
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

APPLYING FORMAL METHODS TO ANALYSIS OF
SEMANTIC DIFFERENCES BETWEEN VERSIONS
OF SOFTWARE
APLIKACE FORMÁLNÍCH METOD V ANALÝZE SÉMANTICKÝCH ROZDÍLŮ MEZI VERZEMI
SOFTWARE

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. FRANTIŠEK NEČAS
AUTOR PRÁCE

SUPERVISOR Ing. VIKTOR MALÍK, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Nečas František, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Mathematical Methods

Category: Software analysis and testing

Academic year: 2023/24

Assignment:

1. Get acquainted with DiffKemp, a tool for static analysis of semantic differences between versions of
large-scale C projects.

2. Identify patterns of semantic-preserving changes (so-called refactorings) which DiffKemp is not yet
able to handle.

3. Propose a way to augment the analysis approach of DiffKemp by applying formal methods such it
will be able to handle a subset of the identified refactoring patterns.

4. Implement the proposed solution within DiffKemp.
5. Evaluate the created solution on existing benchmarks for analysis of semantic equivalence or on

real-world projects that DiffKemp targets (Linux kernel, various system libraries). Demonstrate that
your solution helps DiffKemp to correctly compare more programs than before.

Literature:
• Malík, V., Vojnar, T.: Automatically checking semantic equivalence between versions of large-scale

C projects. In: 2021 14th IEEE Conference on Software Testing, Verification and Validation (ICST).
pp. 329–339. IEEE (2021)

• S. Badihi, Y. Li and J. Rubin: EqBench: A Dataset of Equivalent and Non-equivalent Program Pairs.
In: 2021 18th IEEE/ACM International Conference on Mining Software Repositories (MSR). pp. 610-
614. IEEE (2021)

• Leonardo de Moura and Nikolaj Bjørner: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, 14th International Conference, TACAS. pp. 337-340.
Springer (2008)

Requirements for the semestral defence:
The first two points of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Malík Viktor, Ing.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 6.11.2023

Master's Thesis Assignment
157112

Applying formal methods to analysis of semantic differences between versions
of software

Title:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
The goal of this work is to propose an integration of formal methods into DiffKemp, a static
analysis tool for analyzing semantic differences of large-scale C projects. The aim of this
extension is to facilitate analysis of more complex code changes, which would typically be
better handled by a tool based on formal methods, while also maintaining DiffKemp’s
scalability to large projects. To achieve this, whenever a possible semantic change is found,
the equivalence of the relevant instructions is encoded into an SMT problem instance and
the difference is either confirmed or refuted using an SMT solver. The proposed solution
has been implemented in DiffKemp and our experiments on a set of benchmarks called
EqBench show that it extends the capabilities of DiffKemp, mainly with regards to
sound analysis of refactorings of arithmetic expressions.

Abstrakt
Cílem této práce je navrhnout integraci formálních metod pro DiffKemp, nástroj pro
statickou analýzu sémantických rozdílů v rozsáhlých programech napsaných v jazyce C.
Cílem tohoto rozšíření je umožnit analýzu složitějších změn, které by typicky byly analyzo-
vatelné spíše nástroji založenými na formálních metodách, a zároveň zachovat škálovatelnost
nástroje DiffKemp na velké projekty. Principem navrženého řešení je při analýze v případě
nalezení možné sémantické změny zakódovat problém ekvivalence příslušných instrukcí jako
instanci problému SMT. Tím je možné sémantický rozdíl potvrdit, nebo vyvrátit s pomocí
SMT solveru. Navržené řešení bylo implementováno v nástroji DiffKemp a experimenty
provedené na sadě programů zvané EqBench ukazují, že rozšiřuje schopnosti nástroje
DiffKemp, převážně v oblasti přesné analýzy úprav aritmetických výrazů.

Keywords
DiffKemp, static analysis, semantic differences, LLVM IR, formal methods, code change
pattern, SMT solving, Z3 solver, Linux kernel, EqBench benchmark

Klíčová slova
DiffKemp, statická analýza, sémantické rozdíly, LLVM IR, formální metody, vzory změn
v kódu, řešení problému SMT, Z3 solver, Linuxové jádro, sbírka programů EqBench

Reference
NEČAS, František. Applying formal methods to analysis of semantic differences between
versions of software. Brno, 2024. Master’s thesis. Brno University of Technology, Faculty
of Information Technology. Supervisor Ing. Viktor Malík, Ph.D.

Rozšířený abstrakt
V rozsáhlém světě vývoje software existují projekty (např. systémové knihovny), u kterých
je klíčové zachovat sémantickou stabilitu mezi verzemi, protože i malá změna by mohla mít
zásadní dopad na uživatele těchto projektů. Za účelem zjednodušení a automatizace iden-
tifikace možných změn sémantiky jsou vyvíjeny statické analyzátory sémantických rozdílů.
Většina současných analyzátorů je založena na formálních metodách (např. LLRêve), které
jsou sice velmi přesné, ale špatně škálují na rozsáhlejší programy. Na druhé straně spektra
jsou nástroje založené na porovnání textu nebo syntaxe (např. nástroj diff), které jsou
velmi rychlé, produkují však velké množství falešných hlášení.

Jeden z nástrojů, DiffKemp, se snaží najít kompromis mezi těmito dvěma přístupy.
Tento nástroj byl vyvinut společností Red Hat s cílem analyzovat sémantickou stabilitu
některých částí linuxového jádra, rychlost analýzy je tedy naprosto klíčová. K dosažení
efektivní analýzy s rozumnou přesností DiffKemp využívá několik základních konceptů.
Analyzované programy jsou přeloženy do vnitřní reprezentace LLVM (LLVM IR), která je
následně porovnávána převážně po instrukcích. Porovnávání po instrukcích je velmi rychlé,
avšak i malá změna v kódu by mohla způsobit falešné hlášení. Z tohoto důvodu DiffKemp
kód předzpracovává (např. odstraňuje mrtvý kód), aby porovnávané verze byly syntakticky
podobnější a bylo tedy možné více instrukcí porovnat přímo. Pro případ, že se instrukce
neshodují, má DiffKemp v sobě zabudované tzv. vzory změn zachovávající sémantiku,
které se pokouší aplikovat.

Přestože má v sobě DiffKemp zabudovaných již několik vzorů a další mohou uži-
vatelé dodat manuálně, existují stále případy, kdy DiffKemp chybně zahlásí sémantickou
nerovnost verzí, přestože se jedná o ekvivalentní kód. To je způsobeno tím, že některé
změny jsou příliš složité a byly by analyzovatelné spíše nástroji založenými na formalních
metodách. Příkladem takových změn jsou úpravy aritmeticko-logických výrazů, např. apli-
kace distributivních zákonů nebo jiných algebraických pravidel. Existuje mnoho takových
případů, a tak není možné je všechny implementovat manuálně jako vzory.

Tato práce navrhuje rozšíření nástroje DiffKemp, které automaticky umožní analyzo-
vat takové změny jako sémanticky ekvivalentní. Principem navrženého řešení je při analýze
v případě nalezení možné sémantické změny, na kterou není možné aplikovat žádný vzor,
zakódovat problém ekvivalence příslušných instrukcí jako instanci problému SMT. Tím je
možné sémantický rozdíl potvrdit, nebo vyvrátit s pomocí SMT solveru. Z důvodu efek-
tivního začlenění do analyzačního algoritmu nástroje DiffKemp se tato práce zaměřuje
pouze na analýzu ekvivalence sekvenčních bloků kódu, které neprovádějí paměťové operace.

Navržené řešení bylo implementováno v jazyce C++ v nástroji DiffKemp s využitím
SMT solveru Z3, který byl vyhodnocen na základě různých kritérií jako nejvhodnější pro
tento problém. Vytvořené rozšíření bylo experimentálně ověřeno na úlohách různé velikosti,
od jednoduchých ručně vytvořených programů, přes různé systémové knihovny, až po linu-
xové jádro. Experimenty se sadou programů zvanou EqBench ukazují, že výsledné řešení
rozšiřuje schopnosti nástroje DiffKemp, převážně v oblasti přesné analýzy úprav aritme-
tických výrazů. Naopak experimenty s rozsáhlejšími projekty (např. linuxovým jádrem
a systémovými knihovnami) ukazují, že přestože je řešení problému SMT NP-těžký pro-
blém, navržené řešení se soustředí pouze na slibné bloky kódu, a tedy nedochází k zásadnímu
zpomalení nástroje DiffKemp. Nástroj tedy stále zůstává kompromisem mezi rychlostí
a přesností, s navrženým rozšířením se ovšem o něco více přesností přibližuje nástrojům
založeným na formálních metodách. Zůstává však výhoda dobré škálovatelnosti.

Applying formal methods to analysis of semantic
differences between versions of software

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Viktor Malík, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
František Nečas

May 13, 2024

Acknowledgements
I would like to thank my supervisor Ing. Viktor Malík, Ph.D. for his support and patience
during the work on this thesis and other projects. I am grateful that I could pursue research
in the field of static analysis under his guidance. I would also like to thank my loved ones
who have always been there for me over the course of my studies.

Contents

1 Introduction 2

2 DiffKemp 4
2.1 Intermediate Representation of Programs 4
2.2 Checking Semantic Equivalence of Functions 6
2.3 Semantics-preserving Patterns . 9

3 SMT Solving 12
3.1 Principles of SMT Solving . 12
3.2 State-of-the-art SMT Solvers . 14

4 Incorporating Formal Methods into DiffKemp 16
4.1 Identifying Relevant Code Snippets . 17
4.2 Encoding Equivalence into SMT Formulae 19
4.3 Detection of Advanced Inverse Branch Condition 23

5 Implementation of the Extension 26
5.1 DiffKemp Architecture . 26
5.2 Extension of SimpLL . 27

6 Results and Experiments 29
6.1 Simple Experiments . 29
6.2 EqBench Benchmark . 30
6.3 Standard C Libraries . 33
6.4 Linux Kernel . 35
6.5 Evaluating Z3 Runtime on Successful Cases 37

7 Related Work 38

8 Conclusion 40

Bibliography 41

A Contents of the Included Storage Media 44

B Compilation and Running 45

C Poster 47

1

Chapter 1

Introduction

In the vast world of software development, there are some projects where maintaining se-
mantic stability between versions is crucial, because even a tiny change could negatively
impact the users of the said projects. An example of such projects are various system
libraries, e.g., implementations of the standard C library, where the semantics of the ex-
ported functions should remain unchanged between versions so that other programs can
safely use these functions. In order to simplify and automate identifying potential changes
in semantics, various static analyzers of semantic differences have been developed.

There are several tools focusing on finding semantic differences, their approaches vary
significantly. On one hand, there are tools based on formal methods which can verify
semantic equivalence with high precision but do not scale well (e.g., LLRêve). On the
other side of the spectrum, there are light-weight static analyzers that are able to analyze
large chunks of code very fast but produce numerous false warnings or errors (on the
extreme end, the diff Unix utility could be considered an example of this approach).
One of the tools, DiffKemp, tries to find a middle ground between these two extremes.
DiffKemp is developed by Red Hat; its original goal was finding semantic differences
between functions of the Linux kernel that are part of a so-called Kernel Application Binary
Interface1. Therefore, scalability of the tool to large projects is essential.

To achieve high scalability without sacrificing precision, DiffKemp utilizes a few dif-
ferent techniques. First, the versions of the C program to be analyzed are translated into
LLVM Intermediate Representation (IR). Second, the versions are pre-processed to bring
the code to a form that can be compared more reliably. Then, the transformed programs are
compared per-instruction in the LLVM IR. The idea behind this approach is that typically,
refactoring is done on a small part of the code, while the rest stays intact, and therefore
can be efficiently compared using instruction-wise comparison. If instructions differ, Diff-
Kemp tries to check applicability of one of the patterns (either implemented in the tool
itself or possibly user-defined) that are known to preserve semantics.

While there are numerous patterns already implemented in DiffKemp, there are still
some cases where the tool reports inequality despite the versions being equal. This is due
to the fact that some changes are too complex and would be better suited for analysis
based on formal methods. A common example of this are changes to arithmetic and logic
expressions, e.g., using distributive laws and other algebraic properties. There are a lot
of such possible refactorings, therefore it is not feasible to implement them all manually

1A list of functions whose semantics should remain unchanged throughout the whole major release of the
Red Hat Enterprise Linux distribution.

2

in the tool itself. To overcome this, we propose an integration of formal methods into the
DiffKemp’s analysis algorithm. Whenever a possibly differing instructions are found and
no pattern is applicable, the equivalence of the relevant instructions is encoded into an SMT
problem instance and the difference is either confirmed or refuted using an SMT solver.

The rest of this thesis is organized as follows. Chapter 2 introduces DiffKemp and
explains its most important techniques in more detail. Chapter 3 is devoted to SMT
solving, which lies in the center of the proposed solution, and discusses strengths and
weaknesses of state-of-the-art SMT solvers. Design of integration of formal methods into
DiffKemp’s analysis algorithm is described in Chapter 4. Chapter 5 gives an overview
of DiffKemp’s architecture and goes over important implementation details. Chapter 6
details the experiments that were carried out in order to validate the effectiveness of our
work and the results of those experiments. Finally, Chapter 7 gives a description of various
existing approaches to static analysis of semantic equivalence and discusses DiffKemp’s
capabilities with our extension compared to other tools.

3

Chapter 2

DiffKemp

DiffKemp is a static analysis tool for finding semantic differences in large-scale C projects
developed by Red Hat. As discussed in Chapter 1, it tries to find a middle ground between
analyzers based on formal methods and light-weight static analysis tools. To achieve high
scalability while producing a low number of false alarms, DiffKemp makes use of the
following important concepts:

• The versions are compared per-instruction in the LLVM Intermediate Representation
(IR). This is a very fast approach, however even a very subtle change could lead to
a false alarm.

• To prevent some of these false alarms, DiffKemp tries to bring the two versions of
a program closer together by using various code transformations, e.g., some optimiza-
tion passes may be run.

• If instruction-wise comparison fails, DiffKemp checks if any pattern from its list of
predefined code change patterns that are known to preserve semantics is applicable.

In the rest of this chapter, we introduce the main concepts behind DiffKemp. Sec-
tion 2.1 introduces LLVM IR and the structure of programs in this representation. Sec-
tion 2.2 introduces the notion of function equivalence and gives the algorithm that Diff-
Kemp uses for finding semantic differences. Finally, Section 2.3 gives an overview of the
semantics-preserving change patterns that are available in the tool.

2.1 Intermediate Representation of Programs
DiffKemp is built on top of the LLVM infrastructure (that is extensively used in compilers)
and therefore uses its intermediate representation. Each function in LLVM IR can be viewed
as a control flow graph consisting of basic blocks connected by edges representing branching
in the program [18]. Each basic block is a sequence of instructions ending with exactly one
terminator instruction (one of the available branch instructions or return at the end of the
function). Furthermore, only the first instruction of the basic block can be a target of
jumps. The inner instructions of the basic block have exactly one successor – the following
instruction. The terminator instructions contain references to the successor basic blocks.

