𝑎⊤𝑠 Θ𝑠𝑥𝑖 + 𝑎⊤𝑡 Θ𝑡𝑥𝑘 + 𝑎⊤𝑒 Θ𝑒𝑒𝑖,𝑘

)︀)︀ ,
where 𝑎⊤𝑠 and 𝑎⊤𝑡 are the parameters of the attention mechanism3.

2.3 Object Detection
Object detection is a computer vision task, which deals with localizing regions of interest in
an image or a video sequence and then classifying them into specific classes. An image can
contain an unspecified number of such regions. Use cases range from autonomous vehicles
identifying other cars, pedestrians and their surrounding in general, through medical imag-
ing, where object detection techniques can assist in identifying and localizing abnormalities
in X-rays or MRIs, to surveillance, satellite imagery analysis or text detection. Examples
of object detection can be seen in Figure 2.5.

In the scope of this project, object detectors are employed to analyze scanned images
of text pages to identify text paragraphs that hold interesting semantic information. The
detector isolates these texts, which allows further analysis and mapping to an output of an
OCR system.

Figure 2.5: Example of object detection. Image taken from [29].

Over the years, numerous object detection techniques have been developed. Among
these are traditional algorithms like Haar cascades [39], introduced in 2001, which use

3The attention mechanism is implemented as a single-layer fully connected neural network.

9

a cascade classifier consisting of multiple stages, each utilizing a set of simple rectangular
features called Haar-like features. Another algorithm is Histogram of Oriented Gradients
(HOG) [2], which is a feature descriptor technique that operates by computing gradients
and their orientations in localized portion of an image. The features are typically fed into
a classifier, such as the Support Vector Machine (SVM), to determine whether an object of
interest is present within the window.

In recent years, state of the art algorithms increasingly leverage convolutional neural
networks (CNNs) and deep learning techniques for object detection. These approaches have
demonstrated remarkable performance improvements across various domains.

One significant distinction in these frameworks lies in the design of the detection ar-
chitecture: one-stage detectors and two-stage detectors. One-stage detectors like YOLO
[29] or SSD [24] aim to directly predict bounding boxes and class probabilities in a single
pass through the network. This prioritizes speed, which makes then well suited for real
time applications. Two-stage detectors, such as R-CNN [6], first propose potential object
regions and then refine these proposals with a classification and bounding box regression.
Difference is further highlighted in Figure 2.6.

Figure 2.6: Single-stage versus two-stage object detector architecture. The main difference
lies in the Head Network part of the model. Taken from [13].

2.3.1 Faster R-CNN

Faster R-CNN (Faster Region-base Convolutional Neural Network) [30] is an object detec-
tion model released in 2015. It builds upon the R-CNN [6] family of models and mainly
addresses their computational inefficiency. This model was the first to feature a Region
Proposal Network (RPN). The architecture of Faster R-CNN consists of a RPN and a sub-
sequent Fast R-CNN [5]. The RPN generates region proposals as bounding boxes with
associated objectness score, which indicates the likelihood that the region contains an ob-
ject. The Fast R-CNN takes the region proposals and performs the object classification and
bounding box regression.

The other key innovation are shared convolutional features between the RPN and Fast
R-CNN, which reduces the computation time. Both components use a CNN backbone, such
as VGG, which is shared between them. Therefore the forward pass requires only a single

10

pass of the input sample through the backbone. This approach also helps the training
process, as it helps the model to learn feature representations effectively for both tasks.

2.3.2 YOLO

YOLO (You Only Look Once) is a single-stage object detector introduced by Joseph Red-
mon et al. in 2015 [29]. While other models like R-CNN described above use a Region
Proposal Network, which feeds into a classifier recognizing these regions, YOLO performs
all predictions in one evaluation. Because of this, it can be optimized end-to-end directly
for the performance of the detection.

The authors defined the detection as a regression problem. It divides the input image
into a 𝑆 × 𝑆 grid and for each cell the model predicts 𝐵 bounding boxes, their confidence
and class probabilities.

Since its introduction in 2015, seven more versions of the YOLO model were released,
with YOLOv8 [12] being the latest. Developed by Ultralytics under the AGPL-3.0 license, it
does not have a scientific paper released alongside it. Built on YOLOv5 [36], also developed
by Ultralytics, it increased the total number of training epochs from 300 to 500. Some
changes4 to the model architecture were also introduced, like a different convolution module
or decoupled heads.

Ultralytics released multiple pre-trained models for more tasks than just object detection
like image segmentation or pose estimation. The model also exists in various sizes, ranging
from a small model with just 3.2M parameters to the biggest model with 68.2M parameters.
Comparison can be seen in Figure 2.7.

Figure 2.7: Comparison of four versions of YOLO models in all available model sizes. Both
graphs showcase the mAP50-95 metric (higher is better) on COCO dataset. The left one
has the number of model parameters along the x axis and the right one inference time for
one image. Image taken from [23].

YOLO models have a weakness when trying to detect many objects that are in a close
proximity. It is the effect of the non-maximum suppression, which is a technique for filtering
region proposals based on the confidence score. It decreases the confidence in overlapping
bounding boxes and eliminates bounding boxes with low confidence.

4https://github.com/ultralytics/ultralytics/issues/189

11

https://github.com/ultralytics/ultralytics/issues/189

2.3.3 Object Detection Metrics

This section introduces several object detection metrics that lead to the mean average
precision (mAP) metric, which is used to evaluate detectors trained in this project. The
information contained in this section comes from [26].

The first metric is the Intersection over Union (IoU) metric, which measures the
overlap between two bounding boxes – one predicted by the model and the ground truth.
It represents the quality of the detection. Calculation involves dividing the bounding boxes
overlap by their union, which is illustrated in Equation 2.1. When calculating other metrics
at a later stage, IoU is used as a threshold signaling whether a predicted bounding box
should be treated as a true positive (TP) or a false positive (FP).

IoU =
𝐴 ∩𝐵

𝐴 ∪𝐵
=

Area of intersection
Area of union =

A

B

A

B

(2.1)

Precision and Recall are two metrics that work in contrast to each other. In the
scenario where the model predicts every possible bounding box at every pixel of an image,
a classifier would correctly find every object in the image, but it would have many wrong
predictions. On the other hand, if the model predicts no bounding boxes, it will never have
a FP. Precision refers to the ability to detect relevant object only. Recall on the other hand
refers to the ability to find all ground-truth objects. They are calculated by the following
formulas:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑆∑︀
𝑛=1

𝑇𝑃𝑛

𝑆∑︀
𝑛=1

𝑇𝑃𝑛 +
𝑁−𝑆∑︀
𝑛=1

𝐹𝑃𝑛

=
#𝑇𝑃

#all detections ,

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑆∑︀
𝑛=1

𝑇𝑃𝑛

𝑆∑︀
𝑛=1

𝑇𝑃𝑛 +
𝐺−𝑆∑︀
𝑛=1

𝐹𝑁𝑛

=
#𝑇𝑃

#all ground truths ,

where 𝐺 is a set of ground truths, 𝑁 is a set of detections and 𝑆 ⊂ 𝑁 is a set of correct
detections. As one of the outputs of an object detector is a confidence level, the precision-
recall calculation can be slightly modified. If the confidence level is lower than a given
threshold 𝜏 , the bounding box is considered as a negative.

Consequently, he precision and recall metrics can be plotted in a precision-recall curve5,
which shows the performance of the model at all thresholds. Average precision is a metric
that comes from evaluating the precision-recall curve. It is the area under this curve and
it ranges from 0 to 1, where 𝐴𝑃 = 1 means perfect precision at all confidence thresholds.

Mean average precision (mAP) is used in multi-class object detectors. To compute
the mAP, the average of AP values for all classes is obtained:

𝑚𝐴𝑃 =
1

𝐶

𝐶∑︁
𝑖=1

𝐴𝑃𝑖,

5The precision-recall curve is also called ROC curve (receiver operating characteristic curve).

12

where 𝐴𝑃𝑖 is the AP value for class 𝑖 and 𝐶 is the total number of classes. As described
above, precision can change depending on the IoU threshold selected. This in turn also
changes the mAP value. In this project, models are evaluated using the following:

1. mAP50 – IoU threshold is fixed at 50 %.

2. mAP50-95 – IoU threshold ranges from 50 % to 95 % with a step of 5 %. These ten
values are then averaged to get the final metric.

2.4 Transformer Based Language Models
Language modeling is a NLP task of learning the probability distribution of natural lan-
guage. In recent years, it has seen a major growth, mainly due to the popularization of
transformer based language models. They were originally introduced by Vaswani et al. in
2017 [37].

In earlier language models, recurrence and convolution was used to process text se-
quences. Recurrent neural networks sequentially processed inputs and maintained the hid-
den states over time, capturing temporal dependencies, while CNNs used sliding windows
of one dimensional filters to extract local features of text. Transformers eliminates these
techniques entirely and are based solely on the attention mechanism, allowing to capture
global dependencies.

The computation of attention and subsequently the forward pass through the trans-
former are parallelizable, which significantly improves training and inference time, making
the models scalable. This allows processing of sequences, such as those encountered in
documents or books. The attention is computed in multi-head attention modules, whose
architecture can be seen in Figure 2.8.

