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Abstract: C# is a strongly typed language utilizing type inference to save type
annotations written by a programmer. However, the type inference is not as
strong as other programming languages like Rust or Haskell. This thesis goal
was to propose the C# language improvement which would improve the current
type inference and would be likely accepted by the C# language design team.
For this achievement, we analyzed Rust’s type inference and observed necessary
language requirements and type inference restrictions based on Hindley-Millner’s
formalization of type inference. These observations were used to propose a lan-
guage improvement consisting of two parts. The first part is a C# specification
change describing the improvement by adjusting formal C# specification. This
part was presented to the C# language design team which resulted in a positive
reaction where the team decided to keep moving forward with the proposal to
make it available in the future C# language version. The second part is an im-
plementation of the improvement in the official C# language compiler, Roslyn.
The implementation is tested by using the original compiler tests and new tests
testing the proposal functionality.
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1. Introduction
C# is an object-oriented programming language developed by Microsoft. It be-
longs to the strongly typed languages helping programmers to possibly reveal
bugs at compile time. The first part of this thesis focuses on exploring type sys-
tems of strongly typed languages and proposes an improvement to the C# type
system. The second part concerns the implementation of the improvement in the
current C# compiler and the creation of a proposal that should have sufficient
potential to be discussed by the Language Design Team (LDT) accepting new
C# language features.

1.1 Improving C# Type System
A key feature of strongly typed languages is type safety, prohibiting operations
on incompatible data, achieved by determining data types at compile time. The
easiest way for a compiler to reason about types of variables in the code is by
providing type annotations determining the data type that these variables hold.
Figure 1.1 shows a usage of type annotations written in the C# programming
language. The type declaration of the people variable guarantees that the fol-
lowing attempt to concatenate the "Tom" string to that variable will be reported
as an error at compile time since the operation is not defined for a pair of the
List<string> type and string type.

List<string> people = new List<string>() {"Joe", "Nick"};
people += "Tom"; // Error reported during compilation

Figure 1.1: Type safety in the C# programming language.

On the other hand, types can have long names, forcing the programmer to
write more code to annotate the variable declaration or object creation, as we
can see in the example. This disadvantage of strongly typed languages can be
removed by type inference when a missing type annotation can be deduced using
the context. Taking the example shown above, one of the List<string> type
annotations could be removed since the type of people variable declaration can
be deduced from its initializing value or the type of object creation can be deduced
from the type of the assigning variable. There is an example of C# type inference
in Figure 1.2, where the var keyword is used to trigger type inference determining
a type of people variable to be the List<string> type.

var people = new List<string>();

Figure 1.2: Type inference in the C# programming language.

The power of type inference varies in strongly typed languages. An example
of the difference can be seen in type arguments deduction of generic methods. In
C#, a generic method is a method that is parametrized by types besides common
parameters, as can be found in Figure 1.3. There is a generic method GetField
enabling to return a value of o’s field with the fieldName name. The type of

4



T GetField<T>(object o, string fieldName) { ... }
...
object person = ...
string name = GetField<string>(person, "name");

Figure 1.3: C# Type inference of generic methods.

returned value is a generic parameter T since it depends on the type of object’s
field. The name variable is initialized by using the method to retrieve a person’s
name, which is supposed to be a string. There is a redundancy in that statement
since the type argument list of the GetField method could be removed, and T
could be deduced from the type of name variable, which has to be compatible
with the return type. However, the current version of C# type inference fails to
deduce it.

A similar concept of generic methods was introduced in the Rust [32] pro-
gramming language, which belongs to strongly typed languages too. Figure 1.4
shows a definition of the generic method GetField, which is equivalent to the
C# method mentioned in the previous example. There is an equivalent initial-
ization of name variable declaration starting with the let keyword, where Rust
type inference deduces the type argument T to be the &str type utilizing the type
information from the name variable declaration.

fn GetField<T>(o: &object, fieldName: &str) -> T { ... }
...
let person: &object = ...
let name: &str = GetField(person, "name");

Figure 1.4: Rust Type inference of generic methods.

Although Rust is younger than C# and has a different type system, it man-
aged to make type inference more powerful in the context of strongly typed lan-
guages to significantly save type annotations typing. The first goal of this thesis
is to investigate if the similar level of type inference can be achieved in C# and
improve C# type inference to be used in more scenarios saving type annotations
typing.

The investigation explores type system requirements and type inference dif-
ferences to achieve a desired level of type inference by formalizing Rust and C#
type inference. These formalizations can be partially identified as a part of the
existing Hindley-Millner [13] type inference formalization, which helps to reason
about the inference in these languages. Traditional Hindley-Millner type infer-
ence is defined in the Hindley-Millner type system [14], where it can deduce
types of all variables in an entirely untyped code. The power of type inference is
caused by the properties of the type system, which, in comparison with the C#
type system, doesn’t use type inheritance or overloading. Despite the differences,
Hindley-Millner type inference can be modified to work with other type systems
like Rust or C#, causing limited use cases where it can be applied. Observing the
influence of differences between these type systems on type inference will help to
understand a limitation of possible type inference improvement in C#.
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1.2 Implementation
The first part of the thesis explores limitations of C# type inference and pro-
poses an improvement. The first goal of the second part tests the improvement
by implementing it in the official C# compiler, Roslyn [31], which is an open-
source project managed by Microsoft. The prototype is used to explore potential
implementation issues which the improvement can cause, and to help to adjust
the improvement to be potentially enabled in the C# compiler.

Although the compiler is managed by the company, it has an open-source
development, which makes contributions from interested people possible to be
merged into the production. Although it is sufficient to make a pull request
containing a fix for solving compiler issues to be merged, language design im-
provements, similar to what the thesis will propose, require a special process of
validating the actual benefit. The process starts by proposing new C# features
in public discussions of the C# language repository [35], where everyone can add
his/her ideas or comment on others’ ideas. It is preferred to use a predefined
template [26] for describing the idea proposing the feature in order to make the
idea more likely to be discussed by the team responsible for accepting new lan-
guage features. The template includes motivation, detailed description, needed
C# language specification [5] changes, and other possible alternatives. The pro-
cess of language proposal ends with LDT accepting or declining it. The second
goal of this part is to create the improvement as the language proposal, which
would be presented to the team in order to have the potential to be a part of the
current C# language.

1.3 Summary
We summarize the goals of this thesis in the following list:

G1. Explore possibilities of type inference in strongly typed languages

G2. Improve C# type inference based on previous analysis

G3. Implement the prototype in Roslyn

G4. Create a proposal containing the improvement
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2. C# Programming Language
Introduction 1.1 presented the programming language C# and its possible im-
provement of type inference. This chapter continues by describing relevant sec-
tions of the C# language and its type inference algorithm to understand the
possible barriers to implement improved type inference. Since type inference is
a complicated process touching many areas of the C# language, it firstly sorts
these areas into separated groups described in necessary detail to understand all
parts of the current type inference. These areas concern the C# type system,
including generics and language constructs where the type inference occurs or
interacts with.

2.1 Type System
C# data types are defined in the C# type system, which also defines relations
between them. The most fundamental relation is type inheritance, where every
type inherits another type, forming a tree with System.Object as a root node that
doesn’t inherit any type. Types are divided into value and reference types, shown
in Figure 2.1, where an arrow means is inherited by relation. Value types consist
of built-in numeric types referred to as simple types, enumerations referred to as
enum types, structures referred to as struct types, and nullable types. Compared
to reference types, value types are implicitly sealed, meaning that they can’t be
inherited by other types. Reference types consist of interfaces, classes, arrays, and
delegates. An interface introduces a new relation to the type system by defining
a list of methods, called a contract, which has to be implemented by a type that
implements the interface. The relation forms an acyclic graph, meaning a type
can implement multiple interfaces, but the implementation relations can’t form
a cycle. Delegates represent typed pointers to methods describing its signature,
including generic parameters, parameters, and a return type.

The type system implicitly allows to assign null, indicating an invalid value,
to reference types. Since C# 2.0 [9], it allows to assign the null value to nullable

System.Object

Interface types Class typesSystem.ValueType

Reference
types

Simple types Enum types Struct types

Value
types

Delegate typesArray types

Nullable types

Figure 2.1: The C# data types schema adjusted from a C# blog [2].
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types, which are equivalents of the rest of value types prohibiting it. Because
assigning the null value is referred to as a billion-dollar mistake [36], C# 8.0 [9],
introduced optional settings warning about assigning null values and created
nullable reference types, which, together with nullable types, explicitly allows
null assignment as a way of interaction with legacy code not using the feature.

A big part of the type system is C# generics, allowing the parameterization
of types and methods by arbitrary types. A specific generic method or type
is constructed by providing required type arguments, where construction means
replacing all occurrences of type parameters with the type arguments. Since the
type argument can be an arbitrary type, the type parameter is considered to be
the most general type in the type system, System.Object. Assuming additional
API from the type parameter is achieved by restricting a set of types, which can
replace the type parameter, enabling a specific interface of this set. The restriction
is described by type constraints, which can be applied to type parameters. There
are several kinds of constraints that can be combined together, forcing the type
argument to fulfill all of them. Figure 2.2 shows only two of them, and the
rest can be found in the C# documentation [6]. There is a definition of the
PrioritySorter generic class with the TItem type parameter containing two
constraints that the type argument has to hold. The class constraint allows
only reference types. The IPriorityGetter constraint allows only types that
implement the interface.

class PrioritySorter<TItem> where TItem : class, IPriorityGetter
{ ... }

Figure 2.2: C# type constraints.

Constructed methods and types are new entities that don’t have any special
relations between themselves implied from the construction. However, C# generic
interfaces can utilize a concept of type variance to introduce additional relations
between constructed types. Initially, type parameters are invariant, meaning an
obligation to use the same type arguments as initially required. A type parameter
can be specified to be covariant, by prepending the type parameter declaration
with the in keyword, allowing to use more derived type than initially required.
0pposite contravariance uses the out keyword, allowing to use more general type
than initially required.

The last relevant feature of the type system is method overloading, which
allows definitions of multiple methods with the same name, return type, and
count of type parameters having different types of parameters. Further chapters
will mention the feature as an obstacle in designing efficient type inference.

2.2 Relevant Constructs
Many unrelated C# constructs can use type inference or can influence the type
inference algorithm. There are the most relevant whose internals are then con-
sidered in the following chapters regarding the design of the improvement.
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Dynamic
Introduction 1.1 mentioned that strongly typed languages require knowing data
types at compile time to prohibit incompatible operations on them. In the context
of C#, data means values of expressions that are transformed by operations
defined on their types. It turned out that operations on expressions of unknown
type at compile time became crucial for interoperability with other dynamic-
typed languages whose types of expressions are known at runtime. To make the
interoperability easier, C# introduced the dynamic type that can be used as an
ordinary type, which avoids the checks and causes dynamic binding. Binding
is a process of resolving referenced operations based on the type and value of
the expression. The majority of the C# binding happens statically at compile
time. Expressions containing a value of the dynamic type are dynamic bound
at runtime, bypassing the static binding of the compiler. This behavior can lead
to possible bugs regarding invalid operations on the dynamic data types, which
will be reported during runtime. Figure 2.3 shows a declaration of the a variable
of the dynamic type. Dynamic binding occurs in the a.Foo() expression, where
the Foo() operation is not checked during compilation. An error is reported at
runtime when the actual type of the a variable is determined to be string, which
doesn’t define the Foo() operation. Despite the dynamic binding, a compiler can
still little check certain kinds of expressions containing values of dynamic types
to reveal possible errors at compile time. An example of such checking is the
Bar() method call, where the compiler can check the first argument, whose type
is known at compile time as the type of the parameter. An appropriate error
occurs during the compilation because the "text" value has the string type,
and it is passed as the p1 parameter, which has the int type.

void Bar<T>(int p1, T p2, long p3) { ... }
...
dynamic a = "string";
a.Foo();
Bar("text", 1, a); // Compilation error reported

Figure 2.3: C# dynamic type.

Anonymous Function
C# allows to define a function without a name, called anonymous function. The
function is represented as an expression that can be called or stored in a variable.
There are three types of anonymous function. The first type is anonymous method
shown in Figure 2.4 where it is stored in the a variable. The b variable contains
the second type called explicit typed anonymous function. The third variable c
contains the last type called implicit typed anonymous function. As can be seen,
all of them have inferred return types based on the return expression inside their
bodies. The most interesting type is the last one, where even parameter types
are inferred based on a surrounding context and which is especially threatened by
method type inference algorithm mentioned in the Method Type Inference section
2.4.
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Func<int, int> a = delegate(int p1) { return p1 + 1; };
Func<int, int> b = (int p1) => { return p1 + 1; };
Func<int, int> c = (p1) => { return p1 + 1; };

Figure 2.4: C# anonymous functions.

Object Creation Expression and Initializer
Initializers are used as a shortcut during an object instantiation. The simplest
one is object initializer allowing to assign values to the object’s fields pleasantly
instead of assigning them separately after the initialization. The second type of
initializers regards arrays and collections. Array initializers are used to create
fixed-size arrays with a predefined content. Figure 2.5 shows the arrayInit vari-
able initialized by an array of int with two items using the initializer. Under the
hood, each item in the initializer is assigned to the corresponding index of the ar-
ray after the array creation. Collection initializers are similar to array initializers
defined on collections, which are created by implementing the ICollection<T> in-
terface. One of the interface’s declaring methods is void Add<T>(T) with adding
semantics. Each type implementing this interface is allowed to use an initializer
list in the same manner as an array initializer. It’s just a sugar code hiding to
call the Add method for each item in the initializer list. The last type of an
initializer uses an indexer to store referred values on predefined positions, which
is used in the second statement where the indexerInit variable is initialized by
a dictionary object using indexers in its initializer list.

var arrayInit = new int[] { 1, 2 };
var indexerInit = new Dictionary<string, int>() {

["a"] = 1, ["b"] = 2
};

Figure 2.5: C# collection initializer.

2.3 Type Inference
C# type inference occurs in many contexts. However, the proposed improvement
will be inspired by and influence only a few of them. These contexts are presented
below.

2.3.1 Keyword var
One of the simplest type inference occurrences regards the var keyword used
in a variable declaration. It lets the compiler decide the type of variable based
on the type of initializing value, which implies that it can’t use the keyword in
declarations without initializing the value. Figure 2.6 shows the usage, where the
type of the a variable is determined to be string since it is initialized by a string
value.
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var a = "str";

Figure 2.6: Keyword var.

2.3.2 Operator new()
There is also an opposite way of deducting types from a target to a source. An
example is the new() operator, which can be called with arbitrary arguments
and represents an object creation of a type that is determined by a type of the
target. An example of these situations can be seen in Figure 2.7 where the
target-typed new(1) operator allows to skip the specification of creating type in
the object creation expression since the myList variable type gives it. After the
type inference, the operator represents the new List<int>(1) object creation
expression.

List<int> myList = new(1);

Figure 2.7: Operator new().

2.3.3 Method Type Inference
Method type inference is the most complex C# type inference used during the
generic method call binding when type arguments are not given. Figure 2.8 shows
a situation when the method type inference deduces System.String,
System.Int32 and System.Int32 as type arguments of the Foo method. There
is a multi-step process that the type inference has to do to be able to infer
it. Regarding the T1 type parameter, the inference has to find a common type
between the (long)1 argument and the (int)1 argument. Regarding the T2
type parameter, the type inference has to go into the type arguments of the
generic type of the p3 parameter and the myList argument, check if the types
are compatible, and then match the T2 type parameter against the int type
argument of List<int>. The T3 type parameter is the most challenging since it
occurs as a return type of the delegate. The type inference has first to infer types
of input parameters of this delegate to be able to infer the implicit anonymous
function’s return type. Then, it can match the inferred return type with the T3
type parameter, resulting in the System.Int32 type.

Foo<T1, T2, T3>(T1 p1, T1 p2, IList<T2> p3, Func<T2, T3> p4)
{ ... }
...
List<int> myList = ...
Foo((long)1, (int)1, myList, (p1) => p1 + 1);

Figure 2.8: Method type inference.

The method type inference algorithm is detailly described in separate section
2.4 since it is a complex algorithm, and the proposed improvement will be based
on that.
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2.3.4 Array Type Inference
The last mentioned type inference happens in array initializers when the array
type should be deduced from the initializer list. Figure 2.9 shows an example of a
situation when the type inference is used for determining the element type of the
constructing array. The C# specification calls it common type inference, which
finds the most specialized common type between given types. In this case, it is
the object type. From one point of view, it is just adjusted the method type
inference algorithm where there is just one type variable, and all initializer items
are lower bounds of that type variable.

new[] { new object(), "string" };

Figure 2.9: Array type inference.

2.4 Method Type Inference Algorithm
Since one of the thesis’s improvements is adjusting the method type inference
algorithm, this section presents its description. The thesis doesn’t show the
complete algorithm described in the C# specification [7] since it is complex, and
some parts are unimportant for the following chapters. The simplified algorithm
is divided into four subsections. The algorithm uses several definitions presented
below.

Definition 1 (Fixed type variables, bounds). We call inferred type parameters
type variables which are at the beginning of the algorithm unknown, unfixed.
During the algorithm, they start to be restricted by sets of type bounds. The type
variable becomes fixed when the its actual type is determined using its bounds.

Definition 2 (Method group). A method group is a set of overloaded methods
resulting from a member lookup.

Definition 3 (Input/Output types). If E is a method group or anonymous func-
tion and T is a delegate or expression tree type, then return type of T is an output
type of E. If E is a method group or implicitly typed anonymous function, then
all the parameter types of T are input types of E.

Definition 4 (Dependence). An unfixed type variable Xi depends directly on an
unfixed type variable Xe if for some argument E Xe occurs in an input type of E
and Xi occurs in an output type of E. Xi depends on Xe is the transitive but not
reflexive closure of depends directly on.

