
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

EFFECTIVE LARGE-SCALE COLLECTION
OF INFORMATION RELATED TO DOMAIN NAMES
EFEKTIVNÍ ROZSÁHLÝ SBĚR INFORMACÍ O DOMÉNOVÝCH JMÉNECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. ONDŘEJ ONDRYÁŠ
AUTOR PRÁCE

SUPERVISOR Ing. RADEK HRANICKÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Information Systems (DIFS)

Student: Ondryáš Ondřej, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Computer Networks

Category: Networking

Academic year: 2023/24

Assignment:

1. Research available sources of domain name-related information (e.g., DNS, WHOIS, RDAP, TLS
certificates, geolocation information, reputation systems, etc.) that could be used for malicious
domain classification purposes.

2. Get acquainted with the current state of research on malicious domain detection under the FETA
project.

3. Get acquainted with techniques for parallel and distributed big data processing.
4. In consultation with the supervisor, design a solution for efficient collection and storage of

information on large numbers of domain names. The collected data needs to be transformed into a
form suitable for machine learning.

5. Implement the proposed solution and optimize it for performance and efficient use of available
computing capacity.

6. On a sufficiently large set of domains, experimentally verify the applicability of the designed solution
and evaluate the obtained results.

Literature:
• Han, Jiawei, Jian Pei, and Hanghang Tong. "Data Mining: Concepts and Techniques." Morgan

Kaufmann, 2022.
• Hajaj, Chen, Nitay Hason, and Amit Dvir. 2022. "Less Is More: Robust and Novel Features for

Malicious Domain Detection" Electronics 11, n. 6: 969.
• Torroledo, Ivan, Luis David Camacho, and Alejandro Correa Bahnsen. "Hunting malicious TLS

certificates with deep neural networks." In Proceedings of the 11th ACM workshop on Artificial
Intelligence and Security, pp. 64-73. 2018.

• Shi, Yong, Gong Chen, and Juntao Li. "Malicious domain name detection based on extreme
machine learning." Neural Processing Letters 48.3, pp. 1347-1357. 2018.

Requirements for the semestral defence:
Points 1 to 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Hranický Radek, Ing., Ph.D.

Head of Department: Kolář Dušan, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 31.7.2024

Approval date: 30.10.2023

Master's Thesis Assignment
154543

Efficient Large-scale Collection of Information Related to Domain NamesTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This thesis presents a software solution that provides fast data collection and feature ex-
traction for the purpose of detecting malicious domain names using machine learning. It
introduces the FETA DomainRadar research project targeted at developing a system for as-
sessing domain name maliciousness. It discusses various sources of information that proved
helpful for the task. It elaborates the system’s design and presents its crucial component
for collecting and processing data that can be used to evaluate domain names captured in
monitored high-traffic networks in real time and to build large training datasets effectively.
Based on Apache Kafka, the system is designed to allow horizontal scalability in distrib-
uted deployments, with experiments showing massive improvements in throughput when
multiple instances cooperate. The system collected data from eight external sources for
400,000 domain names in about 4 hours, reaching the average throughput of 28 domain
names per second. It was deployed in the CESNET academic network, where it steadily
collected and processed data at 9.56 domain names per second.

Abstrakt
Tato práce představuje programové řešení poskytující rychlý sběr dat a extrakci příznaků
pro účely detekce škodlivých doménových jmen s využitím strojového učení. Představuje
výzkumný projekt FETA DomainRadar, jehož cílem je vývoj systému pro vyhodnocování
škodlivosti doménových jmen. Pojednává o různých zdrojích informací, které se v této
úloze osvědčily. Upřesňuje návrh tohoto systému a prezentuje jeho klíčovou část pro
sběr a zpracování dat, kterou lze použít pro pro vyhodnocování doménových jmen zachy-
cených v reálném čase v sítích s velkým provozem, ale také pro efektivní sestavování roz-
sáhlých trénovacích datových sad. Systém na bázi platformy Apache Kafka je navržen tak,
aby umožňoval nasazení v distribuovaném prostředí, a byl tak horizontálně škálovatelný.
Provedené experimenty ukazují významný nárůst propustnosti systému při kooperaci něko-
lika instancí. Systém zvládl nasbírat data z osmi externích zdrojů pro 400 000 doménových
jmen přibližně za 4 hodiny, čímž dosáhl průměrné propustnosti 28 doménových jmen za
sekundu. Poté byl nasazen v akademické síti CESNET, kde bez obtíží sbíral a zpracovával
data pro 9,56 doménových jmen za sekundu.

Keywords
domain name, DNS, WHOIS, RDAP, IP, TLS, certificates, reputation systems, NERD, big
data, data collection, Apache Kafka, Kafka Streams, distributed computation, phishing,
malware, classification, detection, feature extraction

Klíčová slova
doménové jméno, DNS, WHOIS, RDAP, IP, TLS, certifikáty, reputační systémy, NERD,
velká data, sběr dat, Apache Kafka, Kafka Streams, distribuované výpočty, phishing, škod-
livý obsah, klasifikace, detekce, extrakce příznaků

Reference
ONDRYÁŠ, Ondřej. Effective Large-scale Collection of Information Related to Domain
Names. Brno, 2024. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Radek Hranický, Ph.D.

Rozšířený abstrakt
Internet, jakožto neodmyslitelná součást života dnešní společnosti, je přirozeně úrodnou
půdou pro různé formy škodlivých aktivit mířených na jeho uživatele. Útočníci využívají
techniky jako phishing a malware k získání přístupu k citlivým informacím, heslům a účtům.
V případě phishingu oběti samy poskytnou své přihlašovací údaje falešným stránkám, které
věrohodně napodobují legitimní služby. Malware je škodlivý software, který se může nain-
stalovat na zařízení oběti a umožňuje útočníkům například krást data nebo napadené za-
řízení ovládat. V boji proti těmto hrozbám je kromě vzdělávání uživatelů vhodné využívat
technické prostředky, které dokáží takové útoky detekovat a případně jim zabránit.

Tato práce byla řešena v rámci výzkumného projektu „Analýza šifrovaného provozu
pomocí síťových toků“ (Flow-Based Encrypted Traffic Analysis, FETA) na Fakultě in-
formačních technologií VUT v Brně. Skupina DomainRadar, která je součástí projektu,
vyvíjí systém, který bude efektivně detekovat potenicální hrozby prostřednictvím klasi-
fikace „škodlivosti“ doménových jmen. Klasifikaci bude provádět na základě různorodých
dat o jednotlivých doménových jménech, která získá z externích zdrojů.

Práce představuje komplexní softwarové řešení stěžejní části systému DomainRadar,
která umožňuje rychlý sběr dat o doménových jménech. Ze získaných dat poté extrahuje
příznaky, které systém využije pro klasifikaci. Kromě těchto komponent práce významně
přispívá k celkovému návrhu architektury systému DomainRadar. Rozpracovává koncep-
tuální návrh vytvořený v týmu do podoby, ve které jsou jasně definované datové toky
mezi jednotlivými částmi systému a použité technologie. Navržený subsystém je schopen
zpracovávat velké objemy vstupních dat v reálném čase a umožňuje horizontální škálovatel-
nost v distribuovaném prostředí. Je postaven na platformě Apache Kafka, která poskytuje
škálovatelnost a odolnost vůči chybám.

Zdroje dat pro klasifikaci škodlivosti domén

První část práce se zabývá analýzou různých zdrojů dat, které mohou poskytnout užitečné
informace pro klasifikaci škodlivosti doménových jmen. Druhá kapitola naznačuje, jak
dosavadní výzkum přistupoval k úloze klasifikace na základě dat z externích zdrojů. Shrnuje
různé charakteristiky, neboli příznaky doménových jmen, které se v literatuře osvědčily.
Čtvrtá kapitola podrobně zkoumá několik konkrétních zdrojů dat, které je pro tuto úlohu
možné použít, popisuje, které informace z nich lze získat a jaká jsou jejich omezení.

Platformy pro zpracování velkých dat

Systém je koncipován tak, aby jej bylo možné škálovat pro použití v sítích s takřka libovol-
ným provozem. Je tedy nutné, aby byl navržen jako distribuovaný systém. Třetí kapitola
představuje problém zpracování tzv. „velkých dat“ a požadavky, které se při něm objevují.
Popisuje několik technologií, které je k tomu možné použít. Podrobněji představuje plat-
formu Apache Kafka, která byla pro implementaci využita.

Komponenta pro sběr dat

Klíčovou komponentou systému je sběrač, který zajišťuje sběr dat z různých externích
zdrojů. Pro každé vstupní doménové jméno sběrač provádí sken DNS záznamů, získává
informace o registraci domény pomocí protokolů RDAP nebo WHOIS, pokouší se připojit
na webové servery za účelem získání užitečných dat a certifikátů z inicializace TLS spojení.
Sběrač pracuje i s IP adresami, které pro doménové jméno získá z DNS záznamů. Ke každé

se pokouší získat data o autonomním systému, geolokaci a reputaci podle systému CESNET
NERD. Zároveň na každou IP adresu vyšle datagram s ICMP zprávou typu Echo a očekává
odpověď, přičemž měří dobu odezvy.

Sběrná jednotka je implementována jako modulární systém, který umožňuje snadné
přidávání nových zdrojů dat. Každý zdroj dat je reprezentován samostatným kolektorem,
který je zodpovědný za komunikaci s příslušným zdrojem, získávání dat a předávání do
zbytku systému v definovaném formátu. Kolektory jsou implementovány v jazycích Python
a Java, což umožňuje využití specifických knihoven a nástrojů pro jednotlivé typy dat.

Komponenta pro extrakci příznaků

Komponenta pro extrakci příznaků transformuje nasbíraná data do podoby vhodné pro
strojové učení. Provádí předzpracování a normalizaci dat, pomocí různých metod počítá 176
různých příznaků, které byly navrženy týmem DomainRadar nebo převzaty z odkazované
literatury. Jednotka pro extrakci příznaků je navržena tak, aby byla jednoduše rozšiřitelná.
To umožňuje snadné přidávání nových příznaků a úpravu stávajících metod extrakce, což
je klíčové pro další vývoj systému DomainRadar.

Dosažené výsledky

Výsledky této práce ukazují, že navržený systém je schopen efektivně a rychle sbírat
a zpracovávat velké objemy dat o doménových jménech v reálném čase. Díky použití dis-
tribuovaného zpracování na platformě Apache Kafka systém dosahuje vysoké propustnosti.
Experimenty prokázaly významný nárůst propustnosti při spolupráci více instancí systému,
což umožňuje škálování v závislosti na potřebách jednotlivých případů nasazení.

Systém nasbíral data z osmi externích zdrojů pro 400 000 doménových jmen přibližně za
4 hodiny, čímž dosáhl průměrné propustnosti 28 doménových jmen za sekundu. Nasazení
v síti CESNET potvrdilo schopnost systému stabilně zpracovávat data v reálném čase.
Vzhledem k technickým problémům na straně CESNET do systému přicházela doménová
jména ve významně omezené míře, v jednom z testů byl proto provoz uměle navýšen a sys-
tém zde bez obtíží zpracovával průměrně 9,56 doménových jmen za sekundu, čímž naplňuje
odhadnuté požadavky.

V závěru práce jsou identifikovány možnosti dalšího vývoje. V budoucnu bude vhodné
podrobněji analyzovat využití systémových prostředků jednotlivými komponentami a op-
timalizovat práci s pamětí. Podrobnějšímu zkoumání by mělo být podrobeno chování
serverů poskytujících data o registraci domén pomocí protokolu RDAP, které omezují frek-
venci přístupu a mohou tak zpomalovat sběr dat. Navzdory těmto výzvám je systém nyní
připraven pro další vývoj, rozšiřování a nasazení v produkčním prostředí.

Effective Large-scale Collection of Information Re-
lated to Domain Names

Declaration
I hereby declare that this Masters’s thesis was prepared as an original work by the author
under the supervision of Ing. Radek Hranický, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Ondřej Ondryáš
30th July 2024

Acknowledgements
I would like to thank my supervisor, Ing. Radek Hranický, Ph.D., for his guidance, advice
and the motivation he provided to me (not only) for this work. To a not insignificant
degree, he is to be thanked for my interest in the academic career – even though it certainly
contributed to me spending another summer working on a thesis. Many thanks go to other
colleagues from the DomainRadar group for valuable insights and discussions. I also thank
the CESNET association for providing data on resolved domain names in their network
and the testing environment for the system (an honourable mention goes to V. Bartoš, who
saved the day after I managed to break the system before even starting the experiments).

Děkuji svým drahým rodičům za všechnu podporu, kterou mi poskytovali nejen při studiu.
Velký dík patří Lukáškovi, Peťulce, Elišce, Denisovi, Terezce, Janči, Džejničce a Alexíkovi,
Jakubovi, Adrianě a Toasterovi, Patrikovi, Anežce, Domči, Tondovi, Helči, Míši a Dandovi,
Kotymu, Anetce, Lukášovi (z Rudice!), Julii, Jindrovi, Toothpickovi, Jardovi, Kiznohovi,
Kukimu, Blážovi. . . Každý z vás pro mě v těch uplynulých pěti letech znamenal něco zcela
jiného, vždy něco důležitého – a ač to tady vypadá jen jako zvláštní hromádka jmen, jsou
za nimi osoby, na které nikdy nezapomenu. Jag älskar oss.

A já stojím před branou, otočen zády k ní, přede mnou spousta nových dní.

Contents

1 Introduction 5

2 Malicious Traffic Detection Based on Domains and Related Sources 7
2.1 Approaches to Malicious Domain Name Detection 8
2.2 Previously Studied Features for Malicious Domain Name Detection 8
2.3 Project FETA and Goals of the DomainRadar Group 12

3 Parallel and Distributed Approaches to Data Processing 14
3.1 Big Data Processing . 14
3.2 Batch vs. Stream Processing . 16
3.3 Examples of Distributed Data Processing Frameworks 18
3.4 Apache Kafka . 20
3.5 Stream Processing with Kafka . 24

4 Sourcing Domain-Related Data and Features 27
4.1 Scanning the DNS . 27
4.2 Sourcing Registration Data using RDAP and WHOIS 31
4.3 Discovering Information Related to IPs . 32
4.4 Limitations of the Prototype Data Collection Tool 36

5 DomainRadar and its Requirements on the Data Processing Subsystem 38
5.1 The Proposed Architecture . 38
5.2 Expected Throughput Assessment . 42
5.3 Requirements on the Collector Unit . 44
5.4 Requirements on the Feature Extraction Unit 47

6 Design of the Data Processing Pipeline 48
6.1 Parallelism Granularity and Data Gathering 48
6.2 The Final Pipeline Model . 51
6.3 Common Definitions for the Functional Specifications 53
6.4 The Collectors . 55
6.5 Merging the Collected Data . 57
6.6 Feature Extractor . 60
6.7 Re-collection Controller . 61

7 Implementation 63
7.1 The Big Picture: the Technologies of DomainRadar 63
7.2 The Kafka-based Data Processing Pipeline 67

1

7.3 Python-based Collectors . 71
7.4 The Feature Extractor . 76
7.5 Java-based Collectors and the Data Merger 79
7.6 Database Integration using Kafka Connect 84
7.7 Container Images . 88
7.8 Compose-based Orchestration . 89

8 Performance and Reliability Evaluation 93
8.1 Standalone Collection Experiments . 95
8.2 Data Merging Experiments . 104
8.3 Standalone Feature Extraction Experiments 107
8.4 Real-time Data Processing Experiments . 108
8.5 Discussion . 111

9 Conclusion 113

Bibliography 115

A CESNET Domains Analysis 127

B Functional Specification of the Collectors and the Merger 130

C Component Identifiers 154

D Examples of Collector Implementation 155

E Examples of Configuration Mappings 159

F List of Features 160

G Used Packages and Licences 164

H Results of the Evaluation Experiments 167

I Contents of the Attached Data Storage 200

2

List of Figures

3.1 Dataflow program . 18
3.2 Kafka topics, events and partitions . 21
3.3 Kafka log compaction . 22

5.1 Trivial scheme of the DomainRadar pipeline 39
5.2 Loader & pre-filter unit . 40
5.3 Conceptual architecture of DomainRadar 42
5.4 Reduction of input when filtering top N domains/e3LDs/eSLDs. 43
5.5 New domains per day. 44

6.1 Data-flow scheme of the data processing pipeline 49
6.2 Adjusted scheme of the data processing pipeline 52
6.3 Data merging operation . 59

7.1 DomainRadar implementation architecture 64
7.2 Standalone collector . 66
7.3 Kafka-based pipeline implementation . 68
7.4 Event-loop based implementation of the DNS collector 74
7.5 Feature extractor implementation . 77
7.6 The process of transferring a Kafka event with a result from an IP-based

collector to the PostgreSQL database. The blue blocks represent the custom
converters, the green block represents the custom transformation, and the
pink block represents the JDBC Sink connector. 87

8.1 Accumulation of responses in collector experiment #1 97
8.2 Accumulation of responses in collector experiment #2 99
8.3 Accumulation of responses in collector experiment #3 100
8.4 Scanner memory usage during experiment #4. 101
8.5 Comparison of the load on both VMs during collection 103
8.6 System resources consumption during the merger tests 106

3

List of Abbreviations

API Application Programming Inter-
face

KS Kafka Streams

AS Autonomous System ML Machine Learning
ASN Autonomous System Number NERD CESNET’s Network Entity

Reputation Database
CA Certification Authority OS Operating System
CLI Command-Line Interface POM Project Object Model (XML

format for Java Maven projects)
CPC Confluent Parallel Consumer RDAP Registration Data Access Pro-

tocol
DAG Directed Acyclic Graph RIR Regional Internet Registry
DBMS Database Management System RR (DNS) Resource Record
DDL Data Definition Language (sub-

set of SQL)
RRtype (DNS) Resource Record type

DGA Domain Generation Algorithm RTT Round-Trip Time
DN Domain Name SLD Second-Level Domain
DNS Domain Name System SNI Server Name Indication
DSL Domain-Specific Language SSL Secure Sockets Layer
eTLD Public Suffix (effective TLD) TLS Transport Layer Security
IANA Internet Assigned Numbers Au-

thority
TCP Transmission Control Protocol

ICANN Internet Corporation for As-
signed Names and Numbers

TLD Top-Level Domain

ICMP Internet Control Message Pro-
tocol

TOML Tom’s Obvious Minimal Lan-
guage (configuration file format)

ID Identifier TTL Time To Live
IP Internet Protocol UDP User Datagram Protocol
JDBC Java Database Connectivity UI User Interface
JSON JavaScript Object Notation UTC Coordinated Universal Time
KC Kafka Connect

4

Chapter 1

Introduction

The internet, being an integral part of most people’s lives, is naturally a seedbed of malicious
and criminal behaviour targeted both at individuals and institutions. Attackers often try to
gain access to users’ online accounts to steal money or gather sensitive information. Some
attackers employ phishing, where they trick someone into giving their credentials directly to
them, for example, by convincingly imitating a legitimate service. Others attempt to install
malicious software – malware – on the users’ devices. This software may track the user,
send their data to the attacker or convert the device into a puppet following the attacker’s
commands and carrying out further harmful actions, such as distributed attacks.

Although the success of such attacks comes primarily from users’ unawareness or reck-
lessness, much research has been done on preventing them by technical means. Numerous
approaches have been proposed based on various levels of network traffic analysis, for ex-
ample, by detecting patterns in the network flows or inside the actual communication.
While promising results have been demonstrated with methods that detect malicious con-
tent from the structure of web pages or URLs [37, 47], their usability is seriously limited
by the prevalence of encrypted communication. According to Firefox Telemetry, over 80%
of web pages are being loaded using HTTPS worldwide [72]. Without the possession of the
encryption keys, it is computationally infeasible to access the transferred data, so threat
detection methods independent on the contents of end-to-end communication are needed.

One promising approach of evaluating online risks is based on the analysis of domain
names, human-readable identifiers of internet servers and other nodes. When using online
services, client stations must translate the names to internet addresses using the Domain
Name System (DNS). Although several DNS encryption mechanisms exist, their adoption
rate is low and does not grow significantly [48], so the DNS queries are usually transmitted
unencrypted. Thus, they may be captured at various network nodes and analysed.

While the lexical properties of domain names can provide some threat indicators, enrich-
ing them with information from additional sources significantly enhances threat assessment.
Monitoring software can determine when and by whom the domain was registered, or it
can query the DNS to collect data on how the domain is configured and to what addresses
it points. It can evaluate different characteristics of addresses, such as their geographic
location, affiliation with autonomous systems, or the presence of a secure HTTP service.
By collecting such data for large amounts of domains that are a priori known to be harmless
and for domains known to be malign, a machine learning (ML) model can be trained to
assess the “badness” of a previously unseen domain, leveraging these diverse characteristics
for accurate threat detection.

5

Contributions
This thesis is a part of a research project at BUT FIT called Flow-Based Encrypted Traffic
Analysis (FETA). One of its goals is to develop an ML-based system for domain name
threat detection called DomainRadar. Its inputs are domain names captured by probes at
the perimeter of a secured network. The system collects data related to the input domain
names from various sources, extracts useful features from these data, and passes them
to fine-tuned classification models that decide whether the domain seems malicious. The
system is meant to be deployed in environments with large throughput, so it must be able
to process large amounts of data in a reasonable time.