(a) Multi-Head attention (b) Scaled dot product attention

Figure 2.8: Multi-Head attention consists of several parallel attention layers. Scaled dot
product attention is used to calculate attention values in the transformer model. Images
from [37].

Transformers adapt an encoder-decoder architecture, originally proposed to handle
sequence-to-sequence tasks like machine translation. The architecture in detail can be

13

seen in Figure 2.9. The encoder processes the input sequence to generate a contextual
representation (embedding), while the decoder takes this encoding to generate the output
sequence.

The encoder is composed of a stack of identical layers, where each layer has two sub-
layers: the multi-head attention and a feed forward layer. Residual connections and layer
normalization are used to improve stability during training. The decoder is composed of
the same blocks, but it incorporates an additional multi-head attention mechanism that
operates on the encoder output. The first multi-head attention is also masked, preventing
it from attending to subsequent positions. This ensures that the predictions for position 𝑖
depend only on the outputs at positions less than 𝑖.

Figure 2.9: Architecture of the transformer model, consisting of an encoder part (left) and
a decoder part (right). Image taken from [37].

2.4.1 BERT

Bidirectional Encoder Representation from Transformers (BERT) [4] is a language model
based on the transformer architecture. It is an encoder only model that introduces bidi-
rectional context modeling. Unlike models that process text in left to right manner, the
bidirectional approach allows to consider context from both preceding and following words
simultaneously. The core idea behind BERT model is using a large pretrained model that
is then fine-tuned for specific tasks.

Pretraining is done with two objectives: masked language modeling (MLM) and next
sentence prediction (NSP). The inputs are pairs of sequences delimited with special tokens.
MLM teaches the model to understand contextualized representations of words. In the
input sequence, random tokens are masked and the model is tasked with predicting the

14

original token. In the original implementation, tokens are chosen for masking with a 15%
probability. When a token is chosen, it has 80% chance to be replaced with a special
[MASK] token, 10% chance to be replaced with a random token and 10% of the time it is
left unchanged. NSP is used in addition to MLM. Here, the model tries to predict whether
the second sentence follows the first sentence in the original text. This teaches the model
to understand the relationships between sentences.

Because the pretraining is a time-consuming process, fine-tuning for specific downstream
tasks using task specific objective function is often utilized. Many NLP problems can
be solved using BERT in this manner. These include text classification, named entity
recognition, question answering, sentiment analysis and others. During fine-tuning, task-
specific output layers are added to the pretrained BERT model, allowing it to adapt to
specific requirements of the target task. Fine-tuning BERT-based models on task-specific
datasets enables them to effectively transfer the knowledge learned during pretraining to
new tasks.

2.4.2 CZERT

CZERT [32], developed by a group of researchers in Plzeň in 2021 is a monolingual BERT-
like model for the Czech language. It was pretrained on 340K sentences, which is more than
usually utilized in multilingual models for a single language, allowing better understanding.

The model was pretrained in the same way as the original BERT, only with slightly
modified NSP task. The difference lies in the sampling of negative pairs of sentences.
Sentences from the same paragraph that do not follow each other were also used, compared
to the original BERT, which uses random sentences only.

2.5 Overview of Semantic Text Segmentation Methods
Semantic text segmentation, or topic segmentation is a technique in natural language pro-
cessing (NLP) used to divide texts into multi-paragraph units. Essentially, its function
revolves around identifying major subtopic shifts indicating a break in the text flow. Appli-
cation can be found in various domains like information retrieval or content summarization.
This section gives an overview about different text segmentation approaches that have sur-
faced over the years.

2.5.1 TextTiling

TextTiling was introduced by Marti A. Hearst in 1997 [10]. It is an unsupervised method
for text segmentation that utilizes identification of lexical co-occurence and distribution
patterns. It draws the inspiration from the metaphor of tiling a floor with interlocking
tiles, where each tile represents a distinct text segment.

The algorithm operates in three main parts: tokenization, lexical score determination
and boundary identification. It assumes that a set of lexical items is used during a given
subtopic discussion. When the subtopic changes, significant portion of the lexical items
changes as well. Items that appear often and through the entire text are indicative of the
main topic in the text. Then there are less frequent items but with a uniform distribution,
these tend to be neutral and do not give information about the subtopic change. The
remaining items are of upmost interest. They are grouped together and this group is con-

15

sidered as representative of a subtopic. Consequently, the segmentation problem becomes
determining beginnings and ends of these groups.

The author proposed two solutions to determine the lexical score. In block comparison,
adjacent text blocks are compared to evaluate how many words the blocks have in common.
Vocabulary introduction method assigns a score to each token-sequence gap. This is based
on how many new words were seen.

Boundary identification assigns a depth score to each token-sequence gap. The score
corresponds to the cue intensity for subtopic change on both sides. These scores are then
sorted and used to determine the boundaries.

2.5.2 GraphSeg

GraphSeg, introduced by Goran Glavaš et al. in 2016 [7] is a graph based algorithm. At its
core, it constructs a graph representation of the text, where nodes correspond to sentences
and edges exist for pairs of semantically related sentences. The segmentation is then done
by finding maximal cliques of the graph.

2.5.3 LSTM-Based Neural Model

Released in 2018 by Omri Koshorek et al. [19], it is a neural network approach formulated
as a supervised learning problem. Along with the proposed method, a large and labeled
dataset called Wiki-727K was released. The neural model is divided into a hierarchy of two
smaller models. Both of these are LSTM-based. The first LSTM generates sentence-level
embeddings and the second one takes in a sequence of sentence embeddings and passes
them through the second LSTM. A fully connected layer is then applied to each LSTM
output, which together with the softmax activation produces a segmentation probability,
indicating an end of a segment.

2.5.4 Two-Level Transformer Neural Model

Another method proposed by Goran Glaviš [8] utilizes two transformer based models to per-
form the segmentation. The model, CATS, was trained in a supervised setting. It combined
segmentation prediction with explicit auxiliary coherence modeling. The first transformer
encoder is structures similarly as the LSTM-based model introduced earlier. The low-level
transformer encodes sentences and generates input for the high-level transformer encoder
of sentence sequences.

They trained the model on two tasks. It tried to learn predicting sentence segmentation
labels and that the original text snippets are more coherent than corrupt sentence sequences.

2.5.5 Review of Existing Methods

Overall, the problem of text segmentation in entire pages of text is not very well researched.
All methods treat text as a continuous stream of data with a well defined reading order,
neglecting any information about the layout, structure and the source of the text itself.
This information could greatly aid the segmentation process, but combining the different
types of data is a challenging task.

16

Chapter 3

Problem Definition

Text segmentation is a problem in natural language processing (NLP). It is a process of
dividing a text page, or any block of text, into one or more segments of meaningful and
coherent units. These units can be of syntactic nature, such as individual words, sentences or
paragraphs or semantic nature, such as topics. This project aims to segment text pages into
logical units, namely articles, dictionary entries or book chapters. The resulting segments
are further going to be referred to as bites. An example of segmented page can be seen in
Figure 3.1.

All input data are in the form of images, and as the project builds upon PERO-OCR1

software, access to text transcriptions and also to the layout of the page in the PAGE-XML
[28] format is available. PERO-OCR works in two stages: first, using its layout engine [17],
which is a CNN-based model, it finds text baselines, text line polygons, and text blocks.
The text blocks are obtained by clustering text lines based on local text block boundary
estimation. In the second stage, the transcription engine [16, 18], a CNN-based model with
recurrent layers, is used to obtain the text transcriptions.

While PERO-OCR divides the page into text blocks (regions) by itself, these divisions lack
accuracy from a semantic standpoint and cannot be considered as bites. The main goal of
the project is to improve the detected regions.

In addition to the primary objective, several secondary objectives are adressed. Not
every piece of text on a page necessarily belongs to a bite. For instance a page number
provides structural information about the document but lacks semantic value. Therefore
such texts have to be excluded. Furthermore, a word or sentence may serve as the title
for another bite. Additionally, each bite may possess a name that is a part of one of its
paragraphs, such as dictionary keys. Lastly, a bite may consist of visually disconnected
smaller text regions, spanning multiple columns or featuring a non-trivial layout.

Since PERO-OCR provides individual lines transcriptions and their enclosing polygon,
I define the problem as a clustering problem. Individual lines are grouped into clusters,
where each cluster represents a bite. Each bite consists of a list of text lines, a name
(dictionary key, . . .) and a class, which can be either basic text or a title.