The pseudocode describing the algorithm uses custom helper functions ex-
plained in Table 2.1.

2.4.1 Algorithm Phases
Figure 2.10 shows the initial phases of the algorithm. The method type inference
process starts with receiving arguments of a method call and the method’s signa-
ture, whose type parameters have to be deduced. The algorithm has two phases,
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{Parameter}.isValParam Checks if the parameter is passed by
value.

{Parameter}.isRefParam Checks if the parameter is passed by
reference.

{Parameter}.isOutParam Checks if the parameter has
out modifier.

{Parameter}.isInParam Checks if the parameter has
in modifier.

{Argument}.isInArg Checks if the argument has
in modifier.

{Type}.outTypes Returns Output types of type.
{Type}.inTypes Returns Input types of type.

{Type} isLike ’{Pattern}’ Checks if the type matches
the pattern.

{Type}.isDelegateOrExprTreeType Checks if the type is Delegate
or Expression Tree type.

Table 2.1: Description of used properties.

where the first phase initializes initial bounds’ sets of type variables (also called
inferred type arguments), and the second phase repeats until all type variables
are fixed or fails if there is insufficient information to deduce them. Each type
variable has three types of bounds. The exact bound consists of types, which
have to be identical to the type variable, meaning that they can be converted to
each other. The lower bound contains types that have to be convertible to the
type variable, and the upper bound is opposite to it.

FirstPhase() iterates over provided arguments and matches their types with
types of corresponding parameters. This matching has two goals. The first is
to check the compatibility of matched types, and the second is to collect the
mentioned bounds associated with type variables contained in parameters’ types.
This matching has many rules, followed by helping functions mentioned later in
this section. The matching represents dealing with the T2 type parameter men-
tioned in Figure 2.8 where the compatibility between List<int> and IList<T2>
is firstly checked, and then the int type is added as a lower bound of the T2
type parameter. Type variables can have dependencies between themselves, so
the first phase postpones matching output types of arguments’ types with cor-
responding parameters’ types because the output types can contain dependent
type variables.

SecondPhase() happens iteratively, respecting the depends on relation. Each
iteration has two goals. The first one is the fixation of at least one type variable.
If there is no type variable to fix because either all type variables are fixed or
there are no other type bounds that could be used for type variable deduction,
the algorithm ends. The sets Xindep and Xdep refer to type variables, which
can be fixed in the current iteration. Line 31 contains the ending condition of
the algorithm when all type variables are fixed, or there is no way to infer the
next ones. The second goal is to match postponed matching of output types of
arguments’ types with output types of corresponding parameters’ types where all
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1 Input: method call M(E1,...Ex) and
2 its signature Te M<X1,...,Xn>(T1 p1,...,Tx px)
3 Output: inferred X1,...Xn

4 Blower = Bupper = Bexact = F = []
5 FirstPhase()
6 SecondPhase()
7
8 fn FirstPhase():
9 E.foreach(e →

10 if (e.isAnonymousFunc)
11 InferExplicitParamterType(e, T[e.idx])
12 elif (e.getType() is Type u)
13 switch (u) {
14 p[e.idx].isValParam → InferLowerBound(u, T[e.idx])
15 p[e.idx].isRefParam || p[e.idx].isOutParam →
16 InferExact(u, T[e.idx])
17 p[e.idx].isInParam && e.isInArg →
18 InferLowerBound(u, T[e.idx])
19 }
20 )
21
22 fn SecondPhase():
23 while (true):
24 Xindep = X.filter(x →
25 F[x.idx] == null && X.any(x → dependsOn(x, y)))
26 Xdep = X.filter(x →
27 F[x.idx] == null && X.any(y →
28 dependsOn(y, x) && (Blower+Bupper+Bexact).isNotEmpty))
29 switch {
30 Xindep.isNotEmpty → Xindep.foreach(x → Fix(x))
31 Xdep.isNotEmpty && Xindep.isEmpty → Xdep.foreach(x → Fix(x))
32 (Xindep+Xdep).isEmpty →
33 return if (F.any(x → x == null)) Fail() else Success(F)
34 default → E.filter(e →
35 X.any(x →
36 F[x.idx] == null && T[e.idx].outTypes.contains(x))
37 && !X.any(x →
38 F[x.idx] == null && T[e.idx].inTypes.contains(x))
39 ).foreach(e → InferOutputType(e, T[e.idx]))
40 }

Figure 2.10: Phases of Method Type Inference

type variables in the output type of a parameter type don’t depend on unfixed
variable types contained in input types of the parameter type. The second goal
is to match postponed matching of output types of arguments’ types with output
types of corresponding parameters’ types where all type variables in the output
type of a parameter type don’t depend on unfixed variable types contained in
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the input types of the parameter type. Line 32 describes this process using
the pseudocode. This goal represents dealing with implicit anonymous functions
mentioned in Figure 2.8 where T3 depends on T2. The algorithm first infers the
T2 input type of the anonymous function, then infers the function’s output type,
which is then used to match the output type of Func<T2, T3> parameter type
with the output type of the inferred anonymous function’s type. The match yields
the int upper bound of the T3 type parameter.

2.4.2 Function Type Inference
Figure 2.11 contains definitions of two helper functions used in the first and second
phases. The ExplicitParameterType() function is used to match an argument
type, which is an explicit typed anonymous function. This anonymous function
type has typed parameters, so the algorithm matches them with input types of
the corresponding parameter type.

The InferOutputType() function is used in the second phase when postponed
matching of output types happens. Because potential type variables contained in
the return types don’t depend on any unfixed type variables, the algorithm can
match them. There are two situations where the output type is matched. The
first situation regards anonymous functions, where the algorithm first infers the
return type represented by the InferReturnType() function and then matches
it with the output type of the corresponding parameter. The second situation
regards method groups, which are firstly resolved by OverloadResolution().
The return type of the resolved method is matched with the output type of the
corresponding parameter.

1 fn InferExplicitParameterType(Argument E, Type T):
2 if (E.isExplicitTypedAnonymousFunc && T.isDelegateOrExprTreeType
3 && E.paramTypes.size == T.paramTypes.size)
4 E.paramTypes.zip(T.paramTypes)
5 .foreach((e, t) → InferExact(e, t))
6
7 fn InferOutputType(Argument E, Type T):
8 switch(E) {
9 E.isAnonymousFunc && T.isDelegateOrExprTreeType →

10 InferLower(InferReturnType(E), T.returnType)
11 E.isMethodGroup && T.isDelegateOrExprTreeType → {
12 Eresolved= OverloadResolution(E, T.parameterTypes)
13 if (Eresolved.size == 1)
14 InferLower(Eresolved[0].returnType, T.returnType)
15 }
16 E.isExpression && E.getType() is Type u → InferLower(u, T)
17 }

Figure 2.11: Explicit parameter type inference, Output type inference
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2.4.3 Collecting Type Bounds
Figure 2.12 shows three functions that add new bounds to type variables’ bound
sets. Basically, all of them have similar behavior. It traverses the given U type
contained in the argument type with the V type contained in the corresponding
parameter type using the conditions contained in the switch statement and adds
the U type to the type variable’s bound when the V type is a type variable. Since
the branching conditions in InferLower and InferUpper are similar to those in
InferExact and unimportant for the proposed improvement, the thesis omits it.

1 fn InferExact(Type U, Type V):
2 if (Type t = X.find(x → V == x && F[x.idx] == null))
3 Bexact[t.idx].add(U)
4 switch(V) {
5 V isLike ’V1[..]’ && U isLike ’U1[..]’ && V.rank == U.rank →
6 InferExact(U1, V1)
7 V isLike ’V1?’ && U isLike ’U1’ → InferExact(V1, U1)
8 V isLike ’C<V1, ..., Ve>’ && U isLike ’C<U1, ..., Ue>’ →
9 V.typeArgs.zip(U.typeArgs)

10 .foreach((v, u) → InferExact(v, u))
11 }
12
13 fn InferLower(Type U, Type V):
14 if (Type t = X.find(x → V == x && F[x.idx] == null))
15 Blower[t.idx].add(U)
16 switch { .... }
17
18 fn InferUpper(Type U, Type V):
19 if (Type t = X.find(x → V == x && F[x.idx] == null))
20 Bupper[t.idx].add(U)
21 switch { ... }

Figure 2.12: Exact inference, Upper-bound inference, Lower-bound inference

Observation 1. There is no need to check possible contradictions between already
collected bounds and the currently adding bound because It is checked in the type
variable fixation.

Observation 2. Bound sets don’t contain unfixed type variables, which makes
the algorithm simpler and which will be important for the following chapters.
The reason for that can be noticed in the design of functions API, where the left
parameter always contains an expression or type from the argument, and the right
parameter contains a type from the inferring method parameter. Since the three
last-mentioned functions add only the type from the left parameter to bounds, there
can’t be any type variables because argument types don’t contain type variables.
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2.4.4 Fixation
The last part of this algorithm is type variable fixation, shown in Figure 2.13.
Initially, a set of candidates for the type variable is constructed by collecting all
its bounds. Then, it goes through each bound and removes the candidates who
do not satisfy the bound’s restriction. If there is more than one candidate left,
it tries to find a unique type that is identical to all left candidates. The fixation
is successful if the candidate is found. The type variable is fixed to that type.
This process can be seen in the initial example 2.8, where the T1 type variable
contains long and int in its lower bound set. At the start of this process, both
types are candidates. However, int is removed because it doesn’t have an implicit
conversion to long.

1 fn Fix(TypeParameter x):
2 Ucandidates = Blower[x.idx] + Bupper[x.idx] + Bexact[x.idx]
3 Bexact[x.idx].foreach{b →
4 Ucandidates.removeAll(u -> !b.isIdenticalTo(u))}
5 Blower[x.idx].foreach{b →
6 Ucandidates.removeAll(u -> !hasImplicitConversion(b, u))}
7 Bupper[x.idx].foreach{b →
8 Ucandidates.removeAll(u -> !hasImplicitConversion(u, b))}
9 temp = Ucandidates.filter(x → Ucandidates.all(y →

10 hasImplicitConversion(y, x)))
11 if (temp.size == 1) F[i] = temp[0] else Fail()

Figure 2.13: Fixing of type variables

An important observation of the method type inference is an obligation of
infering all type arguments of the method. If the compiler is not able to infer all
type arguments, a user has to specify all type arguments. C# currently doesn’t
offer a way how to hint just ambigious type arguments.
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3. Related Work
This chapter follows by mentioning related work regarding the current imple-
mentation of the C# compiler and formalizing C# type inference using Hindley-
Milner type inference, which is explored in more detail with references to its
modification in Rust and C# programming languages. This knowledge will be
utilized as a primary source of inspiration for the improvement. In the end, it
mentions relevant C# language issues presented on the GitHub repository, which
will be used later to prioritize the improvement features to make it more likely
to be discussed at Language Design Meetings (LDM) held by Language Design
Team (LDT).

3.1 Roslyn
The implementation of C# type inference can be found in the Roslyn compiler,
as open-source C# and VisualBasic compiler developed at the GitHub repository
[31]. Presented Roslyn’s architecture will help to better understand the context
and restrictions that has to be cosidered to plug the improved type inference into
the compiler. Figure 3.1 is used to explain the compilation pipeline [28] which
consists of four phases highlighted with different colors.

Lexer Parser

Emiter

Tokens AST

NullableWalker

Bound Tree
IL

MetadataLoader

C# project

.cs
.cs

.dll
.dll

.csproj
GetDeclarations CompileMethods 

Binders

Method binder

Namespace
binder

Method Type
Inference

Overload resolution

Named
symbols

Figure 3.1: Roslyn architecture

3.1.1 Parsing C# Sources Phase
The pipeline starts with loading the .csproj file with related C# sources (.cs)
and referenced libraries (.dll). C# sources are passed to the lexer, creating
tokens used by the parser forming Abstract Syntax Tree (AST). AST construction
is the first phase (green boxes in Figure 3.1) of the compiler checking the syntax
of C# sources.
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3.1.2 Loading Named Symbols
The second phase, marked by orange, forms named symbols exposed by public
API representing defined namespaces, classes, methods, etc., in the C# project.
The declarations are received from C# sources by traversing AST and seeking
for the particular syntax. Libraries, stored in the .dll format are parsed by
MetadataLoader, creating the same named symbols as those received from C#
sources.

3.1.3 Binding Phase
The third phase (represented by blue boxes), also called the binding phase,
matches identifiers in the code with received named symbols from the previ-
ous phase. Because the processing of a method body is not dependent on other
method bodies since the code only uses already known declarations, Roslyn makes
this phase concurrent. The result of the phase is a bound tree where all identifiers
refer to the named symbols. A method binding itself is a complicated procedure
consisting of many subtasks such as overload resolution or mentioned method
type inference, whose algorithm is described in detail in the previous section 2.4.

The binding is divided into a chain of binders, taking care of smaller code
scopes. One purpose of the binders is the ability to resolve an identifier to the
named symbol if the referred symbol lies in their scope. If they can’t find the
symbol, they ask the preceding binder. The process of finding referred symbols
is called LookUp. Examples of binders are NamespaceBinder resolving defined
top-level entities in the namespace scope, ClassBinder resolving defined class
members, or MethodBinder binding method bodies. The last mentioned binder
sequentially iterates body statements and matches identifiers with their declara-
tions. The statement and expression binding are important steps that are related
to type inference. An important observation is that statement binding doesn’t
involve binding of the following statements, which can be referred to as backward
binding. The consequence is that C# is not able to infer types in the backward
direction. An example can be the usage of the var keyword in variable declara-
tions, which has to be used always with the initializing value. If C# would allow
backward binding, we could initialize the variable later in one of the following
statements which would determine the type of the variable.

The preceding step before method type inference is overload resolution, part
of MethodCallExpression or ObjectCreationExpression binding. As men-
tioned previously, method overloading allows to define multiple methods with
the same name differing in parameters. So, when the compiler decides which
method should be called, it has to resolve the right version of the method by
following language rules for the method resolution. This step involves binding
the method call arguments first and then deciding which parameter list of the
method group fits the argument list the best. If the method group is generic and
the expression doesn’t specify any type arguments, the method type inference
is invoked to determine the type arguments of the method before the selection
of the best candidate for the call. When the right overload with inferred type
arguments is chosen, unbound method arguments requiring the target type (for
example already mentioned the target-typed new() operator) are bound using
the corresponding parameter type.
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The method type inference can occur for the second time if the previously
mentioned nullability analysis is turned on. The nullability analysis is a kind of a
flow analysis that uses a bound tree to check and rewrite already created bound
nodes according to nullability. Because overloading and the method type infer-
ence are nullable-sensitive, the whole binding process is repeated, respecting the
nullability and reusing results from the previous binding. The required changes
are stored during the analysis, and the Bound tree is rewritten by the changes at
the end of the analysis.

3.1.4 Emiting Code Phase
The last phase, marked by purple, emits Common Intermediate Language (CIL)
code targeting the .NET virtual machine. The code is later loaded and executed
by .NET runtime.

3.2 Hindley-Millner Type Inference
C# method type inference is a restricted Hindley-Millner type inference which is
able to work in C# type system. Since type inference in other languages like Rust
or Haskell is based on the same principle, a high-level overview of Hindley-Millner
type inference is presented together with its type system to formalize the C# type
inference, compare it with Rust type inference formalization and propose possible
extensions of current C# type inference based on these observations.

Hindley-Millner type system [14] is a type system for lambda calculus capable
of generic functions and types. Lambda calculus contains four types of expressions
given below which are described in the video series [39] regarding Hindley-Millner
type inference explanation. An expression is either a variable (3.1), a function
application (3.2), a lambda function (3.3), or a let-in clause (3.4).

e = x (3.1)
| e1e2 (3.2)
| λx → e (3.3)
| let x = e1 in e2 (3.4)

The above-mentioned expressions have one of two kinds of types. The Mono
type is a type variable(3.5) or a function application(3.6) where C is an item
from an arbitrary set of functions containing at least the → symbol taking two
type parameters which represents a lambda function type. The second kind is
the Poly type, which is an arbitrary type with possible preceding the ∀ operator
3.8, bounding its type variables.

mono τ = α (3.5)
| C τ1, ..., τn (3.6)

poly σ = τ (3.7)
| ∀α . σ (3.8)
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A context(represented by the Γ symbol) contains bindings of an expression to its
type which are described by pairs of an expression and its type using the x : τ
syntax. An assumption is than described as a typing judgment shown in the Γ
⊢ x : τ syntax meaning ”In the given context Γ, x has the τ type”.

The H-M deduction system gives the following inference rules, allowing to
deduce the type of an expression based on the assumption given in the context.
The syntax of a rule corresponds with what can be judged below the line based
on assumptions given above the line. The rules can be divided into two kinds.
The first four rules give a manual on what types can be expected by applying the
mentioned expressions of lambda calculus. The two last rules allow to convert
Poly types to Mono types and vice-versa.

x : σ ∈ Γ
Γ ⊢ x : σ

[V ariable]
Γ ⊢ e0 : τa → τb Γ ⊢ e1 : τa

Γ ⊢ e0e1 : τb

[Function application]

Γ, x : τa ⊢ e : τb

Γ ⊢ λx → e : τa → τb

[Function abstraction]

Γ → e0 : σ Γ, x : σ ⊢ e1 : τ

Γ ⊢ let x = e0 in e1 : τ
[Let clause]

Γ ⊢ e : σa σa ⊑ σb

Γ ⊢ e : σb

[Instantiate]

Γ ⊢ e : σ α /∈ Free(Γ)
Γ ⊢ e : ∀α . σ

[Generalize]

H-M type inference is able to find the type of every expression of a completely
untyped program using only these type rules. Although, there exist several algo-
rithms for the inference Figure 3.2 shows only the W algorithm since it is closely
related to C# and Rust type inference. Inputs are the context Γ and an expression
whose type has to be inferred. The process consists of systematic traversing the
expression from bottom to top and deducing the type of sub-expressions follow-
ing the mentioned rules. The algorithm contains the Instantiate method which
replaces quantified type variables in the expression with new type variables, the
Generelize method replacing free type variables in the expression with quan-
tified type variables, and the Unify method, also known as unification in logic.
Unification is an algorithm finding a substitution of type variables whose appli-
cation on the unifying types makes them identical. Outputs of this algorithm are
the inferred type with a substitution used for the algorithm’s internal state.