The system comprises several components: a loader for loading and filtering the in-
put domain names, a collector for gathering the external data, the feature extractor that
processes the data, and the classification subsystem. This thesis presents the system’s over-
all architecture, designed in cooperation with the DomainRadar team, and proposes the
specifics of its realisation.

The main focus of the thesis is the system’s “data processing pipeline”, i.e. the col-
lection and feature extraction components, as well as the data exchange facilities for their
interaction with the rest of the system. It presents the design and implementation of these
components prepared for the integration with DomainRadar. Additionally, they can be
used as a standalone tool, for example, for building new large training datasets.

The implementation leverages distributed computation based on the Apache Kafka
platform to achieve the required throughput. Kafka provides scalability as well as fault
tolerance. As the system is a matter of ongoing research, the pipeline is designed to be
modular and extensible so that new data sources or features can be easily added.

The data processing pipeline was evaluated on a sample of 400,000 domain names
sourced from real-life traffic. Its size corresponds to the expected daily throughput of
the system. Even without fine-tuning, the system processed all the data in slightly over
4 hours, leaving plenty of room for larger throughputs. Then, it was deployed in the CES-
NET academic network, where it successfully processed data at a rate of 9.54 domain names
per second.

Structure of the Thesis
Chapter 2 presents preceding work on threat detection based on domain names, focusing
on approaches and features used in past research. It also outlines the current state of
the FETA DomainRadar research. Chapter 3 discusses the problem of large-scale data
processing in general and introduces the Apache Kafka platform on which the system is
built. Chapter 4 discusses the various sources of domain-related information and data,
their limits, and the pitfalls of their usage. It also lists the features that can be extracted
from these data and used in the ML models based on literature and the DomainRadar
research. Chapter 5 introduces the high-level design of the DomainRadar system, evaluates
the expected throughput and uses these findings to specify the requirements for the data
processing pipeline. Chapter 6 presents the design of the data processing pipeline, including
the data flow, the structure of the data, and the processing steps. Chapter 7 describes
the implementation of the pipeline and gives a brief overview of the included deployment
facilities. Chapter 8 reports the comprehensive experiments conducted to evaluate the
system’s performance and resource usage under different configurations. Finally, Chapter 9
summarises the results and outlines the future work.

6

Chapter 2

Malicious Traffic Detection Based
on Domains and Related Sources

Several types of content are generally recognised as malicious, even if no single definition
exists. Naturally, there is also a large variety of related research, in terms of the types of
examined malicious content and the sources used when building datasets about it [126].
Various forms of online threats, such as phishing, malware, and botnets, pose unique chal-
lenges and require different detection strategies.

Phishing

Phishing is a prevalent form of cyber attack where individuals are deceived into revealing
sensitive information by mimicking legitimate websites or entities. Attackers use domain
names closely resembling trusted ones to manipulate victims into believing they interact
with a legitimate source. These attempts range from simple mimicry to advanced techniques
like spear-phishing [76], targeting specific groups or individuals within organisations, and
whaling [102], which aims at high-level executives with personalised and well-crafted mes-
sages. These days, attackers often employ sophisticated social engineering techniques that
use personal information from social networks to create convincing messages and fake web-
sites [128]. The rise of mobile platforms has led to smishing [82], where attackers send
SMS messages with malicious links to download malware or fill in credentials to fake forms,
exploiting the informal and immediate nature of text messaging to catch recipients off
guard.

Malware

Websites hosting various types of malware represent a significant category of malicious in-
ternet content. These sites lure users into downloading harmful software through deceptive
links, with some disguising their domain names to mimic legitimate websites. Some websites
are infected with drive-by-download exploits, which are malicious scripts that compromise
the browser or its plugins by exploiting vulnerabilities upon user access [22]; others may
host or point to binary files containing malicious content.

Botnets and DGAs

Botnets are networks of infected computers controlled by cybercriminals for malicious activ-
ities such as distributed denial of service (DDoS) attacks, spamming, and data theft. These

7

networks often rely on domain names for their command and control (C&C) infrastructure,
with domains registered in bulk and rapidly changing to avoid detection. Domain gener-
ation algorithms (DGAs) are used to create a large number of domain names for botnet
infrastructure, which are then used to establish communication channels between infected
devices and the C&C servers. This technique, called domain fluxing [124], enables attackers
to hide control servers and quickly shift their infrastructure, posing a significant challenge to
traditional domain blocklisting approaches due to their unpredictability and volume [122].

2.1 Approaches to Malicious Domain Name Detection
Methods for the detection of malicious domain names in traffic evolved from basic block-
lists to using various machine learning approaches. Blocklists (also known as blacklists or
denylists) have been a traditional method for the prevention of malicious traffic. However,
they have shown limitations due to their static nature. Attackers frequently change domain
names, rendering blocklists ineffective over time. Even so, blocklists remain helpful for fast
detection of malicious content and are used as components of more complex systems. They
are also often used as data sources for machine learning approaches [6, 126].

Machine learning offers a more dynamic approach. Feature-based learning involves ex-
tracting and analysing specific characteristics (features) of domain names to determine if
they are malicious. A wide variety of features may be used (as demonstrated in Section 2.2).
The method relies on the premise that malicious domains often have distinguishable pat-
terns or anomalies in their naming compared to benign ones. Machine learning algorithms
use these features to classify and predict the nature of the domains, thereby aiding in the
detection of potential cyber threats.

Deep learning relies on layered neural networks to learn and identify patterns indicative
of malicious content without prior explicit feature extraction. Although deep learning
can potentially offer more robust detection by uncovering complex patterns, it requires
substantial amounts of high-quality annotated data and computational resources [39].

Regardless of the specific approach, ML-based methods differ in the character of the
inputs they use for classification. Some authors focus on examining the domain names only,
while others analyse the patterns in DNS requests and responses. They consider various
aspects, such as the frequency of DNS requests, the diversity of IP addresses associated
with a domain, and unusual query patterns [6, 126].

2.2 Previously Studied Features for Malicious Domain Name
Detection

Suitable data markers – features – are needed to search for malicious patterns in domain
names. Many features have been tried to classify malicious domain names using feature-
based supervised learning. Some authors successfully employed features based on the lexical
properties of the names, which do not require collecting any external data. Others enriched
the datasets using various sources: DNS records, RDAP or WHOIS registration information,
or IP address information, such as its placement in autonomous systems or geographic
location [126]. This section gives a brief overview of some of the features identified in
related work. A comparative analysis of different types of features can also be found in
a study by Singh and Goyal [115].

8

Lexical features

Certain characteristics that distinguish malicious DNs from benign ones can be observed
solely from the lexical properties of the names themselves. Such an approach may be par-
ticularly successful in detecting various DGA families. Many authors demonstrate great
results when using lexical features of URLs to classify both phishing and malware online
resources. However, preliminary results from the FETA project show that the lexical char-
acteristics of domain names can also help distinguish phishing and malware sites.

Drichel et al. [42] studied 136 different lexical features for DGA classification gathered
or adapted from several previous works. They divided the features into three categories:
linguistic, structural, and statistical. The first is based on the presence or count of specific
linguistic patterns. Structural features capture properties such as the length of different
parts of the name. The last category is based on statistical characteristics, such as the
frequency distribution of various n-grams. For example, some of the features they used
include:

• the number of occurrences of each letter in the alphabet,

• the ratio of lengths of consecutive digit strings/repeating character strings to the total
length,

• the consonants to vowels ratio,

• the maximum length of consecutive consonant/vowel/digit strings,

• the sum of digits in the subdomain,

• the proportion of disagreeing characters of the concatenated subdomains and its in-
verse,

• the sum of the characters interpreted as base 36 digits.

The publicly available source code for feature extraction1 describes the complete set of
features. Their best-performing model uses 76 of these features, achieving results that
consider a success, considering that devices infected with DGA-based malware will typically
try to access many of these domains, ultimately leading to successful detection.

The problem of purely lexical-based detection has also been previously studied in the
context of phishing or malware. Much research has focused on classifying whole URLs
where the domain name is only a part of the input. Blum et al. [18] were likely the first
to classify URLs in this way [28], employing a bag-of-words model in which they split the
URL by specific delimiters and studied the occurrences of unique values. A similar approach
was included in the work of Lin et al. [75], who compared the performance of two groups
of features: lexical features that use the bag-of-words model and descriptive features that
describe some statistical characteristics of URLs2, such as:

• length, longest word length,

• letter/digit/symbol count,

• alphabet entropy (based on estimated probabilities of letters occurring in the URL),
1Feature extraction used in [42]: https://gitlab.com/rwth-itsec/explain/-/tree/master/explain/

base/features/examples?ref_type=heads
2This is more in line with what “lexical features” refers to in this work.

9

https://gitlab.com/rwth-itsec/explain/-/tree/master/explain/base/features/examples?ref_type=heads
https://gitlab.com/rwth-itsec/explain/-/tree/master/explain/base/features/examples?ref_type=heads

• ratio of digits to total length,

• character continuity rate (the length of continuous sequences of letters, digits, and
symbols within the domain name, divided by the total domain length).

Some papers have attempted to tackle the problem using natural language processing
(NLP). For example, Buber et al. [19] used features based on certain common keywords,
brand names, and strings that were similar but not equal to those. However, Hamroun et
al. [50] argue that NLP-based methods do not solve the problem effectively.

Lately, some authors have also experimented with lexical classification of malware and
phishing websites based on domain names only. Zhao et al. [125] proposed a method based
solely on n-gram analysis. It works by dividing the entire domain names into multiple sub-
strings and deeply analysing them in terms of lexical composition and structure. Cersosimo
and Lara [23] used the more common approach of extracting features such as length, vow-
el/consonant/digit ratio, or Shannon entropy of the name. They also introduce a “meaning
ratio” feature based on a wordlist that helps determine if a domain name makes sense for
a human.

The overview given above only describes approaches that solely used lexical features.
However, they have often been combined with other features, which are further discussed
below.

DNS-based features

Many authors have used features extracted from the DNS. Some of them have focused on
scanning the DNS traffic itself, observing data from subsequent resolutions of a particular
domain name by a client, and others have used DNS records to enrich the datasets or
combined these approaches.

Perdisci et al. [101] focused on the detection of flux networks which are related to
botnets. They divided the requests into day-long epochs, then clustered the DNS queries
by certain criteria and used features like:

• the total number of resolved IPs,

• the average TTL of A resource records,

• the numbers of domains sharing an IP,

• IP diversity – the normalised entropy of the /16 network prefixes,

• IP growth ratio – the average number of new IP addresses in each query.

Features based on the TTL (typically the mean value and standard deviation across
DNS records) were also used in [49, 114]. Bilge et al. [17] claimed that malicious domains
exhibit more scattered usage of TTL values, so they proposed percentages of TTLs falling
into ranges [0,1), [1,10), [10,100), [100,300), [300,900) and [900,∞) as features. They also
stated that the total number of different TTL values tends to be significantly higher in
malicious domains. However, Prieto et al. [105] argue against using such features, claiming
that low TTL values are also found in benign domains.

Hajaj et al. [49] also introduced a feature based on the number of DNS record changes.
Kuyama et al. [70] evaluated the distributions of occurrences of the different record types,
selecting the number of NS records and the number of MX records as features. Liu et al.
[77] used:

10

• the number of distinct A records,

• the entropy of domain name,

• the number of distinct NS records,

• similarity of NS domain names (the average value of edit distances between every pair
of nameserver domain names).

Features based on domain registration data

While some authors argue that using WHOIS data may limit availability or present bottle-
necks to detection systems [18, 37, 41], others have proposed solutions that employ features
based on various information on domain registration. Chatterjee et al. [26], Hajaj et al.
[49] and Shi et al. [114] have all used some of the possible time-based indicators:

• lifetime – the number of days between the expiration and creation dates [49, 114],

• active time – the number of days between the last update date and the creation date
[49, 113],

• age – the number of days between the current date and the creation date [26, 113],

• age left – the number of days between the expiration date and the current date [113].

Sadique et al. also used features based on other registration information, such as the
administrative or registrar contact, but they do not give a complete list of features. In-
triguingly, registration data were not used in much research.

Features based on TLS handshakes

The TLS protocol is built on top of a transport protocol such as TCP or QUIC. The data
are transferred in the form of TLS records, where one of the first records in the flow is
the “Client Hello” type (from the client to the server), to which the server responds with
a “Server Hello” record. In most settings, these records are not encrypted and contain vast
configuration data of the flow, such as ciphersuites. In TLS 1.2, the server sends a “Server
Certificate” record that contains an X.509v3 certificate chain used for authentication in
most key exchange methods [40, Sec. 7.4.2].

The data extracted from TLS handshakes were used in some research that analysed the
whole traffic flows. In these scenarios, the systems obtain a detailed view of the character
of the communication. Some features have been extracted by analysing the actual payloads
of the TLS communication. For example, Barut et al. [16] used the number of ciphersuites,
the number of TLS extensions, the length of TLS key exchange, or the presence of certain
TLS features advertised by the server. Anderson et al. [4] included the ciphersuite selected
by the server, supported extensions, number of certificates, number of Subject Alternative
Names in the leaf certificate, validity in days, and a flag on whether the certificate was
self-signed.

Torroledo et al. [121] focused on using the server’s leaf certificate to detect malware
and phishing content. They devised 40 features consisting mainly of boolean indicators of
the presence of certain fields and lexical-statistical characteristics of strings found in the
certificate. Drichel et al. [41] employed similar features.

11

2.3 Project FETA and Goals of the DomainRadar Group
The purpose of the Flow-based Encrypted Traffic Analysis (FETA) project is to develop
new technologies and tools that will enable the monitoring of encrypted communications
and the identification of attacks on network infrastructure [118]. As a part of the project,
the DomainRadar group aims to develop an ML-based system for the detection of malware,
phishing, and DGA domain names. This software will be able to read a stream of domain
names gathered by scanning DNS queries in a network, collect the required data, and pass
it to custom fine-tuned models to determine the domain name’s maliciousness level. The
system is intended to be deployed, among others, in a large academic network that exhibits
around 2.3 million unique domain names per day of regular traffic.

One of the primary goals of the DomainRadar group is to develop ML models that will
classify a domain name into one of the maliciousness categories. In the final product, the
user should be presented with an overview of the detected potential threats where each
domain name receives a certainty score for being a phishing domain, a malware domain, or
a DGA domain, together with an explanation for this decision.

In time of writing, the group has already crafted several classifiers that show promising
results. However, all this work has been done on a static set of data collected by a manually
operated prototype tool over several weeks. Now, a solid data collection and processing
solution without the need for frequent user interventions is needed to put the classifiers
into practice, which is what this thesis aims to provide.

Initial experiments

In [20], Bučko presented a binary DGA classifier with an F-1 score of 0.980, and a mul-
ticlass classifier with an average F-1 score of 0.8619, which is comparable to or exceeds
the performance of the results demonstrated in related work. The team now continues to
enhance these results further, mainly by trying other classification algorithms or working
with more extensive and diverse datasets.

In [57], Horák developed data collection software and experimented with the XGBoost
classifier, an effective system for tree boosting that is usable in classification [27]. He
demonstrated promising results in the binary classification of phishing domain names by
achieving an F-1 score of 0.9422.

Large datasets and related experiments

We studied various sources of domain names to assemble representative datasets of benign
and phishing domains. We were presented with two challenges. First, it was necessary
to collect high-quality ground truth, lists of unquestionably benign and phishing domains.
Second, each domain name was to be enriched with data from related sources (similar to
those discussed in Section 2.2).

We used the “Top 1 million queried domains” lists from the Umbrella Popularity List
[31] as the basis for the benign set. We filtered the set by a process previously used by
Rahbarinia et al. [109] to ensure benignity, keeping only those domain names that appeared
in the top list consistently over a year. This yielded a list of 432,572 domain names. The
phishing domains were obtained from OpenPhish, an automated platform for phishing
intelligence [96], and PhishTank, a collaborative clearing house for data and information on
phishing [30]. Both platforms rigorously validate reported domains. The resulting dataset
was published on Zenodo [58].

12

Since publication, we have worked on extending the phishing dataset and on further
verification of the records to ensure their quality. We now have data for almost 90 thousand
phishing domain names, and we are currently processing data from the CESNET network
to assemble another dataset that better captures real-life traffic. At the same time, we are
employing VirusTotal, a malware scanning system [29], to assess whether our domain name
lists are correctly labelled. In our latest experiments, we worked with a dataset of 110,311
verified phishing domain names.

In the work preceding this thesis, related research was studied to determine more fea-
tures previously used in malicious domain name classification. Horák’s collector was mod-
ified to acquire more detailed data. Together with the rest of the team, we also developed
novel features that can be extracted from these data. After finishing the dataset and
coming up with an extensive feature vector, we compared several different classification
methods such as Logistic Regression3, Support Vector Machines4, Random Forests5, or
various gradient-boosted algorithms such as AdaBoost6, XGBoost7, and LightGBM8. Pre-
liminary results, presented in [59], suggest that our approach could be used in real traffic.
However, more work is yet to be done to achieve even lower false positive rates, which are
critical for practical usage.

Current work

Currently, the team is examining the possibilities of using other classification methods, such
as deep neural networks. It is also planned to assess various multi-classifier setups. So far,
all experiments have been conducted using a complete feature vector. However, “smaller”
classifiers could also give good enough decisions based only on a subset of the features,
allowing for a higher level of parallelism. In the upcoming months, we will also shift our
focus towards malware domains, employing the findings from phishing detection.

At the same time, we are working on putting the classifiers into practice and creating
the actual production-ready DomainRadar software. This thesis is a significant part of this
effort, designing and implementing the data collection and processing pipeline. Other team
members work on the data loading component, the classifier module, and the user interface.

3LLR: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
4SVM Classification: https://scikit-learn.org/stable/modules/svm.html#svm-classification
5Random Forests: https://scikit-learn.org/stable/modules/ensemble.html#forest
6AdaBoost: https://scikit-learn.org/stable/modules/ensemble.html#adaboost
7XGBoost: https://xgboost.readthedocs.io/en/stable/
8LightGBM: https://lightgbm.readthedocs.io/en/stable/

13

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/svm.html#svm-classification
https://scikit-learn.org/stable/modules/ensemble.html#forest
https://scikit-learn.org/stable/modules/ensemble.html#adaboost
https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/stable/

Chapter 3

Parallel and Distributed
Approaches to Data Processing

The system designed in this work must reliably collect and process data from various ex-
ternal sources (described in detail in the next chapter). The system must withstand a high
regular throughput of over 300,000 domain names per day, as well as possible spikes in
traffic, making scalability one of the primary requirements for the used design and under-
lying technology.

This chapter discusses how large amounts of data can be processed in parallel, focusing
primarily on distributed computation. Section 3.1 presents the general problems in pro-
cessing large amounts of data. Section 3.2 explains the differences between the processing
of batches and streams. Section 3.3 presents some existing data processing platforms that
tackle the problem in various ways. Section 3.4 introduces the Apache Kafka platform,
and Section 3.5 shows how it can be used for streaming data processing using various
frameworks.

3.1 Big Data Processing
Large-scale processing of so-called big data has become a crucial task in the last decade.
People and devices produce massive amounts of data that different industries and interest
groups can exploit to gain new knowledge. The so-called three “Vs” often characterise the
term [129, p. 102]:

Volume refers to the amount of data that grows constantly and can reach the orders of
terabytes or petabytes.

Velocity refers to the speed at which the data are produced (and must be processed).

Variety refers to the different types of data, such as text, images, audio, video, etc.

Other “Vs”, such as value, veracity, variability, or volatility, can also be discussed [65,
p. 9–11]. Processing of such data is not only limited by the storage capacity but also by
the processing capabilities of the computation system – in fact, data are often collected
at rates that exceed the ability to make use of it [65, p. 2][129, p. 102]. Unsurprisingly,
many software platforms have been established to solve the problem of parallel, scalable,
fault-tolerant, resilient data processing and analysis with high throughput and low latency.

14

Parallelism

Parallel processing generally involves executing multiple calculations concurrently, as op-
posed to the traditional sequential approach, where tasks are executed one after another.
It is crucial for handling large-scale data as it improves efficiency and feasibility. The terms
“parallel” or “parallelism” in this context are multifaceted. Parallelism can occur at various
levels – from instruction-level parallelism inside a CPU through multi-threading or multi-
core computing to multi-processing across a network. Furthermore, many other parameters
can differentiate parallel systems – different topologies, synchronisation mechanisms, task
scheduling strategies, or processing unit types can be used. One of the most notable dis-
tinctions is the memory model: in shared memory systems, all processes access a common
memory space, while in distributed memory systems, they communicate by message passing.
Programming models using parallel processing can be based on data parallelism, where large
datasets are divided into smaller chunks processed simultaneously by the same task, or task
parallelism, which involves executing different computational tasks simultaneously on the
same or different data [129, p. 69, 84].