3.1 Evaluation metrics
To evaluate the performance of the method and to compare them against each other, three
clustering metrics [31] are used: completeness score, homogeneity score and V-measure

1Code repository available at https://github.com/DCGM/pero-ocr

17

https://github.com/DCGM/pero-ocr

(a) PERO-OCR (b) TextBite

Figure 3.1: Example of PERO-OCR detected regions and desired output on a sample page
from a dictionary. Each bite is denoted by red bounding box. The dictionary keys are
colored green as the names of each bite. The red line connecting two columns showcases
that a bite continues on the next column.

score. Completeness ensures that all text lines sharing similar semantic content are grouped
together within the same bite. Homogeneity, on the other hand, guarantees that each bite
is composed exclusively of text lines belonging to a single coherent segment. Formally, they
are given by:

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = 1− 𝐻 (𝐶|𝐾)

𝐻 (𝐶)
,

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 1− 𝐻 (𝐾|𝐶)

𝐻 (𝐾)
,

where 𝐻 (𝐶|𝐾) is the conditional entropy of the classes given the cluster assignments and
is given by:

𝐻 (𝐶|𝐾) = −
|𝐶|∑︁
𝑐=1

|𝐾|∑︁
𝑘=1

𝑛𝑐,𝑘

𝑛
· log

(︂
𝑛𝑐,𝑘

𝑛𝑘

)︂
,

and 𝐻 (𝐶) is the entropy of the classes and is given by:

𝐻 (𝐶) = −
|𝐶|∑︁
𝑐=1

𝑛𝑐

𝑛
· log

(︁𝑛𝑐

𝑛

)︁
,

18

where 𝑛 is the total number of text lines, 𝑛𝑐 and 𝑛𝑘 is the number of text lines respectively
belonging to class 𝑐 and bite 𝑘. 𝑛𝑐,𝑘 is the number of text lines from class 𝑐 assigned to
bite 𝑘. The conditional entropy of clusters given class 𝐻 (𝐾|𝐶) and the entropy of clusters
𝐻 (𝐾) are defined in a symmetric manner.

In addition to these two, V-measure is another metric used. It is the harmonic mean of
completeness and homogeneity, providing a balanced assessment of clustering quality. It is
defined as:

𝑉 -𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 · 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 ·𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠+𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦
.

All three metrics are in the range of [0, 1], where the value of 1 means perfect clustering.

19

Chapter 4

Data

Data collection and processing is a big part of this project. The quality of the data signifi-
cantly contribute to the performance of a model. These topics are covered by this chapter:
the description of the data used, how it was collected and labeled and what steps were
taken to ensure the quality of data.

As no public labeled datasets in Czech language were found, a custom dataset had to
be created and labeled. Three different types of historic documents are considered for this
project: books, dictionaries and periodicals. Example pages of each document type are
shown in Figure 4.1. Generally speaking, books have the simplest structure, as they mostly
contain a single column of text, which corresponds to a single bite. To counter this, the
most interesting and challenging pages were selected. These are book pages that contain
chapter breaks, multiple titles, or images.

Dictionaries are more complex. They can be composed of multiple columns and they
contain many bites, as each dictionary entry is a bite on its own. The bites are often densely
stacked, which can make any visual separation attempts challenging. Dictionaries have one
unique feature, the dictionary keys are an important piece of information to extract, as they
can help with information retrieval or creating topic embeddings. The keys are different
from standard titles found in books, as they are a part of the bite itself. Locating the
keys cannot be done as a segmentation, because that would separate the key from the text,
making it nonsensical.

Periodical are the most complex document type. They are composed of many bites that
can span multiple columns. Many different newspaper publishers existed in the past, each
creating their unique brand with different styles, colors and page layouts. Additionally, the
same periodical can have different looks as time progresses. They share the same feature
with the dictionaries. Sometimes, in news entries, the news title is a part of the text, but this
can vary and is not always the case. Periodicals also contain many levels or hierarchies of
titles, this is especially noticeable in title pages. A lot of information that holds no value to
topic segmentation is present in the title pages: periodical title, year of publication, edition,
among others. This information has to be filtered out of the segmentation evaluation, as
there is no interest in extracting page metadata.

4.1 Data Collection
Some Czech libraries or other institutions digitize historic documents and make them avail-
able online in digital libraries in the form of raster images. They are made free to access for

20

(a) Book (b) Dictionary (c) Periodical

Figure 4.1: Examples of the three different types of historical documents used in the project:
books, dictionaries and periodicals.

educational and research purposes1. This is the source for all the data used in this project.
All pages were collected from hand picked documents available online. Only documents
written in the Czech language are considered, but other languages occasionally appear,
mainly in dictionaries for translation or periodicals, which, at the of their publication, had
small entries written in the German language. In total, 4044 pages from 63 different docu-
ments were collected. At this point, the pages are in the form of images. From these pages,
several unique, interesting and challenging pages were hand picked for the validation and
test datasets. Table 4.1 shows the exact number of pages in all categories. The books are
the least represented category, because of the simplicity of their layout, there is very little
variance between different documents, reducing the need for more pages. They are followed
by dictionaries, where layout sometimes varies between documents. However, not many
different dictionaries were found in the digital library. The most represented category is
the periodicals, with over 74% representation. Their diverse content and common updates
create a need for a large number of pages. When the dataset was collected, all images were
processed using the PERO-OCR to detect polygons enclosing all text lines and to extract
their transcription.

Table 4.1: The amount of pages in each document category. The dataset consists of 4044
total pages and we excluded 90 pages as validation and test sets. Each subset has a
consistent amount of pages from each category.

Books Dictionaries Periodicals

Train 169 690 3005
Validation 15 30 45
Test 15 30 45

1https://www.digitalniknihovna.cz/

21

https://www.digitalniknihovna.cz/

4.2 Data Labelling
To prepare the data for the use in text segmentation, it had to be labeled. Some experiments
were performed to see if the training data could be segmented (and partially labeled) in
an unsupervised manner. TextTiling (Section 2.5.1) was used, but it did not yield reliable
performance. Another unsupervised method is GraphSeg described in Section 2.5.2, but no
suitable implementation was found and implementing it from the scratch would most likely
not be cost-effective.

The data had to be labeled on the image level by humans. A person would draw axis
aligned bounding boxes (AABBs) over the titles and paragraph over the text page. As
bites can be composed of visually disconnected pieces, they would also have to connect the
AABBs. Labeling a single page took between 30 seconds for simple books to 4 minutes for
complex periodicals, making it a very time consuming tasks. With an average labeling time
of 3 minutes per page (periodicals have larger representation), it would take roughly 200
hours to label all 4044 pages. To complete the labeling process in a reasonable time, several
people from the Moravian Library2, along with several BUT FIT students, were asked for
assistance. A set of instructions was created to make the labeled data as consistent as
possible. Still, small inconsistencies surfaced, although none were a major problem and
could be resolved during the data processing stage.

Furthermore, it was decided to not segment any page metadata, like page numbers or
publisher name. Even though it could be used for a different project, the added labeling time
outweighed the benefits. In title pages of periodicals, the metadata can cover a significant
portion of all text present on the page. An example of metadata from a periodical title
page can be seen in Figure 4.2.

Figure 4.2: A header from a title page of a periodical showing date of publication, edition,
title, description and a quote as a page metadata that should not be labeled.

To label the data, an open source tool called Label Studio3 was used. The task was
set up as an object detection with bounding boxes. The bounding boxes were classified
with the following labels: Title, Text, Note, Image and Image Description. Title is either
a short, concise description of text, usually located above a text paragraph, or as mentioned
earlier, a part of the paragraph itself, as a dictionary key for example. Text label is used
on a coherent piece of writing. Note is present very rarely and represents a footnote or
author’s/editor’s note. Labels for images and their descriptions were also added. Detecting

2https://www.mzk.cz/
3https://labelstud.io/

22

https://www.mzk.cz/
https://labelstud.io/

the notes, images and their description was not included in this project, but can be of use
in further projects.

On a page with multiple columns, it is a common occurrence that a bite is split into
two or more pieces of text. The Label Studio offers a convenient tool to address this.
Annotators can create relations between regions, signaling that more regions form a single
bite. Since the relations are directed, they also explicitly provide the reading order. In
addition, the relations were used to connect titles to their respective bites. Relations were
utilized only when the title was not enclosed in the bite itself, as overlapping regions can
be detected automatically. This became a source of labeling inconsistencies, as relations
between enclosed bounding boxes were sometimes created by misunderstanding.

Another issue was labeling the relationships between titles. The titles can exhibit hi-
erarchical structure. There can be a main title, like News, that would cover a section of
multiple news entries, which all have a title of their own. Regrettably, it was not decided
in a timely manner how to approach this problem, which lead to the biggest labeling in-
consistency. An example of the possible approaches is showcased in Figure 4.3. If the main
title is connected to all other titles, it leads to a situation, where it is not clear to which
bite the main title belongs. The remaining options are to: connect the main title to the
smaller title of the first entry or not connecting it to anything. Both approaches simplify
the segmentation but sacrifice some contextual information. In the implementation, the
data are processed in such a way that the main title is considered as a part of the first en-
try. However, this only applies if there is a labeled connection. In the case of non-existing
connection, the main title is considered as a standalone bite.

News

News Title 1 News Title 2

News Text 1 News Text 2

(a) Full connections

News

News Title 1 News Title 2

News Text 1 News Text 2

(b) First entry connection

News

News Title 1 News Title 2

News Text 1 News Text 2

(c) No connections

Figure 4.3: Three different strategies for the labeling of relationships between hierarchical
titles in historic documents.