We can notice that the unification part of this algorithm is similar to the
method type inference mentioned in the C# section 2.4 where the substitution
represents inferred type arguments of the method whose parameter types were
unified with corresponding argument types. The same concept of the unification
is also used in Rust type inference.
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1 fn Infer(Γ, expr):
2 switch(expr):
3 expr isLike ’x’ → return ({}, Instantiate(expr))
4 expr isLike ’λx → e’ →
5 β = NewVar()
6 (S1, τ1) = Infer(Γ + x: β, e)
7 return (S1, S1β → τ1)
8 expr isLike ’e1e2’ →
9 (S1, τ1) = Infer(Γ, e1)

10 (S2, τ2) = Infer(S1Γ, e2)
11 β = NewVar()
12 (S3, τ1) = Unify(S2τ1, τ2 → β)
13 return (S3S2S1, S3β)
14 expr isLike ’let x = e1 in e2’ →
15 (S1, τ1) = Infer(Γ, e1)
16 (S2, τ2) = Infer(Γ + x: Generalize(S1Γ, τ1), e2)
17 return (S2S1, τ2)

Figure 3.2: W algorithm

3.2.1 H-M Extensions
H-M type system doesn’t allow subtyping known from Rust or overloading known
from C#.

A basic principle of extending H-M type inference by subtyping is described
in Parreaux’s work [20], where instead of accumulating type equivalent con-
straints, it accumulates and propagates subtyping constraints. These subtyping
constraints consist of a set of types, which have to be inherited by the constrained
type variable, or the variable has to inherit them.

Extending H-M type inference by supporting overloading is mentioned in An-
dreas Stadelmeier and Martin Plumicke’s work [1]. An important thought behind
this paper is to accumulate two types of type variable constraint sets. Constraints
observed from a method call are added into one AND-set. When the method call
has multiple overloads, the AND-sets are added to the OR-set. After accumu-
lating these sets, all combinations of items in OR-sets are generated and solved
by type inference. For each method overload participating in type inference, it
makes an type inference containing constraints obtained only from the overloaded
method, excluding constraints obtained from other overloads. This algorithm can
be improved by excluding overloads that can’t be used in the method call to save
the branching. However, in the worst case, it still takes exponential time to infer
types.

3.3 Rust Type Inference
Rust is a strongly typed programming language developed by Mozilla and an
open community created for performance and memory safety without a garbage
collection. Besides its specific features like traits or variable regions, it also has
advanced type inference [33], which is now described in a high-level perspective
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to get an inspiration for the proposed C# improvement.
Figure 3.3 shows a significant difference between C# type inference and global

Rust type inference. There is the a variable declaraction initialized by the Vec<T>
generic type whose type argument is going to be inferred. The second statement
calls the push method on the a variable, which is also generic and takes an
argument of the T type. Since the 1 value is passed into this call, T is inferred
to be the i32 type and the type argument of the creating vector becomes i32.
An interesting behavior regarding the type inference is that it infers the type of
creating object used in the first statement using information obtained from the
second statement.

let mut a = Vec::new();
a.push(1);

Figure 3.3: Rust type inference example.

This global type inference is possible thanks to a type inference context which
is shared across multiple statements. Figure 3.4 shows a basic principle of how
the context is gradually filled by type variables’ constraints deduced from the
statements. As the compiler traverses a method body, it adds new type variables
that have to be solved and constrains them by the types which they are interacting
with. The figure demonstrates it by adding a new type variable T1 representing a
type of the a variable. It uses the sub function which adds the Vec<T2> subtyping
constaint to the T1 variable represented by a thick green line. This constraint
was obtained from a type of the initializing value Vec::new() which contains
an unspecified type argument represented by a new T2 type variable. Since, the
initializing type can’t be fully resolved because the constraint contains the T2
unbound type variable it has to postpone the resolution. It passes the context

Context

a: T1

T2

vec<T2>

i32

eq

sub let a = vec::new()

a.push(1)

fully_resolve T1 : vec<i32>
T2 : i32

Time

Figure 3.4: Rust type inference

to binding the next statement, where it collects another constraint about the
T2 type argument of the initializing value. The sub function is similar to the
unification seen in the previous section 3.2, where it extracts the required bounds
of unbound type variables by finding substitutions for type variables in order to
make matching types containing the type variables equal. When there is enough
information to resolve T1 and T2 type variables, they are resolved by finding
an appropriate type for the type variable with respect to collected bounds. In
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the given example, the bounds contain only one type, so the type variables are
resolved to them.

The mentioned sharing of context enables type inference to be backward,
meaning that based on future type information, it is possible to infer already
collected unbounded type variables. Besides sharing the context, there are other
inference features that are missing in C# type inference and would be valuable.
The first of them is type inference in object creation expressions, which doesn’t
exist in C#. The next regards collecting type constraints, which are obtained
from a wider context than C# uses. For example, If a generic method containing
a type variable in the return type is used as an assignment of an already typed
variable, the type variable is constrained by the type of the target. Other fea-
tures regard the implementation detail of type inference, which offers probing to
constrain a type variable without influencing the context. There is a possibil-
ity of a snapshot that records all changes and can be used for backtracking and
finding the right inferred type arguments. Although Rust type inference is more
advanced in comparison with C#, it has to be considered language differences
making type inference computation cost and difficulty relative to their features.
As an example, the mentioned overloading can cause exponetial time of type
inference. Since Rust doesn’t have overloading, the type inference can be more
powerful without significant slowdown, which is not the case of C# as will be
shown in the following chapters.

3.4 Language Design GitHub Issues
Some ideas for type inference improvements have already been introduced in
discussions in the C# language repository [35], which will be used as inspiration
for the thesis’s proposed improvement. However, before describing the related
ideas, a process of proposing new C# language features is mentioned to better
understand how the ideas and final language changes are proceeded.

3.4.1 Design Process and Championed Issue
The process of designing a new language feature starts with publishing an idea
into discussions [3], where the C# community can comment on it. The idea
contains a brief description of the feature, motivation, and design. Besides the
idea, a new language feature requires a proposal, initially published as an GitHub
issue, describing the feature in a way that can be later reviewed by the LDM
committee. If the proposal sufficiently merits the discussions, it can be marked
as a champion by a member of LDT for being discussed further in LDM. The
state of a proposal is described by several milestones. The most important for
the thesis is the AnyTime milestone, meaning that the proposal is not actively
worked on and is open to the community to collaborate on it. At the time of
writing, a member of LDT recommended a championed issue [4] regarding partial
type inference to be investigated since it contains many related discussions with
proposed changes but still doesn’t have a required proposal specification which
would allow to be discussed by the team. When a proposal has sufficient quality
to be discussed by LDT, a member invites the proposer to make a pull request
where further collaboration continues. If LDT accepts the proposal, it is added to
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the proposals folder in the repository for being added into the C# specification,
and its future implementation (in Roslyn) will be shipped with the next C#
version.

The recommended issue doesn’t contain a specific idea of the improvemenet
rather the scope of the improvement. The improvement suggests partial type
inference which would allow to hint ambigious type arguments which can’t be
inferred by a compiler instead of currently specifying the whole type argument
list. Since it doesn’t have any concerete way how to achive it, there are presented
related discussion topics directly or indirectly mentioned in the issue which par-
tially suggest a possible solution.

3.4.2 Topic: Default Type Parameters
One of the discussion [11] mentions default type parameters introducing default
type arguments, which are used when explicit type arguments are not used. Fig-
ure 3.5 shows a potential design of this feature where construing generic type A
doesn’t need a type argument since it uses the int type as a default value.

class A<T = int> {}
...
var temp = new A();

Figure 3.5: Default type parameters.

3.4.3 Topic: Generic Aliases
Another discussion [12] mentions generic aliases allowing to specify default val-
ues similar to the goal of the previous discussion by defining an alias to that
type with option generic parameters. Figure 3.6 shows an example where there
is the StringDictionary generic alias specifying the first type argument of
the Dictionary class to be the string type, which simplifies the usage of the
Dictionary type in scenarios where there are often used dictionaries with keys
of the string type.

using StringDictionary<TValue> = Dictionary<String, TValue>;
...
var temp = new StringDictionary<int>();

Figure 3.6: Generic aliases.

3.4.4 Topic: Named Type Parameters
The discussion [17] mentions named type parameters, which are similar to named
parameters of methods. The basic thought of this idea is being able to specify a
type parameter for which a user provides a type argument by the name. Figure 3.7
shows a generic method F with two type parameters. The current type inference
forces to specify all type arguments in the F method call since it is not able to
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infer the U type. Named type parameters offer a way how to tell the compiler
specific type parameters for which a user provides type arguments, U in this case,
and letting the compiler infer the rest of the type parameters.

U F<T, U>(T t) { ... }
...
var x = F<U:short>(1);

Figure 3.7: Named type parameters.

3.4.5 Topic: Representing Inferred Type Argument
Comments of the mentioned championed issue [4] propose several keywords that
can be used in a type argument list for skipping type arguments, which can be
inferred by the compiler and just providing the remaining ones. Figure 3.8 shows
the var keyword for skipping the first type argument since it can be inferred from
the argument list, and a user just specifies the second type argument, which can’t
be inferred by the compiler. The comments propose other options for keywords
like nothing, underscore, or whitespaces.

TResult Foo<T, TResult>(T p1) { ... }
...
Foo<var, int>("string");

Figure 3.8: Using char as inferred type argument.

3.4.6 Topic: Target-typed Inference
The discussion [27] proposes Target-typed inference, where type inference uses
type information of the target assigned by the return value. We can see the usage
in Figure 3.9, where type inference determines that the return type has to be the
int type and uses that to deduce the type argument T.

T Field<T>(this object target, string fieldName) { ... }
...
object row = ...
int id = Field(row, "id")

Figure 3.9: Target-typed inference.

3.4.7 Topic: Type Inference Based on Constrains
The next idea of improving type inference is given by the discussion [37], where
type inference utilizes type information obtained from type constraints. A simple
example of that can be seen in Figure 3.10, where T1 can be deduced by using
T1’s constraint and the inferred type of T2 forming the inferred type List<int>.
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T1 Foo<T1,T2>(T2 item) where T1 : List<T2> {}
...
var temp = Foo(1);

Figure 3.10: Type inference based on type constraints.

3.4.8 Topic: Inferred Method Return Type
The discussion [38] mentions type inference of the method return type known
from the Kotlin programming language. There is the usage in the following
Figure 3.11, where the return type of the Add method is inferred to be int based
on the type of the return expression.

public static Add(int x, int y ) => x + y;

Figure 3.11: Type inference of method return type.

3.4.9 Topic: Realocation
The issue [34] proposes a way to compact type argument lists of identifiers con-
taining inner identifiers with argument lists. The idea is demonstrated in the ex-
ample 3.12, where the argument list of the A<T1> type and the Foo<T2> method
are merged, and the type arguments are split by a semicolon.

static class A<T1> {
public static void Foo<T2>() {}

}
...
A.Foo<int;string>();

Figure 3.12: Specifying type arguments in method calls (Realocation).

3.4.10 Topic: Constructor Type Inference
The discussion [10], regards constructor type inference enabling type inference
for object creation expressions. The type inference can be seen in Figure 3.13,
where the T type parameter of the C<T> generic type can be deduced by using
type information from its constructor.

class C<T> { public C(T p1) {} }
...
var temp = new C<_>(1); // T = int

Figure 3.13: Constructor type inference.
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4. Problem Analysis
The previous section 3.4.1 introduced the championed issue, accompanied by
several ideas for the improvement. Since the description of the issue is not well
defined, the thesis will continue to set the scope of the issue, which will bound
the proposed improvement of this thesis. In that scope, it will identify a concrete
motivation that should be solved by the improvement and which would be a
real-world missing feature, making the proposal promising to become a potential
future extension of C# language. Based on that motivation and information
obtained from the previous sections, it will determine requirements that should
be fulfilled by the improvement. The requirements will help to validate the thesis’s
goals regarding the improvement.

4.1 Scope
The previous section 2.3.3, regarding the method type inference 3.4.1, shows that
type inference is a complicated process, where even the current C# method type
inference is difficult to understand. Hence, the thesis will choose a small part of
C# where it will improve and introduce the type inference and will be possible
to reason about and implement in the scope of this text. The second reason for
choosing a minor change is that introducing a completely new type inference in
C# would rather have an experimental result, which would have a smaller chance
of getting into production. This consequence is different from the intention of this
thesis. However, some more extensive changes in the type inference will also be
mentioned to outline possible obstacles to introducing them in the C#.

The thesis will focus on the already-mentioned partial type inference pro-
posal 3.4, which was recommended by a member of LDT and has a chance to be
discussed in LDM and potentially accepted. Analysis of this improvement will
contain a consideration of existing ideas, their consequences on C#, and their
difficulties in implementing them in Roslyn.

4.2 Motivation
Partial type inference focuses on hinting to the compiler ambiguous type argu-
ments of generic type or method in situations where it can’t deduce them. In the
context of C#, the method type inference is the only type inference that infers
type arguments. Even though the method type inference is a complex algorithm,
it has several weaknesses. The following three real-world examples demonstrate
common issues with the method type inference, which the thesis will try to solve.

4.2.1 Weakness – Target-typing
The first weakness regards the target typing, which was mentioned in the previous
chapter 3.4.6. Suppose a hypothetical situation when a user queries an item from
a database whose column is a point of interest. Figure 4.1 shows an example
of code that uses the fetch method defined on a database type. The data
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variable represents data fetched from a database. Since a concrete form of data is
unknown, the data has the type of object containing an internal representation
of fetched data with the columns stored as fields. The GetField method enables
to read the variable’s field of the given name with the supposed type given as a
type argument. Suppose the fetched object contains the “name” field containing
a string value. Now, a user wants to store the value in the name variable, which is
explicitly typed. Even though the return type of the GetField method is known
from the variable declaration, which is also the TReturn type argument of the
method, the user still has to specify the type argument in the call. Generally, this
problem consists of all type inferences, which depend on the target type. The
target can be a parameter of another method call or an assigning field. If the
method type inference considers the target type, the user will not have to specify
the string type argument in the GetField call.

TReturn GetField<TReturn>(object inst, string fieldName) { ... }
...
object data = database.fetch();
string name = GetField<string>(data, "name");

Figure 4.1: No target-typed inference.

4.2.2 Weakness – Constraints-based Inference
The second weakness is noticeable in more advanced generic APIs, like testing
frameworks, using type constraints containing the type parameters. Figure 4.2
shows a scenario of a simple test framework that defines the Test method param-
eterized by a type of input data and a test case represented as type parameters
U and V, respectively. The provided type argument representing the test case
has to inherit the TestCaseBase base implementation, which is a generic type
parametrized by a type of input data. This constraint gives type information

void Test<T, U>(U data) where T : TestCaseBase<U> { ... }
...
Test<TestCaseBase<MyData>, MyData>(new MyData());

Figure 4.2: No constraints-based inference.

about the T type parameter, which is related to the type of input data. However,
the user has to specify type arguments in the Test call since the type inference
doesn’t consider this source of type information. If the compiler considers the
constraint, the type arguments will be inferred because the constraint gives a
lower bound of the first type argument and the second type argument can be
inferred from the first argument of the method.

4.2.3 Weakness – All or Nothing Principle
There are also situations where even strong type inference is not enough. Fig-
ure 4.3 shows a situation where the Log method is parametrized by two type
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parameters that are obtained in the parameter types and hence inferable by the
compiler. However, the Log method call still has to specify type arguments be-
cause the null argument doesn’t have concrete type information. In this case,
the user always has to specify the second type argument, but the compiler can
infer the first type argument. The thesis refers to this problem as all or nothing
principle, which regards the obligation to specify all type arguments or none of
them.

void Log<T, U>(T message, U appendix) { ... }
...
Log<Message, Appendix>(new Message(...), null);

Figure 4.3: Uninferable type argument.

4.2.4 Solution – Improved Method Type Inference
The first and the second weaknesses motivate us to extend the method type
inference in order to consider a wider context for obtaining type information for
the type arguments. This potential improvement is a problem for the compiler’s
backward compatibility which was mentioned in the C# discussion [8]. New
compiler versions should be backward compatible so that a new version does not
change the behavior of the code compiled by the older version.

Figure 4.4 shows the breaking change when the method type inference starts
to consider target types.

T M<T>(int p1) { ... }
int M(long p2) { ... }
...
int name = M(1);

Figure 4.4: Breaking change: Target-typed inference.

Before the improvement, the M method call is resolved to the non-generic
version of this method because type inference can’t infer the T type argument.
After the improvement, the type inference infers T to be the int type, which
is more specific to the type of 1 argument than the long type. So now, the M
method call refers to the generic version of this method and executes different
code without any warning or error.

Figure 4.5 shows a similar situation when the method type inference starts to
consider type parameter constraints.

void M<T>(int p1) where T : List<int> { ... }
void M(long p2) { ... }
...
M(1);

Figure 4.5: Breaking change: Constraints-based inference.
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Before the improvement, the M method call refers to the non-generic version
of the method since the type inference can’t infer the type argument of a generic
version. After the improvement, the generic version is inferred to have the int
type argument and becomes to be more suitable for the overload resolution. So,
the code behavior changed.