Distributed computation

According to Kshemkalyani and Singhal [67, Sec. 1.1], a distributed system is a collection
of mostly autonomous processors (nodes) that cooperate, communicating over a network,
to solve a problem that cannot be solved individually. It has no common physical clock
(introducing asynchrony) and no shared memory; the nodes are separated physically (and
even geographically). The architecture of distributed systems can vary widely, from tightly
coupled systems, where nodes work closely together on a specific task, to loosely coupled
systems like grid computing, where nodes may be more autonomous and geographically
dispersed. Nevertheless, it is clear that distributed systems also conduct a form of parallel
computation.

Different motivations may lead to the use of distributed systems. Some applications
are inherently distributed, especially when reaching consensus among geographically dis-
tant parties is required. However, key motivations are often reliability, performance, and
scalability [67, Sec. 1.3]. These systems allow for easy expansion by adding more nodes
as the demand for data processing grows. By dividing tasks across multiple nodes, they
can process data much faster than a single machine. They also provide enhanced fault
tolerance, as the failure of a single node does not compromise the entire system. In fact,
they are often designed to utilise less expensive commodity hardware, relying on their fault
tolerance mechanisms to mitigate possible errors [38].

General requirements on parallel and distributed systems

Various definitions of requirements on parallel and distributed processing systems can be
found in the literature. Based on [67, Chap. 1.8.1] and [129, p. 67–68, 223], a distributed
system that processes large amounts of data must address, among others, these issues and
design aspects:

Communication It must use appropriate mechanisms for communication among nodes.

Processes It must deal with the management of processes and threads and code migration
across nodes.

15

Naming It must be able to devise robust schemes for names, identifiers and addresses.

Synchronisation Mechanisms for synchronisation or coordination among the processes
are essential. They are used not only for mutual exclusion but also for leader election,
clock synchronisation, or global state recording.

Data storage It must provide fast access to data that is scalable across the cluster.

Consistency and replication Replication of parts of data is needed to provide fast access
and scalability. However, it must be ensured that the replicas are consistent.

Fault tolerance Correct and efficient operation must be ensured even in the presence of
faults in links, nodes, or processes. Checkpointing and recovery algorithms should be
employed to minimise state loss.

Scalability and modularity Algorithms, data, and services must be as distributed as
possible. The system must be able to capably scale up to a large number of nodes to
handle a growing amount of work. Adding new nodes to the system must be possible
without negatively affecting its operation.

Security Secure channels, access control, and secure group management are needed.

Interface and transparency It must provide an interface that hides the data represent-
ation, provides uniform access to resources, makes their location transparent, allows
their relocation without changing names, masks the concurrent use of shared resources
and does not let the user become aware of any failures.

Efficiency Big data processing requires a significant computation capability. Efficiency
means faster speed with respect to the usage of certain resources like memory or the
number of nodes.

Latency and throughput Latency is the time between the initiation of a request and
the beginning of a response. Throughput is the number of such requests that can be
processed per unit of time. Both are especially important in real-time processing.

3.2 Batch vs. Stream Processing
Batch processing and streaming processing represent two distinct paradigms in big data
processing. Batch processing involves the collection of data over a defined period, followed
by the execution of a comprehensive processing task on these accumulated data. This
method is particularly effective for large-scale data analysis where a complete dataset is
required for accurate processing [129, p. 69]. On the other hand, stream processing emerged
as a response to the need for real-time data processing. This approach supports applications
that require immediate ingestion, processing, and data analysis as they are being constantly
produced (without the delay inherent in batch processing) [129, p. 69].

MapReduce

A typical example of a batch processing paradigm is the MapReduce model proposed by
Dean and Ghemawat in 2004 [38]. The input to a MapReduce job is a batch of input data
in the form of a key-value pairs list. The batch is split into independent chunks distributed

16

across the cluster. Each input pair is then processed by a user-defined Map function that
outputs a list of intermediate key-value pairs. The framework groups them by key and stores
the intermediary pairs on local disks. A partitioning function decides how the intermediary
key space will be distributed across the nodes. The groups are sent (shuffled) through the
network and passed to Reduce functions that produce the final key-value results [38].

One of the key ideas of MapReduce was that data should be moved around the cluster
as little as possible. The data are distributed in chunks and replicas across the cluster,
and the MapReduce master plans to schedule the Map tasks on machines that contain the
chunk they process. MapReduce excels in its simplicity and scalability. It was designed to
run on commodity machines that are easily replaceable and can be added to the cluster as
needed. Additionally, it enables reaching the necessary fault tolerance: if a node or its task
fails, the system may reschedule it on another machine [38].

However, this design is less suitable for real-time, event-based applications with continu-
ous and unbounded input data streams. First, MapReduce materialises the intermediary
values into a local file before subsequent processing can take place [38]. Second, the Reduce
phase may only start when the entire batch is ready – this inherently cannot ever happen
with unbounded, infinite input data streams.

Dataflow models

Streaming systems are often based on the dataflow approach, in which the computation is
expressed as a directed acyclic graph (DAG) where nodes represent operations and edges
represent data dependencies [129, p. 237]. A system implementing this model plans the
actual execution of the operations and the distribution of data across them. Dataflow
may exploit both task and data parallelism. The former is achieved by executing several
independent operator tasks on a single node. The latter is achieved by partitioning the
data into chunks that can be processed independently [60, Chap. 2].

Figure 3.1 shows a simple dataflow program that accepts a stream of words, splits them
into characters, and counts the total number of their occurrences. The second phase is
a stateful operation – it keeps a record of the total number of occurrences per key and
outputs updated values as they come, providing real-time analytics on the stream. While
Figure 3.1a shows the program as defined by the programmer, Figure 3.1b suggests how
the platform may transform the program into a graph of tasks that it deploys on the nodes.
Note that the whole target pipeline may still run on a single node; the job planner would
optimise the execution plan based on various parameters, including the available resources.

Micro-batching

Another way of processing real-time streams is micro-batching, a hybrid approach aiming
to bridge the gap between the need for real-time processing and the efficiency of batch
operations. This model collects data in small, discrete intervals – batches. Each of them
is processed as it arrives. This method allows for near-real-time data processing. The
downsides of this approach include discretisation latency, possible under-utilisation, and
restricted expressibility in contrast to dataflow systems [129, p. 238].

Message delivery semantics

One of the most challenging concepts in streaming data processing is achieving the exactly-
once semantics. [129, p. 240–245] elaborates on the topic, noting that processing guarantees

17

Text
stream
source

Extract
letters

aaa|b|a|cac
Count Sink

a|a|a|b
a|c|a|c

c: 1
a: 1
c: 2

a: 2
b: 1
a: 3
...

(a) A logical dataflow graph. The nodes represent operators.

Text
stream
source

Extract
letters

aaa|a Extract
letters

b|cac

Count

Count

Count

b

c|c

a

a|a|a|a

Sink

b: 1

a: 1
a: 2
a: 3
...

c: 1
c: 2

(b) A possible realisation of the dataflow program. Here, nodes represent
actual tasks running on a node.

Figure 3.1: A simple dataflow program and a scheme of its possible physical realisation. The
green nodes are stateless transformations, and the yellow nodes are stateful transformations,
aggregating records as they come. Based on [60, Fig. 2-1, 2-2].

refer to the state of an application. A system ensuring exactly-one semantics verifies that
any application it runs will consume its input without record losses, and all declared internal
states will be updated once per record, even in the presence of failures. However, it does
not guarantee that the application’s output will be consistent under failures.

To achieve exactly-once semantics, it should hold that:

1. [Guaranteed processing] All records in a task’s input dependencies are eventually
delivered to the task and fully processed, i.e. the task receives the input record,
updates its state, and produces output accordingly.

2. [Consistent state updates] Each input record leads to exactly one state update.

Sometimes, a less strict semantics is required. The at-least-once semantics guarantee
satisfies Property 1, i.e. each record will be processed at least once, but it may be processed
multiple times. This is easier to achieve, as the system can reprocess the record if it is unsure
whether it was processed before.

3.3 Examples of Distributed Data Processing Frameworks
There are many distributed data processing frameworks available today. Some of them are
general-purpose, while others are designed for specific tasks. This section briefly introduces
some popular frameworks used for big data processing.

18

Apache Spark

Apache Spark is an open-source analytics engine for large-scale data processing. Spark over-
comes some of the limitations of the MapReduce model: it takes advantage of in-memory
processing, offering improved speed; it uses an advanced DAG-based execution engine and
a more flexible job execution planning. It abstracts data using Resilient Distributed Data-
sets (RDDs), immutable data collections distributed across a cluster that support parallel
operations like mapping, filtering, and reduction [79, Chap. 1].

Spark supports both batch and streaming data processing. Initially, it used the Discret-
ized Stream (DStream) abstraction for streaming, which was internally implemented using
sequences of RDDs [79, Chap. 16]. Spark 2.0 introduced Structured Streaming, which treats
streams as continuously appended tables. This model unifies batch and streaming work-
loads and allows the expression of streaming computations as standard batch queries [79,
Chap. 2].

Spark’s ecosystem includes a distributed SQL engine, machine learning libraries (ML-
lib), and graph processing capabilities (GraphX). Spark is accessible through Java, Scala,
Python, and R APIs, enhancing its versatility and making it suitable for various data
processing tasks [79, Chap. 1].

Apache Flink

Apache Flink is another open-source platform for scalable batch and stream data processing.
At its core, it is a dataflow engine that provides various abstraction layers, including a batch
mode. It allows the processing of events from one or more streams and provides a consistent,
fault-tolerant state [60, Chap. 1]. Flink’s primary abstraction is the DataStream API, which
offers transformations on data streams sourced from various inputs and delivered to sinks.
The API supports a rich set of transformation operators for mapping, filtering, joining,
and windowing streams. It also allows for iterative computations and stateful operations,
ensuring fault tolerance with checkpoints and savepoints [7].

Flink also offers the Table API, which provides a relational view of stream data and can
be accessed directly via code or SQL syntax. This API is built on top of the DataStream API
and supports both bounded and unbounded data, allowing seamless integration between
the two [60, Chap. 11]. The range of data to include in stateful operations, such as joins
and aggregations, is controlled using windows and watermarks that measure progress in
event time, providing a framework for working with out-of-order and late data in streams.

Flink is based on Java and uses the Java Virtual Machine (JVM) to run user code.
A separate Scala API was available, although it is now due for deprecation [123]. A Python
API providing the features of both the DataStream and Table APIs is also available.

Apache Beam

Apache Beam is an open-source data processing framework that provides a unified model for
both batch and streaming data processing. Its core aspect is the Dataflow model described
by Akidau et al. in [3]. It focuses on bringing a simple expression of parallel computation
over event-time-ordered data from unbounded sources, using the concept of windowing and
triggers to prevent relying on any notion of completeness. Beam’s data abstraction is the
Pipeline, which represents a data processing job composed of immutable datasets that can
be either bounded or unbounded. It supports fundamental transforms such as grouping by
key, combining, flattening, and partitioning, and it offers the creation of custom processing

19

logic using the “Parallel Do” transform. Beam was designed to separate the logical notion
of data processing from the actual implementation. The pipelines can be defined using
multiple programming languages, the most mature of which are Java and Python. Beam
translates them to tasks for Apache Flink, Apache Spark, Google Cloud Dataflow, Apache
Samza, Apache Nemo, or Twister2.

Akka and Akka Streams

Akka is an open-source toolkit and runtime for building highly concurrent, distributed, and
resilient message-driven applications on the JVM. It leverages the Actor Model, where act-
ors are independent entities interacting through asynchronous message passing [129, p. 43].
This model simplifies scalable and fault-tolerant system construction by eliminating shared
state and complex threading management, with Akka capable of handling millions of actors
simultaneously, providing robust fault-tolerance and built-in clustering for scalability and
resilience in distributed environments [74]. Akka Streams, a module within Akka, facilit-
ates non-blocking, asynchronous data stream processing and transformation, focusing on
backpressure handling to maintain system stability by preventing fast producers from over-
whelming slow consumers [73]. Its declarative API allows developers to compose data flows
with pre-defined operators like mapping, filtering, and grouping, enabling sophisticated
processing logic.

3.4 Apache Kafka
The system developed in this work will be based on Apache Kafka1. It is a distributed event
streaming platform designed for high-performance data pipelines, streaming analytics, and
data integration2. Kafka enables efficient handling of data feeds, acting as a broker between
data producers and consumers. It is designed to support fault-tolerant storage and scalable
message transfer, allowing it to function as a backbone for real-time processing of data
streams. It is a distributed system with a cluster of servers communicating with each other
and their clients via TCP [9].

Events, topics and scalability through partitioning

A Kafka message is called an event and consists of a key, value, timestamp and optional
headers. Except for the timestamp, all these values are opaque for Kafka – it sees them
as variable-length binary data (byte strings) [8, Sec. 5.2]. Events are organised in named
topics. A topic is essentially a persisted event log, so events may be read as often as needed,
both as they occur and retrospectively. The position of the event in the log is called the
offset.

The topics are partitioned: the event log is split into separate partitions that may be
distributed across servers in a cluster [9]. Events are typically assigned to a partition based
on a hash of the key [8, Sec. 3.1]. This allows Kafka to scale horizontally by adding more
servers to the cluster, each of which can handle a subset of the partitions.

Producers publish events to topics and consumers read from them. Zero, one, or more
producers and consumers may always publish/subscribe to a topic. Multiple consumer
instances may form a consumer group. Kafka ensures that each topic partition is consumed

1Apache Kafka: https://kafka.apache.org/
2Before reading this section, I encourage the reader to visit https://www.gentlydownthe.stream/.

20

https://kafka.apache.org/
https://www.gentlydownthe.stream/

by exactly one consumer per group. An efficient consumer offset management system keeps
track of which messages in which topics have been consumed by a consumer (or a group).
The concept of events in partitioned topics is demonstrated in Figure 3.2.

consumer group

time

event topic

partitions 0–2

10

41

32

20 30 20 10 10

41 21

32 42 92 42

producer

producer

consumer
(group leader)

consumer

consumer

Figure 3.2: A Kafka topic with three partitions. Events (squares) are produced by inde-
pendent producers. A producer always controls the target partition of an event, but by
default, the partition is chosen from the key (numbers in the rectangles) using a partitioning
function. In this image, it could be the key value mod 3. Consumers may be standalone or
in a group, where the partitions are assigned automatically across the group members.

Through the group rebalancing mechanism, Kafka ensures that all events will be con-
sumed and the load will be evenly distributed, even as consumer instances fail and new ones
are added [8, Sec. 4.5, 4.6]. This way, partitioning can be used as the basis for consumer-
level parallelism. Increasing the number of partitions makes it possible to scale a data
stream, represented by a topic, to be processed by multiple instances of the same consumer
in parallel without any extra work.

Kafka can discard events from the log after a configured retention period or keep them
indefinitely [8, Sec. 3.1]. Alternatively, the topic may be compacted – in this case, Kafka
retains only the most recent event for each key, as illustrated in Figure 3.3. The minimum
compaction lag provides a lower bound on how long each message will remain in the log. The
maximum compaction lag controls the maximum delay before the message becomes eligible
for compaction. Kafka’s log cleaner compacts a message if the configured “maximum lag”
has passed or when the log size exceeds a specified threshold and the configured “minimum
lag” has passed. This mechanism helps maintain the latest state per a key, such as the last
update of a database record [8, Sec. 4.8].

Message delivery guarantees

Kafka can provide three levels of message delivery guarantees between a producer and
a consumer [8, Sec. 4.6]:

• At most once – messages may be lost but are never redelivered.

• At least once – messages are never lost but may be redelivered.

• Exactly once – each message will be delivered exactly once.

The at-least-once semantics are achieved by default. On the producer side, Kafka
supports idempotent delivery, preventing duplicates even if the producer retries sending

21

0 1 2
K1 K2 K1
a b c

3 4 5
K1 K3 K2
d e f

6 7 8
K3 K2 K2
g h i

3 6 8
K1 K3 K2
d g i

log before compaction

offset
key

value

offset
key

value
log after compaction

Figure 3.3: Kafka log compaction. Eventually, only the latest event for each key is retained.

messages. On the consumer side, the consumer receives the message, processes it, and then
commits the offset. If the consumer crashes before committing the offset, the message will
be redelivered. The at-most-once semantics can be achieved by disabling retries on the
producer side and committing the offset before processing the message on the consumer
side. The exactly-once semantics are achieved with the built-in support for transactions [8,
Sec. 4.6].

Clusters, replication and leadership

A Kafka server that stores data is called a broker . Kafka may be deployed in an “all-in-
one” setup with a single broker, but it is often used in a cluster configuration. A modern
Kafka cluster deployment consists of multiple brokers and controllers. The brokers handle
data storage and exchange. The controllers manage the metadata for the cluster and
participate in the metadata quorum. To manage the cluster, Kafka uses KRaft [8, Sec. 6.10],
a consensus algorithm based on Raft [95], which guarantees that the system agrees on
a single state despite failures. A server may act as both a broker and a controller, or it can
be dedicated to one of these roles [8, Sec. 6.10].

Topic replication in Kafka ensures data durability and availability by creating multiple
copies of each partition across different brokers based on global or per-topic settings. The
controllers manage the assignment of these replicas, ensuring that each partition has one
leader and multiple followers. The leader handles all read and write requests, while followers
replicate the data from the leader to maintain consistency. This replication mechanism
ensures that if a broker fails, the partitions it was leading can be seamlessly taken over by
one of the in-sync replicas, providing fault tolerance [8, Sec. 4.7].

Security

Kafka provides mechanisms for authentication, authorisation, and traffic encryption. For
authentication, Kafka offers SSL/TLS (Secure Sockets Layer/Transport Level Security) and
SASL (Simple Authentication and Security Layer). SSL/TLS may be used for client-to-
broker, broker-to-client and broker-to-broker authentication and encryption of the commu-
nication [8, Sec. 7.2, 7.3]. SASL offers multiple authentication mechanisms such as Kerberos

22

(GSSAPI), PLAIN, SCRAM (Salted Challenge Response Authentication Mechanism) and
OAuth for flexible authentication solutions [8, Sec. 7.4].

Authorisation in Kafka is managed through Access Control Lists (ACLs) [8, Sec. 7.5].
ACLs define which principals (identified clients) have permission to perform specific opera-
tions. Kafka also provides a pluggable authoriser interface that allows custom authorisation
implementations, enabling users to integrate Kafka with their existing security infrastruc-
ture.

Kafka Connect

Kafka Connect (KC) is a framework included with Apache Kafka that integrates Kafka
with various external systems. It facilitates importing and exporting data to and from
Kafka topics through connectors. They handle the necessary logic to interact with different
data sources or destinations. Connectors exist for various database systems, key-value
stores, search indexes, or file systems. Custom connectors can also be developed in Java
to support specific use cases. KC simplifies building data pipelines, reducing the need for
custom integration code and allowing more effortless data movement between systems [8,
Sec. 8.1].

The architecture of KC is designed for distributed and scalable operation. The KC
runtime and the connectors can be configured in a distributed mode to split the work into
multiple tasks, workers, or both, enabling parallel processing and high throughput. It also
provides built-in functionality for monitoring and managing connectors, including auto-
matically restarting failed tasks or changing the runtime configuration through an HTTP
REST API [8, Sec. 8.2].

When configuring connectors, users may use the API or define properties in config-
uration files, including settings for connection details, serialisation formats, and specific
connector behaviours. To translate between different data representations, entries from
the external systems and from the Kafka topics are first converted to internal structured
data types before being converted to the target system’s format. Custom converters can be
developed in Java to support different data formats or serialisation methods [8, Sec. 8.2].

In addition to data movement, KC provides data transformation capabilities. Trans-
formations can modify individual messages before KC writes them to the target. They can
perform tasks such as filtering fields, masking sensitive information, or modifying message
structure. They are configured as part of the connector’s settings and run in the context
of the KC framework, ensuring that data can be adjusted to the needs of the downstream
systems without requiring additional processing layers. Custom transformations may again
be developed in Java [8, Sec. 8.2].

Role of Kafka in Big Data processing

Kafka’s role in the ecosystem of big data technologies is mostly complementary to systems
like Apache Spark and Apache Flink [60, Chap. 2b, 9b]. While Kafka excels at data in-
gestion and dissemination, Spark and Flink are more focused on complex data processing
and analytics. Kafka is often used in conjunction with these platforms, where it acts as the
aggregation source that collects data from various sources, such as sensors or user activities,
and delivers them in a unified way into the processing engines that provide the computation
and transformation capabilities. They may then feed the results back to Kafka for storage
or further processing by other tools [8, Sec. 1.2].

23

Kafka in the cloud

Redpanda3 is a high-performance, Kafka-compatible streaming data platform designed
to handle demanding workloads with minimal operational complexity. Unlike Kafka,
Redpanda is written in C++ and achieves significant performance improvements, par-
ticularly in environments requiring high throughput and low latencies – the vendor
claims that it achieves ten times lower tail latencies and six times faster transactions.
One of Redpanda’s goals is simplifying deployment and management. It provides syn-
chronous replication and in-built data recovery mechanisms, making it a robust option
for enterprises seeking to reduce operational overhead while maintaining compatibility
with Kafka APIs [110].

Confluent Cloud4 is a cloud-native Kafka-compatible service built on another custom
implementation, the Kora Engine, that eliminates the operational burden of managing
Kafka clusters and offers features like auto-scaling, automated updates, and seamless
multi-cloud deployments. They also claim that the service offers up to 10 times lower
tail latencies than Apache Kafka [33].