23

Chapter 5

Proposed Method and
Implementation

Two different approaches to perform the segmentation were designed and implemented.
A baseline solution was developed based solely on the geometric properties of the page
and text lines. This method does not use any deep learning techniques. Subsequently,
two heuristic methods were added to the baseline solution to improve its performance:
a heuristic based on the distance between two neighboring text lines and a heuristic based
on a BERT-like language model.

Contrasting with the baseline approach, the main proposed method involves a two-stage
process: initial detection of regions of interest containing text lines (proto-bites) using the
YOLOv8 object detection model, followed by joining them to form bites using a graph
neural network. This chapter begins with obtaining a geometry description for a given
page in Section 5.1, which forms the basis for all methods. The baseline method with
its heuristics is explained in Section 5.2. The first stage of the main method is described
in Section 5.3, while the second stage is explained in Section 5.4. The implementation is
available online in GitHub repository1.

5.1 Page Geometry
Both the baseline method and the graph neural network for proto-bite joining use geometric
features of text lines or regions. However, PERO-OCR only provides enclosing polygons
and text transcriptions of the individual lines, neglecting any ordering or relationships.
Therefore, a data structure available of conveying such information had to be created using
the PERO-OCR outputs only. The page geometry created here is in a form of a directed
graph, where each text line represents a node in the graph. A constraint is imposed on
this graph, each node can only have a maximum of two outgoing edges, one pointing to the
precedent text line and the second one pointing to the subsequent text line. In practice,
this means the lines above and below the current text line. A visualization of the created
geometry can be seen in Figure 5.1.

There are two main strengths: this branching structure implicitly creates a reading
order for the page in local neighborhoods. In pages with only one column present, a global
reading order is created in most cases. The second strength comes from the ability to infer

1https://github.com/Faz0lek/textbite/

24

https://github.com/Faz0lek/textbite/

geometric features like the euclidean distance between two consecutive text lines or the
amount of text lines in the column.

The geometry is created by first initializing all nodes of the graph with the text lines.
Then, each node is assigned a predecessor and a successor, if they exist. In this process, the
text lines are represented solely by their enclosing AABB. A text line A is the predecessor
of text line B if it satisfies the following conditions:

1. A is not B,

2. horizontal overlap of A and B is at least 1 px,

3. the center of A is vertically located above the center of B, and

4. of all text lines satisfying 2 and 3, the center of A is the lowest.

The successor is defined in a symmetrical fashion, the verticality constraints in 2 and 3 are
reversed.

(a) Book (b) Dictionary (c) Periodical

Figure 5.1: Showcase of a page geometry on three different documents. Red lines denote
a direction from the line to its predecessor, green lines denote a direction from the line to
its successor. The image of the periodical shows that a text line can be the predecessor or
the successor to multiple other text lines at the same time.

5.2 Baseline Solution
The baseline solution serves as a reference point for the main, method. In the base form,
it is implemented without the use of any machine learning techniques. It is based on the
geometry of the page. The relations between text lines in the geometry might not be
symmetric and if they are not, the connections are severed, resulting in individual text
segments. Such segments are considered as individual bites, as they are disjoint sets of text
lines. Figure 5.2 illustrates the process of disconnecting these non-symmetric connections.

25

Text Line 1

Text Line 2
Text Line 4

Text Line 3
Text Line 5

Text Line 1

Text Line 2
Text Line 4

Text Line 3
Text Line 5

Figure 5.2: The working of the baseline method. All asymmetric connections in the page
geometry are removed, resulting in a segmented document. The asymmetry is denoted by
the red ellipse. Each segment can be considered as a standalone bite, which is illustrated
by the different colors.

As discussed later in Chapter 6, the main advantage of this method lies in its speed and
simplicity. However, it struggles greatly in linear documents with tight spacing between the
text lines. This especially emerges in dictionaries, as they try to eliminate as much empty
space as possible. To solve the issues, we implemented two heuristic methods, which further
split the segments created by the baseline method into smaller pieces, were introduced. The
first one is a heuristic based on the average distance between each pair of consecutive text
lines. The second one is a deep learning approach. The heuristic function is represented
by a language model performing next sentence prediction. Another weaknesses are the
inability to detect bites spanning multiple columns and capturing the bite names, which is
one of the secondary goals discussed in Chapter 3.

5.2.1 Distance Heuristic

The page geometry used in the baseline method is not in any way separated by the vertical
distance of two lines. This leads to a situation, where two consecutive text lines (as far
as the page geometry is concerned) are part of the same bite, even though there might be
a significant vertical gap between them. This is usually not the case in reality, as a vertical
gaps signal a break in the text and a possible change of the topic.

To take the vertical gaps into account, a heuristic method, which further splits the bites
generated by the baseline method, is added to the pipeline. First, the average vertical
distance between consecutive text lines is calculated. This is done on the entire page
geometry, not in the input bites only. Then, pairs of text lines are iterated over in each
input bite and a break is inserted, if the distance between the two lines is greater than the
average for the entire page, creating a new bite. The average distance might not be the
optimal value for the break insertion, so a linear scaling hyperparameter is introduced. The
process of tuning this hyperparameter is described in Section 6.1.

5.2.2 Language Model Heuristic

Both the baseline method and the distance heuristic do not use the text transcriptions
provided by the PERO-OCR, discarding a lot of useful information that could be used to
aid the segmentation process. The second heuristic works in a similar way to the distance
heuristic. It inserts breaks into existing bites, splitting them into multiple smaller bites.
In this case, a deep learning approach is used – a BERT-like language model specifically
fine-tuned for the next sentence prediction task. Such model returns a probability that two

26

text lines (their transcriptions) follow each other. If the probability of succession is lower
than a certain threshold, a break is inserted. The value for the threshold was experimented
with, finding a value yielding the best results.

As a starting point, a pre-trained CZERT language model (Section 2.4.2) was fine-tuned
on the training data. It is freely available on the Huggingface2 platform in multiple variants.
In this project, the variant Czert-B-base-cased is used. The model was already pre-trained
on the NSP task (along the MLM task), but the authors published only the transformer
backbone, the classification heads are not included.

CZERT is a rather large model in size, with the total of 110M parameters, making
a single NSP inference take a considerable amount of time. Combined with the fact that
the NSP needs to be calculated for each pair of consecutive sentences, this approach slows
the baseline solution. To address this, smaller BERT-like models with different output
embedding sizes were created. In total, four different models with embedding sizes of 72,
132, 264 and 516 were pre-trained on a large corpus of Czech historic books.

The pre-training was done in a similar fashion to the original BERT model, except a few
modifications. The training data was split into smaller regions of roughly 50 lines. When
sampling the negative samples of sentence pairs, only sentences in the current region were
considered. Another modification lies in the tokenization process, the [SEP] token between
the two sentences is fixed in place, with the sentences padded from both sides to a fixed
sequence length of 65 tokens. The tokenized pairs then have the following form:

[CLS] [PAD]...[TOK] [TOK]...[SEP] [TOK] [TOK]...[PAD]...[SEP].

The original BERT uses the contextual embedding of the [CLS] token for all downstream
tasks. To specifically promote the NSP task that is used here, the embedding of the SEP
token placed between the two sentences is used for classification instead.

5.3 YOLOv8 Detection
The first stage of the main proposed method is the detection of regions of interest using the
YOLOv8 object detection model. Similarly to the CZERT model in the baseline method,
a pre-trained YOLOv8 from Ultralytics3 is used and fine-tuned on our training and valida-
tion data. The training process and results are discussed in more detail in Section 6.2. The
model finds bounding boxes directly on the image of a page and classifies them into two
classes: titles and text regions. In the case that the model detects a bounding box that is
fully enclosed by another of, larger bounding box of the same class, it gets filtered out to
avoid possible inconsistencies. However, the overlapping bounding boxes do not have to be
of the same class – the model is specifically trained for this. During the labeling process,
the bite names were assigned their own, usually small, bounding box. An example is shown
in Figure 5.3. When a bounding box is detected in this way, it is assigned to the enclosing
box as it’s name, solving one of the secondary objectives defined in Chapter 3.

To assign the text lines to detected bounding boxes, obtaining the bite representation,
each text line provided by the PERO-OCR is assigned to the bounding box with the highest
intersection over union. Note that not every single text line has to be assigned, as explained
in Chapter 3, some lines like page numbers are of no interest. Because the bite names are
a part of the bite itself, they are usually represented by a small segment of one text line.

2https://huggingface.co/UWB-AIR/Czert-B-base-cased-long-zero-shot
3https://github.com/ultralytics

27

https://huggingface.co/UWB-AIR/Czert-B-base-cased-long-zero-shot
https://github.com/ultralytics

Figure 5.3: A dictionary labeling example of a single bite (blue) with a name (green)
enclosed within.

The bounding boxes of individual words are matched with the name bounding boxes using
a slightly different metric. Instead of IoU, the intersection is divided by the area of the
word bounding box. To avoid edge cases, only words with the intersection over area larger
than 0.2 are used. The matched words are then concatenated, forming the name of the
bite.