An instruction in LLVM IR performs an operation over some operands and stores its
result into a local variable. Local variables in LLVM IR are so-called virtual registers and do
not correspond to the local variables of the original program (these variables are allocated

4

using the alloca instruction and then accessed using the store and the load instruc-
tions). The instruction set is similar to that of RISC computers, i.e., quite a limited set of
instructions including arithmetic operations, function calls, branching, and instructions for
memory manipulation. An operand can either be a local or a global variable, a constant,
or a function (e.g., for the call instruction). Each function (represented by the CFG)
satisfies the single static assignment (SSA) property, i.e., each variable is assigned to at
most once. To achieve this, each instruction stores its result into a fresh variable. The
instructions can be divided into several types based on various criteria [30]:

Terminator Instructions As mentioned above, every basic block ends with this type of
instruction. They define the control flow of the program, i.e., they do not produce
any values. The ret and br instructions are the most commonly used instructions
of this type.

Unary Operations These instructions require a single operand, execute an operation on
it and produce a result, e.g., the fneg instruction performs negation of a floating-
point value.

Binary Operations Most of the computation in a program is carried out by binary oper-
ations. This type includes all kinds of arithmetic operations, e.g., add for addition or
mul for multiplication of integer types. An important property of these instructions
is that they return a value of the same type as its operands.

Bitwise Binary Operations A special kind of binary operations that perform bit ma-
nipulations on its operands, e.g., bitwise shifts (shl for left shift, lshr for logical
right shift or ashr for arithmetic right shift).

Vector Operations Represent vector operations in an architecture-independent manner.
These instructions cover, for example, element access using the extractelement
instruction.

Aggregate Operations Instructions for manipulating derived types that contain multiple
members, e.g., arrays and structs.

Memory Access Operations The most commonly used instructions from this category
are the aloca, load and store instructions for memory manipulation.

Conversion Operators These instructions take a single operand and a type and perform
various bit conversions on the operand in order to get the requested type. An example
of this is the zext instruction, which performs a zero extension of its operand.

Other Instructions Miscellaneous instructions that do not belong to other categories.
The most relevant for this work are the icmp and fcmp instructions for comparison,
phi used to implement the Φ-node in the SSA (i.e., a merge of values from multiple
branches), select used as a ternary operator, and call used for calling functions.

Figure 2.1 shows an example conversion of a simple C program to LLVM IR (its human-
readable serialized form, slightly abbreviated). There are three basic blocks in the program,
one corresponding to the statements before an if condition, one for the true branch of the
condition, and finally a basic block containing statements after the branching – the return
instruction. The basic blocks are connected using edges that are represented using the

5

1 #include <stdio.h>

2

3 int main(void) {

4 int i;

5 if (scanf("%d", &i) == 1) {

6 printf("%d\n", i);

7 }

8 return 0;

9 }

(a) A simple program in C

1 define dso_local i32 @main() #0 {

2 %1 = alloca i32, align 4

3 %2 = alloca i32, align 4

4 store i32 0, ptr %1, align 4

5 %3 = call i32 @scanf(ptr @.str, ptr %2)

6 %4 = icmp eq i32 %3, 1

7 br i1 %4, label %5, label %8

8

9 5: ; preds = %0

10 %6 = load i32, ptr %2, align 4

11 %7 = call i32 @printf(ptr @.str.1, i32 %6)

12 br label %8

13

14 8: ; preds = %5, %0

15 ret i32 0

16 }

(b) The equivalent LLVM IR

BB0

BB5

BB8

true

false

(c) The equivalent control
flow graph of basic blocks

Figure 2.1: Example conversion of a simple C program to LLVM IR

preds metadata, e.g., the final basic block starting with label 8 can be reached via either
of the other two basic blocks. We can observe that variables are assigned in increasing
order; each instruction that has a result assigns to a new local variable (in the human-
readable form, local variables are prefixed with a % symbol, whereas global variables are
prefixed with @). The first basic block contains some variable allocations, and then a call
instruction whose operand is the scanf function. The formatting string for scanf is
defined in the program preamble in the section of constants (left out of the example for
brevity), and simply passed here as an argument. Finally, there is a conditional branch
instruction whose target depends on the result of the preceding comparison.

2.2 Checking Semantic Equivalence of Functions
The idea of DiffKemp’s analysis of equivalence is trying to find so-called synchronization
points in the compared functions and check that the code between pairs of synchroniza-
tion points is semantically equal. Most of the time, synchronization points will be placed
after each instruction, resulting in an instruction-wise comparison. In the case of pattern
application, there may be several instructions between a pair of synchronization points.

6

Two pieces of code can be considered semantically equal if they both terminate and
produce the same output for the same input, or if neither of them terminates. Input
of a piece of code consists of the initial memory state and the values of input variables,
including global variables. The output of the piece are the values of output variables and
the final state of the memory. Furthermore, DiffKemp also checks that both pieces use
the same synchronization mechanisms in order to support possible concurrency, and also
checks that system and library calls are used in the same way.

Formally, given functions 𝑓1 and 𝑓2 with their instructions 𝐼1, 𝐼2 and sets of variables 𝑉1,
𝑉2, respectively, the problem of checking semantic equivalence can be viewed as finding sets
of synchronization points 𝑆1 ⊆ 𝐼1 and 𝑆2 ⊆ 𝐼2 and synchronization functions 𝑠𝑚𝑎𝑝 : 𝑆1 ↔
𝑆2, mapping between synchronization points between 𝑓1 and 𝑓2, and 𝑣𝑎𝑟𝑚𝑎𝑝 : 𝑉1 ↔ 𝑉2,
defining a mapping of variables, such that chunks of code between the synchronization
points are semantically equal with regard to the definition above [20]. The 𝑣𝑎𝑟𝑚𝑎𝑝 bijection
represents which pairs of variables are known to be semantically equivalent in the analyzed
programs, e.g., given two variables 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2 if 𝑣𝑎𝑟𝑚𝑎𝑝(𝑣1) = 𝑣2 then the value of 𝑣1
in the first program is known to be equal to the value of 𝑣2 in the second program. Figure 2.2
shows 𝑠𝑚𝑎𝑝 and 𝑣𝑎𝑟𝑚𝑎𝑝 bijections for two implementations of a simple function that
multiplies by 5 and adds a constant. The values in 𝑆1 and 𝑆2 represent a synchronization
point being placed right after the line numbered with the value. We can observe that
while typically, synchronization points are located after each instruction, in this case the
multiplication is replaced by two other operations (left shift and addition) and the functions
are synchronized with respect to this fact, i.e., the functions are synchronized on line 1
(before any operation is performed) and then after line 2 in f1 and line 3 in f2.

1 define i32 @f1(i32 %x) {

2 %1 = mul i32 %x, 5

3 %2 = add i32 %1, 10

4 ret i32 %2

5 }

1 define i32 @f2(i32 %x) {

2 %1 = shl i32 %x, 2

3 %2 = add i32 %2, %x

4 %3 = add i32 %2, 10

5 ret i32 %3

6 }

1
2
3

1
2
3
4

𝑆1
𝑆2

𝑠𝑚𝑎𝑝
%x
%1
%2

%x
%1
%2
%3

𝑉1
𝑉2

𝑣𝑎𝑟𝑚𝑎𝑝

Figure 2.2: Two semantically equal implementations of a function that multiplies its input
by 5 and adds a constant and the corresponding 𝑣𝑎𝑟𝑚𝑎𝑝 and 𝑠𝑚𝑎𝑝.

2.2.1 Algorithm for Equivalence Checking in DiffKemp

Building on the notion of function equivalence defined in the previous paragraph, we now
show how DiffKemp tries to find the correct sets of synchronization points. Algorithm 1
describes how DiffKemp checks for semantic equality of functions 𝑓1 and 𝑓2 with their
initial instructions 𝑖1𝑖𝑛, 𝑖2𝑖𝑛, parameters 𝑃1, 𝑃2 and sets of used global variables 𝐺1, 𝐺2,
respectively. The algorithm begins by applying code transformations that do not alter the

7

semantics (Line 1). Among other things, this includes removal of parameters which do not
influence the result of the function. After these transformations, if the functions do not
have the same number of parameters, they are certainly not semantically equal, since more
parameters influence the result in one of the functions (Line 3).

The algorithm then initializes the maps mentioned above. Initially, only the first in-
structions of the functions can be considered synchronized (Lines 4-5). The parameters
are mapped based on their order in the functions (Line 7), while the global variables are
mapped based on their names (Line 9).

Algorithm 1: Checking semantic equivalence of functions [20]
Input: Functions 𝑓1 and 𝑓2 to be analyzed and their initial instructions 𝑖1𝑖𝑛, 𝑖2𝑖𝑛,

parameters 𝑃1, 𝑃2 and used global variables 𝐺1, 𝐺2

Output: 𝑡𝑟𝑢𝑒 if 𝑓1 and 𝑓2 are semantically equal, 𝑓𝑎𝑙𝑠𝑒 otherwise
1 Pre-process 𝑓1 and 𝑓2 using code transformations
2 if |𝑃1| ≠ |𝑃2| then
3 return 𝑓𝑎𝑙𝑠𝑒

4 𝑆1 = {𝑖1𝑖𝑛}, 𝑆2 = {𝑖2𝑖𝑛}
5 𝑠𝑚𝑎𝑝(𝑖1𝑖𝑛) = 𝑖2𝑖𝑛
6 for 1 ≤ 𝑖 ≤ |𝑃1| do
7 𝑣𝑎𝑟𝑚𝑎𝑝(𝑝1𝑖) = 𝑝2𝑖

8 for 𝑔1 ∈ 𝐺1 do
9 𝑣𝑎𝑟𝑚𝑎𝑝(𝑔1) = 𝑔2 ∈ 𝐺2 s.t. 𝑔1 has the same name as 𝑔2

10 𝑄 = {(𝑖1𝑖𝑛, 𝑖2𝑖𝑛)}
11 while 𝑄 ̸= ∅ do
12 take any pair (𝑠1, 𝑠2) from 𝑄
13 𝑝 = 𝑑𝑒𝑡𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑠1, 𝑠2)
14 for (𝑠′1, 𝑠

′
2) ∈ 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝(𝑠1, 𝑠2) do

15 if 𝑠′1 ∈ 𝑆1 ∨ 𝑠′2 ∈ 𝑆2 then
16 if 𝑠𝑚𝑎𝑝(𝑠′1) ̸= 𝑠′2 then
17 return 𝑓𝑎𝑙𝑠𝑒

18 check that blocks (𝑠1, 𝑠
′
1) and (𝑠2, 𝑠

′
2) are semantically equal

19 if the blocks are not semantically equal then
20 return 𝑓𝑎𝑙𝑠𝑒

21 𝑆1 = 𝑆1 ∪ {𝑠′1}, 𝑆2 = 𝑆2 ∪ {𝑠′2}
22 𝑠𝑚𝑎𝑝(𝑠′1) = 𝑠′2
23 update 𝑣𝑎𝑟𝑚𝑎𝑝 according to 𝑝
24 𝑄 = 𝑄 ∪ {(𝑠′1, 𝑠′2)}

25 return 𝑡𝑟𝑢𝑒

The main loop of the algorithm maintains a worklist 𝑄 of synchronization points that
have not been checked for semantic equality yet. In each iteration of the main loop, the
following takes place:

1. Any pair of synchronization points is taken from the worklist (Line 12).

8

2. Function 𝑑𝑒𝑡𝑒𝑐𝑡𝑃𝑎𝑡𝑡𝑒𝑟𝑛 checks if any of the pre-defined patterns is applicable to the
code blocks starting at the current pair of synchronization points (Line 13).

3. Function 𝑠𝑢𝑐𝑐𝑃𝑎𝑖𝑟𝑝 (Line 14) finds all possible successor synchronization points with
regard to the previously detected pattern 𝑝. If no pattern was applicable, there is
only one or two possible pairs of successor synchronization points – the true and
false branches in the case of a branch instruction or otherwise those placed at the
following instructions. For each of the possible successor pairs, the algorithm does
the following steps:

(a) If any of the successor synchronization points has already been visited, there
must already be a mapping between the synchronization points, otherwise, the
functions are not equal (Lines 15-17).

(b) Blocks of code between the current and successor synchronization points are
checked for their semantic equality (Line 18). If no pattern was detected, this
step corresponds to a comparison of instructions and their operands. In order
for two instructions to be considered semantically equal, their operation codes
must match and the operands (taken by their order in both instructions) must
either be equal (e.g., in case of constants) or mapped via the 𝑣𝑎𝑟𝑚𝑎𝑝 bijection.
Otherwise, if a pattern has previously been detected, this comparison is specific
to the pattern.

(c) The synchronization maps are updated, and the successor synchronization points
are enqueued into the worklist (Lines 21-24).

4. Finally, if all synchronization points in the worklist have been processed and no dif-
ference has been found, the functions are considered semantically equal (Line 25).

2.3 Semantics-preserving Patterns
There are several patterns defined in DiffKemp that cover some of the common refactor-
ings. Some other refactorings may be covered by the code transformations that are done
before analysis of the functions. Each pattern in DiffKemp defines the following [20]:

1. A test indicating applicability of the pattern at given starting lines,

2. A function for computing a pair of successor synchronization points,

3. A condition under which the pattern does indeed preserve semantics, and

4. Mechanism for updating 𝑣𝑎𝑟𝑚𝑎𝑝.

The idea is that the initial check (Point 1) should be done efficiently, since it is called
often, while the condition under which the snippets are semantically equal (Point 3) may
use more complex computations since it is used only on a bounded piece of code (as detected
in Point 2). DiffKemp currently supports the following patterns:

Changes in Structure Data Types Fields of a structure are accessed using getele-
mentptr instruction, which takes a pointer and a field index and returns a pointer
to the field. If a field is added or removed, the offsets change and instruction-wise
comparison would return false. The pattern adds support for changes of this kind.

9

Moving Code into Functions Occurs when a block of code is taken out of the analyzed
functions and placed into a new function. This is handled by inlining and simplifica-
tion of the inlined code (dead code elimination and constant propagation).

Changes in Enumeration Values If a value is added to or removed from an enum, the
values of the enumeration (assigned by the compiler) may change, however, this is
typically not considered to be a semantic change. DiffKemp, therefore, compares
the identifier string rather than the value set by the compiler.

Changes in Source Code Location A pattern specific to the Linux kernel, in particular
calls to warning functions. The content of the warning message is not important, and
the call also typically contains the line number of the C file, which is not important
either for the semantics of the program.

Inverse Branch Conditions A branching condition is replaced by its inverse and the
true and false successors are swapped.

Reordered Binary Operations If an operation is associative and commutative, the ope-
rands can be freely reorganized, e.g., (𝑎+ 𝑏) + 𝑐 is semantically equal to (𝑎+ 𝑐) + 𝑏 if
the variables 𝑎, 𝑏, and 𝑐 are integers (this is not the case for floats). Such pattern is
also an example of a use-case for application of formal methods into DiffKemp.

Local Variable Grouping Detects refactorings related to storage of local variables, e.g.,
several local integer variables being replaced with an array of integers, where each
element corresponds to one of the original variables [32].

Code Relocations Moving a block of code into a different part of the function. It is
necessary for the relocated code to be independent of the code that is skipped by
the relocation. Currently, only a single relocation of a sequential block of code is
supported. This pattern cannot be covered by the algorithm for handling patterns,
since it consists of several interconnected phases and must be applied with the lowest
priority. Therefore, it is handled explicitly as a part of Algorithm 1. The phases are
as follows:

• Relocation detection is run if the current blocks on Line 18 are determined as
non-equal. It tries to find another synchronization point in one of the functions
that would match the current synchronization point in the other function. If
such a synchronization point is found, the skipped block is marked as potentially
relocated.