Confluent Platform5 is an enterprise-grade distribution of Apache Kafka, available both
for on-premise deployments and as a fully managed service. Developed commercially
by the original creators of Kafka, Confluent Platform includes advanced security,
management tools, and integration capabilities. The tools provided include ksqlDB for
real-time stream processing using SQL, Schema Registry for managing data schemas,
and connectors for integrating with various data sources and sinks [34].

3.5 Stream Processing with Kafka
Although Kafka is not a data processing platform at its core, it provides the necessary
infrastructure for building stream processing applications even without using heavyweight
platforms such as Apache Flink. In simple data processing tasks, one can use Kafka con-
sumers and producers directly to accept data from a topic, process them, and publish them
to another topic. This approach lacks the advanced features of stream processing frame-
works, such as windowing or cross-data-stream operations. However, it turns out that even
complex operations can be implemented using the primitives provided by Kafka.

Mainstream processing platforms, such as Apache Spark and Apache Flink, typically
work by providing a runtime environment and infrastructure into which developers submit
their code. They require additional infrastructure (e.g. a resource manager) and manage-
ment. The Kafka-based client stream processing libraries choose another approach: they
are standalone applications that leverage Kafka’s capabilities (such as partitioning, fault
tolerance, and group rebalancing). Scaling is achieved by adjusting the partitioning and
starting more instances of the applications, for example, by running them in containers and
orchestrating with Kubernetes or Docker Swarm.

Kafka Streams6 (KS) is a Java stream-processing library. It provides a dataflow applic-
ation model: it represents computation as a DAG where nodes are stream processors

3Redpanda: https://redpanda.com/
4Confluent Cloud: https://www.confluent.io/confluent-cloud/
5Confluent Platform: https://www.confluent.io/product/confluent-platform/
6Kafka Streams: https://kafka.apache.org/documentation/streams/

24

https://redpanda.com/
https://www.confluent.io/confluent-cloud/
https://www.confluent.io/product/confluent-platform/
https://kafka.apache.org/documentation/streams/

and streams are the edges. A stream is an abstraction over a Kafka topic. Developers
may use the high-level Streams DSL, which includes the common data transforma-
tions, and the lower-level Processor API for more complex operations. KS is developed
as a part of the Apache Kafka Project [10].

Faust7 is a Python stream-processing library with capabilities similar to KS. It is inspired
by the actor model and based on Python’s coroutine-based asynchronous processing8.
In contrast with KS, its primary interface is not a DSL but a common imperative
Python code [112].

Quix Streams9 is a Python library that uses a table-oriented approach instead. It ab-
stracts the Kafka topics using “Streaming DataFrames” that provide a pandas-like
interface, extended with stream processing primitives [108].

Goka10 is a stream processing library for Go that provides functionality similar to KS.
It is based on the concepts of processors, views, and emitters, which define stream
processing logic, manage state, and produce new events [78].

All these libraries work essentially by providing a higher-level abstraction over the Kafka
consumer and producer, implementing the streaming processing primitives, such as window-
ing, joins, and aggregations. They achieve this by maintaining the local state in memory or
fast local databases (such as RocksDB11) and storing it in Kafka topics for fault tolerance.

Duality of streams and tables

All the libraries mentioned above provide the concept of duality of streams and tables. Of-
ten, practical stream processing use cases require both streams and databases. For example,
an e-commerce application may enrich an incoming stream of customer transactions with
the latest customer information from a database table. For this reason, stream processing
technologies focus on providing first-class support for both. It is often based on a simple
relationship between streams and tables (here, a table is interpreted as a collection of key-
value pairs) [10]:

• A stream can be viewed as a change log of a table: each record in the stream represents
a state change (insert, update, delete) to the corresponding key in the table. A stream
can be thus turned into a table by replaying the change log from the beginning,
possibly aggregating the changes along the way.

• A table can be considered a snapshot of the latest values for each key in a stream at
a single point in time, possibly over a given time window. A table can be turned into
a stream by iterating over the key-value pairs and emitting a record for each.

Confluent Parallel Consumer

The libraries presented above are tailored for complex stateful and cross-stream operations.
However, some data-processing tasks, such as data enrichment or transformation, that

7Faust: https://faust-streaming.github.io/faust/
8Refer to https://docs.python.org/3/library/asyncio.html for more information on Python’s asyn-

chronous I/O.
9Quix Streams: https://quix.io/docs/quix-streams/introduction

10Goka: https://github.com/lovoo/goka
11RocksDB: https://rocksdb.org/

25

https://faust-streaming.github.io/faust/
https://docs.python.org/3/library/asyncio.html
https://quix.io/docs/quix-streams/introduction
https://github.com/lovoo/goka
https://rocksdb.org/

focus on per-item processing do not require these operations. In these cases, achieving
high throughput and low latencies is more critical. The Parallel Consumer12 library by
Confluent is a layer over the classic Java-based Kafka consumer that lets the user increase
the parallelism of data processing without increasing the number of topic partitions. This
improves throughput and latency for certain use cases by reducing the load on the Kafka
brokers. It offers an easy way of connecting to other services efficiently via non-blocking
I/O without stalling the application. It also provides features for client-side work queues,
including message-level acknowledgement and key-based processing. These are great for
implementing low-latency task queues, a problem that Apache Kafka does not address on
its own [117].

12Confluent Parallel Consumer: https://github.com/confluentinc/parallel-consumer

26

https://github.com/confluentinc/parallel-consumer

Chapter 4

Sourcing Domain-Related Data
and Features

Section 2.2 discussed various characteristics of domain names that are useful in classifying
malicious domain names. In most cases, these features are derived from related data that
must be first collected from external sources. This chapter discusses the practicalities of
using these sources, their limits and pitfalls. It indicates some of the features that the
DomainRadar team has been experimenting with during its research, and demonstrates
how they can be extracted from the data.

4.1 Scanning the DNS
There are many possible features based on the data that the Domain Name System can
provide. A domain name designates a domain, that is, a region within the DNS information
space. The name consists of a sequence of labels separated by dots. Each label represents
a node in the DNS hierarchy.

The namespace is divided into zones that represent a particular portion of the space.
The control over a zone is delegated to a specific entity (individual, organisation) [84, 103].
While a domain is a part of the DNS hierarchy, a zone represents the part of that hierarchy
for which a particular nameserver has authority. When a query is made for a specific
domain, these authoritative nameservers provide the necessary information to resolve the
required record associated with the queried domain name [84].

The information stored in nameservers is organised into resource records (RR). Each
type of RR contains details about a specific aspect of the domain. A RRset is a collection
of these records, typically grouped by their name and type [46]. In the research, the
following RR types were used:

SOA (Start of Authority) records hold administrative information about a zone, in-
cluding details about the zone’s primary nameserver, the contact for the zone’s ad-
ministrator, and various timers related to refreshing the data [85].

NS (Name Server) records indicate the authoritative nameservers for the zone [85].

A (Address) records link a domain name to its corresponding host IPv4 address [85].

AAAA records link the domain name to an IPv6 address [120].

27

CNAME (Canonical Name) records represent aliases for canonical names. They allow
a domain to be aliased to another domain, enabling scenarios where multiple domain
names resolve to the same host [85].

MX (Mail Exchange) records are essential for email functionality, directing email to the
correct mail server for a domain [85].

TXT (Text) records can hold arbitrary descriptive text [85]. These days, they are used
for various purposes, including storing verification strings for external vendors, such
as when confirming domain ownership. They also play a crucial role in email security,
being utilised in frameworks like SPF [66], DKIM [35], and DMARC [68], which are
vital in validating email sources and preventing email spoofing.

Caching is crucial in enhancing the system’s efficiency by reducing the load on DNS
servers and accelerating the domain name resolution process. When a recursive resolver
queries a nameserver, the response with the IP addresses and other relevant information is
stored in its cache. This information includes a Time to Live (TTL) value, which dictates
how long it should be stored before being considered outdated. Subsequent requests for the
same domain can be answered directly from this cache, bypassing the need to go through
the entire resolution process again [84].

Top-level domains vs public suffixes

The term top-level domain (TLD) refers to a domain at the top of the DNS hierarchy.
A TLD is subdivided into second-level domains (SLDs); these may be subdivided into
third-level domains, and so on [104]. The root of the tree is administered by IANA1

(now managed by ICANN2), which delegates the control over TLDs to other entities [103].
Various types of TLDs exist; the most common are generic TLDs (gTLDs), such as .com
or .org, and country-code TLDs (ccTLDs), such as .uk or .cz.

The structure of TLDs is often flat: registrants (people, organisations) register their
domain directly under a TLD, so they have control over their SLD, and any further structure
is up to them. However, especially among the ccTLDs, there is a wide variation in the
structure [103]. For example, in the .uk TLD, registrants can obtain an SLD directly or
register at the third level under the .co.uk, .org.uk or .me.uk SLDs [91]. In the past,
registering an SLD directly in the .uk TLD was not possible, so many UK websites still
run under the .co.uk SLD.

The term “public suffix” denotes domain name suffixes under which internet users can
(or historically could) register names directly [87]. A public suffix list is available at [87],
an initiative of Mozilla, which is kept up-to-date by the online community3 and the internet
registrars.

It is necessary to base some features on the registered domain, i.e. the zone managed
by the name’s owner, not on the input domain name, which may be a subdomain. For
example, suppose a name with a certain number of parts is generally likely to be malicious.
In that case, UK names would be more often classified as malicious because many have an
extra part “by design”.

This thesis uses the term effective TLD (eTLD) to denote the public suffix of a do-
main name. Similarly, effective SLD (eSLD) denotes the next level after an eTLD; the

1The Internet Assigned Numbers Authority: https://www.iana.org/
2Internet Corporation for Assigned Names and Numbers: https://www.icann.org/
3The public suffix list repository: https://github.com/publicsuffix/list

28

https://www.iana.org/
https://www.icann.org/
https://github.com/publicsuffix/list

following level is denoted as e3LD, etc. Zone domain name denotes the domain name
of the zone of authority in which a domain name resides. For example, consider the do-
main name www.site.example.co.uk: its eTLD (public suffix) is co.uk, and its eSLD
is example.co.uk. The zone domain name is likely also example.co.uk. However, if
the owner of the eSLD further delegated authority over e3LDs, the zone DN could be
site.example.co.uk.

The system will build a complete image of the actual configuration associated with the
name. Specifically, it will use information on what RR types are associated with the DN,
the TTLs of the available RRsets, the contents of A, AAAA, MX, NS, TXT, and CNAME
records, whether the domain supports DNSSEC, the zone domain name, and the SOA
record of the zone.

Features: The features derived from such data include the number of RRs found for each
type, the total number of RR types available, a boolean value indicating whether DNSSEC
is available, the mean and standard deviation of TTLs, the distribution of TTL values in
terms of certain intervals, the values from the zone’s SOA, boolean values indicating the
presence of TXT records related to email security, or the number of well-known vendor
strings found in TXT records.

Determining the authoritative information

In typical scenarios, the client would typically send the query to a pre-configured recursive
resolver, which performs the resolution process, caches the result, and returns it to the client.
The TTL parameter of each RRset controls the caching time, though it cannot be taken
for granted that the resolver follows it. However, this process is unsuitable when trying
to capture the configuration of the name, as the resolver can skew the data. For example,
the resolver might shorten the TTL for operational purposes or even completely ignore the
original TTL setting [54]. Second, it was observed that the TTL value returned by caching
resolvers often carries the value of “time left in the cache” instead of the “maximum time
to live” defined in the RR. It does not make sense to characterise a DN with such values.

The system must work with the authoritative data on each DN provided by the au-
thoritative DNS servers for the zone in which the DN resides. The collection process for
a DN must thus start by determining its zone domain name and the zone’s authoritative
nameservers, which can then be queried with the actual target DN. One way would be to
implement the iterative DNS resolution process, starting with the root nameservers and
following the chain of delegations until the zone’s authoritative nameservers are reached.
However, this would be unwise because of the practical complexity of the process.

Instead, a standard recursive resolver can be used for finding the zone. Each zone is
denoted by a SOA record identified by the zone domain name. The process can thus query
the DNS system, using a recursive resolver, for a SOA record of a name, removing the
leftmost label until a matching SOA record is found in the Answer section. If the domain
does not exist, the process is stopped when an eTLD is reached.

The algorithm may be optimised using the Authority section of the DNS response. If
a matching RRset does not exist, the response should include the SOA record of the nearest
known ancestor zone in the Authority section. However, the DNS algorithm [84, Sec. 4.3.2]
defines a particular change of behaviour in the case of CNAME records: Essentially, if a SOA
query is made for a domain name that matches a known CNAME record, the response
includes the SOA record of the target of the CNAME, instead of the actual zone in which

29

the input domain resides. However, it is possible to recognise that this has happened by the
presence of a record in the Answer section. The process is demonstrated in Algorithm 4.1.

Algorithm 4.1: DNS zone/SOA discovery starting from the most specific name
Input: domain name 𝑑
Output: (zone domain name; zone’s SOA record) or ⊥ if not found

1 query a recursive resolver for an SOA record of 𝑑
2 if the response contains no answer then
3 if the query contains an SOA record in the Authority section then
4 𝑑′ ← the SOA record owner name
5 if 𝑑′ is an eTLD then
6 return ⊥
7 else
8 return (𝑑′; the SOA record)

9 while 𝑑 is not an eTLD do
10 query a recursive resolver for an SOA record of 𝑑
11 if the response contains an SOA answer matching the input then
12 return (𝑑; the SOA record)
13 else
14 𝑑← 𝑑 without the leftmost label
15 return ⊥

The SOA record contains the DN of the zone’s primary nameserver. Its IP address must
also be resolved, which can also be done using the recursive resolver. The resulting IP is
the target for the subsequent queries on the examined RR types labelled by the target DN.
It is also useful to store the SOA record, as the other values found within may also be used
in classification.

The issued queries may ask for NS records instead of the SOA record. These are also
mandatory for each zone and contain the names of all the zone’s authoritative nameservers.
They can be used in case the primary nameserver does not respond.

DNSSEC

DNSSEC is a suite of specifications for securing certain information the DNS provides. It
protects the system from attacks such as DNS cache poisoning by providing origin authen-
tication and integrity protection for DNS data, as well as a means of public key distribution
[14].

Although DNSSEC intends to enhance security, its presence or absence does not seem
to be a particularly good indicator of maliciousness. A domain that implements DNSSEC
demonstrates a commitment to security by having used a “good” registrar. However, the
lack of DNSSEC does not necessarily mean a domain is malicious, as it is not yet widely
deployed (recent estimates show that fewer than 10% of the domain names used for web-
sites are signed [55]). The results of DomainRadar experiments show that DNSSEC-based
features do not significantly contribute to maliciousness detection. For this reason, the
only related feature will be the presence of the DNSSEC record type in the zone, without
checking the chain of trust or the validity of the signatures.

30

4.2 Sourcing Registration Data using RDAP and WHOIS
WHOIS is a simple internet service that registrars provide to query data on registered
names. It usually provides information such as the domain’s first registration date, last
update date, expiration date, or the registrar and their contact information [62, Sec. 1.4],
sometimes the registrant’s contact information (although this has been largely limited since
the EU’s general data protection regulation, GDPR, became effective in 2018 [64]).

The specification of the underlying protocol given in RFC 3912 [36] is quite vague,
as it does not define the data model or the format of the responses. ICANN’s Registrar
Accreditation Agreement (RAA) specifies a “semi-free text format” and requires a unified
format for some fields to provide interoperability [62, Sec. 1.3, 1.4]. However, this agreement
is binding only for gTLDs – the control over ccTLDs is almost entirely delegated to their
managers in the respective countries. For this reason, they may not provide a WHOIS
service, or they may omit some data. The informative RFC 7485 [127] shows that only
85% of 124 TLD registries provide the creation date. Furthermore, the protocol lacks
internationalisation support and does not implement any security features such as client
authentication, making its usage tricky and prone to errors.

A new protocol called Registration Data Access Protocol (RDAP) was developed to
overcome these issues. The features of the protocol, including a RESTful query interface,
a structured response format employing JSON, and security services, were defined in a set
of RFCs (7480 to 7484). ICANN also published a detailed profile and implementation guide
[61]. Since a 2023 amendment to the RAA, ICANN requires all gTLD registrars to provide
RDAP access to their domains and set a “WHOIS Sunset Date”, after which they will
no longer be required to provide WHOIS service [62, 63]. Once again, this only applies to
gTLDs, as ccTLDs are not bound by this agreement. In January 2024, only 28 ccTLDs were
registered in IANA’s RDAP bootstrap file4. On the other hand, over 35% of all domain
names are registered in the .com TLD that offers RDAP. Furthermore, the system will first
be deployed in a Czech environment, where extensive use of the .cz TLD can be expected,
and the manager of this TLD also provides RDAP access.

Features: In addition to registration data, RDAP provides additional information, such
as the domain’s nameservers or whether the parent zone contains a DNSSEC signature
of the domain’s key. Also, the research suggests that the registrar might be a strong
discriminative feature. The system will use features such as the total registration period,
the number of days elapsed since registration and the last update, a boolean value indicating
that the zone is DNSSEC-signed, a hash and lexical characteristics of the registrar’s name,
or a hash and lexical characteristics of other entities found in the data, such as registrant
or abuse contact.

Rate limiting and ways of mitigation

Whatever of the two services is used, they both present a severe challenge: rate limiting.
When building a training dataset, it was observed that both WHOIS and RDAP servers
started to block requests from the collector’s IP address after a certain number of queries
had been made. The operators of the servers are in total control of this behaviour – it is
not specified in any way for the WHOIS servers; for RDAP, [88, Sec. 5.5] only mentions
that they may choose to implement rate limiting and should respond with the 429 HTTP

4RDAP Bootstrap Service Registry for Domain Name Space: https://data.iana.org/rdap/dns.json

31

https://data.iana.org/rdap/dns.json

status code (though they are free to return another response code, not to reveal that the
address has been rate limited). A “brute-force” solution to the problem is to use a large
(enough) number of source IP addresses and distribute the queries among them. However,
this is likely not feasible in practice.

For some of the TLDs that support RDAP, there is a possibility of arranging a special
agreement with the registry that would allow for a higher rate limit, especially when used
in practice. Because RDAP provides standardised means of authentication, the registry
could identify the collector by using an authentication token. While not a general solution,
it could help mitigate the problem for TLDs that are observed more frequently.

Other commercial services also exist that allow access to registration data in a structured
and unified way, such as Bulk Whois Api5 or WhoisXMLAPI6. However, the former provides
about 555 requests per USD, and the latter provides about 833 requests per USD. Using such
services would not be feasible if the system is to determine registration data for hundreds
of thousands of domain names daily.

Domain Name Stat7 offers a comprehensive and duly parsed historic WHOIS database
for download. Such data are static, and even if updated regularly, they might systematically
under-represent certain groups of examined names, such as hi-flux domains with limited
lifetime used in botnets. Even so, a large number of queried domains could potentially be
present in such database, limiting the need for online lookups. However, the database is
not free and the pricing is not publicly available. The organisation was contacted twice to
get more information, but no response was received.

4.3 Discovering Information Related to IPs
The maliciousness of a domain name is naturally strongly related to the maliciousness of
the resources that the name represents. The most direct identifier of such resources is
typically their IP address. Thus, it is beneficial to discover as much information about the
IP addresses associated with a domain name as possible.

Different IPs can be found in DNS records: the A and AAAA records contain direct
mappings of the name to an IP address, while other records, such as CNAME, MX or
NS, contain names that can be further resolved to IPs. For each IP, much information
can be discovered, such as the geographic location, the autonomous system number and
prefix, reputation, or the liveliness of the address. Of course, the number of IP addresses
of a domain name varies, and in the end, the information must be represented by a unified
numerical feature vector. For this reason, the characteristics of all discovered IP addresses
must be suitably aggregated. For example, the mean and standard deviation could char-
acterise differences in round-trip times, while the Shannon entropy of a particular prefix
could be used to capture diversity in the networks associated with the domain name.

Using reputation systems

IP reputation systems can also contribute to the classification of domain names. These
systems evaluate and score IP addresses based on their history and behaviour, which may
be beneficial in identifying potentially malicious internet resources. For example, domains

5Bulk Whois Api: https://bulk-whois-api.com/
6WhoisXMLAPI: https://whois.whoisxmlapi.com/
7Domain Name Stat: https://domainnamestat.com/

32

https://bulk-whois-api.com/
https://whois.whoisxmlapi.com/
https://domainnamestat.com/

linked to IP addresses with a history of spamming or malicious activities may be classified
as high-risk.

For the DomainRadar project, CESNET provided us unlimited access to their NERD
reputation system8. It offers a comprehensive view of an IP’s reputation by collecting data
from various sources: reports from systems like honeypots, NetFlow analysers, and other
detectors of malicious traffic, public blocklists, and several collaborative threat intelligence
sharing systems [15].

Furthermore, the temporal aspects of IP reputation, as maintained by systems such as
NERD, may provide insights into the evolving nature of threats associated with specific
IPs and, by extension, domains. This could be beneficial in the future as the classification
models will need to be updated.