Besides the breaking change, the potential method type inference improve-
ment to use a bigger context still doesn’t solve our third weakness demonstrating
a type parameter, which doesn’t appear in parameter types, the return type, and
the type parameters’ constraints. These obstacles give the reason for introducing
a way to hint just ambiguous type arguments to the compiler.

4.2.5 Solution – Partial Method Type Inference
The partial method type inference can reduce the first two weaknesses. Type
arguments, which the method type inference can’t infer, can be hinted in order
to avoid specifying the whole type argument list. Let’s now ignore why the
underscore character is used and how inferred type variables are determined in
the following example. The reasons behind that will be mentioned later. Figure
4.6 shows the usage of the partial method type inference applied in the second
presented example regarding method type inference weaknesses. Although the
first type argument of the DoTest method call must still be provided, the second
argument is omitted by using the underscore character to determine an inferred
type argument. The reduction of the first weakness is to isolate the insufficient
type inference of type arguments that are directly influenced by it and to infer
the rest.

void DoTest<T, U>(U data) where T : TestCaseDefault<U> { ... }
...
DoTest<TestCaseDefault<MyData>, _>(new MyData());

Figure 4.6: Partial type inference: Reducing method type inference weakness.

The third motivation example confirms that the partial method type inference
is not just a fix for missing type inference features but is needed when type
arguments can’t be inferred at all. Figure 4.7 demonstrates a usage of the partial
method type inference where it omits the first type argument since it can be
deduced from the first argument type and specifies the ambiguous type that
can’t be deduced.

void Log<T, U>(T message, U appendix) { ... }
...
Log<_, Appendix>(new Message(...), null);

Figure 4.7: Partial type inference: Solving the all or nothing problem.
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4.2.6 Solution – Constructor Type Inference
The partial type inference doesn’t regard only the partial method type inference.
It can also be introduced in other places. One of the places that seems to be good
for that is object creation expression. Except for the already mentioned new()
operator, no other type inference infers type arguments of a construing generic
type. The usage of the type inference is limited since the new() operator requires
a target type to infer the construing type. Figure 4.8 shows an example of the
limitation, where the new() operator can’t be used since the IWrapper target
type is not the Wrapper<int> construing type. Hence, the user has to specify the
type with the int type argument, despite the fact that it could be inferred using
the method type inference algorithm adjusted to be used in the object creation
expression binding.

class Wrapper<T> : IWrapper { public Wrapper(T item) { ... } }
...
IWrapper a = new Wrapper<int>(1);

Figure 4.8: C# wrapper class.

Generally, the object creation can be considered a special case of a method
call with a side effect(creating the object), which already has the method type
inference. Figure 4.9 shows a workaround using the Create method, delegating
the creation to the constructor call. Since the method call type arguments can

static Wrapper<T> Create<T>(T item) => new Wrapper<T>(item);
...
IWrapper a = Create(1);

Figure 4.9: Workaround of constructor type inference.

be inferred, it allows the use of the method type inference for inferring type
arguments of construing type. However, this solution has disadvantages like the
necessary boiler-plate and a prohibition of using initializers.

A possible solution would be to use the method type inference in object cre-
ation expression. Although this solution would be simple to implement, class type
parameters are more likely not to be used in constructor parameter types, which
makes the method type inference useless. Besides that, options for inferring type
arguments of the construing type are not limited by not introducing breaking
changes since there is no type inference at all now. So, there is a possibility of
introducing an even stronger type inference, which could be one day introduced in
the method type inference when there would be a way to make breaking changes
in the new compiler version.

Figure 4.10 shows an example of such a generic class whose all type parameters
are not used in the constructor.

class Algorithm<TData, TLogger> where TLogger : Logger<TData>
{ public Algorithm(TData data) { ... } }

Figure 4.10: Use case using type parameter constraints.
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Because of that, extending the potential method type inference algorithm to
be used in object creation expressions would be useless since the TLogger can’t
be inferred only from parameter types.

Introducing improved type inference based on the method type inference al-
gorithm would solve the mentioned issues. Figure 4.11 shows a potential usage
of that type inference in the first case regarding the Wrapper class where an un-
derscore is used to represent an inferred type argument. The inference uses the
parameter type of the constructor to infer the T parameter type which is int.

class Wrapper<T> : IWrapper { public Wrapper(T item) { ... } }
...
IWrapper a = new Wrapper<_>(1);

Figure 4.11: Constructor type inference: Wrapper.

Figure 4.12 shows a potential extension of the type inference. There is the
Algorithm class definition containing two type parameters representing the type
of data and logger used by the class. The first statement of initializing the alg
variable uses type inference, leveraging the TLogger’s constraint to determine its
type. Now imagine that there is the SpecialLogger class that is intended to be
used as a logger. The second statement demonstrates the possibility of having a
nested underscore, which allows to specify the type of logger without providing
its type argument.

class Algorithm<TData, TLogger> where TLogger : Logger<TData>
{ public Algorithm(TData data) { ... } }
...
var alg = new Algorithm<_, _>(new MyData());
var algWithSpecialLogger =

new Algorithm<_ , SpecialLogger<_>>(new MyData());

Figure 4.12: Constructor type inference: stronger method type inference.

From now on, thesis calls constructor type inference for introducing such a
type inference.

4.3 Requirements
The following requirements should be fulfilled by the solution to make it more
likely to be discussed by LDT.

Backward compatibility is one of the most important requirements for
new language features. The improvement shouldn’t introduce a breaking change.
However, this requirement is sometimes too strict for improvements, which would
be very beneficial, and its breaking change would appear in cases that seem to
be rare in the code. These improvements can break backward compatibility by
providing additional warnings or errors alerting a user of possible code behavior
changes. Figure 4.13 shows an introduced breaking change when record classes
were added into the C# language. Before the change, the B identifier referred
to a method without parameters and returned the type named record. After
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the change, the B identifier refers to a new record type declaration. There is an
example where the breaking change can appear when there is a type with the
record name. These situations are uncommon, and the improvement benefit was
big enough to be added to the language. The possible breaking change is notified
to the user by a compilation error.

class record {}
class A {

record B() { ... }
}

Figure 4.13: C# record class breaking change.

Convenience is a key requirement to make the improvement useful. Regard-
ing the partial type inference, the improvement should propose a convenient way
to skip ambiguous type arguments. The way should also be possible to use in
different places where skipping type arguments could yield an advantage, like the
type variable declaration or casting to a different type. The constructor type
inference should be advanced enough to cover the mentioned examples in the
previous section.

Extensibility would make the improvement open for new features that can
be needed in future language versions. The improvement should consider possible
future improvements and not be a blocker for them.

Performance is a critical part of Roslyn and which is one of the main goals
of this project. The time complexity added by the thesis’s improvement shouldn’t
be too big in order to not slow the compilation process.

4.4 Summary
Three possible improvements of type inference were introduced based on the
mentioned motivation, where was identified main weaknesses of the current type
inference. Then, several requirements were created to achieve the fourth goal
of the thesis, which is to make the proposal likely to be discussed by LDT.
Based on the requirements, the first improvement introducing breaking change
was excluded. The remaining two improvements seem to fulfill the requirements,
and they will be further proceeded in the following section with focusing on not
breaking any mentioned requirements.
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5. Language Feature Design
The previous chapter determined two improvement directions that would be bene-
ficial to explore. This chapter continues with exploring these directions consisting
of the partial method type inference and the constructor type inference. The goal
of this exploration is to precisely design the improvements that are used afterward
as the content of the mentioned proposal for LDM and implemented in Roslyn.

We take the language change suggestions, mentioned in the Langauge Design
GitHub Issues section 3.4, as an inspiration for the improvements and divide them
into three following groups. Suggestions in the first group, given below, regard
improving the method type inference algorithm and are used in the constructor
type inference mentioned later.

1. Target-typed inference mentioned in Section 3.4.6

2. Type inference based on constraints mentioned in Section 3.4.7

The following second group consists of suggestions describing general partial type
inference which relate to both improvements.

1. Default type parameters mentioned in Section 3.4.2

2. Generic aliases mentioned in Section 3.4.3

3. Named type parameters mentioned in Section 3.4.4

4. Inferred type argument mentioned in Section 3.4.5

5. Relocation mentioned in Section 3.4.9

The third group contains suggestions introducing type inference in new C# con-
structs. The first suggestion describes the second improvement which is explored
further and the second suggestion is mentioned in the last section of this chapter
as a potential future improvement that will be difficult to implement and which
is not in the scope of this thesis.

1. Constructor type inference mentioned in Section 3.4.10

2. Inferred method return type mentioned in Section 3.4.8

5.1 Partial Method Type Inference
The partial method type inference occurs in the second group where various
techniques are used to allow specify only some type arguments in the generic
method call. These techniques are discussed below.

The disadvantage of default type parameters 3.4.2 is that it requires to provide
the defaults in the type parameter declarations. It is problematic since the old
code has to be changed to allow skipping the type arguments which have defaults.
For this reason, the thesis excludes this suggestion.

Generic aliases 3.4.3 don’t work for methods. There could be something
like a generic alias for a method using a similar syntax as for the type which
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would allow to give defaults for some type parameters. However, it would still
need additional declarations to provide these aliases and we don’t think that it is
flexible enough since it requires a new declaration for each method call scenario,
where is beneficial to omit a type argument.

Named type parameters 3.4.4 are excluded since providing that would be an
uncommon new feature that has no equivalent in other well-known languages like
Java, C++, Kotlin, and Rust. We believe it would be confusing to introduce it
to the users since it is a controversial change.

The suggestion of representing inferred type arguments 3.4.5 looks promising.
It is already used in different languages, like a star symbol in Kolin and Java
or an underscore in Rust and F#. So, it is more common and intentional than
other mentioned suggestions. It introduces no or at least minimal syntax changes
into the language, which makes the usage simple, and it solves the problem of
specifying all type arguments. This suggestion is a core of the partial method
type inference improvement.

Relocation 3.4.9 doesn’t solve the problem of specifying all type arguments.
It just compacts type argument lists into one.

5.1.1 Syntax
The syntax has to be chosen to allow a user to represent type arguments that
have to be inferred by the compiler. The choice of the syntax should be based on
the following conditions:

1. the usage should be intuitive for a user,

2. a future extension of type inference should reuse the syntax, and

3. it shouldn’t introduce the breaking change.

We identified five use cases that use the syntax in different situations to help
reasoning about advantages and disadvantages of different syntax alternatives
which are presented in the mentioned GitHub issues and discussions. Table 5.1
shows the use cases and their examples in the current C# language version.

Use case Example
Type argumens of generic method Foo<Type1, ...>(...)
Type arguments of generic type new Bar<Type1, ...>(...)
Variable declaration int temp = ...
Array type int[]
Nullable type int?

Table 5.1: Use cases helping to choose the syntax.

Type argumens of generic method use case represents a situation where
a user wants to skip type arguments which can be inferred by the compiler and
wants to specify just the ambiguous type arguments.

Type arguments of generic type use case represents a situation where
a user wants to infer either all type arguments of the generic type or to specify
ambiguous type arguments and let the compiler infer the rest. The syntax doesn’t
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have to be bound to the shown object creation expression example, but it can be
also used on other potential places like a variable declaration, type casting, or a
type argument of a generic method. The description of the syntax behavior in
other places than an object creation expression and a generic method call is not
in the scope of this thesis. However, the syntax is considered since it is a natural
future continuation to use type inference on new places in the language.

Variable declaration use case represents a situation where a user wants
to infer a type of variable that is declared. This use case already has the var
syntax and reminds the secondary ability of the var keyword representing an
inferred type of the declared variable. Because of that, the new syntax shouldn’t
be allowed to be used in this situation.

Array type use case represents a situation where a user should be able to
use the syntax to represent an array type whose element type should be inferred
by the compiler.

Nullable type use case represents a situation where a user should be able to
hint to the compiler a nullability of a type that should be inferred.

We continue with presenting syntax alternatives found in the mentioned
GitHub discussions and comparing their advantages and disadvantages in the use
cases mentioned above.

Diamond Operator

The diamond operator syntax consists of a pair of two angle brackets <>.
In the context of the first use case, the syntax is used after the generic method

name instead of the type argument list. The semantics of the operator is to
determine that the method name is generic so the compiler will consider only
generic methods during overload resolution. Figure 5.1 shows an example of the
syntax used in the Foo method call. Since it doesn’t allow to skip inferable type
arguments, we don’t see it as a good candidate for the feature.

Foo<>(arg1, ...);

Figure 5.1: Type argumens of generic method use case.

In the context of the second use case, the syntax is used after the generic
type name instead of the type argument list. The semantics of the operator is
to determine that the type is generic so the compiler will look up only generic
types. Figure 5.2 shows the usage in the object creation expression where the
type arguments of the Bar type should be inferred by the compiler. As we can

class Bar { ... }
class Bar<T1> { ... }
class Bar<T1, T2> { ... }
...
new Bar<>(...);

Figure 5.2: Type arguments of generic type – ambiguity.

notice, it is not clear, where the compiler should find constructors for overload
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resolution since the Bar<> syntax can represent multiple types differing in type
parameter’s arity. Probing all options for the constructors seems complicated
because it requires a significant change in the Roslyn implementation and it
will influence the compile time because of the increased overloading resolution
complexity.

On the other hand, it is common to have just one type without multiple
variations of type parameter’s arity in the current name scope. Figure 5.3 shows
an example where an object representing a dictionary is created. The compiler
can check if there is just one generic type with this name in the current scope.
If it is, the problem with ambiguity disappears and the compiler can try to infer
the type arguments. We think that it is a beneficial usage since it allows to turn
on type inference of object creation expression. Extending the current overload
resolution during object creation expression binding to consider generic types
when the type doesn’t contain the type argument list can’t be used instead of it
since it would cause a breaking change. The syntax can be used in other places

new Dictionary<>(...);

Figure 5.3: Diamond operator – object creation expression.

too, however, we don’t see any practical usage for that.
The third use case is not considered since there is already the var keyword.
In the context of the fourth use case, the syntax determines that a user wants

to infer an element of an array. Figure 5.4 shows an example, where there is the
temp variable declaration of the array type whose element should be inferred. We
think, that the meaning of this syntax is not clear to a user in comparison to the
previous use case where it reminds the type argument list.

<>[] temp = ...

Figure 5.4: Diamond operator – array type.

In the context of the fifth use case, the syntax should represent a nullable type
which is inferred by the compiler. Figure 5.5 shows an example, where a user
wants to infer the type of the declared temp variable and hints to the compiler
the nullability of that type. We don’t think that the usage is intuitive for that
and we exclude it.
<>? temp = ...

Figure 5.5: Diamond operator – inferred nullable type.

We think that the diamond operator would be beneficial only in the second use
case where it turns on the type inference of object creation expression. The sym-
bol already means a generic type with one type argument in the typeof(Bar<>)
expression which has a conflict with the new semantics in the context of object
creation expression. However, we think that the context of reflection and object
creation expression are distinct enough to use the symbol for a different meaning
as we can see in other language constructs. We think that the advantage of the
syntax in this use case is that it still reminds the type argument list and it is not
verbose.
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Commas Separating Nothing

In the context of the first use case, the syntax omits type arguments that should
be inferred by the compiler and specifies just ambiguous type arguments using
commas as a separator. Figure 5.6 shows an example where the syntax is used
to call the Foo method with three type arguments. The first and third type
argument are inferred by the compiler and the second type argument is specified
by a user as the int type. There are the following advantages of this syntax. It

Foo<, int,>(arg1, ...);

Figure 5.6: Whitespace – generic method call.

determines the arity of the called generic method. The syntax is already used
in the typeof() operator where commas are used to determine the arity of the
reflected type. It allows specifying just ambiguous types. Although the syntax is
a good candidate, we think that skipping the type arguments by nothing makes
the code comprehension of the code worse since it makes it difficult to determine
the position of the type arguments at first sight.

The syntax has the same use and meaning in the second use case.
In the context of the fourth use case, the syntax omits the type of a array.

Figure 5.7 shows the syntax where the first statement means a declaration of the
temp variable which has a type of array whose element is inferred by the compiler.
The second statement uses the syntax to hint to the compiler that the second
type argument should be an array type. We think that the usage in this use case
is unintuitive.

[] temp = ...
Foo<,[],>(arg1, ...);

Figure 5.7: Whitespace – array type.

In the fifth use case, the syntax makes it difficult to append the ? mark since
it doesn’t have any placeholder. There is the same problem as mentioned above.

Although the syntax is a good candidate in the first and second use cases, it is
not suitable for the array types and nullable types. We consider this disadvantage
important and exclude the syntax.

Commas Separating Underscores

The syntax uses an underscore to represent a type that has to be inferred by
the compiler. The syntax is commonly used in other programming languages like
F# or Haskell to represent inferred type arguments which is considered as an
advantage. Although it has different semantics in C# where it can also mean
a discarded variable. We don’t think it makes the usage of that unintuitive or
confusing in the following use cases.

The usage of the syntax in the first use case is similar to the previous syntax
where omitting the type arguments is done by using the underscore. Figure
5.8 shows the same Foo method using underscores to represent the first and third
type argument as an inferred argument. We think that the underscore placeholder
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Foo<_, int, _>(arg1, ...);

Figure 5.8: Underscore – generic method.

helps to identify type argument positions in comparison with the previous syntax
variant.

The syntax has the same use and meaning in the second use case.
In the context of the fourth use case, the syntax seems to be more intuitive

than in the previous syntax variant. Figure 5.9 shows the declaration of the temp
variable whose type is an array with the inferred element’s type.

_[] temp = ...

Figure 5.9: Underscore – array type.

The fifth use case is shown in Figure 5.10 where it uses the ? syntax to
express that the inferred type of the temp variable has to be nullable.

_? temp = ...

Figure 5.10: Underscore – nullable.

A disadvantage is the introduction of breaking change because C# allows the
underscore as a type identifier. However, we don’t think that it is a blocker since
a similar change was done with the discards and the potential change behavior is
easily discoverable.