• Relocation matching is run if instructions were determined as non-equal and
a block has previously been marked as potentially relocated. The algorithm
moves back to the relocated block in the corresponding function and continues
comparison from there. Before moving back, the current synchronization point
𝑠𝑐 is remembered so that it can be jumped back to once the relocation has been
matched.

• Relocation checking is run after the last instruction of the relocated block has
been analyzed as equal. This phase checks that the code skipped by the reloca-
tion (from the current synchronization point up until 𝑠𝑐) is not data-dependent
on the relocated block, i.e., the relocation is semantically equal. Two blocks are
data-dependent if one of them reads a value that was written by another block.

10

Aside from the pre-defined patterns, DiffKemp also allows users to provide their own
patterns in the LLVM IR format [19]. The patterns can be parametrized, e.g., to make the
pattern applicable to multiple types. The successor synchronization points are determined
automatically by DiffKemp, however the new variable mapping must be defined using the
diffkemp.mapping function in the LLVM IR which is called in each pattern function
just before its exit. The call contains a list of variables, and the new mappings to be added
to 𝑣𝑎𝑟𝑚𝑎𝑝 are determined based on their order.

11

Chapter 3

SMT Solving

In recent years, significant progress has been made in the field of effective automated deci-
sion procedures of various logics, mainly propositional logic (implemented in so-called SAT
solvers) and theories in first-order logic (implemented in so-called SMT solvers). Conse-
quently, a lot of today’s tools for hardware and software verification employ automated
decision procedures as a part of their verification mechanisms, since a lot of these problems
can naturally be encoded using formulae. Furthermore, state-of-the-art solvers are typi-
cally very efficient for most common inputs despite the problem of checking satisfiability of
a formula being very hard (NP-complete in the case of SAT solving and even undecidable
for some first-order logic theories).

This chapter briefly describes what SMT solving is and how it works from a verification
tool’s point of view, without diving deep into the inner workings of SMT solvers. Section 3.1
introduces the notion of SMT solving and gives an overview of the most common theories
that many current decision procedures try to tackle. Section 3.2 examines the current state
of SMT solvers, their feature set, while focusing on the intended usage within DiffKemp’s
analysis algorithm.

3.1 Principles of SMT Solving
Given a propositional logic formula, determining whether there exists an assignment of
variables (a so-called model) under which the formula evaluates to true, is commonly re-
ferred to as the Boolean Satisfiability Problem, usually abbreviated as SAT. The problem
of determining whether a formula is satisfiable has been proven to be NP-complete [9], i.e.,
it is unlikely that a polynomial algorithm for solving this problem exists. Despite being
a very hard problem, a lot of effort has been put towards implementing a decision procedure
that is efficient for a large part of the most common formulae, e.g., by employing various
heuristics.

While a lot of problems in software verification and analysis can directly be expressed
using propositional formulae, other problems are easier to encode using a more expressive
language, for example using first-order logic [7]. However, with increasing expressiveness, it
becomes harder to decide whether a given formula is satisfiable – the problem of checking
satisfiability of a general first-order logic formula is undecidable. A common compromise
can be achieved by restricting interpretation of certain functions and predicate symbols,
and consequently, restricting semantics of the logic. Thanks to such restrictions, the sat-
isfiability problem becomes decidable, which makes it possible to implement specialized

12

decision procedures that exploit properties of the restrictions. Restricting the semantics
of a first-order logic is commonly referred to as using first-order theories (e.g., a theory of
integers, a theory of arrays, etc.). The problem of checking whether a formula is satisfiable
in a theory is usually referred to as Satisfiability Modulo Theories (SMT).

Solving the SMT problem is a topic that is still under active research. On the highest
level, there exist two approaches. One option is converting the first-order-logic formula
restricted by a theory to a propositional formula and using a SAT solver to find the model
of this formula. This approach, however, blows up exponentially, which makes it impractical
for all but the simplest of theories and formulae. For this reason, most current SMT solvers
use a different approach, often referred to as lazy. In this case, a SAT solver is used to
reason just about the propositional connectives. The SMT solver then checks if the model
returned by the SAT solver is consistent with the theory that is being used in a so-called
theory solver. If the theory solver validates that the model is also consistent with the
theory, the input formula is satisfiable. Otherwise, a new lemma is added as a conjunction
to the examined formula that excludes the previously returned invalid model. Thanks to
using the lazy approach, modern SMT solvers can leverage improvements in efficiency of
SAT solvers. Furthermore, this approach is highly modular, making it possible to support
lots of theories and possibly also their combinations.

3.1.1 Most Common Theories

There are quite a lot of theories that modern SMT solvers support, therefore giving the
complete list would be impossible. This section aims to give an overview of the ones most
relevant to software verification. On the highest level, theories can be differentiated based
on their approach to quantifiers – a theory can either allow quantifiers or disallow them
(so-called quantifier-free theories). Quantified theories are harder to decide from a time
complexity standpoint. Then, arithmetic theories typically differentiate whether non-linear
arithmetic is supported. A linear arithmetic may contain multiplication of variables only
by a constant coefficient, i.e., multiplication of variables is disallowed, whereas non-linear
arithmetic theories remove this restriction. Some theories are also a combination of multiple
simpler theories, these are not considered in this text.

Excluding the high-level categorization described above, the following theories are com-
mon in today’s SMT solvers [7]:

Uninterpreted Functions with Equality The formulae may contain any functional and
predicate symbols. The symbols are differentiated by their names and arity, but do
not have any semantic interpretation. The theory also allows checking for equality
with the usual semantics.

Integer Arithmetic Allows use of all integer constants, function symbols {+,−, *} and
the predicate symbols for equality and inequality {=,≤,≥, . . .}.

Real Arithmetic Same as Integer Arithmetic, but the values may be any rational number.

Difference Logic A subset of either Integer or Real Arithmetic where all atoms are limited
to the form 𝑥− 𝑦 ◁▷ 𝑐, where ◁▷∈ {=,≤,≥}, 𝑐 is a constant and 𝑥 and 𝑦 are variables.
This theory can be solved more efficiently than its more expressive counterparts.

Floating-point Arithmetic Similar to Real Arithmetic but considers behavior as spec-
ified in the IEEE 754 standard, e.g., overflows, rounding, undefined operations and
special values (infinity and NaN).

13

Bit Vectors An extension of Integer Arithmetic, where every number is represented as
a fixed-size sequence of bits. Aside from the standard arithmetic operations, bitwise
operations are also typically allowed.

Theories for More Complex Data Structures There are also some theories that aim
to support composite data types, such as arrays, strings, sets, multi-sets, lists, etc.
These are, however, not as relevant to this thesis.

3.2 State-of-the-art SMT Solvers
A lot of SMT solvers have been developed in recent years. Different solvers have different
strengths and weaknesses and have various additional features. In order to choose the right
solver for a specific use-case, it is useful to compare the available solvers. There are lots of
possible evaluation criteria that can be used, for example:

• the availability and the license of the solver,

• the API available in various programming languages,

• the supported theories,

• the performance on various classes of examples,

• the support for quantifiers (oftentimes, quantifiers are completely forbidden),

• the support for a standardized format called SMT-LIB [6],

• the ability to provide a model in case of a satisfiable formula, and

• the ability to provide proofs of unsatisfiability and generate unsatisfiable cores, i.e.,
clauses of the formula that are in conflict and make the whole formula unsatisfiable.

This section aims to give a brief overview of the current SMT solvers that are available
under an open-source license and have a C++ API (since DiffKemp is implemented in this
language). Furthermore, we require the solvers to support as many theories as possible in
order to be able to encode various program fragments. For example, the theory of floating-
point numbers is not very common since its time complexity is very high. However, lots of
programs contain floating-point arithmetic and in this case, it may be better (or at least have
the possibility) to be able to model such operations precisely rather than approximating
with a theory of real numbers. On the other hand, support for unsatisfiable cores and for
providing a model is not as important in our case, since we only want to check whether
a formula is satisfiable or unsatisfiable and the reason is not as important.

Z3 A widely used solver developed by Microsoft Research. Z3 is provided under the MIT
license and accepts the SMT-LIB format and provides APIs in C++, Java, Python,
.NET and OCaml. Most theories related to arithmetic are supported, including
floating-point arithmetic [23]. Both universal and existential quantifiers can be used
within the formulae. Z3 is able to find unsatisfiable core, as well as return a model.

CVC5 Another commonly used SMT solver that builds on top of its predecessor – CVC4.
All theories that are defined in the SMT-LIB format are supported, including but

14

not limited to linear arithmetic, non-linear arithmetic, floating-point arithmetic, bit
vectors, strings, arrays, and quantifiers [3]. CVC5 is provided under the BSD license,
accepts input in the SMT-LIB format, as well as provides a C++, Python and Java
APIs. It is able to provide models of satisfiable formulae, as well as find unsatisfiable
core.

Bitwuzla A relatively new solver developed as a fork of Boolector. The solver supports
both quantified and quantifier-free theories of fixed-sized bit vectors, arrays, floating-
point arithmetic and uninterpreted functions [27]. Bitwuzla is available under the MIT
license and can be used via its C++ or Python API. Bitwuzla extended Boolector
with several new theories, including the theory of floating-point arithmetic, and also
added support for unsatisfiable core extraction.

OpenSMT 2 and Yices 2 These two solvers offer a very similar feature set. They both
provide a C, C++ and Python APIs and support quantifier-free theories, but neither
of them has support for floating-point arithmetic [12, 8]. The solvers are available
under open-source licenses (OpenSMT has MIT license, Yices has GPLv3 license).

Performance of Solvers Performance is a crucial aspect in software verification and
DiffKemp is no exception to this, since it aims to scale to large projects as best as possible.
Evaluating efficiency of SMT solvers is a complex task, since solvers use various heuristics
and while one heuristic could work well for a class of problems, it could be very inefficient
for some other class of formulae. A competition called SMT-COMP has been created with
the goal of fairly assessing qualities of various SMT solvers [5]. There are various tracks in
the competition, for example Incremental Track aims to evaluate solvers when interacting
with an external verification framework, e.g., a model checker where multiple queries are
incrementally made. On the other hand, Single Query Track is the exact opposite of
this. For integration with DiffKemp, we mostly care about single query use, as will be
discussed in later chapters. Investigating 2023 results shows that a lot of categories were
won by CVC5, with Z3 trailing behind in the second place. There are, however, some
categories, where other solvers shined, e.g., Bitwuzla won the FPArith category, which
contains floating-point benchmarks.

Abstract Interfaces Each SMT solver provides its own API in the programming lan-
guages that it supports. The formula to be checked for satisfiability is therefore built using
various classes and functions from the solver’s API. There have been attempts to create
an abstract interface that would allow building the formula on an abstract level without
relying on implementation details of individual solvers. This allows easily swapping out
a solver to experiment with its performance on the particular problem. Currently, the
most promising example of this approach seems to be the smt-switch tool [21]. Many
aforementioned solvers are supported according to the documentation, however, floating-
point theories are currently not supported. This may be a limiting factor for use within
DiffKemp, as discussed previously.

15

Chapter 4

Incorporating Formal Methods
into DiffKemp

While DiffKemp scales really well to large programs thanks to its approach to analysis
described in Chapter 2, there are still many cases where the tool reports semantic inequality
despite the functions being equal. This is usually caused by code transformations not being
sufficient and/or DiffKemp not having a pattern defined for such a change. Figure 4.1
shows two versions of an example program that DiffKemp currently fails to analyze as
semantically equal. Multiplication by a constant 5 at line 3 of Figure 4.1a has been replaced
by an equivalent left bitwise shift of 2 and addition at lines 3 and 4 of Figure 4.1b.

1 define i32 @f(i32 %0) {

2 %2 = sub i32 %0, 2

3 %3 = mul i32 %2, 5

4 %4 = udiv i32 %3, 2

5 %5 = add i32 %4, 2

6 ret i32 %5

7 }

(a) First version of the pro-
gram using multiplication

1 define i32 @f(i32 %0) {

2 %2 = sub i32 %0, 2

3 %3 = shl i32 %2, 2

4 %4 = add i32 %3, %2

5 %5 = udiv i32 %4, 2

6 %6 = add i32 %5, 2

7 ret i32 %6

8 }

(b) Second version of the
program using bitwise shift

Figure 4.1: Two equivalent versions of a program computing the function 𝑓(𝑥) = (𝑥−2)*5
2 +2.

The multiplication by 5 in one of the programs has been replaced with an equivalent bitwise
shift and addition.

It would certainly be possible to define a new pattern that would be able to handle this
case. However, there are many more similar examples related to refactoring of arithmetic
and logic expressions that come to mind, e.g., application of distributive, associative, and
commutative laws, various optimizations related to constants (as seen in the example), etc.
Manually implementing all such cases as patterns in DiffKemp is, therefore, not feasible.
The goal of this thesis is to facilitate analysis of these cases. In this chapter, we propose
an integration of formal methods based on SMT solving into DiffKemp that allows an
automated verification of such changes as semantically equal.

16

The overall approach can be summarized as follows. Whenever a possible semantic
change is found and no pattern, including a relocation, is applicable (i.e., Line 20 in Algo-
rithm 1), we try to perform the following steps:

1. Find the closest pair of instructions wrt. control flow, after which the code can
be synchronized using 𝑣𝑎𝑟𝑚𝑎𝑝 and 𝑠𝑚𝑎𝑝. The code blocks between the differing
instructions and this pair of instructions needs to be checked for semantic equality.
In order to ensure an efficient integration into DiffKemp’s analysis algorithm, we
only focus on sequential code blocks that do not manipulate the memory and have
no side effects.

2. If such a pair of code blocks was detected, encode the problem of checking their
semantic equality into the SMT problem and use an SMT solver to check if the blocks
are equal.

3. If the SMT solver verified equality of the blocks in the provided amount of time,
update 𝑣𝑎𝑟𝑚𝑎𝑝 and 𝑠𝑚𝑎𝑝 accordingly, and continue analysis based on Algorithm 1.
Otherwise, report semantic inequality of the programs.

The following sections go into detail of the individual steps of the approach outlined
above. First, Section 4.1 describes how we can detect the blocks to be analyzed by our SMT-
based procedure. Building on the notion of semantic equivalence defined in the previous
chapters, Section 4.2 details how to encode the equivalence property into a formula to be
passed into an SMT solver. Finally, Section 4.3 describes an extension to this approach
that facilitates verification of advanced inverse branch condition that the current pattern
defined in DiffKemp cannot handle.

4.1 Identifying Relevant Code Snippets
Since SMT is an NP-hard problem, i.e., an SMT solver can take a really long time to
return an answer, our solution needs to minimize the number of calls to the SMT solver.
Therefore, we need to find blocks of code that are worthwhile analyzing. For example,
checking equivalence of blocks of code is a waste of time, if the instructions following the
given blocks are completely different, e.g., one performs an arithmetic operation, while the
other one is a ret instruction. Even if the blocks were analyzed as equal using the SMT
solver, the comparison would fail immediately afterward, since the following instructions
are different.