This approach shares one weakness with all the baseline variants. According to the
detection results, all predicted regions are standalone bites (with the exception to the bite
names). In reality, a bite can continue in the next column or have a title associated with it,
which would be placed above the text region itself. To overcome this issue, a second model
is introduced with the objective of connecting these proto-bites.

YOLO Format

Training the YOLOv8 model requires labels in the YOLO format. YOLO format is a text
format for representing objects present in an image. The objects are described by AABBs,
where each line corresponds to one bounding box and has the following format:

<label> <x> <y> <width> <height>

Where label is an integer, in this case either 0 for text or 1 for title, x and y are the
normalized coordinates of the bounding box center and width and height are normalized
dimensions.

5.4 Proto-Bite Joining
To join proto-bites generated by the YOLOv8 model, two methods were implemented. The
YOLOv8 results can be efficiently represented by a graph, where the nodes of the graph
are represented by detected regions. The first, main method is based on a graph neural
network. The second method was developed at a later stage as an experiment to analyze
whether global feature aggregation of the GNN brings any benefits. It is based on a multi-
layer perceptron classifier (MLP), which attempts to classify a flattened version of the input
graphs. Both methods are explained in the following sections.

5.4.1 Joining with GNN

The first variant of a model for bite joining is based on a graph neural network. It is
implemented using the PyTorch Geometric4 library, which is a library for creating and
training graph neural networks. The model is designed to work as a binary classifier of

4https://pytorch-geometric.readthedocs.io/en/latest/index.html

28

https://pytorch-geometric.readthedocs.io/en/latest/index.html

the edges in the graph. The label of the edge signifies, whether two nodes representing
a proto-bite should be merged together.

During the data labeling process, relations were only made between the consecutive
regions, not between all the regions belonging to the bite. This raised a question as to
how to label the edges of bites composed of more than two proto-bites. The two possible
labeling strategies are shown in Figure 5.4. Based on the fact that all proto-bites should be
merged together, the strategy of positively labeling all edges was used. Experiments with
the model, hyperparameters and the model structure are later described in Section 6.3.

Region 1

Region 2

Region 3

1

0

1

(a) Linear

Region 1

Region 2

Region 3

1

1

1

(b) Full

Figure 5.4: Two strategies for creating labels in bites with more than two regions.

The implemented model is composed of multiple layers. First, the features are linearly
projected to the hidden size of the subsequent graph convolutional blocks. These blocks
are composed of the graph convolutional layers from Section 2.2.2, layer normalization and
the GELU activation function. The model architecture is visualized in Figure 5.5. Lastly,
the convoluted features are linearly projected to the original input size. Dropout is also
used right after the input projection to improve the generalization capabilities of the model.
After a forward pass of a graph through the model, a new graph representation is available.

Input
Graph Linear Dropout

Graph Layer

LayerNorm

GELU

Linear

Nx

Output
Graph

Figure 5.5: The model structure of the graph neural network used for joining the proto-
bites obtained using the YOLOv8 detector. After initial projection and dropout, a graph
convolutional layer is applied and its outputs are normalized. Nonlinearity is introduced
by applying the GELU function on the normalized values.

To classify an edge, cosine similarity is calculated between the new node representations,
which is then compared against a classification threshold.

Feature Engineering and Graph Initialization

Some graph operators implemented in the PyTorch Geometric library allow both the graph
nodes and edges to be hold features vectors. The node features describe the properties

29

of a single region, while the edge features describe their relationships and differences. To
pass as much information into the network as possible, node features and edge features are
utilized. There are a total of 29 geometric features representing the nodes and 12 edge
features. The edges features are a mix of geometric and text features.

The geometric edge features are: distances between the centers of the two regions (both
absolute and relative to the page dimensions) in both axes, euclidean distance between
centers and then the same distances, but between the closest edges of the regions. The text
features are represented by the outputs of a pre-trained CZERT model. The Huggingface
implementation of the BERT models provides the contextual representation of the CLS
token and a pooler representation, which is obtained by applying a fully connected layer
and a hyperbolic tangent activation function to the CLS token representation. These two
values are calculated for both regions connected by the edge, and their cosine similarity
represents the final features.

Normalization

Both the node and edge features contain values both absolute and relative. This creates
a situation where the scale and value ranges differ significantly between features, which can
lead to issues while training the model. To solve this, all features are normalized using the
Z-Score normalization, which sets the mean of all the values for a specific features to 0 and
the standard deviation to 1. The normalization is performed by applying the following:

𝑧 =
𝑥− 𝜇

𝜎
,

where 𝑧 is the new, normalized value, 𝑥 is the old value, 𝜇 is the empirical mean value of
the feature and 𝜎 is its variance. The mean values and standard deviations for all features
are calculated from the training dataset and these values are used to normalize the features
of validation and test datasets as well as during inference.

Graph Initialization and Batching

The graphs are created as complete undirected graphs. During the experimentation stage,
some attempts on edge pruning were done, but since the amount of nodes is small, it did
not yield any performance improvement. The PyTorch Geometric does not allow for any
efficient undirected graph representation, each pair of nodes has to have two directed edges
between them in both directions with identical feature vectors.

Batching graphs differs from batching other types of data. When a model accepts a sin-
gle feature vector as input, multiple vectors can be stacked into a batch by concatenating
them along a new spatial dimension. However, with graphs, batching involves joining them
into one larger graph, where each disconnected subgraph represents one of the original
graphs.

5.4.2 Joining Using MLP

To analyze whether a graph neural network approach yielded any meaningful performance
increase over a simpler model, an MLP approach was developed. The graphs created are
flattened into individual feature vectors. A feature vector is created for every edge present
in the graph and is obtained by concatenating the node features of both regions with the

30

edge features in the following scheme:[︁
𝑛
(1)
1 , 𝑛

(1)
2 , . . . , 𝑛

(1)
𝐹 , 𝑛

(2)
1 , 𝑛

(2)
2 , . . . , 𝑛

(2)
𝐹 , 𝑒1, 𝑒2, . . . , 𝑒𝐸

]︁
.

These flattened feature vectors are then passed through the MLP, which, similarly to the
GNN, works as an edge classifier with a connection probability as its output. If this prob-
ability is higher than a classification threshold, the regions are merged.

5.5 Output File Formats
The final output consists of two files: a JSON file containing the representation of each
bite in a given file and an enhanced PAGE-XML file. The text lines in the JSON file are
represented by their ID, in addition, the bite name, class and bounding box are provided
as well. The JSON representation is mainly used for further processing, evaluation and
visualization purposes. An example of one bite within the JSON file is shown in Listing 5.1.

Listing 5.1: Example of a single bite in the output JSON file.
{

"cls": "text",
"bbox": [

519.0216674804688,
702.5872192382812,
2175.725341796875,
1000.8356323242188

],
"lines": [

"07662546-8163-4721-af02-ea239b00ae4f",
"e7935103-951f-45ee-8c26-9b548d98c5de",
"c2893624-956f-4212-aacb-719211bd0353",
"0ac3b8a3-68a1-4cdd-a33d-808d0b67c2ff",
"ce988abb-c69d-481a-8412-85f4a9fcf5d6"

],
"name": "Pastikove formy"

}

Concerning the PAGE-XML file, there are two changes compared to the original files
provided by PERO-OCR. First, regions are labeled using the type field, e.g.: <TextRegion
id=“r002” type=“heading”> and second, a new structure is created, specifying an explicit
reading order that groups regions together, if they are a part of one bite. An example of
the grouping is shown in Listing 5.2. The implementation of this PAGE-XML enhancing
process was created in collaboration with my supervisor.

Listing 5.2: Example of the XML structure added to a processed PAGE-XML document.
It joins several regions together into logical segments of texts called bites.
<ReadingOrder>

<UnorderedGroup id="root">
<OrderedGroup id="bite_1">

<RegionRefIndexed regionRef="r007" index="0"/>
</OrderedGroup>

31

<OrderedGroup id="bite_2">
<RegionRefIndexed regionRef="r001" index="0"/>
<RegionRefIndexed regionRef="r005" index="1"/>

</OrderedGroup>
<OrderedGroup id="bite_3">

<RegionRefIndexed regionRef="r000" index="0"/>
</OrderedGroup>
<OrderedGroup id="bite_4">

<RegionRefIndexed regionRef="r003" index="0"/>
<RegionRefIndexed regionRef="r004" index="1"/>
<RegionRefIndexed regionRef="r002" index="2"/>

</OrderedGroup>
</UnorderedGroup>

</ReadingOrder>

32

Chapter 6

Experiments and Results

This chapter focuses on the experiments done with the models, their training and hy-
perparameter tuning. First, experiments with the heuristics of the baseline method are
conducted, followed by the fine-tuning of the YOLOv8 detector and the joining of proto-
bites using the GNN. At the end, an overview of all methods, experiments and result is
provided. All experiments were conducted on SGE computational cluster provided by BUT
FIT. All time measurements were done on NVIDIA RTX A6000.