Commas Separating var Keywords

The var keyword representing the placeholder is another natural option of the
syntax. The usage and meaning of the syntax is similar to the previous syntax
variant except for replacing the underscore with the var keyword. Figure 5.11
shows the usage of var in the generic method call where the first and third type
argument has to be inferred by the compiler. An advantage is the already used

Foo<var, int, var>(arg1, ...);

Figure 5.11: var – generic method.

var keyword in a variable declaration where the secondary meaning of it is that
it represents an inferred type. On the other hand, it also means that a variable
declaration which can be confusing. Another disadvantage is the syntax size
which seems to be too long for this purpose. We exclude this variant based on
these several issues.

Commas Separating “Something Else”

A different placeholder for the inferred type arguments doesn’t make a lot of sense
because we think that it would be less intuitive than already mentioned syntax
variants.
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Conlusion

The thesis chooses the underscore as a placeholder for the inferred type argument
since the meaning of this character is related to the intention. Table 5.2 reuses
Table 5.1 to show the usage of the underscore placeholder. The first two examples
use the underscore placeholder in the type argument list. We can notice that the
underscore placeholder can be nested and it can be used as an inferred type
of array’s element. The question mark can be also used with the underscore to
represent a nullable type which has to be inferred by the compiler. We prohibit to
use the underscore placeholder in the variable declaration since the var keyword
should be used for this purpose.

Use case Example
Type argumens of generic method Foo< , Baz< , []>, ?>(...)
Type arguments of generic type new Bar< , Baz< , []>, ?>(...)
Variable declaration Not applicable
Array type []
Nullable type ?

Table 5.2: Use cases utilizing the underscore placeholder.

We think that the underscore is the shortest and synoptical way to skip in-
ferred type arguments based on the exploration of syntax alternatives given above.
The possible breaking change is not an obstacle in this situation since a similar
decision was made for the var keyword, and the situation where it can occur
seems to be rare. Although the diamond operator is not very useful in a generic
method call, it makes sense in an object creation expression. The potential usage
and analysis of that is covered later in this thesis.

5.1.2 Method and Typename Lookup
The previous section presented the proposed syntax for skipping inferred type
arguments using an underscore as a placeholder. This section continues with
determining what the expression containing the syntax means for the compiler.

Since an underscore character is a valid type identifier in C# and there is
1:1 mapping of inferred type arguments to these placeholders, determining the
referred generic method containing the proposed syntax is almost unchanged.
A change is in the overload resolution where if the generic method is partially
inferred, meaning it contains the syntax, the type inference has to be done to
determine the type arguments of that method.

An underscore can be represent a nullable or non-nullable type. If the in-
ferred type argument has to be a nullable type, the metioned ? operator can be
appended to the underscore. Figure 5.12 shows an example of using the nullable
operator. The call of the Foo generic method has three type arguments where the
first is inferred by the compiler and which has to be nullable. The second type
argument is the List< > type, containing an inferred nullable type argument as
well. The third type argument doesn’t require the nullable type, so the inferred
type can be either nullable or non-nullable.
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Foo<_?, List<_?>, _>(arg1, arg2, arg3);

Figure 5.12: Inferring nullable type argument.

The typename lookup is almost unchanged. If there is an underscore referring
to an inferred type argument, it simply ignores the binding of this identifier.

The underscores contained in the type arguments are handled in the changed
method type inference algorithm mentioned in the following section.

5.2 Method Type Inference Algorithm Change
The thesis extends the method type inference 2.4 by introducing new type vari-
ables, which represents inferred type arguments contained in the type argument
list. Firstly, if a generic method call doesn’t contain a type argument list, the
method type inference is unchanged. The change is when the generic method is
partially inferred. Figure 5.13 shows an example of a partially inferred method
Foo containing two type parameters. The former algorithm identifies the type
arguments as type variables for which it tries to find a unique type. The algo-
rithm can be extended to represent placeholders for inferred type arguments as
type variables, too. Using the example, all three underscores would be repre-
sented as three unique type variables besides those representing T1 and T2 type
parameters. However, this extension also has to be respected by the order of type
variables fixing and inferring. A reason can be seen in the T2 type variable. The
Dictionary< , > is considered as a bound for the type variable, which has to be
respected. However, this bound contains other type variables which doesn’t have
to be known yet. So, the algorithm has to first fix the type variables contained
in that bound and then infer the T2 type variable. The second observation for
this extension is a way of collecting the bounds. Since type variable bounds can
contain other type variables, it is necessary to propagate the relation between the
bounds at the time of adding new bounds. An example of this can be demon-
strated using the given Figure 5.13. The Dictionary< , > is a bound of the T2
type variable. Its second bound is a type of the p2 argument. This type gives us
bounds for type variables contained in the Dictionary< , > bound, which have
to be propagated.

Foo<_, Dictionary<_, _>>(arg1, new Dictionary<int, int>());

void Foo<T1, T2>(T1 p1, T2 p2)

Figure 5.13: Partially inferred method call.

5.2.1 New Definitions
The proposed algorithm uses three new definitions which are given below.

Definition 5 (Inferred type argument). Inferred type argument is a type argu-
ment which is inferred by the compiler and is represented as the symbol in a
type argument list.
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Definition 6 (Shape dependence). An unfixed type variable Xi shape-depends
directly on an unfixed type variable Xe if Xe represents inferred type argument
and Xe is contained in shape bound of the type variable Xi. Xi shape-depends
on Xe if Xi shape-depends directly on Xe or if Xi shape-depends directly on Xv

and Xv shape-depends on Xe. Thus shape-depends on is the transitive but not
reflexive closure of shape-depends directly on.

Definition 7 (Type dependence). An unfixed type variable Xi type-depends di-
rectly on an unfixed type variable Xe if Xe occurs in any bound of type variable
Xi. Xi type-depends on Xe if Xi type-depends directly on Xe or if Xi type-
depends directly on Xv and Xv type-depends on Xe. Thus type-depends on is
the transitive but not reflexive closure of type-depends directly on.

5.2.2 Algorithm Phases
The required change of the algorithm is presented as an algorithm divided into
three sections, which is based on the former method type inference. Figure 5.14
shows the beginning, the first, and second phases. The first step is to identify all
type variables, which would be an objective of the type inference. This is done by
the getAllTypeVariables function, which replaces the underscore placeholders
in the provided type arguments (If the type arguments were provided) with new
type variables and joins them with type variables representing type parameters
of the method. Besides the already known three types of bound, the algorithm
adds shape-bound representing a type argument given in the type argument list.

The reason for a new type of bound is the following. When a user provides
the type argument, the algorithm should infer the exact same type. None of the
already introduced type bounds offers this feature. An example of this need is
described by a potential scenario when there is the string? type as a type argu-
ment. When the compiler treats nullability, it should infer the nullable type(not
string). Imagine that the provided type argument would be added as an exact
bound. It can happen that the type variable will contain another exact bound,
which will be the non-nullable version of the type. The current implementation
will infer the string type although it should fail since these types are not equiv-
alent in nullable-aware code. The behavior of the exact bound can’t be changed
because of breaking changes, so we have to add a new bound to reflect this need.

FirstPhase collects shape bounds from the provided type argument list before
the initial collection of bounds from the argument list. The referring
InferShapeBound is described later with the rest of inferring methods.

SecondPhase now respects newly added dependencies, which forces to infer
type variables in the correct order. If there are no type variables that are inde-
pendent, the algorithm relaxes the condition for type variable fixation to break
the possible circular dependency, which still has a chance to be resolved. In com-
parison to the former algorithm, the relaxation still has to respect shape-depends
on relation. The reason for that is to prohibit inferred type from being different
from the provided “shape” in the type argument list. Additionally to allow type
variable fixing, at least one bound mustn’t not contain an unfixed type variable.
This requirement ensures at least one type candidate, which can be the inferred
type argument.
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1 Input: method call M<S1,...Sn>(E1,...Ex) and
2 its signature Te M<X1,...,Xn>(T1 p1,...,Tx px)
3 Output: inferred X1,...Xn,...Xn+l

4 Blower = Bupper = Bexact = Bshape =F = []
5 TV = getAllTypeVariables(X, S)
6 FirstPhase()
7 SecondPhase()
8
9 fn FirstPhase():

10 S.foreach(s -> InferShapeBound(s, T[s.idx]))
11 ...here continue as the former method type inference
12
13 fn SecondPhase():
14 while (true):
15 TVindep = TV .filter(x →
16 F[x.idx] == null && TV .any(x →
17 dependsOn(x, y) && shapeDependsOn(x, y)
18 && typeDependsOn(x, y)
19 )
20 )
21 TVdep = TV .filter(x →
22 F[x.idx] == null && TV .any(y →
23 (dependsOn(y, x) || shapeDependsOn(y, x)
24 || typeDependsOn(y, x))
25 && !TV .any(t → shapeDependsOn(x, t))
26 && (Blower+Bupper+Bexact+Bshape).any(b →
27 !b.containsUnfixedTypeVariable
28 )
29 )
30 )
31 ...here continue as the former method type inference

Figure 5.14: Phases of new Method Type Inference

5.2.3 Collecting Type Bounds
Figure 5.15 shows three adjusted inferences, adding new bounds, and presents
a new InferShape inference. The change is in propagating nested type bounds
between type variable bounds. This is done by the Propagate function, which is
invoked after a new bound is added. It iterates over all bounds of the type variable
and makes additional type inferences for each bound containing an unfixed type
variable checked by the containsUnfixedTypeVariable property. This step will
ensure that the unfixed type variable will receive all bounds which are associated
with it. Using mentioned example 5.13, this phase propagates the int type
bounds contained in the Dictionary<int, int> type of the provided argument
to the underscores representing type variables in the Dictionary< , > type
argument. Since the design of the algorithm always adds type bounds received
from the left argument of algorithm’s functions to the type variable obtained
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from the right argument of algorithm’s functions, the inference has to be done for
each transposition of the pair of the added bound and an already collected type
variable bound.

1 fn Propagate(Type U, int typeVariable) {
2 setOf(Bshape[typeVariable],
3 Blower[typeVariable],
4 Bupper[typeVariable],
5 Bexact[typeVariable]
6 ).foreach(b →
7 if (b.containsUnfixedTypeVariable) InferHelper(U, b)
8 if (U.containsUnfixedTypeVariable) InferHelper(b, U)
9 )

10 }
11
12 fn InferExact(Type U, Type V):
13 if (TypeVariable t = TV.find(x → V == x && F[x.idx] == null) &&
14 !Bexact[t.idx].contains(U)) {
15 Bexact[t.idx].add(U)
16 Propagate(U, t.idx)
17 }
18 ...here continue as the former method type inference
19
20 fn InferLower(Type U, Type V):
21 if (TypeVariable t = TV.find(x → V == x && F[x.idx] == null) &&
22 !Blower[t.idx].contains(U)) {
23 Blower[t.idx].add(U)
24 Propagate(U, t.idx)
25 }
26 ...here continue as the former method type inference
27
28 fn InferUpper(Type U, Type V):
29 if (TypeVariable t = TV.find(x → V == x && F[x.idx] == null) &&
30 !Bupper[t.idx].contains(U)) {
31 Bupper[t.idx].add(U)
32 Propagate(U, t.idx)
33 }
34 ...here continue as the former method type inference
35
36 fn InferShape(Type U, Type V):
37 if (TypeVariable t = TV.find(x → V == x && F[x.idx] == null)) {
38 Bshape[t.idx] = U
39 Propagate(U, t.idx)
40 }

Figure 5.15: Exact inference, Upper-bound inference, Lower-bound inference,
Shape-bound inference
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Table 5.3 shows which inference is called based on the InferHelper’s inputs.
For example, if the U represents the added lower bound and b is an exact bound,
the algorithm calls the InferUpper function. The intuition behind the table is
to respect the relation between the bounds of the type variable. So, for example,
all bounds of lower bounds are lower bounds for exact, upper, and shape bounds
of that type variable and are exact bounds for each other.

Lower Upper Exact Shape
Lower InferExact InferUpper InferUpper InferLower
Upper InferLower InferExact InferLower InferLower
Exact InferLower InferUpper InferExact InferExact
Shape InferLower InferUpper InferExact InfeExact

Table 5.3: Matrix of InferHelper function.

5.2.4 Fixation
Figure 5.16 shows the last part of the changed algorithm, the type variable fix-
ation. The set of candidates is changed to respect the shape-bound ability to
express the exact form of the inferred type argument. So, if the type variable con-
tains a shape bound, the candidate list contains only this type, and other bounds
are used to check if the candidate doesn’t contradict the collected bounds. There
are two notes regarding this step. If there is a shape bound, it doesn’t contain
any unfixed type variables because of the condition in the second phase. Hence,
it will be a valid type argument. It can happen that some bounds will contain
unfixed type variables. In this case, these bounds are removed from the checking
and candidates set.

1 fn Fix(TypeVariable x):
2 Ucandidates =
3 if (Bshape[x.idx] != null)
4 setOf(Bshape[x.idx])
5 else
6 (Blower[x.idx] + Bupper[x.idx] + Bexact[x.idx]).filter(b →
7 !b.containsUnfixedTypeVariable
8 )
9 ...here continue as the former method type inference

Figure 5.16: Fixing of type variables

Observation 3. We want to make sure that the propagation will end. Since the
algorithm doesn’t add the same bound multiple times, the cycle can’t occur.

5.3 Partial Constructor Type Inference
The second improvement explored by the thesis is the constructor type inference
mentioned in the discussion [10]. In addition to the constructor type inference,
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we present partial constructor type inference using underscore placeholders to
represent inferred type arguments in the same way as in the partial method type
inference.

Since the potential suggestions from GitHub discussions can be applied to
the partial constructor type inference, we discuss them again in relation to this
improvement. Problems regarding using default type parameters, generic aliases,
named type parameters, or relocation mentioned in the partial method type in-
ference persist, so either the partial constructor type inference is not based on
them. However, since the inference is not limited by introducing breaking changes
because there is no type inference at all, the type inference can be stronger. The
stronger type inference can be done by using target-typed inference and type in-
ference based on constraint contained in the first group of divided suggestions
presented in the introduction of this chapter. Target-typed inference is useful
because an object creation is usually associated with assigning it to a target.
Type inference based on type constraints provides a wider context for type in-
ference allowing to infer the type arguments based on where clauses in the type
declaration of the created object.

Besides this functionality, the text mentions two additional features that ex-
tends the context of type inference and makes the syntax less boilerplate. After
a discussion with a member of LDT, the additional features are considered to be
controversial. For this reason, the features is presented as a voluntary extension
that can be removed from the core design. The first feature regards using type in-
formation from initializers, which is valuable when creating collections or objects
with the object initializer syntax. The second feature uses the diamond operator
to turn on the constructor type inference in cases when the compiler can surely
determine the referring generic type without knowledge about the arity.

5.3.1 Syntax
The choice of syntax is the same as in the partial method type inference. Figure
5.17 shows a simple usage where the underscore represents the inferred type
argument. This argument is deduced using a type received from the t variable
declaration which determines the int type to be the inferred type argument.

List<int> t = new List<_>();

Figure 5.17: Syntax of the partial constructor type inference.

Similar to the partial method type inference, the ? operator is allowed to
append to determine the type nullability of the inferred type argument.

5.3.2 Typename Lookup
The typename lookup is done in the same way as in the partial method type
inference. The binding of the underscore identifier is skipped. The underscore
represents an inferred type, which has to be resolved during type inference. The
inferred arguments are allowed only in the argument list of the type containing
the called constructor. So, if there is a generic type containing a nested class that
is being created, the type arguments of the generic class have to be provided. This
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limitation is shown in Figure 5.18, where the first statement is invalid since it
contains inferred type arguments in the GenericWrapper identifier, which doesn’t
contain the called constructor. However, the second statement is valid because
inferred type arguments are only in the CreatingClass identifier, which contains
the called constructor.

new GenericWrapper<_>.CreatingClass<_>(arg1,...); // Not allowed
new GenericWrapper<int>.CreatingClass<_>(arg1,...); // Allowed

Figure 5.18: Allowed inferred type arguments.

5.3.3 Argument Binding
The target-typed inference mentioned in Section 3.4.6 complicates the binding
of the arguments. When a target is an assigned variable or a return statement,
the type of the target is given by the declaration of the variable or method’s
return type. However, when the target is an argument of the other method, the
type doesn’t have to be known during the argument’s binding yet if the method
is generic. Figure 5.19 shows a scenario when, at the time of binding the Foo
creation expression, the target type is unknown because the binding order is
from the constructor’s arguments to the constructor call. Without the target
type, Foo’s type argument can’t be inferred. The Bar creation expression should
be bound first, which would infer the type of the first parameter, which could be
used as a target type of the Foo creation expression.

class Bar<T> {
public Bar(Foo<T> arg1, T arg2) {}

}
class Foo<T> {}
...
new Bar<_>(new Foo<_>(), 1);

Figure 5.19: Target as an argument.

The need to postpone the argument binding relates to Section 2.3.2 regarding
the target-typed new() operator. Roslyn binds the operator in the following
way. The operator is bound as an unconverted bound element which needs to be
converted in the future. When the right overload of the method is chosen, Roslyn
has to generate the necessary conversions of these arguments, which don’t have
an identical type as the corresponding parameter. At that time, the operator is
converted by using the already-known target type. The result of the conversion
is the binding of the object creation expression, which type is the target type. Its
arguments are contained in the type operator’s argument list. The improvement
is inspired by that.

When there is an object creation expression as an argument, and the argu-
ment is not needed for the inference success(the corresponding parameter doesn’t
contain a type parameter), a similar unconverted bound element is created. Oth-
erwise the argument is bound without the target type. After the overload reso-
lution, when the types of parameters are known, and the necessary conversion is
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started to be created, the unconverted object creation expression is tried to be
bound with the already known target type. The compiler has to be careful here.
It has to bind the object creation expression with and without a target type no
more than once to prevent exponential time of binding.