To this end, we use a similar approach as is already used for relocation detection de-
scribed in Section 2.3. Algorithm 2 shows how blocks to be analyzed are found. It tries
to find a synchronization point after the provided differing instructions. All instructions
after the found synchronization point must be synchronized in order for the analysis to be
worthwhile. At first, the blocks to be analyzed are initialized as empty and the differing
instructions marking the beginning of the blocks are backed up (Lines 1-2). The algorithm
then checks every pair of instructions in the remainder of the basic blocks for synchro-
nization. The instruction pairs are evaluated in the order of control flow in the current
basic block. Function cmpBasicBlocksFrom (Line 6) used for checking synchronization
compares instructions using Algorithm 1 but stops at the end of the current basic block.
Since the procedure modifies the contents of 𝑣𝑎𝑟𝑚𝑎𝑝 and 𝑠𝑚𝑎𝑝, they need to be backed up
(Line 5) and restored (Line 8) in order to allow multiple successive calls to this function. If

17

the instructions can be synchronized until the end of the basic blocks, the collected blocks
are returned (Line 7). As a part of the algorithm, once an instruction is added to 𝑅1 it
is going to be part of all the remaining blocks that can be found by the algorithm. For
this reason, we check whether the instruction being added to 𝑅1 is supported (the list of
all supported instructions can be seen in Section 4.2.1) and stop searching for a synchro-
nization point if it is not (Line 14). This is an optimization done to reduce the amount of
computation in cases where SMT solving would not be successful.

Algorithm 2: Finding blocks to be analyzed using an SMT solver
Input: Differing instructions 𝑠1, 𝑠2
Output: Blocks 𝑅1, 𝑅2 that are followed by a synchronization point, i.e., are

worth analyzing
1 backup 𝑠1 and 𝑠2
2 𝑅1 = 𝑅2 = []
3 while 𝑜𝑝(𝑠1) ̸= branch do
4 while 𝑜𝑝(𝑠2) ̸= branch do
5 backup 𝑣𝑎𝑟𝑚𝑎𝑝 and 𝑠𝑚𝑎𝑝
6 if 𝑐𝑚𝑝𝐵𝑎𝑠𝑖𝑐𝐵𝑙𝑜𝑐𝑘𝑠𝐹𝑟𝑜𝑚(𝑠1, 𝑠2) = 𝑒𝑞𝑢𝑎𝑙 then
7 return 𝑅1, 𝑅2

8 restore 𝑣𝑎𝑟𝑚𝑎𝑝 and 𝑠𝑚𝑎𝑝
9 append 𝑠2 to 𝑅2

10 𝑠2 = 𝑠𝑢𝑐𝑐(𝑠2)

11 restore 𝑠2
12 𝑅2 = []
13 if 𝑠1 is not a supported instruction then
14 return [], []

15 append 𝑠1 to 𝑅1

16 𝑠1 = 𝑠𝑢𝑐𝑐(𝑠1)

17 restore 𝑠1 and 𝑠2
18 return [], []

Applying Algorithm 2 to the example given in Figure 4.1 would result in blocks con-
taining line 3 in the first version and lines 3-4 in the second version being returned. This is
caused by the fact that the functions can be synchronized on the udiv instruction, since the
instructions in the rest of the functions have the same operation codes and their operands
can either be mapped via 𝑣𝑎𝑟𝑚𝑎𝑝 or their values are equal in the case of constants.

4.1.1 Multiple Synchronization Points

The example in Figure 4.1 is rather simple, i.e., there is only one possible synchronization
point. However, in some cases, there may be several synchronization points. For example,
consider a case corresponding to the reordered binary operations pattern that our integration
aims to cover as well, e.g., replacing (𝑎+𝑏)+(𝑐+𝑑) with (𝑎+𝑐)+(𝑏+𝑑). This results in three
add operations being created, as can be seen in Figure 4.2. The closest synchronization
point found by Algorithm 2 is on lines 3 in both the programs. Since the first two lines
were skipped, cmpBasicBlocksFrom can map %5 and %6 in Figure 4.2a to %5 and
%6 in Figure 4.2b, respectively, and, therefore, evaluate the remainder of the basic blocks

18

as equivalent. However, the corresponding blocks that were skipped are not semantically
equal – the semantically equal blocks that we are looking for are the blocks containing
all three add instructions, i.e., the synchronization point at the ret instruction in both
programs.

1 %5 = add i32 %0, %1

2 %6 = add i32 %2, %3

3 %7 = add i32 %5, %6

4 ret i32 %7

(a) (%0 +%1) + (%2 +%3)

1 %5 = add i32 %0, %2

2 %6 = add i32 %1, %3

3 %7 = add i32 %5, %6

4 ret i32 %7

(b) (%0 +%2) + (%1 +%3)

Figure 4.2: The LLVM IR of an equivalent refactoring corresponding to the reordered binary
operations pattern. Correct analysis requires searching for multiple synchronization points.

This problem could be remedied by analyzing the largest possible blocks, i.e., looking
for a synchronization point from the end of the basic blocks rather than the beginning as
shown in Algorithm 2. However, trying to compare semantics of larger blocks using an
SMT solver is computationally more complex and has a higher likelihood of not finishing
in a reasonable time. For this reason, we opted for a different approach. We start with
the smallest blocks, i.e., the closest synchronization point, and check their equivalence. If
the blocks are found to not be equal, we search for a different synchronization point. We
repeat this process until all possible synchronization points have been exhausted.

While in some cases, the first outlined possible solution may yield better results wrt.
performance (e.g., in the reordered binary operations example), the difference seems negli-
gible, especially since multiple possible synchronization points seem to be quite rare from
our experiments.

4.2 Encoding Equivalence into SMT Formulae
Now that we have detected the two blocks of code to be analyzed, we need to check whether
they are equivalent. The definition of equivalence of blocks is similar to that of functions
described in Section 2.2. Two blocks of code are semantically equal if they both terminate
and for the same input, their execution produces the same output, or neither of them
terminates. We can ignore termination, because we are only dealing with sequential blocks
of code in this work, hence there are no loops and no possibility of the code not terminating.

By input in this case, we mean values of local variables that were defined outside the
blocks and are used for computation in the analyzed blocks. Unlike with functions, the
mapping of inputs between the two analyzed blocks is slightly more complicated than just
mapping function parameters by their order. In the case of a general block of code, we
need to map inputs based on their semantics – this can be done nicely using 𝑣𝑎𝑟𝑚𝑎𝑝 that
was computed by DiffKemp’s main analysis algorithm. Similarly, the output of a block
corresponds to the local variables defined in the analyzed block that are used outside the
block. Since in this work we only focus on blocks of code that do not manipulate memory,
we can ignore reads and writes through pointers and to global variables. While it would
be possible to model the memory, e.g., using the theory of arrays, it would make the
problem significantly more difficult and more expensive to compute, which is not desirable
wrt. DiffKemp’s focus on scalability.

19

In order to check equivalence of two blocks using an SMT solver, we need to construct
a first-order logic formula describing their equivalence as defined above. Let 𝐼𝑛𝑉 𝑎𝑟1 be
the set of input variables of the first block, 𝑂𝑢𝑡𝑉 𝑎𝑟1 the set of output variables of the first
block, 𝑜𝑢𝑡𝑚𝑎𝑝 a bijection between output variables in the two blocks (discussed in more
detail in Section 4.2.2), and 𝐵𝑙𝑜𝑐𝑘1 and 𝐵𝑙𝑜𝑐𝑘2 the encoding of operations in (i.e., the
formula representing the semantics of) the first and the second block, respectively. 𝐵𝑙𝑜𝑐𝑘1
and 𝐵𝑙𝑜𝑐𝑘2 are semantically equal, if and only if Formula 4.1 is unsatisfiable. Intuitively, if
we give both blocks the same input, they need to produce the same output in order for the
blocks to be equivalent. If the formula has a model, the model corresponds to the inputs
under which the outputs differ.

⋀︁
𝑣1∈𝐼𝑛𝑉 𝑎𝑟1

𝑣1 = 𝑣𝑎𝑟𝑚𝑎𝑝(𝑣1)∧

𝐵𝑙𝑜𝑐𝑘1 ∧𝐵𝑙𝑜𝑐𝑘2 ∧

¬
⋀︁

𝑜𝑢𝑡1∈𝑂𝑢𝑡𝑉 𝑎𝑟1

𝑜𝑢𝑡1 = 𝑜𝑢𝑡𝑚𝑎𝑝(𝑜𝑢𝑡1)

(4.1)

4.2.1 Encoding LLVM IR into SMT Formulae

In order to encode operations in the first and the second block into 𝐵𝑙𝑜𝑐𝑘1 and 𝐵𝑙𝑜𝑐𝑘2
in Formula 4.1, we can exploit the fact that we are dealing with sequential blocks of code
and the SSA property of LLVM IR. Thanks to the SSA property, each instruction in each
block performs a single operation over its operands and stores its result into a new virtual
register. Since we do not support memory manipulation, the instructions are going to be
either arithmetic-logic operations, comparisons, cast, select or call instructions.

With regard to all of the above, encoding LLVM IR instructions into an SMT formula
is rather simple. We create a new SMT variable for every virtual register that is used
or defined in the analyzed block. The variable needs to be of the type corresponding
to the virtual register, e.g., a float virtual register is encoded as a float SMT variable.
Integer types in LLVM IR are encoded as bit vectors in the SMT formula. The only
exception to this is an integer type with a bit width of 1, i.e., boolean (LLVM IR does not
have an explicit bool type), that needs to be encoded as a boolean variable in the SMT
formula. Then, we create a conjunction of clauses, each corresponding to one instruction
and having the form 𝑟𝑒𝑠 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑜𝑝1, 𝑜𝑝2, . . .). For example, the instruction %2 =
add %1, 2 would be encoded as a clause 𝑣𝑎𝑟2 = 𝑣𝑎𝑟1 + 2. Table 4.1 gives an overview
of the supported instructions and their encoding, the assignment to the result variable has
been omitted for brevity. The encoding was constructed based on semantics in the LLVM
Reference Manual [30]. All unary, binary and bitwise binary instructions are supported.
The remaining instruction types are not supported, or supported only partially.

Encoding of Function Calls As mentioned above, our solution also aims to support the
call instruction. If we wanted to support calls to all kinds of functions, the effects of the
called function would have to be encoded into the SMT formula. This could blow up ex-
ponentially, hence we limit ourselves to built-in functions with well-defined semantics, e.g.,
calls to trigonometric functions. While some modern SMT solvers (e.g., Z3 [24]) offer a lim-
ited support for trigonometric functions, only the Real type is usually supported, whereas
in programming languages, floating-point numbers are used. For this reason, we encode

20

Table 4.1: A list of supported LLVM IR instructions and their encoding into SMT. The
encoding uses an infix rather than prefix notation that is used in the SMT-LIB format.

Type Instruction Encoding
Unary fneg float %1 𝑓𝑝.𝑛𝑒𝑔(𝑜𝑝1)

Binary

add %1, %2 𝑏𝑣𝑎𝑑𝑑(𝑜𝑝1, 𝑜𝑝2)
1

fadd %1, %2 𝑓𝑝.𝑎𝑑𝑑(𝑜𝑝1, 𝑜𝑝2)
sub %1, %2 𝑏𝑣𝑠𝑢𝑏(𝑜𝑝1, 𝑜𝑝2)

1

fsub %1, %2 𝑓𝑝.𝑠𝑢𝑏(𝑜𝑝1, 𝑜𝑝2)
mul %1, %2 𝑏𝑣𝑚𝑢𝑙(𝑜𝑝1, 𝑜𝑝2)

1

fmul %1, %2 𝑓𝑝.𝑚𝑢𝑙(𝑜𝑝1, 𝑜𝑝2)
udiv %1, %2 𝑏𝑣𝑢𝑑𝑖𝑣(𝑜𝑝1, 𝑜𝑝2)

2

sdiv %1, %2 𝑏𝑣𝑠𝑑𝑖𝑣(𝑜𝑝1, 𝑜𝑝2)
2

fdiv %1, %2 𝑓𝑝.𝑑𝑖𝑣(𝑜𝑝1, 𝑜𝑝2)
urem %1, %2 𝑏𝑣𝑢𝑟𝑒𝑚(𝑜𝑝1, 𝑜𝑝2)
srem %1, %2 𝑏𝑣𝑠𝑟𝑒𝑚(𝑜𝑝1, 𝑜𝑝2)
frem %1, %2 𝑓𝑝.𝑟𝑒𝑚(𝑜𝑝1, 𝑜𝑝2)

Bitwise binary

shl %1, %2 𝑏𝑣𝑠ℎ𝑙(𝑜𝑝1, 𝑜𝑝2)
1

lshr %1, %2 𝑏𝑣𝑙𝑠ℎ𝑟(𝑜𝑝1, 𝑜𝑝2)
ashr %1, %2 𝑏𝑣𝑎𝑠ℎ𝑟(𝑜𝑝1, 𝑜𝑝2)
and %1, %2 𝑏𝑣𝑎𝑛𝑑(𝑜𝑝1, 𝑜𝑝2)

3

or %1, %2 𝑏𝑣𝑜𝑟(𝑜𝑝1, 𝑜𝑝2)
3

xor %1, %2 𝑏𝑣𝑥𝑜𝑟(𝑜𝑝1, 𝑜𝑝2)
3

Conversion

trunc %1 to ty 𝑒𝑥𝑡𝑟𝑎𝑐𝑡(𝑜𝑝1, 0, 𝑡𝑦.𝑏𝑖𝑡𝑠− 1)
zext %1 to ty 𝑧𝑒𝑟𝑜_𝑒𝑥𝑡𝑒𝑛𝑑(𝑜𝑝1, 𝑡𝑦.𝑏𝑖𝑡𝑠− 𝑜𝑝1.𝑏𝑖𝑡𝑠)
sext %1 to ty 𝑠𝑖𝑔𝑛_𝑒𝑥𝑡𝑒𝑛𝑑(𝑜𝑝1, 𝑡𝑦.𝑏𝑖𝑡𝑠− 𝑜𝑝1.𝑏𝑖𝑡𝑠)

fptrunc %1 to ty 𝑡𝑜_𝑓𝑝(𝑜𝑝1, 𝑡𝑦)
fpext %1 to ty 𝑡𝑜_𝑓𝑝(𝑜𝑝1, 𝑡𝑦)
fptoui %1 to ty 𝑓𝑝.𝑡𝑜_𝑢𝑏𝑣(𝑜𝑝1, 𝑡𝑦)
fptosi %1 to ty 𝑓𝑝.𝑡𝑜_𝑠𝑏𝑣(𝑜𝑝1, 𝑡𝑦)
uitofp %1 to ty 𝑡𝑜_𝑓𝑝(𝑜𝑝1, 𝑡𝑦)
sitofp %1 to ty 𝑡𝑜_𝑓𝑝(𝑜𝑝1, 𝑡𝑦)

Other

icmp ugt %1, %2 4 𝑏𝑣𝑢𝑔𝑡(𝑜𝑝1, 𝑜𝑝2)

fcmp ogt %1, %2 4 ¬𝑓𝑝.𝑖𝑠𝑁𝑎𝑁(𝑜𝑝1) ∧ ¬𝑓𝑝.𝑖𝑠𝑁𝑎𝑁(𝑜𝑝2)∧
𝑓𝑝.𝑔𝑡(𝑜𝑝1, 𝑜𝑝2)

fcmp ugt %1, %2 4 𝑓𝑝.𝑖𝑠𝑁𝑎𝑁(𝑜𝑝1) ∨ 𝑓𝑝.𝑖𝑠𝑁𝑎𝑁(𝑜𝑝2)∨
𝑓𝑝.𝑔𝑡(𝑜𝑝1, 𝑜𝑝2)

select %1, %2, %3 𝑖𝑡𝑒(𝑜𝑝1, 𝑜𝑝2, 𝑜𝑝3)
call Uninterpreted function call

1 The operation may use the nsw/nuw flags, i.e., it may overflow – cf. Section 4.2.1.
2 The operations may use the exact flag, cf. Section 4.2.1.
3 If the operands are boolean (i.e., LLVM IR integers with a width of 1 bit), the logical counterparts are
used instead of bit-vector operations.
4 The other comparison conditions (e.g., ult, ule, . . .) are implemented in the same manner.