6.1 Baseline Experiments and Results
The baseline method in its basic form does not contain any machine learning model that
requires training or hyperparameters that could be tuned. However, as discussed in Section
5.2.1, the average distance between lines might not be the optimum value for inserting
breaks. To address this, the average value is multiplied by a hyperparameter. The optimal
value for this hyperparameter was found by iterating over values in the range of [0.2, 10]
with a step of 0.05. The target metric was the V-measure on the validation data and the
results are plotted in Figure 6.1. The resulting optimal value for the coefficient is 1.45,
achieving V-measure of 67.07%.

0 2 4 6 8 10

Threshold coefficient

60

62

64

66

V
-M

ea
su

re

67.07

1.45

V-Measure based on threshold coefficient

Figure 6.1: Finding the optimal coefficient for the average line distance in the baseline
method with distance heuristic with a threshold step of 0.05.

33

6.1.1 Language Model Training

Section 5.2.2 discussed the problem with the size and slow inference time of the CZERT
model. To reduce the computational cost, custom BERT-like language model were pre-
trained with four different output embedding sizes: 64, 132, 264 and 516. Only other
architecture change besides the output embedding size was the hidden size of the Feed
Forward layer, which is set to be a quadruple of the output size. The models were trained
on a dataset consisting of 61M sentence pairs taken from various books available in digital
libraries. The models were trained for three epochs, after which the MLM objective was
dropped and the models continued to train on the NSP task only. The Adam optimization
algorithm was used with the learning rate of 5𝑒−5 and one training batch contained 128
sentence pairs. When the models were pre-trained, they were fine-tuned on the training
data created for this project for one epoch using the AdamW optimizer with a learning rate
of 1𝑒−4, while the batch size remained the same. The training progress of the language
model with 264 output features is shown in Figure 6.2. The Figure only shows the first
three epochs of the training process, the NSP continuation and subsequent fine-tuning is
not included.

Figure 6.2: Pre-training of custom BERT-like language model with 264 output embedding
size. The accuracy measures the NSP task only. The training progressed smoothly and
after around 1M steps, performance on the MLM objective stagnated. In response, the
MLM task was dropped and the model continued to train on the NSP task only.

Both the base and distance based variant are extremely fast. However, the use of the
language model slows down the inference considerably, as forward pass needs to be done
for each pair of consecutive text lines. All measured times are displayed in Table 6.1. The
custom models show some improvement over the big CZERT model, but a slightly larger
improvement was expected.

6.1.2 Comparing Baseline Variants

The baseline and its variants serve as the first attempt at segmentation, laying a founda-
tion for the main method. The baseline variant with no heuristic only works quite well

34

Table 6.1: Inference times of the baseline method and all its variants. Adding the distance
based heuristic does not hinder the inference time at all, while the language model based
heuristic slows down the inference considerably.

Method Time [s]

Baseline 0.16
Baseline+Dist 0.16
Baseline+LM72 1.35
Baseline+LM132 1.50
Baseline+LM264 1.62
Baseline+LM516 1.71
Baseline+CZERT 1.84

in very simple, linear documents, but, the performance is subpar when the page layout
complexity increases even by a small margin. However, the distance based heuristic seems
to greatly improve the performance, especially in those complex layouts. The language
model heuristic displays similar quantitative performance as the distance based heuristic,
but when examining the individual pages directly, the language models often insert text
breaks where there should not be any. The quantitative results can be seen in Table 6.2 and
example pages of all three variants are shown in Figure 6.3. The language models trained
and used all show comparable performance to one another, making the smallest model
the best choice due to the lowest inference time. The baseline variant with the distance
heuristic displays best results both quantitatively and qualitatively, making it the baseline
variant used for the comparison with the main method.

(a) Baseline (b) Baseline+Dist (c) Baseline+LM132

Figure 6.3: Examples of segmented pages by the baseline method and its two heuristics: the
distance based and language model based heuristics. The plain baseline fails to detect any
horizontal breaks in the segment, while the language model based variant breaks segments
at wrong places. The distance based variant shows the best results.

35

Table 6.2: Results of the baseline method and its variants, including all language models.
The language model based variant improves the plain baseline method, but the distance
based variant shows the best results overall. The best value in each metric is highlighted.

Books Dictionaries Periodicals

Method H C V H C V H C V

Baseline 82.61 26.63 19.72 79.22 31.42 40.11 70.01 48.85 52.20
Baseline+Dist 41.69 95.26 49.77 79.91 60.29 64.67 72.51 89.03 77.40
Baseline+LM72 41.74 87.87 44.84 73.5 81.34 75.01 60.59 84.60 68.46
Baseline+LM132 39.57 91.65 44.32 75.47 83.52 77.19 62.53 87.12 70.66
Baseline+LM264 41.31 94.38 49.83 76.05 72.07 71.00 64.25 83.33 69.90
Baseline+LM516 47.50 89.19 51.14 75.24 70.57 69.88 63.50 82.68 69.32
Baseline+CZERT 39.46 85.47 44.14 73.51 81.84 74.23 60.62 82.61 66.50

6.2 YOLOv8 Experiments and Results
The YOLOv8 models are available in several sizes: nano, small, medium and others. Ex-
periments were done only with the first three, because the larger models were deemed to
be too big for the task. There are several areas of interest when it comes to training and
evaluating the detector: the training metrics, inference speed and the performance on the
validation dataset.

6.2.1 YOLOv8 Training

When it comes to the training of the YOLOv8 models, the target metrics are mAP50-90
and the mAP50 from Section 2.3.3. The Ultralytics library for the model training allows
automatic resizing of the input images, allowing the models to be trained using different
resolutions. Experiments were done with 5 different resolutions: 640px, 800px, 1000px,
1200px and 1400px. The value denotes the size of the longer side of the image, while
the shorter side is scaled accordingly. The resolution of the original images was around
2500x3500 px. In total, 14 models were trained – three model sizes with five resolution
values each. The medium variant with the highest resolution was omitted, as it was too
computational heavy.

The models were trained for the maximum of 200 epochs, with an improvement pa-
tience of 50 epochs, meaning that if the model did not see any improvements over the
last 50 epochs, the training process was terminated. The used optimization algorithm is
AdamW for the first 10000 iterations, after which it is switched to SGD, which is the default
Ultralytics configuration. Both optimizers use learning rate of 0.01. Each training batch
was composed of 16 images.

The training process of the YOLOv8 small variant with the resolution of 800px is
displayed in Figure 6.4. Table 6.3 shows the target metrics for each model variant along the
final V-Measure on the validation dataset. The best values of each metric are highlighted,
but the performance variance is small between the models and also changes between the
individual metrics.

36

Figure 6.4: The training process of the YOLOv8-s detection model with the resolution of
800px on the larger side of the image. This is the model version that was chosen as the
best variant.

Table 6.3: Training results of YOLOv8 object detection models in three sizes with five
different resolutions and three different target metrics. The best value in each category is
highlighted.

Resolution 640 800 1000 1200 1400

mAP50-95
YOLOv8n 0.696 0.710 0.720 0.728 0.725
YOLOv8s 0.700 0.713 0.722 0.723 0.725
YOLOv8m 0.698 0.720 0.722 0.726 -

mAP50
YOLOv8n 0.957 0.957 0.966 0.964 0.970
YOLOv8s 0.948 0.961 0.964 0.963 0.957
YOLOv8m 0.950 0.964 0.969 0.961 -

V-Measure
YOLOv8n 0.825 0.834 0.801 0.830 0.805
YOLOv8s 0.823 0.840 0.839 0.843 0.816
YOLOv8m 0.833 0.831 0.848 0.841 -

Another metric that is specifically important for the inference is the time it takes for the
model to detect the regions. Average time each model took was measured on the validation
dataset and the results are displayed in Table 6.4. The inference time increases with both
the model sizes and the resolution used.

37

Table 6.4: YOLOv8 inference times on the validation dataset, average per page.

Resolution 640 800 1000 1200 1400

Time [ms]
YOLOv8n 116 117 128 143 146
YOLOv8s 131 135 147 163 182
YOLOv8m 146 171 196 245 -

6.2.2 YOLOv8 Results

The final model was selected based on the the combination of the object detection metrics,
V-Measure on the validation dataset and the inference time. All models were very close
in terms of all the training metrics, but varied in the inference time. The selected model,
YOLOv8-s with the resolution of 800px, was chosen for having low inference time while
achieving average to above average training metrics.

Examples of text pages segmented by the model are shown in Figure 6.5. The detection
of bite names is displayed in the examples, but the performance on this objective was not
measured quantitatively on its own. However, because they were labeled as individual
regions, some precision is captured by the mAP metric. The performance of the selected
model was evaluated on the test dataset, where it achieved the V-measure of 65.33 %,
93.36 % and 83.93 % for books, dictionaries and periodicals, respectively.

(a) Dictionary (b) Periodical

Figure 6.5: Logical text segments detected by the YOLOv8-s visual detector working with
the resolution of 800px of the longer side. Individual logical segments are denoted by the
red color, titles and segment names are denoted by the color blue.

38

6.3 Graph Neural Network Experiments and Results
As described in Chapter 5, regions detected by the YOLOv8 model are joined together using
a graph neural network. The main things that can be experimented with are the model
architecture (different graph layers and their number) and the training hyperparameters.