Figure 5.20 shows a scenario where if the compiler does not do that, it will
cause an exponential time of binding the expression. Since the constructor of the

class Bar<T>{
public Bar(Foo<T> arg1, T arg2){}
public Bar(Foo<T> arg1, List<T> arg2){}

}
...
new Bar<_>(new Bar<_>(null, null), 1);

Figure 5.20: Potential exponential time of binding.

Bar type is overloaded, the overload resolution has to check these two overloads.
Each of these checks includes binding of arguments, type inference, and checking
of the applicability of bound arguments on the inferred constructor. Since the
binding of arguments contains binding of the similar object creation expression,
it will make the same overload resolution containing all overloads of the construc-
tor. The target type can’t be provided here because the type argument is still
unknown. When the binding of this argument is unsuccessful, the argument will
be represented as an unconverted bound element and will be bound later after
the resolution. This failure will happen for each overload resolution, which wastes
time because it does the same computation multiple times. After the outer object
creation expression is inferred using the type of the second argument, it will con-
vert the inner object creation expression by providing the target type, which will
finally resolve the object creation expression. This repeating failure would not be
problem for the new() operator since it is cheap to express it automatically as an
unconverted bound expression. However, it is a problem for binding the object
creation expression which can take long time.

The following observation offers a way to avoid it. The arguments can be
bound before the overload resolution without target types. The arguments’ bind-
ings, which will fail due to missing target type information will be bound after
the overload resolution when a final used overload will be choose. This strategy
binds each expression no more than twice.

5.3.4 Type Inference Algorithm
The previously mentioned partial method type algorithm 5.2 is unchanged except
for collecting new bounds in the first phase of the algorithm. If a target type is
provided, the upper bound type inference is made from it to the partially inferred
type containing the constructor. If the inferring type contains the where clause
containing type parameter constraints, for each of the type constraints which
represent either inheritance constraints or interface implementation constraints
is performed the lower bound type inference from it to the corresponding type
parameter.
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Figure 5.21 shows an example of the partial constructor type inference, where
both of the type arguments of the Bar type are inferred. The algorithm will
create four type variables. The first two variables will represent type arguments,
and the second two variables will represent the underscores. In the first phase,

interface IBar<T> {}
class Bar<T1, T2> : IBar<T1> where T2 : object {}
...

IBar<int> t = Bar<_, _>();

Figure 5.21: Example of type inferences.

the lower bound type inference is made from the IBar<int> type to the Bar< , >
type, which will yield in the int lower bound of the type variable representing
the first underscore. Then, the type constraint of the T2 type parameter causes
another lower bound type inference from the object type to the type variable
representing the T2 type parameter. Shape inference will relate type variables
representing underscores with type variables representing type parameters. Then,
the fixation will be made, and it will result in the Bar<int, object> inferred
type.

5.3.5 Initiliazer Extension
Initializers can be a part of the object creation expression, which allows us to use
it as another source of type information. As the thesis mentions in the previous
chapter, initializers are a syntax sugar. In the case of an object initializer, it
represents a field assignment. If the field declaration contains a type parameter,
the type of initializer element can be used to deduce the type parameter. Figure
5.22 shows an example of an initializer when the Bar’s type argument int can be
deduced using type information from the initializer. Since the Field declaration
type is the T type parameter and the int value is assigned to that field in the
initializer, the compiler can deduce that the type argument is int. The improve-
ment would allow this inference by performing the lower bound type inference
for each item in the initializer. The inference would be made from the type of
assigning expression to the type of the field’s type declaration.

class Bar<T> {
public T Field;

}
...
new Bar<int>{ Field = 1 };

Figure 5.22: Object initializer.

A similar deduction can be made with array initializers where the element’s
type is inferred. The improvement would allow it by performing the lower bound
type inference for each item in the initializer list. The inference would be made
from the type of assigning expression to the inferred type of array’s element.
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However, collection initializers have been shown to be a little tricky. Since it
is a syntax sugar for calling the special Add method for each element, the method
can be overloaded. The previous section regarding Hindley-Millner type inference
mentions that overloading can cause an exponential time of the type inference
computation because it has to reason about each overload separately from the
rest of the inferred bounds. To prevent slow compilation because of this issue, the
improvement would allow the use of the information for the initializers in the case
where the Add method is not overloaded. This limitation seems to be reasonable
since a lot of collections from the standard library don’t overload the method.
When there is no overload, the issue with the time complexity disappears. So
when the Add method is not overloaded, the first phase of the type inference
algorithm would additionally make the lower bound inference for each item in
the initializer. The inference would be made from the type of the expression to
the type of method parameter.

The last initializer type regards indexers. Since indexers can be considered as
a special case of methods that can be overloaded as well, the same process would
be made.

5.3.6 Diamond Operator Extension
Since the partial constructor type inference is invoked when the creating type
contains inferred type arguments in its type argument list, it can feel like a
boilerplate when all type arguments are inferable. Figure 5.23 shows an example
of creating the Dictionary generic type whose all type arguments can be inferred
using the target type. Although C# allows the definition of generic types with
the same name and different arity, there are a lot of situations where the type-
name represents only one type in the current scope. In the given example, the
current scope contains only one generic definition for the Directory typename,
so specifying the arity in the example is redundant in this case.

System.Collections.Generic;

IDictionary<int, string> t = new Dictionary<_,_>();

Figure 5.23: Redundant specification of arity.

For these use cases, where the compiler can confidently choose a generic type
without looking at the arity, the diamond operator can be used to turn on the
type inference. Figure 5.24 shows the usage of the diamond operator with the
Dictionary type. Supposing that there is no other definition of Dictionary type
with a different arity in the current name scope, the compiler can assume that the
referring type is the System.Collections.Generic.Dictionary<,> type from
the standard library.

IDictionary<int, string> t = new Dictionary<>();

Figure 5.24: Diamond operator.
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5.4 Partial Type Inference During Dynamic
Member Invocation

Inferred type arguments can appear in an expression containing a dynamic value
which is still checked by the compiler in the limitted way mentioned in the C#
Programming Langauge chapter 2.2. We have to adjust this check to reflect the
described improvements. The compiler checks three relevant expression types
containing the dynamic value as an argument. It is a static method invocation,
instance method invocation whose receiver is not a dynamic value, and object
creation expression. For each candidate of this kind, a modified parameter list
and argument list are created to be checked for applicability. If there is no
candidate for which the test succeeds, a compile-time error occurs.

The modified parameter list is created in the following way. If the candidate
is a generic method and type arguments were provided, it substitutes them in
the parameter list. Then, all parameters that include a type parameter are elided
with corresponding arguments. The resulting set of parameters and arguments
are checked for the applicability.

The improvement adjusts the modified parameter list of partially inferred
methods by substituting only these type arguments, which don’t contain any
inferred type arguments. The same process is made in object creation expression,
where the substitution is made on the type containing the constructor candidate.
It also announces a warning about using partial type inference in late-binding,
which is not supported since it is handled by the runtime. There are situations
where the runtime is able to infer type arguments even with used underscores in
the type argument list. Figure 5.25 shows an example where the Foo method is
inferred by runtime because inferred type arguments are inferrable in the runtime.
These situations are valid, and hence, the compiler should just warn about them.

void Foo<T1, T2>(T1 arg1, T2 arg2) {}
...
dynamic t = ...
Foo<_, _>(t, 1);

Figure 5.25: Runtime type inference.

5.5 Other Type Inference Improvements
Besides the proposed improvement described above, we touched on surrounding
areas of type inference during the initial problem exploration. The chapter gives
a couple of thoughts about touched areas since they were also investigated and
can be a future extension of the C# programming language.

5.5.1 Shared Type Inference Context
C# currently has a local type inference preventing advanced type inference. The
next big improvement of the type inference would be to provide global type
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inference using inferring contexts similar to Rust. However, since it would bring
a breaking change, it would require an additional tool that would patch the
old code to work in the same way compiled with the new type inference. This
refactoring can be challenging, so at least it should warn the user about possible
behavior changes in each place where it can occur.

5.5.2 Inferring Return Value of Methods
The thesis already mentioned the possibility of inferring the return value type
of the method, which can be beneficial for writing a simple method whose name
indicates the return value, helping a reader to understand the code. An example
of the function can be ToString, which indicates that the return value is the
string type.

This language feature can be seen in the Kotlin programming language, which
allows the definition of a method without a return type if the method is exactly
one expression. The Kotlin language is a strongly typed language developed by
JetBrains. Kotlin’s main target is JVM, and its goal is to be an alternative to
Java with excellent interoperability between these languages to use them almost
interchangeably in one project. Because of that, it has a similar type system
as Java, which is not far away from C#. Figure 5.26 shows an example of the
MyClass definition containing the toMyString method definition. The signature
consists of the fun keyword, the name, and the equal sign followed by one ex-
pression. The method’s return type is inferred based on the expression’s return
value.

class MyClass {
fun toMyString() = "TEXT"

}

Figure 5.26: Kotlin return type inference.

Although C# can infer the return type of an anonymous function, it can’t
infer the return type of a method definition. The main obstacle is an order of
compilation and possible multithreaded compilation. The Roslyn compiler first
finds all definitions in the program, which allows it to compile methods separately
in different threads. This architecture has two consequences.

The first consequence is that the compiler can start the methods’ bodies com-
pilation in parallel since a method’s content consists of only types and methods
defined in the program, whose signatures are already known thanks to the previ-
ous phase. So, the compiler knows the exact return types of the used functions,
which allows it to do a type check.

The second consequence is that it can’t infer the method’s return type because
it requires the compiled method body. This is the difference between methods
and anonymous functions which are expressions. So, the compiler can infer the
return type of the anonymous function by compiling its body in the same phase,
which is not the case in the method definition.

Kotlin divides the method compilation into two groups, as it is described in
the video [19] regarding Kotlin compiler architecture. The first group contains
methods without a return type, which is compiled first in a single thread. This
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will allow to obtain all signatures for these methods in the program. Obviously,
if these methods are recursions, the compiler can’t infer the return type, and an
error occurs. The second group contains methods with a return type, which can
be compiled in multiple threads since all method signatures are already known.

Although this implementation would be possible in Roslyn as well, it would
require a large number of changes. Instead of that, C# could allow inferring
return in a local function, which is a function defined inside a method body and
can be used only inside the method. There are two benefits of it. The main
architecture of the Roslyn compiler doesn’t have to be changed since the method
is compiled by one thread, and the local functions can’t be used outside. Local
functions are usually tied with the method implementation, and the return type
is not contained in the public API, so a reader shouldn’t need to know the return
type till the time when he/she wants to explore the inner implementation, which
gives him/her a context to deduce the return type by himself/herself.
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6. Solution
The solution consists of a proposal describing the language feature given in the
previous chapter 5 and an implementation of the prototype in a separate Roslyn
branch.

6.1 Proposal
The final version of the proposal can be found in the attachments as the
Attachments/Proposal/partial-type-inference.md file.

6.1.1 Creation Process
The proposal had three stages of development. The first version of the document
was created in author’s personal repository [21], where it was reviewed by a
member of Roslyn’s development team. The review was in the form of a pull
request [24] where the member suggested several changes on how to structure
the proposal and how to refer to the original C# standard documentation and
pointed out possible improvements that would be beneficial to investigate.

After the revisions were made, the member recommended to post it as a dis-
cussion [22], which was the first time when a wider community could comment on
the proposal. Besides several upvotes received from anonymous readers, another
member of Roslyn’s development team started to give his recommendations on
how to adjust the document. The main change of the improvement was to erase
most of the examples taken from the tests made together with the prototype and
replace them with more references to the original C# documentation.

The third version of the improvement was published as the next discussion
[23], where it received even more emoticons as likes or hearts, which was a good
sign of progress. At that time, the discussion contained just answers to the
questions raised by the member of the Roslyn team, which clarified the intention
of the improvement.

After this step, the third stage was made by publishing the proposal as a
pull request [25]. This step was done after the recommendation from the team
member. The pull request was continued by another round of clarifications, rec-
ommendations, and revisions from three members of Roslyn’s team.

The current stage of the proposal at the time of writing is that the pull request
is still open, waiting for the next requirements from the LDT. Meanwhile, there
was the LDM meeting regarding our proposal, whose result we present later in
this thesis. We continue with the description of the proposal’s content.

6.1.2 Content
The whole document has two styles of describing the feature. The first style
explains the intention of the improvement and necessary relations, which helps
to understand it. The second style used in the detailed design section is rather a
patch of C# standard documentation, which enables improvement. So, the text
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doesn’t contain fluent sentences but fragments of the documentation that need
to be changed. The proposal consists of five parts:

1. The first part gives a quick overview of the proposed change, summarizing
it in a few sentences.

2. The second part describes the motivation why it should be done. The text
and the used examples are similar to those in section 4.2.

3. The third and largest part contains a detailed design of the improvement.
There is a description of grammar change, where it explains a new un-
derscore contextual keyword in the type argument list. It is followed by
the change of binding method invocation and object creation expressions.
This part describes the mentioned core design of the improvement with the
changed method type inference algorithm. The design ends with extending
compile-time checking dynamic member invocation, which is explained in
section 5.4.

4. The fourth part comments on the reason for not doing other alternatives
contained in the discussions. It also mentions two possible extensions of the
improvement using the diamond operator 5.3.6 and initializers 5.3.5 in the
type inference context.

5. The last part suggests other potential improvements.

6.2 Implementation
The already mentioned proposal is tested by the implementation described in this
section. The goal of the implementation is to observe the consequences of the pro-
posed feature in a practical way, which can be tried by the C# community. The
goal will be achieved by contributing to the the final/PartialTypeInference
branch [30] of the forked Roslyn project on GitHub, which is public. The branch
contains one commit, with the
[PartialTypeInference] Add partial type inference name, containing all
our changes. The copy of the branch can be also found in the attachments in
the Attachments/Source/roslyn folder. Since the proposal is in the state of
probing the benefits, the implementation is rather a proof of concept than a
ready-to-production code.

6.2.1 Development Environment
Since the compiler is a complicated program consisting of many parts, the cre-
ators provide a guide [29] describing a common workflow, including building the
compiler, writing tests, and deployment.

We started cloning the Roslyn repository [31] and opening it in an IDE. Sev-
eral IDEs can be used. We recommend Visual Studio 2022 [40], which was used
to implement the proposal. The IDE was chosen since the Roslyn folks have
recommended it, and it has provided helpful static code analysis and a debugger,
which is almost necessary when a programmer is unfamiliar with the code base.
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However, hardware requirements for opening the repository were quite high re-
garding memory consumption, as it required around 20 GB of RAM for a smooth
experience with browsing and launching the code. So we recommend Visual Stu-
dio Code [41] in cases when the hardware resources are limited as compensation
for worse code analysis.

However, the IDE is not required to launch or deploy the compiler. The correct
version of the .NET SDK specified in global.json placed in the project root is
needed to build the project. We used SDK 8.0.1, which can be downloaded from
Microsoft’s original websites [18]. We also use the Windows operating system,
although the deployment should also be possible on Linux or MacOS.

Since building large programs like compilers can be complicated, the root
folder provides three scripts that take care of it. The Restore.cmd script is run
to download the required packages. The Build.cmd script is used to build the
compiler, and the Test.cmd script is used to run tests of the compiler. The scripts
have multiple options that modify the workflow. We will mention a few of them
that were used during the implementation.

Testing

Launching the compiler tests is done by a sequence of Windows command con-
sole commands, as shown in Figure 6.1. Since the repository also contains an
implementation of a C# extension to Visual Studio, tests are divided into several
groups that test the independent parts of the compiler. In our case, we used the
-testCompilerOnly flag to run basic compiler tests. The tests will be a baseline,
which has to be passed by the implementation of the proposal. The result of
Build.cmd command is a built compiler placed in the roslyn/artifacts folder.
Test results is stored in the roslyn/artifacts/TestResults folder as .xml files
and .html files for displaying in the browser.

Restore.cmd
Build.cmd
Test.cmd -testCompilerOnly

Figure 6.1: Running C# compiler tests on Windows.

The results of the tests, when we started the implementation, can be seen in
the attachments in the Attachments/TestResults/Tests-Master folder, where
two tests regarding Visual Basic were not passed. Since our contribution is the
C# compiler, we ignore it.

Deployment

The standard deployment of a new compiler version is bundling it with a new ver-
sion of the SDK, which would require compiling the SDK from sources. However,
there is a possibility of injecting a custom version of the compiler into an already
installed SDK. This option was created to temporarily hot-fix compiler problems
delivered with an SDK. Since the implementation is a proof of concept, this op-
tion will be sufficient to check the main functionality of the proposal directly in
the user’s code.
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The injection is done by referencing a special package generated by the
Build.cmd script in a project file of a target C# project using partial type in-
ference. The Nuget cache containing .NET packages needs to be modified before
the package generation. The Nuget cache is usually placed in the
C://Users/%user%/.nuget folder on Windows, where it is required to delete the
version of the Microsoft.CSharp.Net.Compiler.ToolSet package, which will
be generated by the Build.cmd -publish command. The command generates
the roslyn/artifacts/publish/Shipping folder containing the
Microsoft.CSharp.Net.Compiler.ToolSet package, which needs to be refer-
enced. Additionally, the project file has to define a folder containing the package
that will be used to restore the packages in the Nuget cache. The last required
action is specifying a language version, which has to be set to preview, enabling
the partial method type inference and the partial constructor type inference. Fig-
ure 6.2 shows a modified project file of the demo application, which can be found
in the Attachments/Demo folder. The PropertyGroup element contains a defini-
tion of the language version and a folder for package restoration. The ItemGroup
element contains a definition of the package reference injecting the locally built
compiler.