Features: The reputation score could be directly used as a feature. The number of reports
from various sources or the number of presences of the IPs in blocklists could also be used.
Generally, the reputation system is expected to do a better job of devising a suitable scoring
function; however, the NERD system specifically is still a work in progress in this regard.
Features based on the date values associated with the records could also be calculated,
similarly to what is proposed in the section on RDAP.

Using RDAP

The RDAP protocol can also be used to retrieve the registration information of autonomous
systems and IP networks (or even nameservers and registrars) [89]. When querying for an
IP address, the returned data may contain information (among others) on the network
starting and ending address, the network name, and various entities, such as registrant,
administrative, technical, or abuse contact.

In contrast to the situation with TLDs, RDAP data on IP networks is generally avail-
able, as all RIRs offer the RDAP service. The Number Resource Organization, a coordin-
ating body for the world’s RIRs, agreed on a profile that defines the requirements on data
presented by RIRs in RDAP to increase consistency [92]. RIPE NCC [111] and ARIN [116]
follow it; APNIC was reported to review its implementation to conform [81], but no current
data are available; AFRINIC and LACNIC provide RDAP but do not state whether they
conform to the profile [2, 71].

Features: The team experimented with features based on the lexical characteristics of
the entities found for each IP, using the average length and entropy of names and email
addresses. The shortest and longest network prefix lengths were also included. Other
features could be derived from the network name or the associated date values, similar to
the domain-based RDAP data discussed above. However, access to RDAP is subject to rate
limits, and it should be carefully evaluated whether such features are helpful and cannot
be extracted from static sources instead.

Discovering IP geographic location

The geographic location of IP addresses may offer other useful maliciousness indicators
for domain names. For instance, certain regions may be more frequently associated with
malicious behaviour, and domain names associated with IPs from such regions may be

8NERD: https://nerd.cesnet.cz/

33

https://nerd.cesnet.cz/

classified as riskier. Moreover, the geographical spread of IP addresses linked to a single
domain can indicate its operational scope. A domain associated with IPs from diverse
geographical regions could be part of a global enterprise or service. In contrast, domains
linked to IPs from a specific region could indicate a more localised operation.

Geographic data can be easily obtained from databases such as GeoIP29 by MaxMind.
Their Country database offers information on the continent and country, while the City
database contains more granular data on cities, including approximate coordinates. Max-
Mind claims that the data are 99.8% accurate at the country level. These products are
commercial, but free versions branded as GeoLite210 are also available. The databases are
updated weekly and can be downloaded or used through an API.

Features: To aggregate geolocation data across IP addresses, a unique identifier can be
assigned to each possible combination of countries (e.g. by hashing the country codes and
XORing them). Mean and standard deviation can be used for the latitudes and longitudes.
It may also make sense to aggregate by determining a centre point by calculating the average
of the highest and lowest latitude and longitude. The accuracy radii can be aggregated using
the maximum value. The number of unique countries could can be used as a feature.

Determining the autonomous systems

An Autonomous System (AS) is a collection of IP routing prefixes under the control of
one or more network operators, which collectively represent a single administrative entity
with a clearly defined routing policy for the internet. Each AS is identified by a unique
Autonomous System Number (ASN). A single organisation, such as an ISP, a large business,
or an educational institution, often manages an AS. These entities control a specific set of
IP addresses and announce their routing policy to other autonomous systems.

Examining the diversity and nature of autonomous systems associated with the IP
addresses related to a domain name can also help infer its potential maliciousness. A domain
linked to IP addresses spread across a wide range of autonomous systems, especially those
with dubious reputations or known to host malicious activities, could indicate a higher risk
profile. In contrast, domains associated with reputable and stable autonomous systems
may be deemed safer.

IANA assigns ASNs in blocks to RIRs, who further assign specific ASNs or subblocks
to other entities. The RIRs publish these assignments, though no standard format is used.
Information on a specific AS can be retrieved using RDAP, but there is no unified way to
determine the mapping between an IP and its AS. Fortunately, precompiled databases with
such mappings are available, such as the MaxMind GeoLite2 ASN database11.

Features: Autonomous system information can be used to evaluate the diversity of net-
works associated with a domain name. Features such as the number of distinct ASNs or
average entropy of AS IP prefixes can be used. The GeoLite2 database also includes the
name of the organisation that manages the AS, which could be used as a feature when
hashed and XORed across the IPs, similarly to the country codes.

9GeoIP2: https://www.maxmind.com/en/geoip-databases
10GeoLite2: https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
11GeoLite2 ASN: https://dev.maxmind.com/geoip/docs/databases/asn

34

https://www.maxmind.com/en/geoip-databases
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/docs/databases/asn

Detecting the liveliness of the address

Another useful maliciousness indicator could be based on whether the IP addresses are
actually reachable. This helps to assess short-lived services associated with malicious activ-
ities. Examining IP addresses using ICMP Echo (ping) involves sending a packet to the
address and measuring the time it takes for a response (if any) to return. This round-trip
time (RTT) is a valuable metric in assessing network performance and the responsiveness
of the IP address. However, some networks may block ICMP messages, leading to false
negatives.

The geographical and network location of the source of the ping influence RTTs. There-
fore, probes should be sent from various locations to obtain a representative measure of an
IP address’s responsiveness. Such an approach would limit the possibility of skewing the
RTT data by local network issues or geographical distance. However, this would require
a large number of probes around the world, possibly introducing performance issues and
increasing the cost of the data collection process.

In addition to ICMP Echo, other methods to determine if an IP address is active in-
clude attempting TCP connections on standard ports (like HTTP/HTTPS) or using more
sophisticated network scanning tools. These methods can sometimes bypass restrictions on
ICMP traffic and provide a more accurate picture of the IP address’s status.

Utilising data from TLS handshakes

When a server offers HTTPS, the collector can establish a connection to the server, emu-
lating what a user does in their web browser. This allows for gathering characteristics
that identify the server and the service it provides. The TLS handshake offers information
on allowed ciphersuites and protocol versions, which can serve as basic indicators of the
server’s configuration. More importantly, the server sends its certificate chain, which can
be used to compute many potentially interesting features.

Typically, the HTTPS service would only be expected on the address found in the
A/AAAA record or pointed to by a CNAME. It is not uncommon for a domain to have
multiple addresses in these records, for example, to achieve load balancing. However, the
service running on such an address is expected to behave the same, making it sufficient to
only connect to one of the addresses. The collector could try a random other address if the
first one does not respond, but it would probably not help to attempt connecting to all of
them.

The collector should also indicate the target domain name using the SNI mechanism.
This is important as many servers host multiple domains on the same IP address. Rational
timeout settings should be used to avoid long delays in case the server does not respond.

Features: Several features based on the certificate chain were devised in the research.
Key features include the length of the certificate chain, hash values of root and leaf CA
names, validity periods of both leaf and root certificates, boolean values that signal invalid
or expired certificates in the chain, or the counts of total and critical extensions. Another
characteristic is the number of common names, subject alternative names, and unique
second-level domains in the chain.

35

4.4 Limitations of the Prototype Data Collection Tool
When exploring the possibilities of phishing detection in the DomainRadar project (dis-
cussed in Section 2.3), I worked on collecting data for about 500,000 domain names using
the dr-collector tool implemented by Horák in [57]. However, several functional weaknesses
of this tool were discovered, rendering it impractical to use on large datasets or in the
production DomainRadar pipeline. This motivated the work presented in this thesis.

The tool is implemented in Python and uses MongoDB12, a document database, to
store the domain name data. First, it loads domain lists from sources such as plain text or
CSV to the database. Second, it performs the actual collection from external sources. The
tool is designed modularly: the collection is handled using “resolvers”, independent Python
modules that accept a domain name and return a key-value structure (possibly nested)
with the acquired data. The extraction of the feature vector is done using a separate tool.

The tool is affected by performance limitations that make it difficult to use with new
extensive domain name lists. Although it allows for parallel processing of domain names,
the implementation is flawed, leading to extreme memory usage and crashes. The entire
process often gets stuck when all the worker threads encounter a domain name for which
a resolver hangs. Also, it executes the independent collection steps (such as the DNS scan
and the RDAP query) sequentially, hindering the performance.

Data collection issues

Multiple issues related to the implementation of the collection process were identified:

The DNS resolver works by sequentially resolving DNS records of various RRtypes. It
only stores a basic, unstructured text representation of the records in the database,
lacking information on TTLs. It only gathers IP addresses related to a name from
the A records, while the AAAA and CNAME records are ignored. It always performs
the resolution using pre-configured public resolvers, so the received data are not au-
thoritative. It does not collect any DNSSEC-related data, nor does it determine the
zone DN.

The RDAP/WHOIS resolver also always looks up the input domain name instead of
the zones, even though subdomains are a considerable part of the input. RDAP will
not return registration data for such queries – an RDAP domain object must represent
a zone DN, that is, a point of delegation in the DNS [56, Sec. 5.3]. WHOIS behaviour
in this regard differs across registrars. For this reason, many records end up not
having registration data.
The resolver is prone to errors mainly due to the rate-limiting behaviour discussed
previously, offering no means of preventing the issue. Because every domain name
is processed independently, it cannot track connections to individual RDAP/WHOIS
servers, and so it cannot determine when it should try to contact them again. Instead,
it always tries to query for each DN, possibly further deepening the rate limit for its
IP.

The TLS resolver uses the domain name as the target host, so another DNS lookup
dependent on the OS configuration is always performed, instead of using data from
the DNS collector. Two sockets/connections are created for no apparent reason.

12MongoDB: https://www.mongodb.com/

36

https://www.mongodb.com/

The socket is configured as blocking, which proved problematic when running the
resolver on many domain names. With some of them, the attempt to establish a TLS
connection makes the application hang for tens of seconds, even when timeouts are
configured.

Furthermore, the system did not collect information on autonomous systems in which
the related IP addresses reside. Although these could be easily determined even after the
data collection is over, it would make sense to determine them during collection and store
them within the dataset. Some properties of a domain name must be determined based on
the zone DN, such as the SOA record or the registration information. The original version
does not handle this at all. This wastes resources and adds to the rate limiting problem.

Erroneous states and re-collection

The tool works with two kinds of error during the collection from a data source:

The “resolution needs retry” error should represent a temporary failure, like when an
RDAP request fails because of rate limiting. The collector may be able to resolve the
missing fields when started again later.

The “resolution impossible” error should represent a permanent failure, like when the
RDAP resolver cannot determine the correct RDAP server to find the object on. The
resolver will probably never be able to collect the data in the (near) future.

Sometimes, it is ambiguous whether an error means the data cannot be resolved. This
is apparent even from the implementation: for example, the ICMP resolver, which meas-
ures round-trip time using ICMP Echo, raises the retriable error when the remote host is
unreachable, whereas the TLS resolver emits the resolution impossible error in a similar
situation. This limits the possibilities of missing-field analysis and prevents the implement-
ation of a more complex decision logic on how the lack of data shapes the classification
outcome.

Furthermore, the tool does not track the individual retry attempts for missing data.
This leads to a significant shortcoming observed in practice. When the process is started
again, it always attempts to resolve all the missing fields, even when some domain names
are apparently no longer reachable or if a particular error repeats at each run. This may
seriously increase the execution time when collecting data for newly inserted domain names.

37

Chapter 5

DomainRadar and its
Requirements on the Data
Processing Subsystem

The initial goal of this thesis was to design and implement a data collection and feature
extraction solution. It was always supposed to be a part of the DomainRadar system, but
in the beginning, it was unclear what the system would look like. During team discus-
sions parallel to the work on the thesis, we proposed the high-level architecture design of
the system. It became apparent that the decisions taken in this thesis would significantly
impact how this design would be realised. This chapter introduces the proposed architec-
ture and the rationale behind some of the decisions. It also presents the requirements on
DomainRadar as a whole and the implied requirements on the data processing subsystem.

Section 5.1 presents a data-flow description of how DomainRadar is split into several
units and explains their role in the system. Section 5.2 discusses the expected throughput
based on a sample of data captured in a real network. Finally, Section 5.3 summarises the
requirements on the data processing subsystem based on the throughput expectations, the
overall system’s design and the experience from past experiments.

5.1 The Proposed Architecture
Overall, DomainRadar is a system whose input is a stream of domain names captured in
a network coming from an external source. For each, the output is an in-depth classification
report that shows the probability of the DN carrying phishing or malware or of being
a DGA domain. DomainRadar’s classification is based on the idea of using a large number
of features derived from diverse related data, implying the need for a solid data collection
unit. The ingress rate will reach hundreds of thousands of domain names daily (as discussed
in Section 5.2), so it is not feasible to collect all the data for each domain name every time.
Thus, it is necessary to include a process that omits previously classified and undoubtedly
benign or malign domains from processing.

38

This hints at a possible separation of the system into four main units that, conceptually,
form a data pipeline, as shown in Figure 5.1:

1. In the beginning, there are various sources of domain names to process. They may
be imported from IDS/IPS systems such as Suricata, the network’s DNS resolvers, or
firewalls that parse DNS traffic, etc.

2. The loader & pre-filter perpetually fetches new data from the sources and decides
which domains should be classified based on (persisted) previous experience with the
domain, blocklists, allowlists, etc.

3. The collector gathers data from the external sources.

4. The feature extractor processes the raw collected data into a feature vector.

5. The classifier unit uses one or more pre-trained models to classify the DN.

6. The classification results are persisted in data storage.

7. An interface to access the results, be it a web application or an API, is provided.

domain names

Loader &
Pre-filter Collector Extractor

ClassifierStorageUser Interface

Input DN
source(s)

filtered DNs raw data

feature
vectorclassification report

Figure 5.1: A trivial data-flow scheme of the DomainRadar pipeline, showing its main
components – units.

Domain names ingestion

In the current design, most input domain names will be sourced from Elasticsearch, a dis-
tributed search and analytics engine [45], to which the actual network probes save reports
that carry the DNs to classify. However, the loader must be designed with future extensibil-
ity in mind, so that it can be easily adapted to accept inputs from other sources. Currently,
it is planned to support ingesting events from MISP, an open-source threat intelligence
sharing platform [83].

In order to reduce the amount of data to process, the loader decides whether each re-
ceived domain name should be further evaluated based on several factors: for example, if and
when it was last seen, the inclusion in allowlists and blocklists, or fast and highly permissive
lexical-only classification models that can detect “obvious” DGA-generated names. In ad-
dition to passing its output to the collector, the loader must also store per-DN metadata,
such as the ingestion time, in data storage.

Some input domain names should be omitted from processing and storage. For example,
to reduce noise in the interface, a user might define a wildcard blocklist entry that excludes

39

randomly generated subdomains of a particular well-known domain. These domains should
not be stored in the database as they would pointlessly consume space. However, if a block-
list is generated based on a MISP feed, it is helpful for the user to see that a domain was
not classified due to its presence in a blocklist. Therefore, the loader can store the domain
name and the reason for its omission (based on the configuration of the triggered filters).

The loader is designed as a modular standalone application. Figure 5.2 shows that it
works with sets of sources (such as the ELKSource consuming from Elasticsearch or MISP
source for the MISP platform), filters (such as the blocklists), and outputs (such as the
persistent data storage). Where possible, it employs multi-threading or multi-processing to
keep up with the input rate. The filters are independent, so they can run in parallel. Some
sources can be partitioned and processed by multiple readers. Inputs are scattered across
the instances running the filters, then gathered again to evaluate the filters’ decisions and
possibly pass them to the outputs.

Suppose testing shows that the loader cannot keep up with the input. This design makes
it possible to migrate these independently running blocks to a distributed platform such as
Apache Flink, as its computation can be represented as a DAG or even as a map-reduce op-
eration. In order to make this future transition more straightforward, the operations should
be stateless where possible and implemented with the use of I/O abstractions, preventing
tight coupling.

Figure 5.2: The loader & pre-filter unit. Each stage may be realised as an independent
process (implemented, for example, through multi-threading or multi-processing). The use
of partitioning may also help parallelise some stages.

Handling missing data

Quite often, collecting all the external data for a DN is impossible. There are three base
approaches to this situation:

1. the DN is flagged as unclassifiable;

2. a partial feature vector is used for classification;

3. the DN and the already collected data are persisted, and the missing data are marked
for a collection retry.

Especially when there are many external sources, the trivial approach (1) would lead to
a significant dropping of inputs, rendering the system useless. Approach (2) requires classi-
fiers that cope with missing data and may lead to a decrease in classification accuracy (and
thus a higher false positive amount). Approach (3) may cause the system to be congested

40

with retry entries. Apparently, a combination of all should be used: the system should
be able to provide (appropriately flagged) lower-quality results based on partial data while
also trying to obtain the missing data in the background. These attempts must be limited
(e.g. by the number of retries or time), eventually marking the DN unclassifiable (or rather
as “cannot be classified more accurately”).

Therefore, a supplementary unit that represents this logic, the re-collection controller,
must be included as an additional source for the collector. The collector must store inform-
ation on the processed names and the associated collection failures in data storage. The
controller checks this information at certain intervals and triggers missing data collection.
The collection process is eventually either completed or marked impossible for each external
source (per DN).

Latencies

Most of the data processing is primarily bound by I/O: For each domain name, the system
must store and retrieve metadata from the system’s database, and related data from external
sources must be collected, which can take seconds of I/O waiting to complete. According
to the needs of the project’s application guarantor, the tool is not required to process the
domain names in real time – a delay of several hours or even days would be acceptable.
Keeping low latencies inside the system’s components is thus not critical.

One of the considered options was to queue the domain names throughout the day and
process them in a single large batch at night when the throughput is low. However, this
assumes that the batch can finish in a reasonable time, which is not guaranteed, especially
when some of the external sources may not be available. It may be especially unwise because
of the rate-limiting issues of some data sources.

It is more natural to look at the system as a streaming pipeline that processes entries
perpetually, as soon as possible, after they are ingested (with respect to the behaviour of
the collector and the external sources). When missing data are to be re-collected, it is done
simply by inserting a collection request at a certain point in the pipeline. In order to keep
up with the ingress rate, the system needs to heavily parallelise the collection process to
avoid getting congested with queued requests. It should be easily scaleable up or down
based on the needs of the target deployment environment.

Other considerations

Several other critical requirements for the system architecture were identified. Firstly, all
data with which the system works should be stored in a structured way, including the inputs,
the decisions made by the filters, the collection results, and the classification results. The
design of this storage should allow for easy querying and analysis. However, attention must
be paid to the persistence time: when used in DomainRadar, it may not be necessary to
store all the data indefinitely. The persistence behaviour should be configurable to a large
extent. Similarly, all units should store operational logs in a unified and structured manner.
The system should be able to log possible error states in all pipeline stages.

Secondly, users should be able to configure each part of the system from the UI. The
configuration should be stored in a centralised place and passed to the units as needed. The
user should also be able to trigger some actions from the interface, such as re-classifying
a domain name. This may be achieved using a centralised communication bus (such as
a message queue) that allows unified communication from the UI to the units.

41

The resulting scheme

Figure 5.3 shows a more detailed data-flow scheme of the DomainRadar pipeline, on which
the team agreed. It reflects the requirements discussed above. It shows that most units
in the system may be parallelised and suggests that distributed data storage could also be
used if a single instance does not meet the throughput requirements.

Classifier(s)Classifier(s)

ExtractorExtractor

CollectorCollector

Elasticsearch
domain
names Loader &

Pre-filter

MISP

Other sources

Blocklists

Data Storage
(distributed?)

Collector

Classifier(s)
User Interface

Re-collection
Controller

classif.
results

classif. results

Commands
& Settings

Allowlists

Lex. Model

feature
vector

Extractor

collected
data

Logging

domain names

DNs &
metadata

Figure 5.3: This conceptual look at DomainRadar’s architecture shows the main units and
the flow of data across them. The dotted parts represent the logic used when some external
data are missing and must be re-collected later. The dashed circles represent logging. The
green circles represent that a unit is connected to the configuration/command bus.

5.2 Expected Throughput Assessment
When used in the DomainRadar system, the loader unit will largely pre-filter the high-
frequency stream of domain names used as the input for the collector unit. Using data
from real-life traffic, we can make an upper-bound estimate for the throughput of the
collectors and speculate on the possible effects of the pre-filter.

To make the following estimates, I used data provided to the DomainRadar team by
CESNET, an association of 27 academic institutions in the Czech Republic that operates
the national e-infrastructure for science, research, and education, including an extensive
computer network [24, 25]. The nonpublic dataset comprised 56 lists of domain names
resolved in the network, each encompassing the traffic from a single day. They were collected
every day in February and March 2023 (three data files were corrupted and thus excluded).

The average total number of captured resolution requests per day was over 647 million.
(This is mainly important for the loader unit, as it shows the raw amount of input domains
it must process.) Among these, there were, on average, 1,840,563 unique domain names
every day. This is the upper estimate of the input to the collector. Looking further, only

42

570,828 unique eSLDs and 912,631 unique e3LDs1 were observed every day on average.
Table A.1 in Appendix A shows the top 15 individual domain names, e3LDs and eSLDs in
the dataset, sorted by the average number of resolutions per day, while Table A.2 shows
the top e3LDs and eSLDs according to the number of unique subdomains.