21

the operations using uninterpreted functions. This approach may lead to imprecision, but
it ensures soundness of the encoding.

Encoding of Integer Overflows In most modern programming languages, arithmetic
operations may result in undefined behavior under certain circumstances. A common ex-
ample of this are integer overflows and underflows in signed arithmetic. LLVM IR de-
notes a possible overflow using the nuw (no unsigned wrap) and the nsw (no signed wrap)
flags [30]. For example, if the nuw or the nsw keywords are present in the add instruc-
tion, the result of the operation is a so-called poison value if unsigned or signed overflow,
respectively, occurs. A poison value can be interpreted as an undefined value, i.e., any
value of the type. To ensure sound encoding of overflowing operations, we need to encode
clauses corresponding to overflowing operations as 𝑐𝑜𝑛𝑑 =⇒ 𝑟𝑒𝑠 = 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑜𝑝1, 𝑜𝑝2, . . .)
where 𝑐𝑜𝑛𝑑 defines the conditions under which the 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 does not cause an undefined
behavior. Such encoding ensures that if there is a possibility of an overflow, 𝑟𝑒𝑠 will remain
a free variable, i.e., it may have any value. The 𝑐𝑜𝑛𝑑 formula can be encoded thanks to the
bit-vector operations, e.g., for unsigned addition on 𝑥 bits, we can perform the addition on
𝑥+ 1 bits and then extract the sign bit to check for overflow.

Encoding of Exact Division The udiv and sdiv instructions may contain the exact
flag. If the keyword is present, the result value of the division is a poison value if the
result would be rounded. We encode these instructions similarly to the overflowing integer
operations – the precondition 𝑐𝑜𝑛𝑑 in this case checks that the remainder of the division is
zero.

4.2.2 Identifying Output Variables

The last piece of information required to construct the formula for an SMT solver are output
variables and their mapping 𝑜𝑢𝑡𝑚𝑎𝑝 between the two blocks. An output variable of a block
is a variable defined in the block that is used outside the block. The output variables can
be easily collected using LLVM’s API for navigating the intermediate representation. On
the other hand, creating the 𝑜𝑢𝑡𝑚𝑎𝑝 bijection mapping output variables between the two
blocks analyzed for equivalence is a more complex problem.

There are two cases that need to be distinguished. The first one being an output variable
of a block that is used in the same basic block in the LLVM IR as the block that it was de-
fined in. Notice that in Algorithm 2, when a synchronization point has been found (Line 7),
𝑣𝑎𝑟𝑚𝑎𝑝 is not restored to its original state. Since the function cmpBasicBlocksFrom
compares the remainder of the basic blocks, it establishes the necessary mapping of output
variables of this kind into 𝑣𝑎𝑟𝑚𝑎𝑝 – we can transfer this mapping into 𝑜𝑢𝑡𝑚𝑎𝑝.

On the other hand, if an output variable of the analyzed block is used in a different
basic block (typically in a Φ-node that merges values from multiple branches), we cannot
use 𝑣𝑎𝑟𝑚𝑎𝑝 to construct 𝑜𝑢𝑡𝑚𝑎𝑝 since cmpBasicBlocksFrom may not have analyzed the
other basic blocks, yet. In this case, we limit ourselves to cases with only one output variable
of such a kind in 𝐵𝑙𝑜𝑐𝑘1 and 𝐵𝑙𝑜𝑐𝑘2. From our experiments, this did not have a negative
effect on the precision of our solution. However, if this limitation becomes restricting in the
future, DiffKemp could either check all possible mappings of the output variables of this
kind or employ additional heuristics to determine the correct output variable mapping.

22

4.2.3 Example Encoding

Following up on the motivation example given in Figure 4.1, we can demonstrate how the
equivalence is encoded into an SMT formula. As discussed in Section 4.1, the compared
blocks are line 3 in the first program and lines 3 and 4 in the second program. Assume that
DiffKemp’s main analysis algorithm has established a mapping (as a part of 𝑣𝑎𝑟𝑚𝑎𝑝) of
the %2 register in the first version to the %2 register in the second version. The output
variable in the first version is the %3 register, whereas in the second version, it is the %4
register. The 𝑜𝑢𝑡𝑚𝑎𝑝 mapping in this case can be established based on 𝑣𝑎𝑟𝑚𝑎𝑝 because
cmpBasicBlocksFrom during Algorithm 2 analyzes the udiv instruction on lines 5 and
4, respectively, and maps its operands, i.e., the output variables of the analyzed blocks.

We denote 𝑣𝑎𝑟𝑓𝑖 , 𝑓 ∈ {1, 2} as a variable corresponding to the virtual register %i in
function 𝑓 . All the variables are 32-bit bit vectors. Considering all of the above, the
formula to solve in order to check equivalence of the two blocks is:

𝑣𝑎𝑟12 = 𝑣𝑎𝑟22 ∧ Input mapping

𝑣𝑎𝑟13 = 𝑏𝑣𝑚𝑢𝑙(𝑣𝑎𝑟12, 5)∧ 𝐵𝑙𝑜𝑐𝑘1 encoding

𝑣𝑎𝑟23 = 𝑏𝑣𝑠ℎ𝑙(𝑣𝑎𝑟22, 2)∧ 𝐵𝑙𝑜𝑐𝑘2 encoding
𝑣𝑎𝑟24 = 𝑏𝑣𝑎𝑑𝑑(𝑣𝑎𝑟23, 𝑣𝑎𝑟22)∧

¬(𝑣𝑎𝑟13 = 𝑣𝑎𝑟24) Output mapping

This formula is unsatisfiable in the theory of bit vectors, i.e., the blocks are semantically
equal. The analyzed blocks can, therefore, be skipped, 𝑣𝑎𝑟𝑚𝑎𝑝 can be updated with a
mapping of %3 to %4, and DiffKemp’s main analysis algorithm can continue comparing
line 4 in the first function with line 5 in the second function. Since the remaining instructions
are identical, the two functions will be analyzed as semantically equal.

4.3 Detection of Advanced Inverse Branch Condition
Even though DiffKemp has a built-in pattern for detecting inverse branching conditions,
it only works in the most straight-forward cases, i.e., when the condition in one function is
exactly an inverse of a condition in the other function and the true and false successors are
swapped. An example of this is replacing icmp ule (unsigned less or equal) with icmp
ugt (unsigned greater than). In our experiments, we have observed more advanced cases
that are not covered by the existing pattern and that would be suitable for application of
formal methods.

Figure 4.3 gives an example of such a case from the EqBench benchmark (cf. Sec-
tion 6.2). The condition 𝑎 > 100 has been replaced with 𝑥 < 101, i.e., the comparison
operator is not inverted from a syntactic point of view. However, given that the variables 𝑎
and 𝑥 are integers, it is indeed a case of an inverse branch condition. It would be possible to
extend the built-in pattern to cover this case, but doing so in a general and sound manner
seems too complicated – using an SMT solver is more suitable to cover this case.

We extend our original approach to cover this case as follows. If at first the SMT
solver returns SAT, i.e., the blocks are not semantically equal, we check whether one of
the blocks contains a possibly invertible comparison instruction that we could apply the

23

1 int f(int a) {

2 int r;

3 r = 0;

4 if (a > 100) {

5 r = a - 10;

6 } else {

7 r = f(a + 11);

8 r = f(r);

9 }

10 return r;

11 }

(a) First version of
the program

1 int f(int x) {

2 int r;

3 r = 0;

4 if (x < 101) {

5 r = f(11 + x);

6 r = f(r);

7 } else {

8 r = x - 10;

9 }

10 return r;

11 }

(b) Second version
of the program

Figure 4.3: Two semantically equal versions of a program, where a condition is inverted
and the branches are swapped. This example is taken from the EqBench benchmark. [2]

inverse branch condition pattern to. A compare instruction is possibly invertible if its result
is an output variable of the analyzed block and the result is used in a branch instruction.
If such an instruction exists in one of the blocks, we encode the equivalence of blocks
into an SMT formula once more, but this time, we invert the invertible condition. If the
solver returns UNSAT, the blocks are semantically equal provided that the successors in the
branch instruction are indeed swapped. To check that this is the case, we follow the same
algorithm as the standard inverse branch condition pattern, i.e., we swap the successors
and return to DiffKemp’s main analysis algorithm that will take care of comparing the
branch instructions and their successor basic blocks.

1 define i32 @f(i32 %0) {

2 %2 = icmp sgt i32 %0, 100

3 br i1 %2, label %3, label %5

4

5 3:

6 ; base case

7 br label %9

8

9 5:

10 ; recursive calls

11 br label %9

12

13 9:

14 %.0 = phi i32 [%4, %3], [%8, %5]

15 ret i32 %.0

16 }

(a) First version of the program

1 define i32 @f(i32 %0) {

2 %2 = icmp slt i32 %0, 101

3 br i1 %2, label %3, label %7

4

5 3:

6 ; recursive calls

7 br label %9

8

9 7:

10 ; base case

11 br label %9

12

13 9:

14 %.0 = phi i32 [%6, %3], [%8, %7]

15 ret i32 %.0

16 }

(b) Second version of the program

Figure 4.4: The LLVM IR of the two programs given in Figure 4.3.

Figure 4.4 shows the shortened LLVM IR of the two programs given in Figure 4.3.
DiffKemp’s main analysis algorithm identifies the differing instructions on line 2 in both
of the functions. The inverse branch condition pattern is not applied in this case, since the

24

comparison operators are not an exact inverse of each other. At first, our extension identifies
the nearest synchronization point on line 3, i.e., on the branch instructions. Using an SMT
solver as described in Section 4.2 results in the icmp instructions being evaluated as not
equal. However, the icmp instruction is possibly invertible, since its result is used as an
operand for the br instruction. Therefore, we try to invert the condition – we encode
the left program as 𝑣𝑎𝑟12 = ¬𝑏𝑣𝑠𝑔𝑡(𝑣𝑎𝑟10, 100) instead of 𝑣𝑎𝑟12 = 𝑏𝑣𝑠𝑔𝑡(𝑣𝑎𝑟10, 100). With
such encoding, the SMT solver evaluates the blocks as equal, hence it is a possible case
of the inverse branch condition. Therefore, we must swap the successors of the branch
instruction and let DiffKemp’s main analysis compare the successor basic blocks.

25

Chapter 5

Implementation of the Extension

The solution proposed in Chapter 4 has been implemented in DiffKemp. At the time
of writing, a pull request introducing an SMT-based checking of code snippet equivalence
is undergoing code review in the upstream repository of DiffKemp on GitHub1. While
working on the implementation, we have encountered several bugs in the implementation
of DiffKemp’s main analysis algorithm. The fixes to these bugs have already been merged
into the main development branch2.

The rest of this chapter is organized as follows. Section 5.1 gives a brief overview of
DiffKemp’s overall architecture. Section 5.2 describes the integration of our solution into
the existing architecture, as well as some of the more important implementation details.

5.1 DiffKemp Architecture
DiffKemp’s analysis is split into two phases:

1. Snapshot Generation During this phase, source code of the analyzed project is
compiled into LLVM IR and additional metadata is added, resulting in a so-called
snapshot.

2. Comparison Phase Takes two snapshots (typically two versions of the same pro-
ject) and performs comparison of their functions using principles described in Chap-
ter 2.

The implementation of DiffKemp consists of two parts – a Python front end and a C++
analysis library, called SimpLL. The Python front end takes care of snapshot generation
and provides a user-friendly way of running DiffKemp, e.g., it provides more convenient
access to configuration of SimpLL and also simplifies its output. SimpLL, implemented in
C++ to achieve high efficiency, implements the snapshot comparison phase. It is usually
invoked from the Python front end via Foreign Function Interface (FFI)3, however it can
also be run as a standalone binary. Aside from the main analysis algorithm, SimpLL also
implements a number of so-called LLVM passes that implement code transformations used
as a part of DiffKemp’s analysis algorithm described in Section 2.2.1.

1https://github.com/diffkemp/diffkemp/pull/322
2https://github.com/diffkemp/diffkemp/pull/323, https://github.com/diffkemp/diffkemp/pull/325, and

https://github.com/diffkemp/diffkemp/pull/330
3A mechanism which allows a program in one programming language to call functions of a program in a

different programming language. In the case of DiffKemp, C++ functions are called from Python.

26

https://github.com/diffkemp/diffkemp/pull/322
https://github.com/diffkemp/diffkemp/pull/323
https://github.com/diffkemp/diffkemp/pull/325
https://github.com/diffkemp/diffkemp/pull/330

Our solution extends the comparison phase, i.e., SimpLL, thus we give a brief overview
of the components that handle the analysis (components that are not relevant to this work
are omitted). The overall architecture of SimpLL can be seen in Figure 5.1:

LLVM IR Parser A component coming from the LLVM infrastructure that takes care
of reading the analyzed LLVM programs that are typically a part of DiffKemp
snapshots.

Module Analyzer Applies code transformations to the analyzed programs and starts
comparison of the selected pair of functions.

Module Comparator Handles comparison of a pair of functions, takes care of producing
the final result of the analysis, including the verdict and information about what the
semantic difference is. If a semantic difference is caused by a function call, the Module
comparator tries to inline the function call and calls the Differential function com-
parator again in order to possibly prevent a false positive.

Differential Function Comparator Implements the main analysis algorithm described
in Section 2.2.1 that is used for comparing two versions of a function.

LLVM IR
parser

Module
analyzer

Module
comparator

Differential function
comparator

Analyzed programs
Analysis result

Figure 5.1: Architecture of SimpLL

5.2 Extension of SimpLL
We have implemented our extension proposed in Chapter 4 as a new SimpLL component
called SMT block comparator. This component interacts with the Differential func-
tion comparator as described in the aforementioned chapter, i.e., when a pair of differing
instructions is found and no pattern can be applied, the SMT block comparator is called.
If the instructions are analyzed as equal using an SMT solver, the control is returned to
the Differential function comparator, and the analysis continues. Figure 5.2 shows the new
architecture of SimpLL after integrating our proposed changes.

For now, the extension is implemented as opt-in rather than opt-out, because it is a new
and experimental feature of DiffKemp. Furthermore, running an SMT solver can, in the
worst case, significantly increase the overall runtime of the analysis. The extension can be
enabled through the Python front end using the --use-smt option. In order to reduce
the risk of the analysis not terminating, we have also introduced an option to set timeout
for SMT solving. This can be done using the --smt-timeout option. The default is set
to 500 milliseconds, as this turned out to be sufficient to solve reasonably complex cases in
our experiments (cf. Section 6.5). Note that this timeout is applied to each call of the SMT
block comparator separately, but it is shared between all possible synchronization points
that are found for one pair of differing instructions (cf. Section 4.1.1).