6.3.1 GNN Training

The graph neural network for bite joining works as a edge classification model, where
positive edge prediction means that the connected bites should be merged. To monitor the
training process, precision, recall and F1-score can be used. However, avoiding the joining of
two wrong bites is a priority. Therefore, the target metric is precision on the positive edges.
The evaluation is done separately for each document type, but there are two problems: the
dataset is unbalanced between document types and also the documents contain different
number of edges. Books generally have less edges than dictionaries and periodicals. This
means that high precision could be achieved, while having subpar performance on book
pages. To avoid this, the target metric is the sum of precisions for all document types –
the value range becomes [0, 3].

To achieve the best possible performance, experiments were done with various model
configurations. All experiments are shown in Figure 6.6. When it comes to the graph
layer used, three variants were considered: GCNConv, GATConv and ResGatedGraphConv.
GCNConv was used at initial stages of development, but it was discarded since it does not
support edge features. The results show that the GATConv does not learn at all, while the
ResGatedGraphConv layer shows great performance. The number of blocks, learning rate
and batch size do not seem to affect the model performance in a meaningful way, while using
larger hidden size in the blocks improves it. The performance also seems to be extremely
sensitive to the classification threshold – values larger than 0.5 are generally better, but
the classification collapses to one class with values larger than 0.72. To further improve
the model, a closer tuning of the threshold was performed and the results are shown in
Figure 6.7.

The final modes uses three blocks with the hidden size of 512. It uses a learning rate of
5𝑒−3 and each batch contains 64 graphs. The classification threshold was set to 0.7 during
training and then changed to 0.68 after tuning. The training of this specific model is shown
in Figure 6.8.

39

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ResGatedGraphConv

GATConv

(a) Graph Layer

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1

2

3

4

(b) Number of Blocks

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

64

128

256

512

(c) Block Hidden Size

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

1e-3

3e-3

5e-3

7e-3

1e-2

(d) Learning Rate

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

16

32

64

128

256

512

(e) Batch Size

0 1000 2000 3000 4000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5

0.6

0.7

(f) Classification Threshold

Figure 6.6: Tuning of the hyperparameters of the graph neural network used for the joining
of regions. The default model uses three blocks with the hidden size of 64, learning rate of
5𝑒−3, batch size of 64 and the classification threshold of 0.7.

0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74

Classification Threshold

82

84

86

88

V
-M

ea
su

re

89.33

V-Measure based on classification threshold

Figure 6.7: Tuning of the classification threshold in graph neural network on the validation
dataset. Around the threshold value of 0.72, the classification starts to collapse to one class.

40

0 100 200 300 400

0.4

0.5

0.6

0.7

0.8

Loss

Validation Book Loss

Validation Dict Loss

Validation Peri Loss

Train Loss

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Precision

Validation Book Precision

Validation Dict Precision

Validation Peri Precision

0 100 200 300 400
0.0

0.5

1.0

1.5

2.0

2.5

3.0
Combined Precision

Figure 6.8: The training process of the graph neural network for bite joining. The model
was trained with three graph operator blocks with the hidden size of 256

6.3.2 Results and Comparison with MLP

After training the model, the final performance was evaluated on the test dataset. The
graph neural network achieved a V-Measure of 77.93 %, 95.79 % and 90.23 % for books,
dictionaries and periodicals, respectively. This result upgrades the bare YOLOv8 approach
by roughly 6 %. In terms of inference speed, processing a single text page takes 660 ms on
average.

As explained in Section 5.4.2, MLP classifier can be used to see whether the global
feature aggregation of the graph neural network is useful compared to using just local
features of the two neighboring regions. A simple MLP was trained with three layers with
the hidden size of 64. This model yielded a V-measure of 66.58 %, 94.97 % and 84.01 % for
books, dictionaries and periodicals, respectively, which is significantly worse than the graph
neural network on books, similar in dictionaries and worse in periodicals.

6.4 Results Overview and Discussion
The basic baseline method fails to meaningfully segment the pages. The heuristic ap-
proaches offer some improvement, but the results are still much worse than the main
method, while also being significantly slower on average. The YOLOv8 detection mod-
els were trained in three sizes with five different resolutions. Here, some more experiments
could have been done, especially with data augmentation or hyperparameter tuning in the
Ultralytics training framework. The models show very similar performance to one another
and the performance overall is good, outperforming the baseline solution even without the
joining of the regions. The subsequent joining of the regions using a graph neural network
further enhances the results, outperforming all baseline variants. The graph based model
was also compared to the MLP classifier to assess the importance of using a global method.
While the MLP slightly improves the segmentation, the graph neural network works better.
In total 21 models were trained and experimented with. All results are shown in Table 6.5
and examples of segmented pages using the main method can be seen in Figure 6.9.

41

Table 6.5: Final results of all the implemented methods. The language model used in the
Baseline+LM method is the custom model with 132 output features, which displayed the
best overall performance. The main method, YOLOv8+GNN, produces the best results.

Books Dictionaries Periodicals

Method H C V H C V H C V

Baseline+Dist 41.69 95.26 49.77 79.91 60.29 64.67 72.51 89.03 77.40
Baseline+LM 39.57 91.65 44.32 75.47 83.52 77.19 62.53 87.12 70.66

YOLOv8 61.06 92.86 65.33 90.26 99.14 93.36 80.76 92.94 83.93
YOLOv8+MLP 70.62 85.48 66.58 93.30 98.75 94.97 82.97 89.92 84.01
YOLOv8+GNN 83.39 92.81 77.93 95.24 97.90 95.79 93.16 90.58 90.23

(a) Baseline+Dist (b) YOLOv8 (c) YOLOv8+GNN

Figure 6.9: Logical text segments detected by the baseline, the YOLOv8-s visual detector
and the a graph neural network. Individual logical segments are denoted by different colors.
Notice the importance of GNN for the joining of the regions.

42

Chapter 7

Conclusion

The goal of this project was to research the state-of-the-art methods in semantic text
segmentation and then design and implement a new segmentation system able to segment
historical documents into logical units like dictionary entries or newspaper articles. The
project was presented at the Excel@FIT conference hosted by BUT FIT, where it received
an award from the academic committee and an award from an industrial partner.

Most text segmentation methods insert breaks into continuous texts directly, while
discarding any geometric information about the page. Therefore, the proposed segmentation
pipeline is a combination of smaller models utilizing both the language and geometric
properties of text pages.

In collaboration with several Czech libraries, the project aimed to aid in the digitization
process of historic documents, focusing solely on documents in the Czech language. As
there are no public datasets available for text segmentation in Czech, a custom dataset
was created using text pages from books, dictionaries and periodicals obtained from digital
libraries. The dataset, composed of 4044 pages, was labeled with the help of librarians and
other BUT FIT students.

The first step of the digitization process is the analysis of the page layout and OCR.
Both are achieved using PERO-OCR, which serves as the basis for this project. However,
PERO-OCR does not guarantee the reading order of all text lines, which means that classic
text segmentation metrics cannot be used. I treat this problem as a line clustering problem
and evaluate the performance using clustering metrics: homogeneity, completeness and
V-measure.

I implemented a baseline solution in three variants, which serve as a comparison to the
main method. The first two variants are based on imposing geometric constraints on the
text page, while the last utilizes our own pre-trained BERT-like model to break text into
segments. The main proposed method is based on the YOLOv8 object detector to detect
regions containing the first segment representation. These are then refined using a graph
neural network that predicts, which segments should be joined together. The graph neural
network contains both geometric features and text semantic embedding generated by the
CZERT language model. This method achieves the V-measure of 77.93 %, 95.79 % and
90.23 % for books, dictionaries and periodicals, respectively, which exceeds the results of all
baseline variants.

A continuation in the project could involve creating a language model for topic embed-
dings, which could be then used to further improve the performance of the graph neural
network. Another idea would be to completely restructure the pipeline into an end-to-end
model that would be trained to detect and join the regions in one step.

43

Bibliography

[1] Bresson, X. and Laurent, T. Residual Gated Graph ConvNets. CoRR, 2017,
abs/1711.07553. Available at: http://arxiv.org/abs/1711.07553.

[2] Dalal, N. and Triggs, B. Histograms of oriented gradients for human detection.
In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05). 2005, vol. 1, p. 886–893 vol. 1.

[3] Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K. et al. Imagenet: A large-scale
hierarchical image database. In: Ieee. 2009 IEEE conference on computer vision and
pattern recognition. 2009, p. 248–255.

[4] Devlin, J.; Chang, M.-W.; Lee, K. and Toutanova, K. BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding. In: Burstein, J.;
Doran, C. and Solorio, T., ed. Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, June 2019, p. 4171–4186. Available at:
https://aclanthology.org/N19-1423.

[5] Girshick, R. Fast R-CNN. CoRR, 2015, abs/1504.08083. Available at:
https://ieeexplore.ieee.org/document/7410526.

[6] Girshick, R.; Donahue, J.; Darrell, T. and Malik, J. Rich Feature Hierarchies
for Accurate Object Detection and Semantic Segmentation. In: 2014 IEEE
Conference on Computer Vision and Pattern Recognition. 2014, p. 580–587.