The data show that a considerable portion of requests target domains of large service
providers such as Microsoft, Apple, Facebook, or Google. Moreover, both the top DNs
and the top e3LDs contain many domains that are likely not accessed directly by users
but instead in the background processes of applications. This is even more apparent in
the e3LDs and eSLDs with the most unique subdomains: almost a quarter of the average
total daily unique domains are subdomains of safeframe.googlesyndication.com, and
another 10% are subdomains of measure.office.com. Large vendors use these generated
domains for various purposes, such as tracking, analytics, or advertising. Such domains can
be safely omitted from further processing (filtered out by the pre-filter) without evaluation.
This shows potential for helping considerably reduce the input to the collector.

Figure 5.4a shows the approximate level of reduction in the number of domain names
that the collector would process if a certain amount of top e3LDs/eSLDs, sorted by the
number of subdomains, were filtered out. Even omitting the top 10 e3LDs could reduce the
number of unique domain names by more than 42%. For comparison, Figure 5.4b indicates
the effects of filtering out the top N domains, e3LDs and eSLDs, sorted by the number of
resolution requests.

0 10 20 30 40 50
No. of filtered top domains

25

30

35

40

45

50

R
ed

uc
tio

n
in

 d
om

ai
ns

 [%
]

eSLD
e3LD

(a) Reduction in total observed domain names.

0 10 20 30 40 50
No. of filtered top domains

0

10

20

30

40

50

R
ed

uc
tio

n
in

 r
eq

ue
st

s
[%

]

Whole
eSLD
e3LD

(b) Reduction in total resolution requests.

Figure 5.4: Approximates of reduction in observed domain names and total resolution
requests when the top N domains/e3LDs/eSLDs are filtered out.

However, it still needs to be considered that the system will not re-evaluate the pre-
viously seen domain names every day. The loader unit will store the last time a domain
name was classified and will only pass it to the collector if a certain amount of time has
passed. Figure 5.5 shows how many new, unseen domain names would be added in the
first 50 days in the dataset. Additionally, to show the effects of common DN filtering, the
Unfiltered line shows this development in the original dataset, while the Filtered line shows

1When discussing e3LDs here, note that names with only two effective levels were also included.

43

the development if the top 15 e3LDs (pre-computed over the entire dataset) were always
filtered out. The green line shows the percentage of domains filtered on that day calculated
as 100(1− filtered

unfiltered).

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Day

0.25

0.50

0.75

1.00

1.25

1.50

1.75

N
ew

 o
bs

er
ve

d
do

m
ai

ns
 c

ou
nt

1e6 Unfiltered Filtered Filtered %

30

40

50

60

70

80

Fi
lte

re
d

[%
]

Figure 5.5: This plot shows how many not-yet-seen domains are added in each dataset day.
The Filtered line shows the development if subdomains of the top 15 e3LDs (by subdomain
count, see Table A.2) were always filtered out. The left 𝑦 axis shows millions of DNs.

Two key observations can be made from this plot. First, it again shows how filtering
the top e3LD domains can significantly impact on the number of domain names passed to
the collector – the maximum filtration ratio was 85%. However, it also went as low as 27%
on some days. In practice, the filtering process should be dynamic and update its top e3LD
list over time, as new versions of commonly used benign software may use newly generated
domain names. At the same time, it should not learn to filter out malicious software that
behaves similarly.

Next, we can focus on the trend in total newly observed domain names (which are
passed to the collector every day). Although the chart shows a certain decreasing tendency,
it is not as substantial as one might expect, even after filtration. This suggests that the
collection system should still be able to process around 300,000 domain names daily and
withstand peaks as high as a million domains in a day.

5.3 Requirements on the Collector Unit
While the collector is supposed to be used as a part of DomainRadar, it should be designed
with independent usage scenarios, e.g. the standalone collection of new datasets, in mind.
Eventually, the addition of new data sources may be required, so the unit should be ex-
tensible. It should never idle when there are requests that can be processed, maximising
the usage of resources dedicated to the system.

External sources

The collector seeks to gather data from sources described in Chapter 4 for each input
domain name, keeping up with the expected throughput. It will:

44

• Determine the corresponding zone domain name, the zone’s SOA and a list of its
authoritative nameservers, including their IP addresses.

• Fetch registration information from RDAP, using WHOIS as a backup. The most
important attributes are the registrar name, the registration date, the expiration
date, and the last updated date. However, the entire RDAP or WHOIS response
should be stored for further research and analysis.

• Query the authoritative nameservers for A, AAAA, CNAME, MX, NS, and TXT
records on the input domain name. Adding support for other record types should be
easy if later found useful. TTL values should also be stored.

• Try to establish a TLS connection to one of the addresses sourced from A, AAAA, or
CNAME records and store handshake and certificate data.

• Extract related IP addresses from the records. The selection of record types to use
should be configurable.

• For each IP address, fetch/determine:

– the autonomous system information – the AS organisation, number, and network,
– the RDAP-provided information – primarily the associated entities’ data, but

the whole RDAP response should be stored,
– the geolocation data – e.g. the country, city, and coordinates,
– the reputation score from the NERD system,
– the ICMP Echo (ping) round-trip time (RTT).

In the case of the RTT discovery, it should be possible to use multiple probes in different
geographical locations to limit the bias caused by the network topology. The RDAP-based
collection processes must include mechanisms to prevent triggering rate limiting on the
remote servers.

Note that there are two general categories of sources. DN-based collectors, such as
the zone resolver or the registration information collector, only require the target domain
name as input. IP-based collectors, such as those determining the autonomous system or
reputation, instead focus on gathering data for a specific IP address. The TLS collector is
a special case, as it connects to an IP address but also requires the domain name, as many
servers use the Server Name Indication feature to facilitate connection to virtual hosts [43,
Sec. 3].

Clearly, some of these processes are independent and should run in parallel. For instance,
the DNS collector does not need to wait for the RDAP or TLS collector to finish. However,
the DNS collector can only run after the zone has been determined, as it uses the domain’s
primary nameserver address. Moreover, the processes should be independently scalable in
order to provide efficient resource usage. For example, the only dependency of the domain-
name-targeted RDAP data collection process is the zone domain name. This process could
thus be implemented together with the zone resolver. However, the zone-resolving process
is likely to be faster, as it only performs a handful of UDP-based DNS queries. At the
same time, the domain name RDAP data collector opens HTTPS connections and parses
JSON responses. If this was a single process and it was to be scaled, there would be many
unnecessary unsaturated zone resolving units.

45

Non-existent domain names

If a domain name does not exist (it cannot be found in the DNS), there is virtually nothing
to collect about it. If the collector unit determines that a name does not exist, it should:

1. provide this information on the output; and

2. discard the domain name from further processing as soon as possible.

Passing this domain name with “empty” data to the feature extractor should be possible,
as a lexical-only classification model could still provide some information about the domain
name.

Missing data and error handling

Handling errors that lead to unavailable data from one or more sources is a problem at
the boundary between the data-collecting unit and the rest of the DomainRadar system,
represented by the re-collection controller (which is not considered a part of this work).
The collector should not handle the re-collection process on its own. Instead, in order to
integrate with DomainRadar or to be used in other ways, the collector only needs to:

1. handle errors gracefully – not crash;

2. provide enough information on the output so that the other units can make informed
decisions; and

3. process each domain independently so that a failure in one domain cannot affect the
processing of others.

As such, the collector output should include both the successfully collected data and a rep-
resentation of the errors that occurred during the process. There should be a well-defined
list of error codes that the collector can emit so that the re-collection unit can decide how
to proceed with each individual name. The list should contain data errors (caused by the
remote service’s behaviour) and system errors, such as the inability to establish a connec-
tion to the remote service or other exceptions raised inside the collector. This way, the
re-collection unit can implement various kinds of retry logic according to the needs of the
individual deployments or use cases.

Additionally, the team is currently researching the possibility of using incomplete data
for the classification. In the future, it should be possible to process incomplete datasets by
the feature extractor and the classifiers. The feature vector should then include information
on missing data so the classifier can make an informed decision based on the available data.

Inputs and outputs

The collector will accept a stream of domain names, allowing the use of various sources of
domain names. In DomainRadar, the loader and the re-collection controller will provide
input to the collector. In the standalone collection use case, the input domains may be
loaded from a bounded source, such as a file. Each input entry must contain a string
with the domain name for which to collect data. When performing re-collection, the input
entry should also specify which collectors should be triggered, possibly together with other
options. Some re-collection requests may be targeted at a set of related IP addresses instead.
The outputs will be persisted appropriately and, if used in DomainRadar, passed to the
feature extractor.

46

Configuration

The system must provide a centralised way of configuring the behaviour of the individual
collection processes at runtime. The configuration must be stored and automatically ap-
plied in the event that the system or its part is restarted. The system must validate the
configuration requests before applying them.

Generally, the system is expected to provide configurable time boundaries for external
requests (timeouts) to limit the total time required to process a domain name. Rate-
limiting settings must be provided, at least for the processes targeting RDAP. No other
precise requirements are given on the configurable properties as they will be determined
based on the implementation.

5.4 Requirements on the Feature Extraction Unit
The feature extraction unit will essentially implement a transformation function that ac-
cepts the data collected in the collector unit and outputs a feature vector in the form
required by the classifier unit. Although the feature extraction process is not expected to
be computationally intensive, it should be implemented with parallelisation in mind, as the
input data for each domain name can be processed independently.

In order to provide the necessary reliability, the extractor must properly handle the
cases of missing data from one or more collectors. It must never omit a feature from the
output; instead, it must use a default value. If required by the classifiers, information on
missing data can be included as another feature. Corrupted or otherwise erroneous data
should not affect the computation of feature vectors for other inputs.

Notably, the extractor must be functionally equivalent to the prototype feature ex-
traction code currently used in the DomainRadar research to be usable with the existing
classification models. At least a partial re-usability of the existing code would be beneficial,
mainly to avoid introducing errors when reimplementing the feature extraction logic and
to make it easier for other team members to understand the new codebase.

47

Chapter 6

Design of the Data Processing
Pipeline

This chapter introduces the design of the data processing pipeline that meets the require-
ments set previously, explaining the rationale behind the important choices. Section 6.1
presents a concept of the pipeline as a whole and discusses certain simplifications that lead
to an appropriate level of parallelisation. Section 6.2 summarises the resulting design. Sec-
tion 6.3 lays the foundation for the specifications and describes the shared configuration
exchange mechanism. Section 6.4 provides an overview of the collector components, intro-
ducing the specifications and interfaces of the components defined in detail in Appendix B.
Section 6.5 explains the operation of the data merging component. Section 6.6 specifies
the interface and process of the feature extraction process and touches on the integration
with the classifier unit. Section 6.7 drafts a simple algorithm that could be used as the
re-collection controller logic.

The data processing pipeline is designed as a series of logically independent “input–
transform–output” stages (components) with well-defined behaviour, including request/re-
sponse data models and error states. The stages must be implemented on top of a platform
that will manage the data flow, scaling out, and distribution of work between the running
instances of each stage, as well as interfacing with external storage (in this case, Apache
Kafka will be used). This thesis focuses on two sections of the system: the collection stages
(also called “collectors”), retrieving the required data, and extraction stages, computing
the target features from the data.

Each collector corresponds to one of the external sources described in Chapter 4 (DNS,
TLS, RDAP, etc.). The extractor stages can be considered transformation functions that
accept a subset of the collected data and output a part of the feature vector. The transform-
ations include data normalisation, feature encoding, or statistical analysis. They are based
on the existing design from the DomainRadar research and mainly compute the features
described in the same chapter.

6.1 Parallelism Granularity and Data Gathering
The scheme in Figure 6.1 shows the overall flow of data in the system (induced by a single
input) highlighting the interactions between various stages and data synchronisation points.
The collection and extraction processes are represented using a set of individual stages that
exchange data by accepting requests and producing responses, as well as requests for other

48

stages. The scheme works with a generalised source of domain names, making it pluggable
into various environments. Note that the scheme only shows that classification results are
persisted. A solution for the persistence of the collected data will be presented later.

This specific decomposition of the data collection processes (shown in green and blue in
the scheme) was chosen by representing each remote data source with a separate collector.
This way, the design addresses the independence of data sources, which is also a step to-
wards scalability independence. However, this property must be ensured by the underlying
platform that will manage work distribution among them. The scheme does not show this,
as it focuses on the overall data flow for a single input.

Observe that the scheme shows several points where synchronisation is needed between
the data flowing from the parallel processes – i.e. where the data from independent sources
merge. The impact of these operations is discussed below.

Feature Extraction Stages

DNS Collector

Source

AS Collector

Geo Collector

RTT Collector

NERD Collector

domain name

IP addresses only

Zone/SOA
Collector

A

AAAA

MX

CNAME

NS

TXT

DN,
name-
server

DNS Transf.

RDAP-DN Coll.

RDAP-IP Col.

RDAP-DN T.

TLS Collector

TLS Transf.

Classifier

zone and SOA record data

registration data

handshake info & cert chain

IP Transform.

Data
Storage

collected
IP-related
data

record values + TTLs

Lexical Transf.

Figure 6.1: A data-flow scheme of the data processing pipeline. Green blocks represent
collectors that only fetch data based on a domain name, and blue blocks represent col-
lectors that fetch data based on an IP address. Double arrows signify that a stage may
produce multiple output values (IP addresses) for a single input. The black circles represent
a “Gather” operation over data from multiple sources. The grey dashed block includes the
independent feature extraction stages.

In the feature extraction part, the possible granularity depends on the relations between
the input data and the output features. The scheme identifies five possibly independent
transformation functions:

• the TLS transformation only uses data from the TLS collector;

• the IP transformation aggregates data from all the IP collectors, necessitating a Gather
operation over all the results for all the IP addresses;

49

• the DNS transformation computes DNS-based features, and so it requires a complete
set of DNS records for a domain name, necessitating a Gather operation on the
individual DNS record type results and the zone/SOA results;

• the RDAP-DN transformation only uses data from the RDAP collector;

• the lexical transformation is not dependent on any collector as it computes features
only from the textual representation of the domain name.

The Gather operation

While it is possible to split the entire process into a large number of independent stages,
it is not always beneficial to do so because the system works with a high number of data
dependencies – data coming from independently running stages must be merged at some
point in order to provide a unified input to the classifiers. For this reason, the data flow
in the diagram in Figure 6.1 includes several “Gather” operations (shown as black dashed
circles) that join the data from multiple sources based on a shared key – the domain name.
Naturally, these operations also work as synchronisation points in the parallel system.

Here, we shall model the operation as an input/output process with an internal state
represented by a map of keys to sets of values, in which the following properties hold:

1. Each value in the sets and each output value are labelled with an identifier of its
producer.

2. The operation has a priori knowledge of all the expected labels per key.

3. The number of entries in the map is unlimited.

4. When a value with a previously unseen key is received, the key is inserted in the map
with an empty value.

5. When a value is received, it is placed in the set associated with its key (possibly just
created as per Property 4).

6. When all the expected values for a key are present, the map entry is produced on the
output.

Obviously, an implementation cannot provide an infinite entry storage. The model can be
extended with certain constraints that limit the lifetime of an entity, such as the maximum
time since the first introduction of a key or since the last update. This should not affect
the correctness of the system, as it is expected both that:

• all the collecting stages will respond in a reasonably short time frame (perhaps with
an error); and

• all the data available at a certain point in time will be collected in a reasonably short
time frame.

Suppose one of the input stages produces multiple results for the same key while it is present
in the Gather operation’s internal state (in the given time frame). In that case, the sets
must be updated appropriately. Thus, we add two additional properties:

7. When a newer value is being inserted in the set, it replaces the older value with the
same label, if present.

50

8. A map entry is expelled after some time. If an entry is being expelled before it has
been produced, empty values for the missing labels are inserted in the set, and the
entry is first produced on the output.

This way, it is guaranteed that an input domain name will eventually pass through the
entire pipeline. If a later attempt at re-collecting some data is to be made, all the values
for the key will either still be present in the Gather operations, or reintroduced into the
system from a persistent storage.

Towards a simpler model

The Gather operation introduces synchronisation overhead, primarily in terms of latency
and resource usage, which is why each occurrence should be evaluated. The model shown in
Figure 6.1 uses several Gather operations that can be optimised out in practice, simplifying
the model.

First, note that the input domain name must piggyback on all the messages flowing
through the pipeline because it is used as the key in the Gather operations. This means
that no gathering actually exists in front of the TLS collector: the necessary domain name
information will be passed together with the input address from the DNS collector.

Another usage of the operation is in the DNS collector. If the records are fetched
in parallel, some synchronisation or gathering is undoubtedly needed, as the subsequent
transformations work over the complete set of DNS data. The DNS queries are likely the
fastest remote fetches in the pipeline, so performing them in a single process should be
feasible, rather than considering the fetch for each record type as a separate pipeline stage.
This way, the Gather operation will be implicitly present inside the DNS collector itself,
converting it into an implementation detail. For example, the per-query parallelism may
be achieved using concurrency-based programming techniques based on asynchronous I/O.

The collection process for a single domain name is generally expected to take signific-
antly more time than feature extraction. Using a highly granular model for the extractor
would necessitate several Gather operations, and the overhead of managing the parallel
computation may outweigh the benefits. Even sequential execution of all the transforma-
tions (per a single input entry) may be sufficient and even preferred because of the ease of
implementation and maintenance. In addition, it makes it easier to ensure the data’s con-
sistency and completeness and simplifies the feature extraction’s extensibility. Introducing
new features will require no modifications to the pipeline, even if they require data from
multiple sources. If necessary, the unified feature extraction process can be “explicitly”
parallelised per domain name (e.g. by using multiple threads inside of a single instance) or
by scaling out.

6.2 The Final Pipeline Model
Figure 6.2 shows a scheme of the final design of the pipeline, adjusted based on the findings
from the previous section. Every message in the pipeline carries some representation of the
input domain name, the source component that produced it, and the time it was produced.
All collector results also include an indicator of error, if any occurred.

The collection part of the pipeline starts with the zone/SOA collector that determines
the DNS point of delegation and the authoritative nameservers. It provides requests for
the DNS collector that performs a DNS scan and for the RDAP-DN collector that retrieves

51

Source

Zone/SOA
Collector

DNS
Collector

RDAP-DN
Collector

TLS
Collector IP Collectors

Data Merger

Extractor

Classifier

DN

DN, zone,
primary NS IP

DN,
zone

DN,
IPs

DN,
IP

DN,
classif. res.

Data
Storage

RCC

Other
outputs

(a) The adjusted pipeline. The pink dotted circles
represent points where the re-collection controller
(RCC) may inject messages. The white dotted circles
represent persisting data in storage.

DNS Transformation
IP Transformation

TLS Transformation
Geo Transformation

RDAP-DN Transf.
RDAP-IP Transf.

Lexical Transform.

Merged data

Feature vector

DN-based
IP-based

Initialize the vector

(b) The extraction process is composed of trans-
formation functions that sequentially populate and
modify the feature vector, with access to the unified
input data object.

Figure 6.2: The final scheme of the data processing pipeline that simplifies the data-
gathering operations into a single component.

registration data. When the DNS collector resolves IP addresses related to the domain
name, it selects an address passed to the TLS collector. It also passes all the addresses to
an IP collector input bus. Various IP collectors (omitted in the figure for clarity) listen to
the bus, process the addresses independently, and publish their results to an output bus.
The collectors’ result data are processed by a single “data merger” stage that implements
the Gather operation over all the data collected for a domain name.

All collection results are also persisted in data storage. The re-collection controller
periodically checks the erroneous results and schedules re-collection attempts by injecting
requests in virtually any place in the pipeline, while considering backoff intervals and retry
limits to manage repeated failures. For example, if the TLS collector fails to establish a con-
nection, the controller will eventually execute a re-collection attempt by sending a request
to the TLS collector. Results from the other collectors could have already been removed
from the data merger’s state, so the controller must also inject the already collected data
back into the merger. Suppose domain names were to be re-classified based only on pre-
viously collected data (e.g. when the classification models are updated, especially during
development and debugging). In that case, the re-collection controller may inject the uni-
fied data object directly into the extractor. Note that the scheme also contains a dashed
“other outputs” block. This output channel may be used to store the merged objects when
collecting new datasets, for debugging, or for future extensions of the pipeline.

The feature extraction process is consolidated into a single pipeline stage to streamline
data processing and simplify the system architecture by minimising inter-stage communic-
ation. Its input is the merged data object. Internally (Figure 6.2b), the process prepares
a feature vector structure and then passes it through a series of transformation functions

52

that have access to the original data object and use its data to populate the feature vector.
Finally, it is passed to the classifier stage. The figure shows that the transformations have
access to the original data object – the implementation will pass it from one transformation
to another to keep the process sequential.

6.3 Common Definitions for the Functional Specifications
This section defines the type system and base models used in the specifications of the
pipeline stages and their input/output models given throughout this work. It also describes
a unified configuration mechanism for all the pipeline stages.

Type system

The model definitions use a simple type system based on Python. The base data types are
described in Table 6.1.

object any non-null value int a signed integer
float a floating point number bool a truth value
str a string of characters bytes a string of bytes
timestamp a UTC date and time ip an IPv4 or IPv6 address
list[T] an ordered list of values of type T
set[T] an unordered set of unique values of type T
dict[K, V] an unordered mapping from keys of type K to values of type V
json a JSON-serialisable value
feature a feature vector value
fvector a feature vector
None an empty (null) type and value

Table 6.1: Base types used in the data models.