27

LLVM IR
parser

Module
analyzer

Module
comparator

Differential function
comparator

SMT block
comparator

External
SMT solver

Analyzed programs
Analysis result

Figure 5.2: Architecture of SimpLL after integration of SMT solving

5.2.1 Choice of an SMT Solver

From the solvers described in Section 3.2, CVC5, Z3 and Bitwuzla seem to be the best suited
for our integration thanks to their extensive support of various theories. We have opted
against using Bitwuzla since it does not support theory of integer and real arithmetic. In
the end, we have decided to use Z3 due to its good availability on most Linux distributions
and a mature API. While CVC5 seems to slightly outperform Z3 based on the results of
SMT-COMP, one of the limiting factors turned out to be its C++ API. It is not possible
to limit the runtime of the solver when CVC5 is used as a library [10], which is a significant
downside for integration into DiffKemp.

We have also tried checking if using CVC5 instead of Z3 has any effect on the overall
results of our experiments. Thanks to the fact that all the aforementioned solvers support
SMT-LIB [4, 28], we were able to export the SMT instance into the SMT-LIB format using
the Z3 API and then pass it to CVC5 binary that was run in a different process (this allowed
us to apply a timeout). The results of our experiments remained unchanged when using
CVC5 instead of Z3. If more solvers emerge in the future, SMT-LIB could be nicely utilized
to make use of each solver’s strengths – DiffKemp could construct an SMT formula using,
for example, the Z3 API, export it to SMT-LIB and run an array of solvers in parallel and
stop whenever the first solver returns a result. We decided not to implement this feature
for now, as it did not seem that it would provide any benefits.

28

Chapter 6

Results and Experiments

To evaluate the impact of our extension of DiffKemp, we have performed a series of exper-
iments. Firstly, we checked our solution on a small set of simple hand-crafted examples in
order to verify the basic functionality. This is described in Section 6.1. Section 6.2 details
experiments with the EqBench benchmark that contains a collection of equivalent and
non-equivalent program pairs. Section 6.3 evaluates the extension on two different imple-
mentations of the standard C library – diet libc and musl libc. Section 6.4 reproduces
the Linux KABI experiment from [20] in order to evaluate the performance of our solution
on large-scale projects and verify that our extension does not introduce any regression.
Finally, Section 6.5 gives the runtime of Z3 on cases from the other sections where our
extension was successful.

We performed other experiments with various C libraries – cryptographic (e.g., mbed-
tls, sodium and nettle), compression (e.g., zlib, libzip and lz4) and communica-
tion (e.g., libusb and libcurl) libraries. In these experiments, we ran DiffKemp with
and without our extension on pairs of consecutive minor releases and compared functions
that are part of the library’s API. These experiments, however, did not yield any inter-
esting result that would be worth including in this thesis. This is caused by the fact that
our extension targets very specific types of refactoring that are not as common. And even
if there was a case of such a refactoring, it may be accompanied by other changes that
DiffKemp is not able to handle yet.

6.1 Simple Experiments
In order to verify basic functionality of our extension, we created a number of simple
programs by hand. One of them, replacing multiplication with an equivalent bitwise shift
and addition, can be seen in Figure 4.1. Figure 6.1 shows application of distributive law
over unsigned integers that DiffKemp was able to analyze as semantically equal thanks to
our extension.

Figure 6.2 shows another example which is similar to Figure 4.1, however, signed integers
are used instead of unsigned integers. This means that the produced LLVM IR code contains
nsw flags on all the operations, i.e., overflow results in a poison/undefined value being
produced. Thanks to our encoding of the nsw/nuw flag described in Section 4.2, the
example is analyzed as not equal.

29

1 unsigned func(unsigned x) {

2 unsigned y = x - 5;

3 unsigned z = x + 5;

4 unsigned res = z * x + z * y;

5 return res;

6 }

1 unsigned func(unsigned x) {

2 unsigned y = x - 5;

3 unsigned z = x + 5;

4 unsigned res = z * (x + y);

5 return res;

6 }

Figure 6.1: A semantically equivalent pair of programs which contains an application of
distributive law over unsigned integers.

1 int func(int x) {

2 int y = x - 2;

3 int z = y * 5;

4 int a = z / 2;

5 return a + 2;

6 }

1 int func(int x) {

2 int y = x - 2;

3 int z = (y << 2) + y;

4 int a = z / 2;

5 return a + 2;

6 }

Figure 6.2: A program pair where multiplication has been replaced with bitwise shift and
addition. The programs are not equal due to a possible overflow of signed integer arithmetic.

These cases, along with a few others, e.g., inspired by the EqBench benchmark (cf.
Section 6.2), have been added to DiffKemp’s suite of unit tests in order to ensure that
our extension remains functional with newer versions of DiffKemp, LLVM, and Z3.

6.2 EqBench Benchmark
To evaluate our solution in more depth, we made use of a benchmark called EqBench.
EqBench is a collection of equivalent and non-equivalent program pairs written in Java
and C [2]. Some of the cases have been collected from existing benchmarks that were used
to evaluate tools for checking semantic equivalence, such as Rêve [13] and Clever [22].
The authors extended these benchmarks with even more test cases, resulting in a collection
of 147 equivalent and 125 non-equivalent pairs of programs [1]. A lot of the cases have been
generated automatically by injecting changes of certain type into a piece of code [2]. A sig-
nificant part of these changes are related to arithmetic expressions and their refactorings,
which is where our extension should perform well. Therefore, the benchmark partly served
as an inspiration for collecting use-cases for application of this work, e.g., the motivation
example given in Section 4.3 is a real case taken from the benchmark. The main downside
to these examples is that a lot of them use floating-point arithmetic, which SMT solvers do
not handle very well.

The EqBench benchmark is structured as follows. The cases are divided into sub-
directories corresponding to the original programs. Each subdirectory can have either
an equivalent or a non-equivalent modification or both, these are present in the Eq and
Neq directories, respectively. For example, the REVE/mccarthy91/Eq case contains an
equivalent refactoring of the REVE/mccarthy91 program (which comes from the Rêve
benchmark in this particular case). Each of these Eq/Neq subdirectories contains the pro-
gram pair to be analyzed (oldV.c and newV.c files) and a metadata file (C-Desc.json)
describing the test case. The description contains the number of lines of the programs, the

30

number of loops, and also a list of changes that were done to transform the old version of
the program to the new version. A similar set of files is also present for the Java version,
we, however, ignore these as DiffKemp focuses solely on C projects.

Due to the nature of DiffKemp’s analysis algorithm, the effectiveness of the analysis in-
herently depends on how the LLVM IR is obtained during snapshot generation – how much
optimization is applied, which optimization passes are run and what other transformations
are applied to the analyzed functions to bring them syntactically closer to each other. For
this reason, we evaluated our solution on a number of configurations. As for optimization
level, we restricted ourselves to -O1 and -O2. Using no optimization would not work well
with our solution, since the clang compiler by default produces lots of unnecessary load
and store instructions which we do not support and, therefore, we rely on the compiler’s
optimizer to remove the unnecessary memory manipulation. The optimization level used
determines which optimization passes are run. Furthermore, we experimented with over-
riding them with passes that DiffKemp uses for building the Linux kernel (referred to as
custom later in this text). At the time of writing, this includes the following passes1 [31]:

• lower-switch rewrites the switch instruction to a sequence of branch instruc-
tions,

• mem2reg replaces unnecessary memory manipulation using registers,

• loop-simplify transforms loops into a simpler form,

• simplifycfg eliminates dead code and merges basic blocks,

• gvn performs global variable numbering to eliminate redundant instructions,

• dce eliminates dead code,

• constmerge merges duplicate global constants together into a single constant,

• mergereturn ensures that functions have at most one ret instruction inside them,
i.e., they have a single exit.

There are 4 possible outcomes that can result from running DiffKemp on a case from
the benchmark:

• DiffKemp reports equality of an equal program (true negative),

• DiffKemp reports non-equality of a non-equal program (true positive),

• DiffKemp reports non-equality of an equal program (false positive),

• DiffKemp reports equality of a non-equal program (false negative).
Table 6.1 shows DiffKemp results of the 3 configurations with SMT solving on and

off. Since a lot of the programs contain floating-point arithmetic, which SMT solvers do
not handle very efficiently, we extended the timeout to 30 seconds for this experiment. We
can observe that the optimization passes that are used have quite a significant effect on the
number of cases analyzed correctly. We can also see that the introduction of SMT solving
did not introduce any unsoundness in the form of false negatives, and that it improved the
number of equal cases that DiffKemp analyzed as equal.

The following cases have been newly analyzed as equal thanks to our extension:
1Taken from https://github.com/diffkemp/diffkemp/blob/master/diffkemp/llvm_ir/optimiser.py#L17-

L25

31

https://github.com/diffkemp/diffkemp/blob/master/diffkemp/llvm_ir/optimiser.py#L17-L25
https://github.com/diffkemp/diffkemp/blob/master/diffkemp/llvm_ir/optimiser.py#L17-L25

Table 6.1: A comparison of DiffKemp with and without our extension across multiple
configurations of snapshot generation

Optimization -O1 -O2 custom
SMT Off On Off On Off On

True negative 99 99 99 100 57 62
True positive 125 125 125 125 125 125
False positive 48 48 48 47 90 85
False negative 0 0 0 0 0 0

REVE/mccarthy91 An example of advanced inverse branch condition. The source code
can be seen in Figure 4.3. This example has been analyzed as equal in all the config-
urations, except -O1 with default optimization passes. The problem in this configu-
ration is that the compiler generated a tail call instruction along with a slightly
different basic blocks where the value used for icmp comes from a Φ-node, i.e., it is
not mapped through 𝑣𝑎𝑟𝑚𝑎𝑝 due to DiffKemp’s lazy analysis of Φ-nodes.

bess/bessj0 Contains some dead code (that is eliminated by DiffKemp’s code trans-
formations) and also a condition modified from ax < 8 to -ax > -8 that an SMT
solver managed to analyze as equivalent.

bess/bessj1 Contains redundant multiplication of a variable by a float constant 1.0.

ell/rc An expression has been extracted into a new variable, which resulted in a slightly
different LLVM IR. In one of the versions, the compiler produced %5 = or %3, %4,
while in the other version, it produced %5 = select %3, true, %4, which the
SMT solver managed to check as equivalent.

ran/gamdev A condition has been modified similarly to bess/bessj1.

We can observe that a lot of these cases can be covered by a compiler’s optimizer (and
they indeed are if default optimization passes are used). While in this experiment, opti-
mizations are helpful and provide better results, in other cases they may not be desirable.
For example, some functions are inlined as a part of optimizations. Even though inlining
may increase the precision of analysis, it also makes it more difficult to precisely locate the
cause of the difference, which is an important feature of DiffKemp. Furthermore, opti-
mizers are still subject to research and development, e.g., they may contain bugs and their
capabilities can change between compiler versions. Therefore, our extension provides the
advantage that DiffKemp does not have to rely on the compiler’s optimizer as extensively.

While evaluating our work on the benchmark, we have identified one case that has an
incorrect label, namely ell/ellpi/Eq, which refactors an arithmetic expression. The gist
of the change is modifying an expression of the form (𝑎+𝑏) · (𝑎−𝑏) to 𝑎2−𝑏2. However, the
benchmark modified the expression to 𝑎2 + 𝑏2 instead. SMT block comparator managed to
provide us with a counterexample which resulted in different behavior in the two versions
of the program. We have reported and fixed this problem in the GitHub repository of the
benchmark, and our changes have already been merged2.

Unfortunately, even after our fix, DiffKemp was not able to analyze this task correctly
– the SMT block comparator identified a different behavior due to floating-point rounding

2https://github.com/shrBadihi/EqBench/pull/8

32

https://github.com/shrBadihi/EqBench/pull/8

errors, which, however, the benchmark excludes through assertions that are present further
down in the code, i.e., SMT block comparator does not take them into consideration. A sim-
ilar problem occurred with multiple other test cases, where the programs were equivalent
(e.g., used distributive laws) but the SMT block comparator was missing further context
that excluded values that would lead to this different behavior. Encoding usage context
of output variables that would help properly analyze such cases may be part of our future
work.

Comparison with other tools Since a part of the benchmark was taken from other
tools, namely Rêve [13] and Clever [22], we can compare DiffKemp’s performance with
these tools. Note that the tools are based on formal methods, i.e., do not scale very well
but are very precise. Therefore, we cannot expect DiffKemp to outperform these tools.
For comparison, we consider DiffKemp’s best performing configuration – -O2 with default
passes. Each row of Table 6.2 shows one part of the benchmark, the first two coming from
the corresponding tools and the last one created by the authors of EqBench. The table
shows the numbers of correctly and incorrectly analyzed equal programs, i.e., true negatives
(TN) and false positives (FP), and the numbers of correctly and incorrectly analyzed non-
equal programs, i.e., true positives (TP) and false negatives (FN)3. We can observe that
despite DiffKemp’s focus on scalability, it still performs reasonably well. Most notably,
no false negatives were produced.

Table 6.2: Comparison of DiffKemp in its best configuration with other tools for checking
semantic equivalence.

Total programs Tool results (TN/FP TP/FN)

Benchmark equal non-equal DiffKemp
SMT Off

DiffKemp
SMT On Rêve Clever

Rêve 23 9 6/17 9/0 7/16 9/0 20/0 8/0
Clever 29 21 22/7 21/0 22/7 21/0 8/0 0/0 20/0 11/0

EqBench 95 95 71/24 95/0 71/24 95/0

6.3 Standard C Libraries
In the world of software development, there are certain projects which need to maintain
semantic stability throughout their releases. This includes various system libraries, e.g., the
standard C library that almost all programs written in C make use of. There are multiple
implementations of the standard C library, however, most Linux distributions these days
include an implementation called glibc. While this implementation is complete wrt. its
feature set, it has some disadvantages – most notably the library itself is large and so it
is not very suitable for static linking. For this reason, various alternative implementations
have been developed, e.g., the musl libc [25] and diet libc [11] implementations have
been developed with the goal of being light-weight and fast.

3The results of other tools have been taken from the papers written by their authors. For some programs,
we were not able to find the result of the tool, hence the discrepancy between the number of cases between
tools.

33

6.3.1 Comparing Minor Releases of musl libc

In this experiment, we compared 10 consecutive minor releases of the musl libc imple-
mentation with and without our extension. The snapshots were built using DiffKemp’s
standard configuration, i.e., -O1 with custom optimization passes. Since the upstream ver-
sion of musl libc cannot be directly built using the Clang compiler, we used a fork of the
library called musllvm [26]. Table 6.3 shows verdicts of the performed comparisons.

Table 6.3: Comparison of verdicts of DiffKemp analyzing minor releases of musl libc
with and without our extension.

Results: equal/non-equal
Versions No-SMT SMT

1.1.10-1.1.11 1521/100 1521/100
1.1.11-1.1.12 1582/48 1582/48
1.1.12-1.1.13 1546/79 1546/79
1.1.13-1.1.14 1632/7 1632/7
1.1.14-1.1.15 1604/35 1604/35
1.1.15-1.1.16 1582/61 1582/61
1.1.16-1.1.17 1531/109 1532/108
1.1.17-1.1.18 1644/4 1644/4
1.1.18-1.1.19 1592/55 1592/55

We can observe that our extension managed to identify one more function as equal when
comparing versions 1.1.16 and 1.1.17 – the ftok function. Figure 6.3 shows the difference
in the function between these two versions. We can see that a constant was changed from
a signed integer to an unsigned integer. The effect of this on the LLVM IR is that zero
extension is used instead of signed extension before the or operator is applied. However,
since the result is truncated back to 32 bits after the operation, the type of extension is
irrelevant.