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>

<OutputType>Exe</OutputType>
<TargetFramework>net8.0</TargetFramework>
<LangVersion>preview</LangVersion>

<RestoreSources>
E:\roslyn\artifacts\packages\Debug\Shipping

</RestoreSources>
</PropertyGroup>

<ItemGroup>
<PackageReference

Include="Microsoft.Net.Compilers.Toolset"
Version="4.9.0-dev"

/>
</ItemGroup>

</Project>

Figure 6.2: Demo.csproj

Then, a common dotnet build command can be used to compile the project
using a custom compiler version instead of the bundled one. An easy way to check
the currently used compiler is by putting the #error version pragma anywhere
in the compiled code. Figure 6.3 shows the usage of the pragma in the demo
application.

When the project is compiled again, it will raise a compilation error announc-
ing the current package version, as shown in Figure 6.4. We can see that the code
was compiled by the 4.9.0-dev compiler version, and the language version was
set to preview.
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using System;

#error version

...

Figure 6.3: Begining of Program.cs.

E:\Demo>dotnet build
MSBuild version 17.8.3+195e7f5a3 for .NET

Determining projects to restore...
All projects are up-to-date for restore.

E:\Demo\Program.cs(4,8): error CS1029:
#error: ’version’ [E:\Demo\Demo.csproj]

E:\Demo\Program.cs(4,8): error CS8304:
Compiler version: ’4.9.0-dev (<developer build>)’.
Language version: preview [E:\Demo\Demo.csproj]

Build FAILED.

E:\Demo\Program.cs(4,8): error CS1029:
#error: ’version’ [E:\Demo\Demo.csproj]

E:\Demo\Program.cs(4,8): error CS8304:
Compiler version: ’4.9.0-dev (<developer build>)’.
Language version: preview. [E:\Demo\Demo.csproj]

0 Warning(s)
2 Error(s)

Time Elapsed 00:00:09.19

Figure 6.4: Output of building Demo.csproj

6.2.2 Repository Overview
Roslyn’s repository contains several projects besides the C# compiler, like the
Visual Basic compiler or Visual Studio extension. Figure 6.5 shows relevant files
and folders of the roslyn directory, which have been adjusted or are used by the
implementation. The root directory contains already mentioned helper scripts for
building and deploying the compiler, the src folder containing the code, and the
artifacts folder generated by the build system. It also contains the Roslyn.sln
solution, which can be opened in Visual Studio, enabling a better user experience
during code browsing.

The artifacts contain the TestResults folder, which contains the already-
mentioned test reports, and the bin folder, which contains the compiled code
and packages. The package required to inject the compiled compiler can be
found in the nested Shipping folder.

There are three important folders nested in the src folder. The Test folder
contains compiler tests that can be run using the testCompilerOnly flag. The
Core folder contains a common Visual Basic and C# compiler code. It provides
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+roslyn
+src

+Compilers
+Core
+CSharp
+Portable

+Binder
+Semantics

+Conversions
+OverloadResolution

+BoundTree
+Errors
+FlowAnalysis
+Generated
+Symbols

+Source
+Test

+artifacts
+bin
+packages/Debug

+Shipping
+TestResults

-global.json
-Roslyn.sln
-Build.cmd
-Restore.cmd
-Test.cmd

Figure 6.5: Simplified view of the roslyn directory content.

a public API used to compile and analyze code. The CSharp/Portable folder
contains the C# compiler sources, modified by the proposal’s implementation.

Describing all parts of C# compiler sources is out of the scope of this thesis
since it is an extensive program, and most of the parts are not influenced by the
implementation. So, the thesis mentions only a small part of the compiler, which
is necessary to understand implementation internals. The compiler’s source code
is divided into multiple folders where most of the changes are in the Binder
folder. The folder contains logic for binding AST to bound tree mentioned in the
Roslyn section 3.1. The implementation of the type inference algorithm can be
found in the Semantics/OverloadResolution folder, together with the whole
mechanism for overload resolution of methods and constructors. The BoundTree
folder contains an XML description of automatically generated nodes representing
bound tree. The Errors folder contains definitions of all C# errors and a list of
features that can be disabled and which contain an item for enabling partial type
inference. The FlowAnalysis contains several control flow analyzers, such as a
nullability analyzer that checks the nullability state of variables. The Generated
folder contains generated nodes of bound tree, and the Symbols folder contains
symbols for namespaces, classes, methods, etc. that are exposed by the compiler.
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6.2.3 Test Suite
Roslyn tests use the xUnit framework [42], providing wide API for testing appli-
cation functionalities in various scenarios. We used this framework for our own
tests in the PartialTypeInferenceTests.cs file. An additional helper method,
TestCallSites, was made to save repeating code, which initializes the com-
pilation, compiles the provided source code as a string, and verifies diagnostics
representing compiler warnings and errors. Since we are interested in information
regarding inferred type arguments, the source code is augmented by comments
representing asserts which the augmented symbols have to hold.

Figure 6.6 shows an example of a test case that tests a scenario where an
inferred type argument syntax hides a typename having the identifier. We

[Fact]
public void PartialConstructorTypeInference_UnderscoreClass()
{

TestCallSites("""
class P
{

static void M()
{

new F1<_>(1); //-P.F1<int>..ctor(int)
}

class F1<T> { public F1(T p) {} }
}

class _ {}
""",

Symbols.ObjectCreation,
ImmutableArray.Create(

Diagnostic(ErrorCode.WRN_UnderscoreNamedDisallowed, "_")
.WithLocation(11, 7)

)
);

}

Figure 6.6: Example of a test.

can see that the new F1< >(1) expression is tested by the following comment
describing the desired resolved call. The second argument of the TestCallSites
defines which symbols we assert. In this case, all object creation expressions are
asserted. The last argument describes expected diagnostics, which the compiler
should announce. This example requires a warning regarding notifying a user
about possible conflicting class names with the contextual keyword.

6.2.4 Parsing Inferred Type Arguments
We didn’t change the Roslyn parser which transformers the source codes into
AST. Instead of that, we created the SourceInferredTypeSymbol symbol repre-
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senting the inferred type argument and postponed the type argument recognition
to the binding phase. In this phase, we changed the BindIdentifier method
in Binder Expressions.cs, which looks up the type symbol represented by the
provided identifier. The change is propagated into subsequent calls, which handle
various cases of identifier binding, such as generic type names or fully qualified
names. If the method is called during the binding type argument list of a method
invocation or object creation expression, we change the mode, which enables the
binding of the identifier as an inferred type argument symbol.

6.2.5 TypeInferrer
Replacing the MethodTypeInference.cs file with the TypeInference.cs was
the biggest source code update in the commit. Since the old algorithm for type
inference was primarily focused on generic method type inference, we rewrote it
in a more generic way using a concept of type variables and the relations between
them and the type symbols. Additionally, we used the #region syntax to divide
the source code into multiple parts referencing corresponding parts of the already
mentioned type inference algorithm. There are the following regions:

1. State – It contains fields representing the inner state of the current type in-
ference. It includes a list of type variables, collected bounds, dependencies
between the type variables, already fixed type variables, and type informa-
tion received from the argument list, the type parameter constraints, the
target type, and the type argument list.

2. Public API – It contains an entry point for the type inference of a method
invocation and an object creation expression.

3. Phases – It contains methods corresponding to the first phase and the sec-
ond phase of our changed method type inference algorithm mentioned in
Section 5.2.2.

4. Bounds – It contains a mechanism for adding a new bound to a type vari-
able, including the bound propagation mentioned in Section 5.2.3.

5. Dependencies – It contains initialization and update of the defined depen-
dencies (Section 5.2.1. and 2.4) between type variables, and helper functions
for querying them.

6. Input types – It contains helper functions for getting information about
input types (Section 2.4).

7. Output types – It contains helper functions for getting information about
output types (Section 2.4).

8. Output type inferences – It provides an output type inference of our algo-
rithm (Section 2.4.2).

9. Explicit type inferences – It provides an explicit type inference of our algo-
rithm (Section 2.4.2).

10. Exact inferences – It provides an exact type inference of our algorithm.
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11. Lower-bound inferences – It provides an lower-bound type inference of our
algorithm (Section 5.2.3).

12. Upper-bound inferences – It provides an upper-bound type inference of our
algorithm (Section 5.2.3).

13. Return type inferences – It provides an return type inference of our algo-
rithm (Section 2.4.2).

14. Fixing - It provides a type variable fixation of our algorithm (Section 5.2.4).

15. OtherHelpers - It contains unsorted helper methods used by the implemen-
tation.

We added the public API, which adapts the old method type inference API to the
new one. This helped us to not change the other interacting parts of the codebase
too much. There is the InferMethod static method, which has a signature similar
to the previous one and is an entry point for the partial method type inference.
We also added the InferConstructor static method as an entry point for the
partial constructor type inference.

6.2.6 Binding Partial-inferred Method
The partial-inferred method binding is contained in the Binder Invocation.cs
and the OverloadResolution.cs files. The changes in the binder were mostly
about an error recovery and raising potential warnings. An example of that is a
warning raised during dynamic method invocation binding where if the inferred
type argument is used, we notify the user about a potential error in runtime since
runtime doesn’t support the partial type inference. The change in the overload
resolution was to analyze the method group with used inferred type arguments
and to use the mentioned API of the type inferrer.

6.2.7 Binding Partial-inferred Object Construction
Binding partial-inferred object construction was the most tricky in the implemen-
tation since there was no preparation for the type inference as in the previous
case. Moreover getting type information from the target is complicated since the
binding order is reversed to the binding direction.

The first step was to change the OverloadResolution.cs file to infer the
type defining the constructor candidate when it contains inferred type arguments.
Then, we had to substitute the constructor signature with inferred type arguments
and choose the constructor that best fits.

During the implementation, the following problem occurred. Figure 6.7 shows
a definition of the M class containing two constructors. The second constructor’s
body contains an expression creating an object of the same type. The inferred
type argument of this expression should be the T type parameter of the class.
However, to be able to do that, alpha renaming has to be applied to the inferring
type arguments since the type of the p1 parameter is the T type symbol, and
the type variable representing the inferring type argument is also the T type
symbol. Without this modification the type inference failed since the algorithm
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thought that it could not find the exact type symbol for that type argument.
From the type inference perspective, these two symbols are different, so we had
to distinguish these cases by replacing the type parameters represented by type
variables with an alpha-renamed type symbol representing the same symbol. The
alpha-renamed symbol is different from the one received from the argument list.
This prevented the mentioned problem, and the expression was properly bound.
Note that this problem also occurs in the binding of method invocation when
there is a recursive generic method in which a recursion call is inferred and uses
the same type of arguments.

class M<T>
{

M(T p1, int p2) {}

M(T p1)
{

new M<_>(p1, 1);
}

}

Figure 6.7: Problem regarding alpha renaming.

The second step was to add additional type information received from the
type parameter constraints of the containing type.

The last step was to enable a target-typed inference. We used a similar way
as in the new() operator. We created a new
BoundUnconvertedInferredClassCreationExpression representing an object
creation expression containing the inferred type. This expression is bound lately
when a target type is known in conversions defined in the Conversions.cs file.
Whenever an expression is assigned, these conversions are used to check if it is
possible to convert the expression to the target and generate appropriate conver-
sion if necessary. In our case, the appropriate conversion is to invoke the binding
of the object creation expression again with the already known target type, which
is used in the type inference. Also, the expression doesn’t have to be assigned.
For these situations, the BindToNaturalType method is called to invoke the con-
versions in these scenarios to make additional expression processing. In our case,
it is binding the expression without the target type. The conversions are a bot-
tleneck for this process, and every assignment or a statement uses it to invoke
the additional necessary operation on expressions.

The previous paragraph is not completely true in the binding order of the
expression without a target. At the time of creating the unconverted inferred
class creation expression, we bind the expression without the target and save
the diagnostics obtained during that. This prevents us from binding the same
expression without targeting multiple times, as we can see in Figure 6.8. There
is the F(new M< >(1)), which calls a generic method with an inferred object
creation expression. At the time of binding the object creation expression, we
bind it without the target but still represent it as an unconverted inferred class
creation expression. In the time of binding the F method, the overload resolution
invokes the inference for each overload. Since the inference is influenced by a
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type of argument, we have to use the type of that expression. In this case, we
use an already bound object creation expression without a target, which enables
type inference to infer the type argument of the F function call. Also, there is

F(new M<_>(1))

static void F<T>(M<T> p1);
static void F<T>(M<T> p1, T p2);

class M<T>
{

M(T p1) {}
}

Figure 6.8: Preventing multiple binding.

an opposite scenario. Figure 6.9 shows an example where the first argument
needs the target type to infer the expression. The argument doesn’t influence

F(new M<_>(), 1)

static void F<T>(M<int> p1);
static void F<T>(M<int> p1, T p2);

class M<T>
{

M() {}
}

Figure 6.9: Target-typed binding.

the type inference algorithm since the corresponding parameter doesn’t contain
the inferred type argument. In this case, after the overload of the F method
is chosen, there is a phase of applying conversions from the arguments to the
parameters invoked by the CoerceArguments method. This phase binds the first
argument with the already known type of the parameter as a target type. We
prohibit this behavior when the object creation expression is used in the type
inference by generating a different type of conversion for that. Also, in this
phase, we add the previously saved diagnostics depending on whether we bound
the expression without the target. See ObjectCreationConvertionWithTarget
and ObjectCreationConvertionWithoutTarget conversions, which were created
for this purpose.

As we can see, binding an expression with the target type has complicated
implementation in Roslyn.

6.2.8 Nullable Walker
The last part of the code changes is in the NullableWalker.cs file, which provides
a nullability analysis pass. The basic principle of the analysis is traversing the
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control-flow graph and rebinding the nodes of bound tree, if necessary, according
to the nullability. The rebound nodes are rewritten at the end of the pass.

An important change was to modify the analysis of the bound object creation
expression symbol. Based on the information stored in the previous binding, we
know if it was target-typed. If it was target-typed, we postpone the binding
in the same way as the new() operator. The partial constructor type inference
is added in the process of rebinding the constructor, where we use saved data
from the previous binding to repeat it in the context of nullability. After the
expression binding, we rewrite the containing type if it was changed during the
type inference by storing the update to the end of the nullability analysis pass.
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7. Evaluation
The implementation and proposal are evaluated using the following metrics.

7.1 Tests
We run the same suite case before and after our changes. The results can be found
in the /Attachments/TestResults folder containing the Test-Master folder and
the Test-Feature folder corresponding to test results before and after the change.
These folders contain the results from the -testCompilerOnly suite case run
whose tests can be found the the Test folder mentioned in Section 6.2.2. All
tests pass when they are run separately. However, we noticed that when we use
the testing framework to run -testCompilerOnly suite case, two of our tests
don’t pass as can be seen in the WorkItem 4 x64 test results.html test results
summary. We didn’t manage to identify the reason for that, but we believe that
it is related to the test framework complexity of how it runs the tests. This failure
needs further investigation in the context of how the test framework executes the
tests. Except for this failure and unimportant small changes in the compiler tests
regarding adding new error messages caused by our changes, all tests that passed
before the improvement also passed after the improvement. This result ensures
that the improvement doesn’t introduce any significant regression in the compiler
tests.

7.2 Demo Examples
The basic capabilities of the improvement are demonstrated in the demo appli-
cation contained in the Attachments/Demo attachments folder. We also show
advanced features of the improvement which can be found in the tests and which
were presented to LDT.