The | operator denotes a union of types. If a type of a field is not a union with None, its
value must not be null (None). It is up to the implementation how the types are represented,
what their exact bit lengths are, etc.

The special json type represents a complex value that could be serialised as a JSON [44]
(without imposing any restrictions on the actual representation):

json := str | int | float | bool | None | list[json] | dict[str, json]

The feature and fvector types used in the feature extractor are defined as:

feature := int | float | bool | None
fvector := dict[str, feature]

Data models

The data models specified in this chapter and Appendix Section B.11 are described using
a syntax similar to Python dataclasses:

53

class Model:
fieldA: Type = default

class InheritingModel(Model): # also has fieldA
fieldB: TypeA | TypeB

A model may inherit all properties from a parent model. The default value may be omitted;
if the value can be None, the default value is None, unless specified otherwise. A value must
always contain all fields specified in its type and no others.

All messages consumed and produced by pipeline stages are key-value pairs. Both the
key and the value are of a specific type. Each stage has a main output channel and may
define side output channels. Most stages will subscribe to an output channel of another
stage.

Collector base result

The base model of a result message for a collection stage is Result (shown in Listing 6.1).
Each collector uses a derived model with its specific fields that carry the actual result data.
A result message contains an integer status code that represents the result of the collection.
The value of 0 means success. All status codes are defined in Appendix Section B.13. All
collectors may return any of the codes defined in the “General status codes” section of the
table therein; error codes specific to each collector are stated below. The error field may
contain a human-readable error message if (and only if) the operation was unsuccessful.
The lastAttempt field contains a timestamp of when the operation was finished.

class Result:
statusCode: int
error: str | None
lastAttempt: timestamp

Listing 6.1: The base model of a result message.

Configuration and its runtime exchange

This design specification does not include a detailed description of the configuration options
for the stages, as it is considered an implementation detail. The configuration is expected
to include options such as the maximum number of retries, timeouts, or the number of
parallel requests. It is expected that the stages will have a static part of the configuration,
which will be considered a part of the deployment, and a dynamic part of the configuration
that controls the behaviour of the stage and can be changed by users at runtime. The
implementation must ensure that the dynamic configuration is stored in persistent storage
and loaded by the stage at startup.

A configuration object is a dict[str, json] value. A configuration property can be
addressed using a natural dot-separated path notation – for example, the property foo.bar
in a configuration object {"foo": {"bar": 42}} would have the value 42.

The components provide a shared runtime configuration exchange mechanism. All
stages offer a side input channel that accepts configuration messages and a side output
channel for configuration change result notifications. The key of a configuration message
is a str that identifies the target stage; the value is the complete configuration object.

54

The stage validates the received configuration object and, if valid, replaces the current
configuration with the received one.

After a stage processes a configuration message, it must publish a configuration change
result message. Its key is the same as the configuration request message key. The value is
a ConfigurationChangeResult defined in Listing B.20:

• currentConfig always contains a complete snapshot of the stage’s configuration.

• success is true if (and only if) the configuration was successfully applied.

• errors may contain a list of ConfigurationValidationError values that describe
the individual errors (or warnings) per property. The errorCode contains one of the
values from Table B.9.

• message may contain an arbitrary human-readable message that describes the result.

There might be multiple errors for a single property. A validation error may be “soft” –
that is, it did not prevent the configuration from being applied but may cause issues. In
this case, the ConfigurationValidationError instance is interpreted as a warning.

The last result message from each stage is stored. When a stage starts, it must load its
runtime configuration by fetching this last result message and applying the configuration
from the snapshot in currentConfig. If the message is not found, the stage must apply
its predefined defaults and publish a change result message as if the configuration has just
been changed. If the snapshot does not contain a valid configuration (e.g. the format of
the configuration has changed), the stage may either apply the configuration partially or
use the defaults.

6.4 The Collectors
This section provides a brief overview of the collectors’ operation. The detailed specifica-
tions of the collectors are provided in Appendix B.

The key of the request messages accepted by the zone, DNS, TLS, and RDAP-DN
collectors is always a str value that contains a domain name. The key serves as a correlation
identifier for gathering the results for a single input domain name. The value of the request
is collector-specific. A response sent to the main output of a collector must have the same
key. The target for a collector’s lookup may be selected using the key, the value, or both.

The key of messages accepted by the IP-based RDAP-IP, NERD, RTT and GEO-ASN
collectors is always an IPToProcess value, a pair of a domain name and an IP address (see
Listing B.1). Both IPv4 and IPv6 addresses are supported.

Zone collector

The zone collector accepts the domain name and determines the domain name of the DNS
zone that contains the input name by finding an SOA record using Algorithm 4.1. A pre-
configured recursive DNS resolver is used for all DNS queries. If the SOA is found, additional
queries are made to check the presence of a DNSKEY and to obtain:

• the A and AAAA records for the primary nameserver,

• the NS records for the zone,

55

• the A and AAAA records for all the secondary nameservers from the NS records.

The zone collector typically subscribes to an external source of input domain names to
process. See Appendix Section B.1 for the specification.

DNS collector

The DNS collector queries the primary nameservers of the input domain name for records
of the requested or pre-configured types and collects their values. It also finds the target IP
addresses using a pre-configured recursive resolver for record types that carry a hostname
(CNAME, MX, NS). The DNS collector typically subscribes to the DNS requests output of
the zone collector. See Appendix Section B.2 for the specification.

TLS collector

The TLS collector opens a TCP connection to an input IP address, port 443, attempts
to perform a TLS handshake, and, if successful, outputs a message that contains the used
protocol, the ciphersuite identifiers, and a list of DER-encoded certificates presented by
the server. The input domain name is used as the SNI value. The TLS collector typically
subscribes to the TLS requests output of the DNS collector. See Appendix Section B.3 for
the specification.

RDAP-DN collector

The RDAP-DN collector uses the Registration Data Access Protocol to look up domain
registration data. Mappings of TLDs to RDAP endpoints are obtained from IANA1. The
legacy WHOIS service is used as a fallback in the event that the TLD does not provide
RDAP access or when an error occurs. The RDAP-DN collector typically subscribes to
the RDAP-DN requests output of the zone collector. See Appendix Section B.4 for the
specification. Note that the collector implements a local rate limiting mechanism.

RDAP is expected to provide data only for registered zones. The request body should
contain the zone domain name for the RDAP query (e.g. determined by the zone collector).
If the target is not provided, the collector will use the input domain name (key) as the
target. If the query fails, the collector tries the possible registered name – obtained by
keeping only the public suffix and the first label that comes after it – if it differs from the
previous target. Only after the failure of this second query (if it was made) is the WHOIS
query attempted. Only a single WHOIS query is performed, targeted at the zone DN, if
provided, or the input (key) DN otherwise.

IP-based Collectors
All the IP-based collectors are expected to consume messages from an input bus and produce
messages to an output bus. For this reason, each collector type is assigned a unique identifier
used to signalise the target/source collectors (see Appendix C). The IPRequest request
message (see Listing B.1) may contain a list of IP collectors that should process the input.

1The IANA Bootstrap Service Registry for Domain Name Space: https://www.iana.org/assignments/
rdap-dns/rdap-dns.xhtml

56

https://www.iana.org/assignments/rdap-dns/rdap-dns.xhtml
https://www.iana.org/assignments/rdap-dns/rdap-dns.xhtml

RDAP-IP collector

The RDAP-IP collector uses the RDAP protocol to look up IP registration data. It fetches
the mappings of IP network prefixes to the RDAP endpoints from IANA2. The collector
does not provide a WHOIS backup. See Appendix Section B.6 for the specification.

NERD collector

The NERD collector retrieves the reputation score for the input IP address from CESNET’s
NERD reputation system. See Appendix Section B.7 for the specification.

GEO-ASN collector

The GEO-ASN collector looks up information on the geographical location and autonomous
system of the input IP address in MaxMind’s GeoIP databases. See Appendix Section B.8
for the specification.

RTT collector

The RTT collector performs a standard ping: it sends several ICMP Echo messages to the
input IP address, waits for the ICMP Echo Reply answers, and outputs basic statistics. See
Appendix Section B.9 for the specification.

6.5 Merging the Collected Data
The final step in the data collection phase of the pipeline is the data merger. This process
performs the Gather operation, combining data from various sources into a single coherent
data object for use by the feature extractor. The input messages are the outputs from the
collectors, and the output message is a value that encompasses all the gathered data for
a specific domain name.

The merger builds a most useful state store for each input channel (i.e. collector output).
The store is a key-value mapping where keys are the domain names and values are containers
populated with the most useful results for the DN from the respective collector. The “𝐵 is
more useful than 𝐴” relation≻ compares two candidate results 𝐴, 𝐵 based on the timestamp
and on whether they were successful. It is defined as:

𝐵 ≻ 𝐴 ⇐⇒ (¬𝐴𝑂𝐾 ∧𝐵𝑂𝐾) ∨ (¬𝐴𝑂𝐾 ∧𝐵𝑇 > 𝐴𝑇) ∨ (𝐵𝑂𝐾 ∧𝐵𝑇 > 𝐴𝑇).

where 𝐴𝑇 and 𝐵𝑇 are the respective values of the lastAttempt field, 𝐴𝑂𝐾 is true iff the
status code of 𝐴 is 0, and 𝐵𝑂𝐾 is true iff the status code of 𝐵 is 0. Note that this relation
has been created by the minification of the rules specified in Table 6.2.

Whenever a message is consumed from one of the inputs and the value is more useful, the
corresponding container is updated. The store is regularly cleaned to remove entries that
have not been updated for a long time. The behaviour is the same for IP-based collectors,
but the IP address and the collector identifier are parts of the key. The identifier is included
to differentiate between the results from different collectors sent to the shared output bus.

2The IANA Bootstrap Service Registry for IPv4 Address Space: https://www.iana.org/assignments/
rdap-ipv4/rdap-ipv4.xhtml. Similarly for IPv6: https://www.iana.org/assignments/rdap-ipv6/rdap-
ipv6.xhtml.

57

https://www.iana.org/assignments/rdap-ipv4/rdap-ipv4.xhtml
https://www.iana.org/assignments/rdap-ipv4/rdap-ipv4.xhtml
https://www.iana.org/assignments/rdap-ipv6/rdap-ipv6.xhtml
https://www.iana.org/assignments/rdap-ipv6/rdap-ipv6.xhtml

𝐴𝑂𝐾 𝐵𝑂𝐾 𝐵𝑇 > 𝐴𝑇 𝐵 ≻ 𝐴

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 6.2: A truth table capturing the rules for comparing the usefulness of two results
from a collector.

The scheme in Figure 6.3 demonstrates how the data merger operates using an object-
relational model. The most useful state stores are represented by “tables”, where the domain
name is the key and the message data object is stored in the result attribute. For IP-based
collectors, the key comprises the domain name, the IP address, and the collector identifier.
The collectors’ output channels are connected to the state stores, which are updated with
each message. When a state store is updated (i.e. an entry is modified with a more useful
result), the entire operation is re-executed for the domain name.

The first grouping operation takes the IP collector results, groups them by pairs of
domain name and IP, and aggregates the resulting “rows”, pairs of collector ID and result,
into a complex key-value map object collectedData using the COLLECT_TO_MAP operation.
The second grouping creates groups of results from all collectors for a single domain name.
Here, the operation aggregates the resulting pairs of IP address and the collectedData
object, into a single complex map of maps.

A result should only be produced after all the collectors have sent their results for
a given domain name. The inner joins between the zone results, DNS results, and RDAP-
DN results ensure that an entry will not be included in the output if any of these collectors
fail to provide the data. However, it is valid to produce a result with missing TLS or IP
data, as they only exist if the DNS collector succeeds. Thus, (left) outer joins are used
to add TLS and IP data to the result. The filter operation explicitly discards results that
have DNS data but not the expected IP results or the TLS result. This operation also
provides flexibility in terms of the restrictions imposed on the TLS and IP-related data.
For example, it may require only the presence of all IPv4-related results to pass an entry.
This way, the operation can be fine-tuned in case of new findings on the effect of IP-related
data on the classification. Should it be necessary to include results with other missing data,
the filter operation can be adjusted and/or outer joins may be used.

The operation intentionally omits domain names for which the zone could not be found
(e.g. dead domain names) in line with the requirements. If such entries were to be processed,
a direct path would be inserted instead between the zone collector and the feature extractor.

An SQL query that describes the operation is provided in Appendix Section B.10. The
relations ending with Results map to the state stores and the filter operation is represented
by the WHERE clause at line 38.

58

group
& aggregate domainName

ip
collectedData

domainName
ipDataMap

Aggregated per DN

group
& aggregate

inner join outer join

filter

IP collector
results

zone collector
results

DNS collector
results

RDAP-DN
coll. results

TLS collector
results

most useful
state store

IP results

zone results

TLS results

most useful
state store

most useful
state store

DNS results

most useful
state store

most useful
state store

RDAP-DN r.

domainName
ip

collectorID
result

merged data

COLLECT_TO_MAP

Aggregated per IP

COLLECT
_TO_MAP

Figure 6.3: A scheme of the data merging operation. Note that the non-IP state stores
have a domain name key attribute and a result attribute, which were omitted for clarity.

A note on processing guarantees

The nature of the data merging operation ensures that the rest of the system must only
provide the at-least-once message processing guarantees (on the application level) to even-
tually initiate the feature extraction process for each input domain name. As long as each
collector produces at least one result for every input, the data merger will eventually output
the “most complete” data object for each domain name. Of course, to ensure the guaran-
tees, the underlying platform must provide the at-least-once guarantees for the message
delivery.

The guarantees will not be met if a pipeline component fails to produce a result. These
cases can be mitigated by a re-collection controller that can check for missing results,
accounting for when the other results were produced and for the typical time it takes to
produce a result.

If a collector produces various outputs, there are two possible outcomes of the data
merging process:

1. the new result is more useful than the previous one – the merger will produce a new,
better result for the domain name;

2. the new result is less useful or the same – the merger will not produce a result.

In the first case, the only difference is that the feature extractor and the classifier will
process the same domain name twice, so the rest of the system must be able to handle this
situation. Specifically, the data storage mechanism must be able to handle multiple entries

59

for the same domain name, and the user interface must be able to display only the relevant
results. A potential issue is the waste of resources due to redundant processing.

6.6 Feature Extractor
The feature extractor stage consumes the unified data objects with collection results from
the merger and produces feature vectors. The input and output channels are defined in
Table 6.3. Note that an output feature must be a number, a boolean or None. This definition
is based on the inputs expected by the existing classification module.

Input
Key: str a domain name
Value: AllCollectedData the merged data object, see B.11
Main output (feature vector)
Key: str the input domain name
Value: fvector the feature vector

Table 6.3: The input and output definitions of the feature extractor.

Internally, the feature extractor is defined as a list of arbitrary stateless transformations
defined by a name, a list of features they create, and the transformation function itself.
The model of a transformation is shown in Listing 6.2.

class Transformation:
name: str
features: dict[str, ftype]
transform: (AllCollectedData, fvector) -> fvector

Listing 6.2: The model of a transformation. The values of the ftype type are the data
types from the feature union. transform refers to a function with two parameters and
one output.

The feature extractor works by gradually applying transformation functions to a feature
vector value. The function has access to the entire original input data object, which is con-
sidered immutable. The available transformations are predefined by the implementation.
The list of transformations, including the order of their execution, may be statically con-
figurable but cannot be changed for a single input message. The feature extraction process
is defined in Algorithm 6.1.

It is expected that the feature extractor will not offer any runtime configuration, as
it does not make much sense to change the behaviour unless the classification model is
changed – and in that case, the transformations should be updated as well. In case it does,
the same configuration exchange mechanism as in the collectors is used.

Integration of the classifier unit

From the design point of view, the classifier unit is just another stage in the pipeline.
It follows the same patterns as the other stages in the pipeline: It is an independent
input/output block exchanging messages. It consumes the feature vectors from the feature

60

Algorithm 6.1: The feature extraction process
Input: domain name 𝑑𝑛; AllCollectedData object 𝐷; list of transformations 𝑇
Output: domain name 𝑑𝑛; feature vector 𝐹

1 𝐹 ← new empty fvector
2 foreach 𝑡 in 𝑇 do
3 foreach feature key, feature type in t.features do

/* note that each feature value may implicitly be None */
4 𝐹 [feature key].expectedType ← feature type | None
5 𝐹 [feature key].value ← None
6 𝐹 ← t.transform(𝐷,𝐹)

7 if any value in 𝐹 does not match the expected type then
8 throw error
9 return 𝑑𝑛, 𝐹

extractor, as defined above, and produces classification results. No output models are
defined for the classifier unit, as it is out of the scope of this work.

6.7 Re-collection Controller
Algorithm 6.2 shows a very simple example of re-collection logic that could be used in
a manually or periodically started re-collection controller. For each key/collector type pair,
the controller keeps a number 𝑛 denoting the number of retries. 𝑅 are constants denoting
the maximum number of retries for each collector type. The controller iterates over all
failed results and requests re-collection for each of them. However, the effective meaning
of certain results is that re-collection would likely not succeed – for example, if there is no
RDAP endpoint for a TLD, it is improbable that it will appear any time soon. Thus, the
controller may skip re-collection attempts for such results. Note that the controller should
operate over a similar “most useful state store” as the merger, as it is only concerned with
the last result that would be considered by the feature extractor.

Algorithm 6.2: An example of a simple re-collection logic
1 foreach failed zone result for dn with 𝑛 < 𝑅𝑧𝑜𝑛𝑒 older than 𝑇𝑧𝑜𝑛𝑒 do
2 request zone collection for dn
3 𝑛← 𝑛+ 1

/* A DNS result may be considered failed if the "errors" dictionary
is not empty. */

4 foreach failed DNS result for dn with 𝑛 < 𝑅𝑑𝑛𝑠 older than 𝑇𝑑𝑛𝑠 do
5 request DNS collection for dn
6 𝑛← 𝑛+ 1

/* algorithm continues on the next page */

61

/* algorithm from the previous page continues */
7 foreach failed TLS result for dn with 𝑛 < 𝑅𝑡𝑙𝑠 older than 𝑇𝑡𝑙𝑠 do
8 if result status code ̸= CANNOT_FETCH then
9 request TLS collection for dn

10 𝑛← 𝑛+ 1

11 foreach failed RDAP-DN result (both RDAP and WHOIS) for dn with
𝑛 < 𝑅𝑟𝑑𝑎𝑝𝐷𝑁 older than 𝑇𝑟𝑑𝑎𝑝𝐷𝑁 do

12 if result status code /∈ { NO_ENDPOINT, NOT_FOUND } then
13 request RDAP-DN collection dn
14 𝑛← 𝑛+ 1

15 foreach failed RDAP-IP result for dn/ip pair with 𝑛 < 𝑅𝑟𝑑𝑎𝑝𝐼𝑃 older than 𝑇𝑟𝑑𝑎𝑝𝐼𝑃

do
16 if result status code /∈ { NO_ENDPOINT, NOT_FOUND } then
17 request RDAP-IP collection for dn/ip
18 𝑛← 𝑛+ 1

19 foreach failed NERD result for dn/ip pair with 𝑛 < 𝑅𝑛𝑒𝑟𝑑 older than 𝑇𝑛𝑒𝑟𝑑 do
20 if result status code ̸= UNSUPPORTED_ADDRESS then
21 request NERD collection for dn/ip
22 𝑛← 𝑛+ 1

62

Chapter 7

Implementation

This chapter describes the implementation of the data processing pipeline and its integ-
ration with database systems. The pipeline is based on Apache Kafka. Each stage is
an independently running program (a microservice), and Kafka transfers messages between
them. Commands and processing requests, collected data responses, feature vectors, or
logs materialise as Kafka events. Kafka’s partitioning and consumer group management
ensure scalability by distributing the work across multiple instances of the stages. They can
also be used, together with Kafka’s replication mechanisms, to ensure the system’s fault
tolerance.

The pipeline stages are implemented using some of the platforms mentioned in Sec-
tion 3.5. Several collectors and the feature extractor are written in Python using the Faust
framework, mainly for compatibility with existing code and because it was easier with re-
spect to the available libraries. Some collectors use Java instead, leveraging the Confluent
Parallel Consumer library for a highly parallelised collection that is more effective than
the Python-based solution. The data merger is based on Kafka Streams (KS). The Kafka
Connect (KC) platform integrates the pipeline with PostgreSQL, which stores the domain
names to collect, and with MongoDB, where the collected data are persisted.

Section 7.1 explains why the mentioned technologies were chosen and how they connect
to form the DomainRadar system. Section 7.2 presents the Kafka-based data processing
pipeline, showing how the individual components connect. Section 7.3 gives details of the
implementation of the Python-based collectors, followed by Section 7.4 that describes the
feature extractor, which is based on the same framework. Section 7.5 describes the Java-
based collectors and the pipeline component that merges the collected data. Section 7.6
explains how KC provides input to the pipeline and store the collection results in the
database systems. Section 7.7 presents the included Docker images and Compose files that
allow the system to be easily deployed in local scenarios.