1 return ((st.st_ino & 0xffff) | ((st.st_dev & 0xff) << 16) | ((id & 0xff) << 24));

(a) C code in version 1.1.16

1 return ((st.st_ino & 0xffff) | ((st.st_dev & 0xff) << 16) | ((id & 0xffu) << 24));

(b) C code in version 1.1.17

1 %16 = sext i32 %15 to i64

2 %17 = or i64 %13, %16

3 %18 = trunc i64 %17 to i32

(c) LLVM IR in version 1.1.16

1 %16 = zext i32 %15 to i64

2 %17 = or i64 %13, %16

3 %18 = trunc i64 %17 to i32

(d) LLVM IR in version 1.1.17

Figure 6.3: Difference in the ftok function of the musl libc library between versions
1.1.16 and 1.1.17.

6.3.2 Comparing Semantics of diet libc and musl libc

When a C program uses functions from the standard C library, the developers should not
have to worry about which implementation of the standard C library is used, i.e., the

34

exported functions should be semantically equivalent between the various implementations.
We compiled a list of 242 functions that can be considered a public interface of a standard
C library based on [14] and used DiffKemp to compare the implementations of these
functions from musl libc with diet libc.

1 int wcscmp(...)

2 {

3 for (; *l==*r && *l && *r; l++, r++);

4 return *l - *r;

5 }

(a) musl C source

1 int wcscmp(...) {

2 while (*a && *a == *b)

3 a++, b++;

4 return (*a - *b);

5 }

(b) diet C source

1 %4 = load i32, ptr %.0, align 4

2 %5 = load i32, ptr %.01, align 4

3 %6 = icmp eq i32 %4, %5

4 %7 = icmp ne i32 %4, 0

5 %or.cond = and i1 %6, %7

6 br i1 %or.cond, label %8, label %9

(c) musl LLVM IR

1 %4 = load i32, ptr %.0, align 4

2 %5 = icmp ne i32 %4, 0

3 %.pre = load i32, ptr %.01, align 4

4 %6 = icmp eq i32 %4, %.pre

5 %or.cond = select i1 %5, i1 %6, i1 false

6 br i1 %or.cond, label %7, label %8

(d) diet LLVM IR

Figure 6.4: The C source code of the wcscmp function in diet libc and musl libc along
with the differing parts of LLVM IR. Arguments of the functions have been omitted for
brevity – both functions take two arguments of type const wchar_t *.

Even though comparing various implementations of a function from different projects is
not the primary goal of DiffKemp, and such analysis would be more suited for tools based
on formal methods, DiffKemp managed to analyze 10 functions as semantically equal.
Our extension allowed DiffKemp to analyze one more function as equal – the wcscmp
function. Figure 6.4 shows the C source code of the function along with the differing parts
of the LLVM IR. The relocation pattern present in DiffKemp facilitated analysis of the
different order of memory loads, while our extension managed to analyze the difference
on lines 5 in Figure 6.4c and Figure 6.4d, i.e., the and instruction being replaced with
a select instruction, as semantically equal.

6.4 Linux Kernel
In this section, we show that our extension does not cause any unwanted side effects when
running on large-scale projects, and that it does not negatively impact DiffKemp’s per-
formance. To this end, we ran the compare phase on 10 pairs of consecutive minor releases
of the Red Hat Enterprise Linux (RHEL) Kernel and tracked DiffKemp’s runtime. In
each pair of releases, only functions from the so-called Kernel Application Binary Interface
(KABI) were compared. The KABI consists of functions whose semantics should be stable
across the entire RHEL major release. While there are only several hundreds functions that
are part of the KABI, DiffKemp still needs to compare thousands of functions and tens
of thousands of lines of code due to nested function calls.

The experiments were run on a computer with AMD Ryzen 7 5700G 3.8GHz running
Fedora 39. Table 6.4 shows the results of the KABI comparisons along with their runtime.
We can see that our changes did not introduce any notable regression. Unfortunately,

35

Table 6.4: Comparison of verdicts and runtime of DiffKemp analyzing the RHEL KABI
with and without our extension. The runtime for the version with SMT solving shows the
runtime with the default 500-millisecond and with an extended 30-second timeout. The
verdicts were the same regardless of the timeout.

Results: eq/neq/unk Runtime: s
Versions No-SMT SMT No-SMT SMT 0.5s SMT 30s

7.3-7.4 408/264/66 408/264/66 342 392 394
7.4-7.5 550/178/66 550/178/66 310 312 313
7.5-7.6 609/124/66 609/124/66 193 209 208
7.6-7.7 642/120/72 642/120/72 224 231 230
7.7-7.8 613/176/74 613/176/74 176 180 179
8.0-8.1 362/84/75 362/84/75 204 201 201
8.1-8.2 334/161/78 334/161/78 194 204 202
8.2-8.3 422/178/87 422/178/87 450 403 404
8.3-8.4 450/153/88 450/153/88 390 402 400
8.4-8.5 442/170/88 442/170/88 374 392 394

there were no cases of a false non-equal verdict that our extension was able to resolve.
Furthermore, the runtime was longer by only 7 seconds on average. This fact highlights
that we only try to apply SMT solving in cases which seem promising. On the other
hand, we can see that the runtime is very similar even if the timeout is extended to 30
seconds. This suggests that most of the overhead of our extension comes from searching for
a synchronization point (e.g., backing up 𝑣𝑎𝑟𝑚𝑎𝑝 can be quite expensive) rather than from
SMT solving itself. As a part of our future work, we would like to further try reducing this
overhead.

An interesting fact can be seen in the comparison of version 8.2 with version 8.3 – the
runtime got shorter when SMT solving was turned on. We attribute this unexpected change
to the way how DiffKemp caches results of comparisons of called functions – searching for
a synchronization point may lead to analysis of some functions earlier than they would have
been analyzed without SMT solving, which can possibly remove the need for performing
some inlining.

1 // reg, mask, val are unsigned int

2 if (reg & 0xff000000) {

3 unsigned char size, offset;

4 size = (reg >> 24) & 0x3f;

5 offset = (reg >> 16) & 0x1f;

6

7 mask = ((1 << size) - 1) << offset;

8 return (val & mask) >> offset;

9 } else {

10 return val;

11 }

(a) Before the commit

1 // reg, mask, val are unsigned int

2 if (reg & 0xff000000) {

3 unsigned char size, offset;

4 size = (reg >> 24) & 0x3f;

5 offset = (reg >> 16) & 0x1f;

6

7 mask = (1 << size) - 1;

8 return (val >> offset) & mask;

9 } else {

10 return val;

11 }

(b) After the commit

Figure 6.5: The change made to the snd_emu10k1_ptr_read function in commit
2e9bd50. Unnecessary bitwise shifts have been removed to optimize the code.

36

Optimizing and Refactoring Commits Even though our extension did not seem to
be efficient when applied to the KABI, we conducted another experiment with the Linux
kernel. We collected git commits from the upstream Linux kernel repository that con-
tain the words optimize or refactor in the commit title, and tried checking semantic
equivalence of such commits using our extension. Out of the more than 10000 commits
that match this criterion, we manually investigated roughly 500 of them. A lot of them
either contained very complex refactorings, which are too complex for DiffKemp, or in
a lot of cases were not semantically equal according to the definition from Section 2.2, e.g.,
some optimizations removed unnecessary mutex locking. We managed to identify a commit
that DiffKemp managed to analyze as equivalent only thanks to our extension – commit
2e9bd50. Figure 6.5 shows the content of the commit, unnecessary bitwise shifts back and
forth in order to apply a mask have been removed to reduce the number of instructions
necessary to perform the operation.

6.5 Evaluating Z3 Runtime on Successful Cases
To round out the description of our experiments, we give an overview of how long SMT
solving using Z3 took on cases from the previous sections where our extension facilitated
correct analysis. Table 6.5 gives Z3 runtime in milliseconds for each successful case de-
scribed in the previous sections. The results show that even though SMT solving is a very
hard computational problem, our experiments usually took only a few milliseconds thanks
to focusing only on short code blocks, i.e., the formulae checked for satisfiability were quite
simple. The only exception to this is the bess/bessj1 case from EqBench which high-
lights how inefficient SMT solvers can be when analyzing floating-point arithmetic – despite
performing only a trivial operation (multiplication by one), the analysis took significantly
longer than more complex analyses in the theory of bit vectors. These results highlight
that most of the time, we can keep the timeout quite low, e.g., 500 milliseconds is sufficient,
however when floating-point operations are present, the timeout should be extended by the
users of DiffKemp.

Table 6.5: Z3 runtime on cases where our extension facilitated correct analysis

Section Case Z3 Runtime
milliseconds

6.1 Simplification using multiplication (Figure 4.1) 2
Distributive law over unsigned (Figure 6.1) 2

6.2

REVE/mccarthy91 2
bess/bessj0 8
bess/bessj1 17 526
ell/rc 2
ran/gamdev 7

6.3 ftok change in musl libc (Figure 6.3) 2
wcscmp in diet libc and musl libc (Figure 6.4) 2

6.4 Linux kernel optimizing commit (Figure 6.5) 26

37

Chapter 7

Related Work

As already pointed out in the previous chapters, there exists a number of approaches and
tools for tackling static analysis of semantic differences. In this chapter, we give a brief
overview of them and make a comparison with DiffKemp and the extension proposed in
this work. For a more complete overview, refer to [17].

Most state-of-the-art tools for differential static analysis employ some sort of formal
methods to perform the analysis, e.g., there is a group of tools that encode equivalence of
functions using formulae and then use decision procedures, such as SMT solvers, or pro-
gram verifiers to prove equality. For example, SymDiff [16] uses Z3 to check equivalence.
Similarly, Clever [22] makes use of symbolic execution combined with SMT solving using
Z3. Rêve [13] and its successor LLRêve [15] translate the programs into Horn clauses and
pass them to a Horn solver, e.g., Z3 or Eldarica. On the other hand, UC-KLEE [29] uses
the KLEE verifier as its back end. While these tools are very precise and rarely produce
false positives, their analysis is very costly and does not scale well – they can typically
handle only tens of lines of code.

On the other side of the spectrum, there exist extremely fast light-weight tools based on
text similarity, e.g., the diff tool, or on comparison of abstract syntax trees. Such tools
can handle lots of code, up to millions of lines of code, in a matter of seconds or minutes,
however, even the simplest changes typically result in false alarms.

DiffKemp’s approach tries to find a middle ground between these two extremes. While
it is not as fast as text-based comparison tools, it still performs reasonably well on large
codebases, e.g., the Linux kernel, and it can identify much more complicated changes as
being semantically equal. On the other hand, when compared to the tools based on formal
methods, DiffKemp is not able to show equality of more complex refactorings, especially
when the control flow of the program is changed. These claims can be evidenced in our
experiments in Chapter 6. For example, the KABI experiment in Section 6.4 shows that
DiffKemp is able to analyze tens of thousands of lines of code in a matter of minutes.
On the other hand, the experiments with EqBench in Section 6.2 highlighted that while
DiffKemp can handle most common semantics-preserving changes, there are still a lot
more that are too complex and can be analyzed better for example by Rêve. We could
also observe that while tools based on formal methods usually time out in case of an overly
complicated refactoring, i.e., the result is unknown, DiffKemp will report a false positive
if it does not have a defined pattern for the change.

The extension proposed in this work brings some elements from the tools based on
formal methods to DiffKemp’s analysis algorithm. Instead of entire functions, only the
equivalence of small blocks of code is checked using an SMT solver. The main advantage

38

of this is clearly performance, since the formulae for the SMT solver are simpler, and they
are built only from promising blocks of code. The downside is that since we limit ourselves
to sequential blocks, the formulae are missing context, e.g., about what comes after the
analyzed block or about the origin of the values used in the current block. Due to this
fact, if an equivalent refactoring is scattered across multiple basic blocks, we are not able
to analyze it as semantically equal. Our experiments showed that the proposed integration
of SMT solving into the analysis core of DiffKemp improves analysis capabilities of the
tool and brings its precision closer to tools based on formal methods without negatively
impacting the tool’s performance.

39

Chapter 8

Conclusion

In this work, we proposed an integration of formal methods into the DiffKemp static
analysis tool for checking semantic equivalence of large-scale C programs. When a potential
semantic difference is found and none of DiffKemp’s built-in semantics-preserving patterns
are applicable, our extension tries to find a pair of sequential blocks of code that may be
causing the difference. It then encodes the equivalence of the blocks into a first-order logic
formula and uses an SMT solver to check whether the blocks are equal, i.e., DiffKemp can
continue its analysis, or non-equal.

The proposed solution has been implemented in DiffKemp. We performed several
experiments with the implementation on projects of various sizes, ranging from simple
hand-made examples, through various system libraries, to analysis of the RHEL Kernel
Application Binary Interface. Our experiments with the EqBench benchmark show that
the new extension extends analysis capabilities of DiffKemp, i.e., it can analyze programs
as equal that the tool was not able to before. Furthermore, we were able to identify a wrong
test case in the EqBench benchmark using our integration, report it to the authors and
cooperate on fixing the issue. The experiments with projects of larger scale show that while
SMT solving is an NP-hard problem, our extension only tries to apply it to promising blocks
of code, hence there is no significant regression in performance.

Checking semantic equality soundly and precisely is a difficult problem. There are some
tools based on formal methods that are able to achieve very high precision but can only
analyze small programs in a reasonable time. On the other hand, there are tools based on
syntactic and textual comparison that are very fast but also very imprecise. DiffKemp
tries to find a middle ground between these two approaches – its goal is to provide a highly
scalable, yet reasonably precise analysis. Our solution brings DiffKemp a bit closer to
tools based on formal methods with regard to precision, while not negatively impacting the
performance.

In future, our integration could be extended with support for more complex program-
ming constructs – e.g., branching and memory manipulation. Adding support for branching
would enable encoding more context into the formulae about the way how output variables
are used. Furthermore, there are most likely other places in DiffKemp where SMT solver
could be employed, e.g., in the custom pattern comparator component. Lastly, more ex-
periments with various SMT solvers could be performed, and it may be beneficial to run
multiple solvers on the same problem in parallel, to utilize each solver’s strengths.

40

Bibliography

[1] Badihi, S. EqBench. Online. 2024. Available at:
https://github.com/shrBadihi/EqBench/tree/main. [cit. 2024-09-04].

[2] Badihi, S.; Li, Y. and Rubin, J. EqBench: A Dataset of Equivalent and
Non-equivalent Program Pairs. In: IEEE/ACM. 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). 2021, p. 610–614. ISBN
978-1-7281-8710-5.

[3] Barbosa, H.; Barrett, C.; Brain, M.; Kremer, G.; Lachnitt, H. et al. Cvc5: A
Versatile and Industrial-Strength SMT Solver. In: Fisman, D. and Rosu, G.,
ed. Tools and Algorithms for the Construction and Analysis of Systems. Cham:
Springer International Publishing, 2022, p. 415–442. ISBN 978-3-030-99524-9.

[4] Barrett, C.; Fontaine, P. and Tinelli, C. The Satisfiability Modulo Theories
Library (SMT-LIB) – SMT Solvers. Online. 2016. Available at:
https://smt-lib.org/solvers.shtml. [cit. 2024-23-04].