[7] Glavaš, G.; Nanni, F. and Ponzetto, S. Unsupervised Text Segmentation Using
Semantic Relatedness Graphs. In:. January 2016, p. 125–130.

[8] Glavaš, G. and Somasundaran, S. Two-Level Transformer and Auxiliary
Coherence Modeling for Improved Text Segmentation. CoRR, 2020, abs/2001.00891.
Available at: http://arxiv.org/abs/2001.00891.

[9] He, K.; Zhang, X.; Ren, S. and Sun, J. Deep Residual Learning for Image
Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2016, p. 770–778.

[10] Hearst, M. A. TextTiling: segmenting text into multi-paragraph subtopic passages.
Comput. Linguist. Cambridge, MA, USA: MIT Press, mar 1997, vol. 23, no. 1,
p. 33–64. ISSN 0891-2017.

44

http://arxiv.org/abs/1711.07553
https://aclanthology.org/N19-1423
https://ieeexplore.ieee.org/document/7410526
http://arxiv.org/abs/2001.00891

[11] Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W. et al.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
CoRR, 2017, abs/1704.04861. Available at: http://arxiv.org/abs/1704.04861.

[12] Jocher, G.; Chaurasia, A. and Qiu, J. Ultralytics YOLO. January 2023. Available
at: https://github.com/ultralytics/ultralytics.

[13] Kang, J.; Tariq, S.; Oh, H. and Woo, S. A Survey of Deep Learning-Based Object
Detection Methods and Datasets for Overhead Imagery. IEEE Access, january 2022,
vol. 10, p. 1–1.

[14] Khemani, B.; Patil, S.; Kotecha, K. and Tanwar, S. A review of graph neural
networks: concepts, architectures, techniques, challenges, datasets, applications, and
future directions. Journal of Big Data, january 2024, vol. 11.

[15] Kipf, T. N. and Welling, M. Semi-Supervised Classification with Graph
Convolutional Networks. ArXiv e-prints, september 2016, p. arXiv:1609.02907.

[16] Kišš, M.; Beneš, K. and Hradiš, M. AT-ST: Self-Training Adaptation Strategy for
OCR in Domains with Limited Transcriptions. In: Lladós J., Lopresti D., Uchida S.
(eds) Document Analysis and Recognition - ICDAR 2021. Springer Nature
Switzerland AG, 2021, vol. 12824, p. 463–477. Lecture Notes in Computer Science.
ISBN 978-3-030-86336-4. Available at:
https://www.fit.vut.cz/research/publication/12464.

[17] Kodym, O. and Hradiš, M. Page Layout Analysis System for Unconstrained
Historic Documents. In: Lladós J., Lopresti D., Uchida S. (eds) Document Analysis
and Recognition - ICDAR 2021. Springer Nature Switzerland AG, 2021, p. 492–506.
Lecture Notes in Computer Science. ISBN 978-3-030-86330-2. Available at:
https://www.fit.vut.cz/research/publication/12493.

[18] Kohút, J. and Hradiš, M. TS-Net: OCR Trained to Switch Between Text
Transcription Styles. In: Lladós J., Lopresti D., Uchida S. (eds) Document Analysis
and Recognition - ICDAR 2021. Springer Nature Switzerland AG, 2021, vol. 12824,
no. 1, p. 478–493. Lecture Notes in Computer Science. ISBN 978-3-030-86336-4.
Available at: https://www.fit.vut.cz/research/publication/12463.

[19] Koshorek, O.; Cohen, A.; Mor, N.; Rotman, M. and Berant, J. Text
Segmentation as a Supervised Learning Task. In: Walker, M.; Ji, H. and Stent,
A., ed. Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 2
(Short Papers). New Orleans, Louisiana: Association for Computational Linguistics,
June 2018, p. 469–473. Available at: https://aclanthology.org/N18-2075.

[20] Krichen, M. Convolutional Neural Networks: A Survey. Computers, 2023, vol. 12,
no. 8. ISSN 2073-431X. Available at: https://www.mdpi.com/2073-431X/12/8/151.

[21] Krizhevsky, A.; Sutskever, I. and Hinton, G. E. ImageNet Classification with
Deep Convolutional Neural Networks. In: Pereira, F.; Burges, C.; Bottou, L.
and Weinberger, K., ed. Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2012, vol. 25.

45

http://arxiv.org/abs/1704.04861
https://github.com/ultralytics/ultralytics
https://www.fit.vut.cz/research/publication/12464
https://www.fit.vut.cz/research/publication/12493
https://www.fit.vut.cz/research/publication/12463
https://aclanthology.org/N18-2075
https://www.mdpi.com/2073-431X/12/8/151

[22] Lecun, Y.; Bottou, L.; Bengio, Y. and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 1998, vol. 86, no. 11,
p. 2278–2324.

[23] Lee, J. and You, S. Balancing Privacy and Accuracy: Exploring the Impact of Data
Anonymization on Deep Learning Models in Computer Vision. IEEE Access, january
2024, PP, p. 1–1.

[24] Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S. E. et al. SSD: Single
Shot MultiBox Detector. CoRR, 2015, abs/1512.02325. Available at:
http://arxiv.org/abs/1512.02325.

[25] Marcheggiani, D. and Titov, I. Encoding Sentences with Graph Convolutional
Networks for Semantic Role Labeling. In: Palmer, M.; Hwa, R. and Riedel, S.,
ed. Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing. Copenhagen, Denmark: Association for Computational Linguistics,
September 2017, p. 1506–1515.

[26] Padilla, R.; Lobato Passos, W.; Dias, T.; Netto, S. and Silva, E. da. A
Comparative Analysis of Object Detection Metrics with a Companion Open-Source
Toolkit. Electronics, january 2021, vol. 10, p. 279–306.

[27] Patel, M. and Kalani, N. A survey on Pose Estimation using Deep Convolutional
Neural Networks. IOP Conference Series: Materials Science and Engineering,
january 2021, vol. 1042, p. 012008.

[28] Pletschacher, S. and Antonacopoulos, A. The PAGE (Page Analysis and
Ground-Truth Elements) Format Framework. In: 2010 20th International Conference
on Pattern Recognition. 2010, p. 257–260.

[29] Redmon, J.; Divvala, S.; Girshick, R. and Farhadi, A. You Only Look Once:
Unified, Real-Time Object Detection. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer
Society, Jun 2016, p. 779–788. ISSN 1063-6919.

[30] Ren, S.; He, K.; Girshick, R. and Sun, J. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. In: Cortes, C.; Lawrence, N.;
Lee, D.; Sugiyama, M. and Garnett, R., ed. Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2015, vol. 28.

[31] Rosenberg, A. and Hirschberg, J. V-Measure: A Conditional Entropy-Based
External Cluster Evaluation Measure. In:. January 2007, p. 410–420.

[32] Sido, J.; Pražák, O.; Přibáň, P.; Pašek, J.; Seják, M. et al. Czert - Czech
BERT-like Model for Language Representation. CoRR, 2021, abs/2103.13031.
Available at: https://arxiv.org/abs/2103.13031.

[33] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. In: Bengio, Y. and LeCun, Y., ed. 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings. 2015. Available at:
http://arxiv.org/abs/1409.1556.

46

http://arxiv.org/abs/1512.02325
https://arxiv.org/abs/2103.13031
http://arxiv.org/abs/1409.1556

[34] Sun, X.; Peng, J.; Shen, Y. and Kang, H. Tobacco Plant Detection in RGB Aerial
Images. Agriculture, february 2020, vol. 10, p. 57.

[35] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. et al. Going deeper with
convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2015, p. 1–9.

[36] Ultralytics. YOLOv5: A state-of-the-art real-time object detection system
https://docs.ultralytics.com. 2021.

[37] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L. et al. Attention
is All you Need. In: Guyon, I.; Luxburg, U. V.; Bengio, S.; Wallach, H.;
Fergus, R. et al., ed. Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2017, vol. 30.

[38] Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P. et al. Graph
Attention Networks. 2018.

[39] Viola, P. and Jones, M. Rapid Object Detection using a Boosted Cascade of
Simple Features. In:. February 2001, vol. 1, p. I–511. ISBN 0-7695-1272-0.

[40] Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z. et al. Graph Neural Networks: A
Review of Methods and Applications. CoRR, 2018, abs/1812.08434. Available at:
http://arxiv.org/abs/1812.08434.

47

https://docs.ultralytics.com
http://arxiv.org/abs/1812.08434

	Introduction
	Background
	Convolutional Neural Networks
	Graph Neural Networks
	Object Detection
	Transformer Based Language Models
	Overview of Semantic Text Segmentation Methods

	Problem Definition
	Evaluation metrics

	Data
	Data Collection
	Data Labelling

	Proposed Method and Implementation
	Page Geometry
	Baseline Solution
	YOLOv8 Detection
	Proto-Bite Joining
	Output File Formats

	Experiments and Results
	Baseline Experiments and Results
	YOLOv8 Experiments and Results
	Graph Neural Network Experiments and Results
	Results Overview and Discussion

	Conclusion
	Bibliography