7.2.1 Basics
Figure 7.1 shows an example of the partial method type inference where the
underscore is used to skip the first type argument of the M1 method call because
it can be inferred from the first argument. In this case, the inferred type argument
is int.

void M1<T1, T2>(T1 p1) { ... }
...
M1<_, string>(1);

Figure 7.1: RunExample1 – Top level inferred type argument

Figure 7.2 shows the usage of the underscore in the first type argument of
the M2 method call where it is an inferred type argument of the IList<T> type.
The usage allows to influence the original method type inference algorithm which
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would infer the type of the first argument. The nested inferred type argument is
int.
void M2<T1>(T1 p1) { ... }
...
M2<IList<_>>(new List<int>());

Figure 7.2: RunExample2 – Nested inferred type argument

Figure 7.3 shows an example of the partial constructor type inference where
the first type argument of the C1<T1> object creation expression is inferred based
on the first argument. The process of the type inference is the same as in the
first example. The inferred type argument is int.

class C1<T1> {
public C1(T1 p1) { ... }

}
...
new C1<_>(1);

Figure 7.3: RunExample3 – Top level inferred type argument

Figure 7.4 shows the usage of the nested inferred type in the C2<T1> object
creation expression. The process of type inference is the same as in the second
example. The nested inferred type argument is int.

class C2<T1> {
public C2(T1 p1) { ... }

}
...
new C2<IList<_>>(new List<int>());

Figure 7.4: RunExample4 – Nested inferred type argument

Figure 7.5 shows an example where type inference of the C3<T1> object cre-
ation expression uses the target type to infer the type argument of the C3<T1>
type. The target type is the C3<int> type obtained from the a variable declara-
tion. The inferred type argument is the int type.

class C3<T1> {
public C3() { ... }

}
...
C3<int> a = new C3<_>();

Figure 7.5: RunExample5 – Target-typed inference

Figure 7.6 shows an example of type inference based on the type constraints
where the first type argument of the C4<T1, T2> object creation expression is
inferred based on the second type argument. Since the first type argument has
to inherit the List<T2> type, it gives us a default for this type argument. So the
first type argument is inferred to the List<int> type.
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class C4<T1, T2> where T1 : List<T2> {
public C4() { ... }

}

new C4<_, int>();

Figure 7.6: RunExample6 – Type inference based on constraints

7.2.2 Advanced Examples
Figure 7.7 shows the F4 generic method containing three function parameters.
The parameters and arguments are assembled in the way that is required to infer
T1 to infer T2, which is required to infer T3, which is required to infer T1. The call
site uses the partial method type inference to hint to the compiler one of the type
arguments, which will break this circular dependency and enable the inference of
the rest of the type parameters.

void F4<T1, T2, T3>(
Func<T1, T2> p12,
Func<T2, T3> p23,
Func<T3, T1> p31)

{}
...
F4<_, _, string>(x => x + 1, y => y.ToString(), z => z.Length);

Figure 7.7: Circular type inference dependency of type parameters

Figure 7.8 shows an advanced scenario containing a nested inferred type ar-
gument. There is the F6 generic method call containing one type parameter. The
temp variable and the type argument’s hint (I2< , A>) are used to determine the
inferred nested type argument, which is int. During the process, multiple rules
for inference, such as inheritance and variance, are applied.

class A {}
class B : A {}
interface I2<T1, out T2> {}
class C2<T1, T2> : I2<T1, T2> {}
void F6<T1>(T1 p1) {}
...
F6<I2<_, A>>(new C2<int, B>());

Figure 7.8: Nested inferred type argument

Figure 7.9 shows an example where the nullability inference is a part of the
type argument deduction. The F10 call site has an inferred type argument with
an appended question mark determining the nullability of the inferred type ar-
gument. The inferred type argument would be string if there wouldn’t be the
appended question mark. However, the question mark is used to hint to infer
string?.
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void F10<T>(T p1) {}
...
F10<_?>("");

Figure 7.9: Inferred type argument nullability hint

Figure 7.10 shows an example of constructor type inference, which uses a
target type to infer type arguments of the new new C2< >() expression. The
target type is a type of the C4 constructor parameter resulting in the inferred int
type argument.

class C1<T> {}
class C2<T> : C1<T> {}
class C4
{

public C4(C1<int> p1) {}
}
...
new C4(new C2<_>());

Figure 7.10: Target-typed object creation expression

Figure 7.11 shows an example of an advanced binding order of arguments. The
top-level object creation needs the type of the constructor’s argument to deter-
mine its type parameter. For this purpose, the nested object creation expression
is bound without the target to provide this type of information.

class C1<T> {}
class C5<T> : C1<T>
{

public C5(T p1) {}
}
...
new C5<_>(new C5<_>(1));

Figure 7.11: Advanced arguments binding – Without target type

Figure 7.12 is the advanced scenario of a previous use case where the first
argument can’t be bound because type inference failed during the attempt to
bind it without a target type. The failure is caused by a lack of type information.
However, the second argument provides enough type information to infer a type
parameter of the C3 class. After the bound, the new new C2< >() expression is
tried to bound again with the inferred target type. After that, both inferred type
arguments are resolved to the int type.
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class C1<T> {}
class C2<T> : C1<T> {}
class C3<T>
{

public C3(C1<T> p1, T p2) {}
}
...
new C3<_>(new C2<_>(), 1);

Figure 7.12: Advanced arguments binding – With target type

Figure 7.13 shows the most advanced scenario where type the binding order
and type inference uses several things to infer the new C9< , ,int, >(1) expres-
sion. We will focus on how the type parameters of the C9 class are gradually
inferred. The T3 type parameter is inferred by using the provided hint in the
type argument list, which is int. The T1 type parameter is inferred by using
a type of constructor’s argument p1, which is int. The T4 type parameter is
inferred by using the type parameter’s dependency using the T3 type parameter.
The type parameter is resolved to int. The T2 type parameter is resolved by us-
ing the target type given by the F1 method parameter p1. This type information
is received in the second try of binding the argument using the target type. The
T1 type parameter of the F1 method is determined based on its second parameter
type, which is the int type.

class C1<T> {}
void F1<T>(C1<T> p1, T p2) {}

class C9<T1, T2, T3, T4> : C1<T2> where T4 : C1<T3>
{

public C9(T1 p1) {}
}
...
F1(new C9<_,_,int,_>(1), 1);

Figure 7.13: Constructor type inference – All in one

Based on the previous examples, the solution can be considered robust enough
to solve complicated examples.
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7.3 LDM Meeting Summary
LDM discussed the proposal on 7th February 2024. Besides the overall summary
of the proposal with additional questions, the LDT agreed to continue with mov-
ing the proposal forward. Although it is not going to present the change in the
upcoming C# 13, it is planned to ship this feature with some modifications in the
following releases. The summary [15] of the meeting and the following discussion
[16] are published on the C# GitHub repository.
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8. Future Work
Since LDM agreed to proceed with the partial type inference, the following work
addresses future comments in the PR [25]. Simultaneously, there is the discussion
[16] regarding the meeting where the feature is discussed. So, the continuation
of this thesis is replying to potential questions there.

Besides that, there is a plan to have the next LDM meeting regarding further
proceeding with the proposal, which will be cut into smaller pieces to let the
LDM discuss it properly. The meeting will regard two items. The first item is
top-level inferred type arguments in the method invocation and object creation
expression. The second item is nested inferred type arguments in the method
invocation and object creation expression.

It is likely that during the process of continuing discussions, the proposal will
be divided into more pieces, which will be delivered across multiple releases.
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Conclusion
The section 1.3 of the thesis’s introduction sets four goals, which are gradually
achieved by the thesis. It starts by exploring C# type inference by using the
language specification and implementation in the Roslyn project. Then, the thesis
compares C# type inference with Rust type inference, which offers more advanced
type inference than C#. The type inference difference is explained using the
theory background of Hindley-Milner type inference, which describes the limits
of type inference in strongly typed languages.

Based on these observations, the thesis selects a subset of type inference im-
provements suggested in C# language discussions on GitHub and explores the
motivation behind it to make it likely to add to the C# language. The motivation
is described in the created proposal, which is the fourth goal and which describes
the improvement in terms of changing the specification.

Together with the proposal, the implementation was made in the Roslyn
project fork, with unit tests checking the functionality. This is the third and
last goal of the thesis. The implementation ensured that basic compiler tests
passed to reveal possible regression.

In addition to the mentioned goals, the thesis succeeded in presenting the
proposal and implementation to the LDM responsible for approving language
changes into C#. The committee agreed to continue with the change for further
discussion and is generally inclined to ship it with future language releases.

Based on the goals achieved and additional success in the LDM meeting, which
was not a part of the scope of the thesis, we claim that the thesis accomplished
all the promised goals.

74



Bibliography
[1] Andreas Stadelmeier and Martin Plumicke. Adding overloading to Java type

inference.

[2] C# data types. https://www.tutorialsteacher.com/csharp/csharp-
data-types. [Online; accessed 2023-09-22].

[3] C# language discussions. https://github.com/dotnet/csharplang/
discussions. [Online; accessed 2023-11-14].

[4] C# proposed champion. https://github.com/dotnet/csharplang/
issues/1349. [Online; accessed 2023-11-02].

[5] C# specification. https://learn.microsoft.com/en-us/dotnet/csharp/
language-reference/language-specification/readme. [Online; ac-
cessed 2023-09-22].

[6] C# type constraints. https://learn.microsoft.com/en-us/dotnet/
csharp/programming-guide/generics/constraints-on-type-
parameters. [Online; accessed 2023-11-21].

[7] C# type inference algorithm. https://github.com/dotnet/
csharpstandard/blob/draft-v8/standard/expressions.md. [Online;
accessed 2023-10-14].

[8] C# type inference breaking change. https://github.com/dotnet/roslyn/
pull/7850. [Online; accessed 2023-12-03].

[9] C# version history. https://learn.microsoft.com/en-us/dotnet/
csharp/whats-new/csharp-version-history. [Online; accessed 2023-10-
08].

[10] Constructor type inference. https://github.com/dotnet/csharplang/
discussions/281. [Online; accessed 2023-11-04].

[11] Default type parameters. https://github.com/dotnet/csharplang/
discussions/278. [Online; accessed 2023-11-04].

[12] Generic aliases. https://github.com/dotnet/csharplang/issues/1239.
[Online; accessed 2023-11-04].

[13] Hindley-Milner type inference. https://www.youtube.com/watch?v=
B39eBvapmHY. [Online; accessed 2023-09-22].

[14] Hindley-Milner type system. https://en.wikipedia.org/wiki/Hindley%
E2%80%93Milner type system. [Online; accessed 2023-09-22].

[15] LDM meeting summary. https://github.com/dotnet/csharplang/blob/
main/meetings/2024/LDM-2024-02-07.md. [Online; accessed 2024-02-16].

[16] LDM meeting summary discussion. https://github.com/dotnet/
csharplang/discussions/7938. [Online; accessed 2024-02-16].

75

https://www.tutorialsteacher.com/csharp/csharp-data-types
https://www.tutorialsteacher.com/csharp/csharp-data-types
https://github.com/dotnet/csharplang/discussions
https://github.com/dotnet/csharplang/discussions
https://github.com/dotnet/csharplang/issues/1349
https://github.com/dotnet/csharplang/issues/1349
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/readme
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/readme
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/generics/constraints-on-type-parameters
https://github.com/dotnet/csharpstandard/blob/draft-v8/standard/expressions.md
https://github.com/dotnet/csharpstandard/blob/draft-v8/standard/expressions.md
https://github.com/dotnet/roslyn/pull/7850
https://github.com/dotnet/roslyn/pull/7850
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-version-history
https://github.com/dotnet/csharplang/discussions/281
https://github.com/dotnet/csharplang/discussions/281
https://github.com/dotnet/csharplang/discussions/278
https://github.com/dotnet/csharplang/discussions/278
https://github.com/dotnet/csharplang/issues/1239
https://www.youtube.com/watch?v=B39eBvapmHY
https://www.youtube.com/watch?v=B39eBvapmHY
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
https://github.com/dotnet/csharplang/blob/main/meetings/2024/LDM-2024-02-07.md
https://github.com/dotnet/csharplang/blob/main/meetings/2024/LDM-2024-02-07.md
https://github.com/dotnet/csharplang/discussions/7938
https://github.com/dotnet/csharplang/discussions/7938


[17] Named type parameters. https://github.com/dotnet/csharplang/
discussions/280. [Online; accessed 2023-11-04].

[18] .NET SDK. https://dotnet.microsoft.com/en-us/download/dotnet/
8.0. [Online; accessed 2023-11-28].

[19] Overview of Kotlin compiler. https://www.youtube.com/watch?v=
db19VFLZqJM. [Online; accessed 2023-12-19].

[20] Lionel Parreaux. The simple essence of algebraic subtyping: Principal type
inference with subtyping made easy, 2020. [25th ACM SIGPLAN Interna-
tional Conference on Functional Programming - ICFP 2020].

[21] Personal repository. https://github.com/TomatorCZ/master-thesis.
[Online; accessed 2023-12-29].

[22] Proposal discussion 1. https://github.com/dotnet/csharplang/
discussions/7286. [Online; accessed 2023-12-29].

[23] Proposal discussion 2. https://github.com/dotnet/csharplang/
discussions/7467. [Online; accessed 2023-12-29].

[24] Proposal pull request 1. https://github.com/TomatorCZ/master-thesis/
pull/1. [Online; accessed 2023-12-29].

[25] Proposal pull request 2. https://github.com/dotnet/csharplang/pull/
7582. [Online; accessed 2023-12-29].

[26] Proposal template. https://github.com/dotnet/csharplang/blob/main/
proposals/proposal-template.md. [Online; accessed 2023-09-30].

[27] Return type inference. https://github.com/dotnet/csharplang/
discussions/92. [Online; accessed 2023-11-04].

[28] Roslyn architecture. https://learn.microsoft.com/en-us/dotnet/
csharp/roslyn-sdk/compiler-api-model. [Online; accessed 2023-10-21].

[29] Roslyn development guide. https://github.com/dotnet/roslyn/
blob/main/docs/contributing/Building%2C%20Debugging%2C%20and%
20Testing%20on%20Windows.md. [Online; accessed 2023-11-28].

[30] Roslyn fork. https://github.com/TomatorCZ/roslyn/tree/final/
PartialTypeInference. [Online; accessed 2024-02-23].

[31] Roslyn repository. https://github.com/dotnet/roslyn. [Online; accessed
2023-09-22].

[32] Rust programming language. https://en.wikipedia.org/wiki/
Rust (programming language). [Online; accessed 2023-11-12].

[33] Rust type inference. https://doc.rust-lang.org/rust-by-example/
types/inference.html. [Online; accessed 2023-09-22].

76

https://github.com/dotnet/csharplang/discussions/280
https://github.com/dotnet/csharplang/discussions/280
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://dotnet.microsoft.com/en-us/download/dotnet/8.0
https://www.youtube.com/watch?v=db19VFLZqJM
https://www.youtube.com/watch?v=db19VFLZqJM
https://github.com/TomatorCZ/master-thesis
https://github.com/dotnet/csharplang/discussions/7286
https://github.com/dotnet/csharplang/discussions/7286
https://github.com/dotnet/csharplang/discussions/7467
https://github.com/dotnet/csharplang/discussions/7467
https://github.com/TomatorCZ/master-thesis/pull/1
https://github.com/TomatorCZ/master-thesis/pull/1
https://github.com/dotnet/csharplang/pull/7582
https://github.com/dotnet/csharplang/pull/7582
https://github.com/dotnet/csharplang/blob/main/proposals/proposal-template.md
https://github.com/dotnet/csharplang/blob/main/proposals/proposal-template.md
https://github.com/dotnet/csharplang/discussions/92
https://github.com/dotnet/csharplang/discussions/92
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model
https://learn.microsoft.com/en-us/dotnet/csharp/roslyn-sdk/compiler-api-model
https://github.com/dotnet/roslyn/blob/main/docs/contributing/Building%2C%20Debugging%2C%20and%20Testing%20on%20Windows.md
https://github.com/dotnet/roslyn/blob/main/docs/contributing/Building%2C%20Debugging%2C%20and%20Testing%20on%20Windows.md
https://github.com/dotnet/roslyn/blob/main/docs/contributing/Building%2C%20Debugging%2C%20and%20Testing%20on%20Windows.md
https://github.com/TomatorCZ/roslyn/tree/final/PartialTypeInference
https://github.com/TomatorCZ/roslyn/tree/final/PartialTypeInference
https://github.com/dotnet/roslyn
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://doc.rust-lang.org/rust-by-example/types/inference.html
https://doc.rust-lang.org/rust-by-example/types/inference.html


[34] Specifying type arguments in method calls (Reallocation). https://
github.com/dotnet/roslyn/issues/8214. [Online; accessed 2023-11-04].

[35] csharplang repository. https://github.com/dotnet/csharplang. [Online;
accessed 2023-09-22].

[36] The billion dollar mistake. https://medium.com/@PurpleGreenLemon/
how-null-references-became-the-billion-dollar-mistake-
bcf0c0cc72ef. [Online; accessed 2024-02-16].

[37] Type inference based on type constraints. https://github.com/dotnet/
roslyn/issues/5023. [Online; accessed 2023-11-04].

[38] Type inference of method return type. https://github.com/dotnet/
csharplang/discussions/6452. [Online; accessed 2023-11-04].

[39] Video series about Hindley-Millner type inference. https:
//www.youtube.com/@adam-jones/videos. [Online; accessed 2023-10-
21].

[40] Visual Studio. https://visualstudio.microsoft.com/vs/. [Online; ac-
cessed 2023-11-28].

[41] Visual Studio Code. https://code.visualstudio.com/. [Online; accessed
2023-11-28].

[42] xUnit. https://xunit.net/. [Online; accessed 2024-02-04].

77

https://github.com/dotnet/roslyn/issues/8214
https://github.com/dotnet/roslyn/issues/8214
https://github.com/dotnet/csharplang
https://medium.com/@PurpleGreenLemon/how-null-references-became-the-billion-dollar-mistake-bcf0c0cc72ef
https://medium.com/@PurpleGreenLemon/how-null-references-became-the-billion-dollar-mistake-bcf0c0cc72ef
https://medium.com/@PurpleGreenLemon/how-null-references-became-the-billion-dollar-mistake-bcf0c0cc72ef
https://github.com/dotnet/roslyn/issues/5023
https://github.com/dotnet/roslyn/issues/5023
https://github.com/dotnet/csharplang/discussions/6452
https://github.com/dotnet/csharplang/discussions/6452
https://www.youtube.com/@adam-jones/videos
https://www.youtube.com/@adam-jones/videos
https://visualstudio.microsoft.com/vs/
https://code.visualstudio.com/
https://xunit.net/


A. Attachments
Table A.1 describes the content of the attachments. Although the attachments
contain most of the thesis outcomes, part of the outcome is placed on a public
GitHub repository where further discussions regarding the change, made by C#
community members and LDT, continue.

Folder Description
Bin/ Nuget packages of compiler with proposed changes
Demo/ Ready-to-run demo using the packages
Proposal/ Laguage change proposal and LDM summary

Source/roslyn/
Source code of forked compiler with proposed
changes in the [PartialTypeInference] Add
partial type inference commit

TestResults/ Test results before and after changes
Table A.1: Attachments content

A.1 Build and run Demo
The thesis contains a demo that can be used as a playground for testing the
change. The .NET SDK is needed to be able to compile and run the demo. We
used version 8.0.100, which can be downloaded from Microsoft’s offical websites

After the download, make sure that you don’t have the
Microsoft.Net.Compilers.Toolset.4.9.0-dev package in your nuget pack-
ages cache. The cache is usually placed in the C:/Users/%user%/.nuget folder.
Then, navigate to the Demo folder and run dotnet build which builds the demo
example.

A.2 Build your applications
You can try to build already existing C# projects by the modified compiler by
adding the following code fragment A.1 to the .csproj file. Then, you can again
use a common dotnet build to build your application.
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<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>

<RestoreSources>
path/to/Attachments/Bin/folder

</RestoreSources>
</PropertyGroup>

<ItemGroup>
<PackageReference

Include="Microsoft.Net.Compilers.Toolset"
Version="4.9.0-dev"/>

</ItemGroup>
</Project>

Figure A.1: .csproj project
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