[5] Barrett, C.; Moura, L. de and Stump, A. SMT-COMP: Satisfiability Modulo
Theories Competition. In: Etessami, K. and Rajamani, S. K., ed. Computer Aided
Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, p. 20–23. ISBN
978-3-540-31686-2.

[6] Barrett, C.; Stump, A.; Tinelli, C. et al. The SMT-LIB Standard: Version 2.0.
In: Gupta, A. and Kroening, D., ed. Proceedings of the 8th international workshop
on satisfiability modulo theories (Edinburgh, UK). 2010, vol. 13, p. 14.

[7] Barrett, C. and Tinelli, C. Satisfiability Modulo Theories. In: Clarke, E. M.;
Henzinger, T. A.; Veith, H. and Bloem, R., ed. Handbook of Model Checking.
Cham: Springer International Publishing, 2018, p. 305–343. ISBN 978-3-319-10575-8.
Available at: https://doi.org/10.1007/978-3-319-10575-8_11.

[8] Bruttomesso, R.; Pek, E.; Sharygina, N. and Tsitovich, A. The OpenSMT
Solver. In: Esparza, J. and Majumdar, R., ed. Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, p. 150–153. ISBN 978-3-642-12002-2.

[9] Cook, S. A. The complexity of theorem-proving procedures. In: ACM. Proceedings
of the Third Annual ACM Symposium on Theory of Computing. New York, NY,
USA: Association for Computing Machinery, 1971, p. 151–158. STOC ’71. ISBN
9781450374644. Available at: https://doi.org/10.1145/800157.805047.

41

https://github.com/shrBadihi/EqBench/tree/main
https://smt-lib.org/solvers.shtml
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1145/800157.805047

[10] cvc5. Overall time limit. Online. 2024. Available at:
https://cvc5.github.io/docs/cvc5-1.1.2/resource-limits.html#overall-

time-limit-tlimit-option. [cit. 2024-09-04].

[11] Diet libc - a libc optimized for small size. Online. 2024. Available at:
https://www.fefe.de/dietlibc/. [cit. 2024-23-04].

[12] Dutertre, B. Yices 2.2. In: Biere, A. and Bloem, R., ed. Computer Aided
Verification. Cham: Springer International Publishing, 2014, p. 737–744. ISBN
978-3-319-08867-9.

[13] Felsing, D.; Grebing, S.; Klebanov, V.; Rümmer, P. and Ulbrich, M.
Automating regression verification. In: ACM/IEEE. Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering. New
York, NY, USA: Association for Computing Machinery, 2014, p. 349–360. ASE ’14.
ISBN 9781450330138. Available at: https://doi.org/10.1145/2642937.2642987.

[14] IBM Corporation. Standard C Library Functions Table, By Name. Online. 2023.
Available at: https://www.ibm.com/docs/en/i/7.5?topic=

extensions-standard-c-library-functions-table-by-name. [cit. 2024-23-04].

[15] Kiefer, M.; Klebanov, V. and Ulbrich, M. Relational Program Reasoning Using
Compiler IR. In: Blazy, S. and Chechik, M., ed. Verified Software. Theories,
Tools, and Experiments. Cham: Springer International Publishing, 2016, p. 149–165.
ISBN 978-3-319-48869-1.

[16] Lahiri, S. K.; Hawblitzel, C.; Kawaguchi, M. and Rebêlo, H. SYMDIFF: A
Language-Agnostic Semantic Diff Tool for Imperative Programs. In: Madhusudan,
P. and Seshia, S. A., ed. Computer Aided Verification. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, p. 712–717. ISBN 978-3-642-31424-7.

[17] Lahiri, S. K.; Vaswani, K. and Hoare, C. A. R. Differential static analysis:
opportunities, applications, and challenges. In: ACM. Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research. New York, NY, USA:
Association for Computing Machinery, 2010, p. 201–204. FoSER ’10. ISBN
9781450304276. Available at: https://doi.org/10.1145/1882362.1882405.

[18] Lattner, C. and Adve, V. LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation. In: IEEE. CGO. San Jose, CA, USA: [b.n.], March
2004, p. 75–88. ISBN 0-7695-2102-9.

[19] Malík, V.; Šilling, P. and Vojnar, T. Applying Custom Patterns in Semantic
Equality Analysis. In: Koulali, M.-A. and Mezini, M., ed. Networked Systems.
Cham: Springer International Publishing, 2022, p. 265–282. ISBN 978-3-031-17436-0.

[20] Malík, V. and Vojnar, T. Automatically Checking Semantic Equivalence between
Versions of Large-Scale C Projects. In: IEEE. 2021 14th IEEE Conference on
Software Testing, Verification and Validation (ICST). 2021, p. 329–339. ISBN
978-1-7281-6836-4.

[21] Mann, M.; Wilson, A.; Zohar, Y.; Stuntz, L.; Irfan, A. et al. Smt-Switch: A
Solver-Agnostic C++ API for SMT Solving. In: Li, C.-M. and Manyà, F.,

42

https://cvc5.github.io/docs/cvc5-1.1.2/resource-limits.html#overall-time-limit-tlimit-option
https://cvc5.github.io/docs/cvc5-1.1.2/resource-limits.html#overall-time-limit-tlimit-option
https://www.fefe.de/dietlibc/
https://doi.org/10.1145/2642937.2642987
https://www.ibm.com/docs/en/i/7.5?topic=extensions-standard-c-library-functions-table-by-name
https://www.ibm.com/docs/en/i/7.5?topic=extensions-standard-c-library-functions-table-by-name
https://doi.org/10.1145/1882362.1882405

ed. Theory and Applications of Satisfiability Testing – SAT 2021. Cham: Springer
International Publishing, 2021, p. 377–386. ISBN 978-3-030-80223-3.

[22] Mora, F.; Li, Y.; Rubin, J. and Chechik, M. Client-specific equivalence checking.
In: IEEE/ACM. Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. New York, NY, USA: Association for Computing
Machinery, 2018, p. 441–451. ASE ’18. ISBN 9781450359375. Available at:
https://doi.org/10.1145/3238147.3238178.

[23] Moura, L. de and Bjørner, N. Z3: An Efficient SMT Solver. In: Ramakrishnan,
C. R. and Rehof, J., ed. Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, p. 337–340. ISBN
978-3-540-78800-3.

[24] Moura, L. de and Passmore, G. O. Computation in Real Closed Infinitesimal and
Transcendental Extensions of the Rationals. In: Bonacina, M. P., ed. Automated
Deduction – CADE-24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
p. 178–192. ISBN 978-3-642-38574-2.

[25] Musl libc. Online. 2024. Available at: https://musl.libc.org/. [cit. 2024-23-04].

[26] Musllvm. Online. 2024. Available at: https://github.com/SRI-CSL/musllvm.
[cit. 2024-23-04].

[27] Niemetz, A. and Preiner, M. Bitwuzla. In: Enea, C. and Lal, A., ed. Computer
Aided Verification - 35th International Conference, CAV 2023, Paris, France, July
17-22, 2023, Proceedings, Part II. Springer, 2023, vol. 13965, p. 3–17. Lecture Notes
in Computer Science. ISBN 978-3-031-37703-7. Available at:
https://doi.org/10.1007/978-3-031-37703-7_1.

[28] Niemetz, A. and Preiner, M. Bitwuzla – Command Line Interface. Online. 2023.
Available at: https://bitwuzla.github.io/docs/binary.html. [cit. 2024-23-04].

[29] Ramos, D. A. and Engler, D. R. Practical, Low-Effort Equivalence Verification of
Real Code. In: Gopalakrishnan, G. and Qadeer, S., ed. Computer Aided
Verification. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, p. 669–685. ISBN
978-3-642-22110-1.

[30] The LLVM Project. LLVM Language Reference Manual. Online. 2024. Available
at: https://llvm.org/docs/LangRef.html. [cit. 2024-07-04].

[31] The LLVM Project. LLVM’s Analysis and Transform Passes. Online. 2024.
Available at: https://llvm.org/docs/Passes.html. [cit. 2024-26-04].

[32] Žáčik, P. Analyzing semantic stability of cryptography libraries using Diffkemp.
Online. 2024 [cit. 2024-04-03]. Master’s thesis. Masaryk University, Faculty of
Informatics, Brno. Available at: https://is.muni.cz/th/ponkv/. SUPERVISOR :
Martin Ukrop.

43

https://doi.org/10.1145/3238147.3238178
https://musl.libc.org/
https://github.com/SRI-CSL/musllvm
https://doi.org/10.1007/978-3-031-37703-7_1
https://bitwuzla.github.io/docs/binary.html
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/Passes.html
https://is.muni.cz/th/ponkv/

Appendix A

Contents of the Included Storage
Media

The included storage media contains the source files of DiffKemp with our extension, as
well as the source files of the thesis. The structure of the root directory is the following:
/

diffkemp/..DiffKemp directory
diffkemp/..Source files of DiffKemp

simpll/..Source files of SimpLL
tests/................................Regression and unit tests of DiffKemp
README.md................................DiffKemp compilation instructions

doc/..LATEX source files of this text
experiments/.......................Source files of experiments from Section 6.1
README...README file

The /diffkemp/diffkemp directory contains the implementation of DiffKemp in-
cluding our extension. Most of the implementation described in this work was done in the
SimpLL library, i.e., in the /diffkemp/diffkemp/simpll/ directory, most notably in
the SMTBlockComparator.cpp and SMTBlockComparator.h files. Some other mi-
nor changes were done in the DifferenticalFunctionComparator.cpp source file,
as well as the source code for the Python front end, i.e., cli.py and config.py. The
directory /doc contains the source LATEX files of this text as well as the PDF version of
this text, and the accompanying poster. Finally, the /experiments directory contains C
source files of our simple experiments described in Section 6.1 that can be used for validating
the basic functionality of our extension.

44

Appendix B

Compilation and Running

The project can be compiled and run using the source files present on the included storage
media. Compilation instructions can be found in the /diffkemp/README.md file, this
appendix aims to give a summary of the process. The following dependencies need to be
installed before starting the compilation process:

• Clang and LLVM (supported versions are 9, 10, 11, 12, 13, 14, 15, 16),

• Python 3,

• the CMake and Ninja build systems,

• Python packages from /diffkemp/requirements.txt (can be installed using
pip install -r requirements.txt), as well as the Python CFFI package,

• the cscope utility,

• Z3 SMT solver, along with its headers (e.g., the z3-devel package on Fedora),

• gtest for running the C++ tests.

Alternatively, the nix package manager1 can be used to simplify the setup. See the
DiffKemp’s README for more information on this matter. The build can be created
using the following commands in the /diffkemp directory:

mkdir build

cd build

cmake .. -GNinja

ninja

cd ..

pip install -e .

The DiffKemp binary is then located in bin/diffkemp (shortened to diffkemp in
the rest of this text). The C++ unit tests can be run by using ninja test command from
the build directory. In order to execute the regression tests, one needs to have several
kernel versions (refer to the README for the exact versions required) downloaded and
then run pytest tests.

1https://nixos.org/download/

45

https://nixos.org/download/

Before running our extension, snapshots need to be generated either by using the diff-
kemp build or diffkemp build-kernel commands. For instance, the example from
Figure 6.1 can be built by going to the /experiments/distributive directory and run-
ning diffkemp build old.c old and diffkemp build new.c new. Finally, the
comparison phase can be run on the generated snapshots by using diffkemp compare
old new --report-stat --use-smt. The Z3 timeout can be extended by using the
--smt-timeout option that accepts the timeout in milliseconds. More information on
running the tool can be found either in the README or in the program’s help message.

46

Appendix C

Poster

Applying formal methods to analysis of semantic
differences between versions of software

František Nečas
Supervisor: Ing. Viktor Malík, Ph.D.

Applying formal methods to analysis of semantic
differences between versions of software

František Nečas
Supervisor: Ing. Viktor Malík, Ph.D.

DiffKemp: Static Analysis of Semantic Differences of Large-scale C Projects

• Some projects must maintain semantic stability between
versions, e.g., system libraries.

• We want to automatically check that the semantics of
certain functions was not modified.

• Tools based on formal methods are very precise but slow.
• DiffKemp: open-source highly scalable framework for

identifying semantic differences.

Are the following functions semantically equal?
int f(int a) {
int r;
r = 0;
if (a > 100) {
r = a - 10;

} else {
r = f(a + 11);
r = f(r);

}
return r;

}

int f(int x) {
int r;
r = 0;
if (x < 101) {
r = f(11 + x);
r = f(r);

} else {
r = x - 10;

}
return r;

}

renamed variable

inverse condition +
swapped branches

The Basic Comparison Algorithm

Clang compiler

analysis core
patterns

LLVM IR

old
new

equal

not equal

The analysis in DiffKemp is built on several concepts:
• The versions are compiled into the LLVM Intermediate Representation (IR)

to make the comparison simpler.
• Where possible, versions are compared instruction-by-instruction.
• DiffKemp contains a number of pre-defined change patterns that are known

to preserve semantics (e.g., refactoring a code block into a new function).

Integrating Formal Methods into the Analysis Core
• The list of built-in patterns does not cover all refactorings.
• We aim to check equality of complex arithmetic and logic changes.
• When a difference is found and no pattern is available, encode the equiv-

alence of the following blocks into a formula:
size1 = size2 ∧ offset1 = offset2 ∧ val1 = val2 ∧
mask1 = (((1 << size1) − 1) << offset1) ∧ ret1 = ((val1 & mask1) >> offset1) ∧
mask2 = (1 << size2) − 1 ∧ ret2 = (val2 >> offset2) & mask2 ∧
¬(ret1 = ret2)

• Use an SMT solver to check satisfiability. The blocks are equal, iff the
formula is unsatisfiable.

analysis core
patterns

SMT solver

equal

not equal
not equal equal

Results and Experiments

SMT Off SMT On
Correct equal 57 62

Correct not-equal 125 125
Incorrect not-equal 90 85

Incorrect equal 0 0

Evaluated on simple hand-made programs, the EqBench benchmark
and the Linux kernel.
if (reg & 0xff000000) {

unsigned char size, offset;
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = ((1 << size) - 1) << offset;
return (val & mask) >> offset;

} else {
return val;

}

if (reg & 0xff000000) {
unsigned char size, offset;
size = (reg >> 24) & 0x3f;
offset = (reg >> 16) & 0x1f;
mask = (1 << size) - 1;
return (val >> offset) & mask;

} else {
return val;

}

https://github.com/diffkemp/diffkemp/ The project was supported by Red Hat Research. xnecas27@stud.fit.vutbr.cz

47

	Introduction
	DiffKemp
	Intermediate Representation of Programs
	Checking Semantic Equivalence of Functions
	Semantics-preserving Patterns

	SMT Solving
	Principles of SMT Solving
	State-of-the-art SMT Solvers

	Incorporating Formal Methods into DiffKemp
	Identifying Relevant Code Snippets
	Encoding Equivalence into SMT Formulae
	Detection of Advanced Inverse Branch Condition

	Implementation of the Extension
	DiffKemp Architecture
	Extension of SimpLL

	Results and Experiments
	Simple Experiments
	EqBench Benchmark
	Standard C Libraries
	Linux Kernel
	Evaluating Z3 Runtime on Successful Cases

	Related Work
	Conclusion
	Bibliography
	Contents of the Included Storage Media
	Compilation and Running
	Poster