7.1 The Big Picture: the Technologies of DomainRadar
Figure 7.1 shows an implementation look at the DomainRadar architecture proposed in
Section 5.1. The scope of the work in this thesis is the distributed data processing pipeline,
shown in the yellow block. The bold lines show the most common path taken by newly
seen domain names to reach the collection process: They are ingested from Elasticsearch
by the loader that, if they pass the filters, saves them to a PostgreSQL database. New
entries found in the database are imported via KC. Then, each entry passes through the

63

collectors, the feature extractor, and the classifier unit1. All collection (and classification)
results are sent back to Kafka, and KC saves selected fields to the two databases:

PostgreSQL2 is an open-source (object-)relational DBMS [119]. It provides fast storage
for the input loader and stores metadata on the results of the collection attempts that
can be used in the re-collection controller. It supports embedding JSON objects in
entities, which is used to store dynamic extra information from the loader.

MongoDB3 is a general-purpose document database with support for sharding and replic-
ation. It offers an expressive query API that provides complex aggregations inside the
DBMS [86]. It stores the collected data and classification results, as it is well-suited
for storing complex data structures. The aggregation framework is used to transform
the stored data into any target form, e.g. the data structure expected by the UI.

MongoDB

Elastic-
search

domain
names

Loader &
Pre-filter

Other
sources

PostgreSQL

Extractor

Apache
Kafka

User
Interface

Kafka Connectnewly seen domains
Log

engine

coll.+clf. results

distributed data
processing pipelinecommands, config, logs

Collector
(+ Merger)

Re-collection
Controller

data collection results
(metadata)

Classifiers

Figure 7.1: A scheme of the DomainRadar implementation architecture. The bolder arrows
show how newly seen domain names reach the data processing pipeline. Dashed lines
represent operational data, such as logs and commands.

Loader & Pre-filter: The loader uses the “upsert” (update or insert) operation to store
all the DNs that pass the filters, regardless of whether they have already been stored before.
This operation inserts previously unseen DNs, assigning them unique IDs from a sequence
and a “first seen” timestamp. For DNs already present in the database, it only updates the
“last seen” timestamp. This is the primary reason for introducing of PostgreSQL, as it can
perform this operation efficiently even for large batches of entries.

Based on this behaviour, there is a notable difference to the proposed design – the
absence of a direct link between the loader and the collector. While the loader could
determine which domains are “new” by comparing the timestamps, it does not make much
sense to concern it with the task of passing data to the collectors or determining which DNs

1The classifier unit is considered a part of the distributed data pipeline, but it is not a part of the
implementation described in this work.

2PostgreSQL: https://www.postgresql.org/
3MongoDB: https://www.mongodb.com/

64

https://www.postgresql.org/
https://www.mongodb.com/

should be re-evaluated. Instead, with information on domain names to process already in
the database, it is cleaner to use the unified and optimised data exchange capabilities of
KC. Its PostgreSQL connector keeps track of the last ingested ID and imports the new
entries to a “to process” topic in Kafka. If re-evaluation of DNs processed in the past is
required, the re-collection controller can use the timestamps to decide on the target DNs.

Re-collection Controller: The controller reads information on past collection attempts
and their results from the PostgreSQL database and decides which domain names should
be re-collected. The controller crafts the request messages for the target collectors and
publishes them to Kafka. Note that it is shown on the boundary of the distributed pipeline:
While some implementations may leverage the system’s distribution model, it is expected
that initial implementations will work in a single instance. The controller will be addressed
in future work.

UI: The user interface is a web application that presents the classification results for the
individual domain names. Users can also use it to edit the system’s dynamic configuration.
It uses a simple backend that loads data exclusively from the MongoDB database. An
example of an aggregation pipeline that transforms the stored data into a presentation
form is included in the attached storage. The UI also connects to Kafka to exchange
operational messages, such as the configuration.

Logging: The scheme includes a dashed database-like entity that represents a log analyt-
ics system. The implemented components push the logs to a Kafka topic from which this
external system may consume them. Alternatively, the external system could be connected
through KC. This is an infrastructure detail and is not further elaborated on in this work.

Modifications for standalone collection

Figure 7.2 shows how the implementation architecture can be modified when the data
processing pipeline is used outside of the DomainRadar system, typically for the purpose
of collecting new training datasets. Here, the system is simplified considerably. The loader
is replaced by a simple input controller that reads the domain names from a source (such
as a text file) and sends collection requests to the collectors. In the future, the collector
will be extended to provide the re-collection logic.

For model training, it is also necessary to include the feature extraction process. Fig-
ure 7.2b shows this modification. The feature vectors may be stored in MongoDB or in
a different system – for example, written in a binary serialised form to files in the filesystem.

Both the collected data objects and the feature vectors are first stored in Kafka and
then transferred to MongoDB through Kafka Connect. This way, the pipeline stages are
not concerned with data persistence at all. The storage can be easily changed by using
a different KC connector.

On the selection of Apache Kafka

Apache Kafka was chosen as the base platform for the implementation of the DomainRadar
system and its data processing pipeline because it naturally fits the system’s data-flow model
and requirements, enabling high-throughput message exchange and distribution. The main
motivations were the flexibility of implementation platforms, as well as their deployment

65

Mongo
DBApache

Kafka

K
af

ka
 C

on
ne

ct

Collector

Input
Controller

distributed data
processing pipeline

(a) collector only

Other
sinks

Mongo
DB

Apache
Kafka

K
af

ka
 C

on
ne

ct

Collector
(+Merger)

Input
Controller

distributed data
processing pipeline

Extractor

(b) collector and extractor

Figure 7.2: Two schemes showing how the system architecture may be simplified for stan-
dalone data collection (and extraction). Case (a) may be used when only the raw data
are required. Case (b) includes the feature extraction process. The re-collection logic is
included in the input controller.

and scalability. The system is built as a set of independent components exchanging data
through Kafka. This way, it fulfils various requirements:

Scalability The system can be easily scaled horizontally by adjusting the partitioning
and adding more instances of the individual components. Importantly, the number
of instances of each component can be chosen independently based on the observed
traffic and behaviour.

Deployment flexibility Almost any deployment topology may be chosen: the compon-
ents may run on a single machine, in containers, on a set of virtual machines, or even
in a cloud environment. It also fulfils the requirement of deploying certain components
in geographically separate locations.

Unified data exchange Kafka can be used both to transfer the actual working data
between the components and to exchange system data, such as logs or commands. It
can also be used as persistent storage for some of the data, such as the configuration.

Security The components may be deployed in a fairly isolated environment: in addition
to the target external services, they only need to be able to connect to the Kafka
cluster. Their communication can be encrypted, and strong authentication between
all entities in the system can be enforced with little effort.

Maintenance It is easy to replace or upgrade the independently running components
without affecting the rest of the system. Furthermore, Kafka provides embedded
mechanisms for monitoring.

Reusing existing code As Kafka clients are available in many programming languages,
parts of the codebase used in the preceding research could be used when developing
the pipeline components.

Integration with other platforms Kafka Connect is a well-tested platform that allows
easy integration with various database systems. Also, many data processing plat-
forms, such as Apache Flink, provide connectors to Kafka, which may prove useful
for future extensions of the system.

66

Efficiency The performance of the Kafka cluster affects the overall efficiency of the sys-
tem. It can be tuned by adding more nodes or changing the configuration. Kafka is
successfully used in diverse scenarios by many large companies, supporting the claims
of its performance and reliability [13]. The pipeline components are lightweight and
designed so that the individual instances do not require much system resources.

Replication and fault tolerance are provided by Kafka itself.

Other platforms were considered, but large-scale data processing systems like Apache
Flink and Apache Spark do not fit well with the DomainRadar pipeline, which focuses
on a particular way of data enrichment. Flink’s support for asynchronous I/O is not its
primary use case and lacks the required deployment flexibility, as the framework controls
computation locations rather than the user. In the future, these platforms might be used
in DomainRadar for tasks like feature extraction or training new models, where they excel.
Using Kafka also has drawbacks, primarily the need for system maintenance and monitor-
ing. Setting up a basic Kafka cluster is straightforward, but fine-tuning its configuration
for maximum performance, reliability, and efficiency, especially in large-scale clusters, is
complex. Cloud-based solutions like Confluent or Redpanda Cloud could mitigate some of
these issues. Additionally, Kafka’s scalability is limited by network bandwidth, disk I/O,
and managing many partitions, which can become bottlenecks.

7.2 The Kafka-based Data Processing Pipeline
The individual collectors, the data merger, and the feature extractor are implemented as
standalone microservices that communicate through Kafka. Their designed input and out-
put channels correspond to topics from which the components consume and to which they
produce messages. The design from Figure 6.2a is materialised in the implementation shown
in Figure 7.3. Each collector has one primary input topic, prefixed with to process, and one
primary output topic for the results, prefixed with processed. The collected IP data topic
serves as the output bus for all IP-based collectors. Some collectors additionally publish
messages to the to process topics of other collectors – this way, a pipeline is formed. The
figure includes the types of keys and values of the exchanged messages, which correspond to
the models specified in Appendix Section B.11. All components are assigned a component
ID, and additionally, collector components are assigned collector IDs. See Appendix C for
the assignments.

Serialisation

In the current version of the implementation, all complex types in the system are serialised
to JSON [44] and stored in Kafka, encoded as UTF-8 byte sequences. The values are in
a compact format: they contain no extra whitespace characters or newlines. The JSON
format was chosen for its simplicity and human-readability, which is helpful in development.

Most types from Table 6.1 have direct counterparts in JSON. The exceptions are:

• timestamp: serialised as an int representing the number of milliseconds since the
Unix epoch,

• ip: serialised as a string that contains an IPv4 or IPv6 address in the standard
notation,

67

k: str (DN)
v: None | ZoneRequest

k: str (DN)
v: ZoneResult

k: str (DN)
v: DNSResult

k: str (DN)
v: RDAPDomainResult

k: str (DN)
v: None | RDAP-
DomainRequest

k: IPToProcess (DN+IP)
v: None | IPRequest

k: IPToProcess
v: CommonIPResult

Loader &
Pre-filter

k: str (DN)
v: str (target IP)

k: str (DN)
v: DNSRequest

k: str (DN)
v: TLSResult

PostgreSQL
Selected
Kafka
TopicsMongoDB

k: None
v: serialized DFs

k: str (DN)
v: AllCollectedData

k: str (DN)
v: ClassificationResult

K
afka C

onnect

DNs ingested
through Connect

F Zone Collector

processed_zone

F RDAP-DN Collector

processed_DNS

processed_RDAP_DN

to_process_zone

to_process_DNS

to_process_RDAP_DN

to_process_IP

PC NERD
Collector

PC GEO-ASN
Collector

F RDAP-IP
Collector

F RTT Collector

collected_IP_data

KS All Data Merger

all_collected_data

F Extractor feature_vectors F Classifier classification_results

F DNS Collector

PC TLS Collector

to_process_TLS

processed_TLS

feature_vectors_json
k: str (DN)
v: fvector

Figure 7.3: A detailed look on the Kafka-based distributed data processing pipeline from
Figure 7.1. The double arrows mark that multiple records are produced or consumed per
a single input DN. The 𝐹 mark signifies a component based on Faust while 𝑃𝐶 stands for
Parallel Consumer. The classifier unit is also indicated for completeness.

68

• bytes: serialised as a string that contains the data in the Base64 encoding.

Note that neither JSON nor Python imposes any particular limit on the size of the numbers.
Additional restrictions apply to ensure compatibility with the Java components:

• int is a 64bit signed integer,

• float is a floating-point number representable in the IEEE 754 binary64 format.

Configuration management

The design specification requires that the components should offer an input channel for
runtime configuration exchange. Kafka is used to distribute and store the configuration:

• the configuration change requests topic is used to send configuration changes to the
components,

• the compacted configuration states topic is used to send responses and persist the
current configuration.

Component IDs are used as the keys for the events in these topics.
Work on the component implementations started before the configuration exchange

system was fully specified, so they were designed to read all their configuration from a file
at startup. Instead of reworking the components, a standalone configuration manager is
provided, which works in conjunction with the Compose-based service orchestration de-
scribed in Section 7.8. It is a simple Python program that runs as a daemon. It consumes
requests from the Kafka topic, applies the changes to the configuration files, and restarts
the running services. It also publishes the current configuration to the configuration states
topic.

The manager ensures that the important static properties, such as Kafka connection
settings, cannot be changed at runtime. It reads the existing configuration files, and when
a change request is received, it copies the static properties from them. The static properties
are also excluded from the currentConfig configuration snapshot in the result messages.
If a static property is included in the input object and does not match the current value,
a soft error with the error code READ_ONLY is produced, but the input object is still ap-
plied. However, the manager does not currently perform any other validation of the input
configuration objects.

The source code of the manager is included in the /src/config_manager directory. It is
based on the confluent-kafka-python4 client library. The README.md file contains a how-to-
use guide and a description of the sources. In the future, the components could be modified
to participate in the configuration exchange mechanism directly, obsoleting this external
manager.

Topic settings and initialisation

The /infra/kafka_scripts/prepare_topics.sh script is provided to create and update
the necessary Kafka topics. At the top, the script contains definitions of topics, their
number of partitions, and per-topic configuration, such as the cleanup policy. The script
connects to Kafka and creates the topics if they do not exist. The UPDATE_EXISTING_TOPICS

4confluent-kafka-python: https://github.com/confluentinc/confluent-kafka-python

69

https://github.com/confluentinc/confluent-kafka-python

environment variable controls if the script also updates the configuration of existing topics,
and the UPDATE_PARTITIONING variable controls if it alters the number of partitions.

The script contains four variables: COLLECTOR_, MERGER_, EXTRACTOR_, and CLASSIFIER
_PARALLELISM. They control the number of partitions of the respective input topics, affect-
ing the maximum number of component instances that can process data in parallel.

In addition to the topics shown in Figure 7.3, additional topics are created:

• filtered input domains is used for transferring certain records from the loader to the
MongoDB database (through KC),

• connect errors is used as the “dead letter queue” where KC sends messages that could
not be processed,

• configuration change requests and configuration_states are used for the configuration
exchange mechanism.

The delete policy mandates that the messages are removed at a specified time after they
are published. It is used for:

• all the to process and processed topics, as well as for collected IP data (48 hours),

• filtered input domains, feature vectors, feature vectors json, configuration change
requests (1 hour),

• connect errors, component logs (7 days).

The lifespan of the inter-collector messages was chosen as a very conservative estimate of the
maximum time it should take for a message to be processed by all collectors. It also defines
the maximum time in which the re-collection controller does not have to re-introduce past
collected data to Kafka. The 1-hour lifespans were chosen for transient messages that will
be consumed quickly by KC or the target components. The 7-hours lifespans were chosen
for the general logging topic and the dead letter queue so that the operator has time to
notice the errors.

The compact policy mandates that only the latest message is stored for each key, while the
previous are eventually removed. It is used for:

• all collected data, classification results (min lag: 1 hour, max lag: 12 hours),

• configuration states (min lag: 10 minutes, max lag: 1 hour).

The merged data objects and the classification results are currently kept compacted mainly
for debugging purposes. Normally, the data objects can be reconstructed from the collection
results stored in MongoDB, and classification results are also stored in MongoDB. The
configuration states are compacted quickly, as only the last message for each collector
should always be used.

Co-partitioning

In Kafka Streams, the co-partitioning requirement is essential for ensuring that join op-
erations between two or more streams or tables are executed correctly. Co-partitioning
mandates that all involved streams (or tables) must share the same number of partitions

70

and that their data are written using the same partitioning strategy [12]. For example,
when joining the data from the DNS and the TLS collectors by the key, if a DNS record
is in partition 𝑃 , the corresponding TLS record must also be in partition 𝑃 . Without
co-partitioning, the join operation would produce incorrect results. For this reason, all
the processed topics must use the same number of partitions. The collected IP data may
be partitioned differently, as it uses a different kind of key (the DN/IP pair) and is re-
partitioned by KS during the aggregations.

Standalone input controller

Included with this work is an example of an input controller that enables standalone collec-
tion and feature extraction outside of the DomainRadar system (for example, for creating
new large datasets). It is a simple Python program with a command-line interface that
reads domain names from a text file (local or remote) or from a MISP feed and sends them
to Kafka for processing. Collection and extraction results are saved to a MongoDB data-
base through KC. The program also connects to MongoDB in order to store metadata on
previously loaded DNs so that no entries are processed twice (unless explicitly requested).

The source code of the input controller is included in the /src/standalone_input
directory. The README.md file contains a how-to-use guide and a description of the sources.
The program is based on the confluent-kafka-python client library and uses PyMongo5 to
interact with MongoDB. The code for loading domain names from various sources and,
partially, the database access code were adopted from [57].

7.3 Python-based Collectors
The source code of the Python-based pipeline components (the collectors, the feature ex-
tractor) is included in the /src/python_pipeline directory. The Python projects use
Poetry6 for dependency management – the dependencies are set in the pyproject.toml
project files. There are two independent projects in the collector and extractor direct-
ories with their own project files, although both projects include the common module with
shared code. The top-level “meta-project” file only links the two files as local dependencies
and is provided for easier management of the development environment.

Each Python-based collector is implemented in a separate namespace (directory) and
contains its own __main__.py so that each collector can be executed using the python -m
<namespace package> command. These entrypoint scripts ensure that the data directory
required by Faust is present, and they delegate to Faust’s umbrella command-line interface7

so all Faust commands may be used with them. For example, a collector may be executed
using python -m collectors.zone worker.

Each Faust application must be configured with an application ID. It is mainly used as
the Kafka consumer group ID, correlating all instances of the same application. By default,
the application ID is set to domrad-[collector ID]. It can be overridden using the app_id
configuration property.

5PyMongo: https://pymongo.readthedocs.io/
6Poetry: https://python-poetry.org/
7Faust CLI: https://faust-streaming.github.io/faust/userguide/cli.html

71

https://pymongo.readthedocs.io/
https://python-poetry.org/
https://faust-streaming.github.io/faust/userguide/cli.html

Data models

Implementations of the data models from Appendix Section B.11 are in the common.models
module. The Pydantic library8 is used for model management. Models are defined using
Python dataclass syntax. The library can convert between JSON representations and the
model classes while performing validation of the input data. Faust has its own model man-
agement system, but it was found unsuitable. Instead, the common.custom_codecs module
defines two custom Faust codecs, classes used for value (de)serialisation: StringCodec and
PydanticCodec. The latter ensures interoperability between Faust and the Pydantic-based
models.

Configuration

The collectors use static configuration files loaded from the filesystem. Configuration is
defined using the TOML9 format. It is directly representable as a Python dictionary and
a TOML deserialiser is included in Python’s standard library, making it easy to load and
work with. For each collector, the configuration contains the Kafka connection and security
settings, the Faust application settings, logging settings, and collector-specific settings. An
example configuration file with all available properties and their descriptions is available in
config.example.toml.

Configuration mapping

The configuration manager provides mapping between the TOML format used in the con-
figuration files and the JSON format used by the runtime configuration exchange:

• When mapping a saved TOML file, the tomllib module10 from Python deserialises the
file into a dictionary and the json.dumps function11 serialises it to a JSON string.

• When mapping an exchange JSON string to the TOML format, the json.loads
function deserialises the string into a dictionary and the tomli-w library12 serialises it
to a TOML string.

Note that the manager produces an INVALID_TYPE soft error for any fields with null value
as it is not supported in TOML. The fields will be omitted from the target TOML file.

In all Python-based collectors, the static configuration (omitted by the manager) includes:

• the entire connection section (including subsections) that controls the connection to
Kafka,

• all fields named app_id (in any section).

An example of a mapping is shown in Listing E.1.
8Pydantic library: https://docs.pydantic.dev/
9TOML: https://toml.io/

10tomllib module: https://docs.python.org/3/library/tomllib.html
11json module: https://docs.python.org/3/library/json.html
12tomli-w library: https://github.com/hukkin/tomli-w

72

https://docs.pydantic.dev/
https://toml.io/
https://docs.python.org/3/library/tomllib.html
https://docs.python.org/3/library/json.html
https://github.com/hukkin/tomli-w

Logging

A shared logging wrapper is implemented in the common.log module. It uses Python’s
logging facility13 to create customised loggers for the components. A TRACE log level is ad-
ded for in-depth execution logs. Custom logging functions are injected in the Logger class
to provide a concise interface. They include a key parameter that inserts the currently
processed entry key to the log record using a custom formatter. A custom log handler is
included that writes logs to Kafka, independent of the Faust application. Several configur-
ation options are available to define the minimum logging levels.

The general structure of a Faust-based collector

All collectors share a common structure of the main module shown in Listing D.1. In
general, the collector is a simple module that:

1. initialises the logging system and reads the configuration,

2. initialises the Faust application,

3. defines a single input topic and one or more output topics, and

4. defines a single Faust agent for the input topic.

The Faust agent is a function that asynchronously consumes incoming events from the
input topic, deserialises the value of the event, executes an async collecting operation, and
produces its results to the output topic(s). The processing of each entry is encapsulated
in a try-except block that, in case of an unexpected error, logs the error and sends an
INTERNAL_ERROR result so that the entry does not appear unprocessed to the next stages.
The structure is similar for IP-based collectors. They must additionally deserialise the
event’s key and, when the event has a value, check if it requests this collector to run. The
modified structure is shown in Listing D.2.

The agents in all collectors set the concurrency parameter14 based on the configuration.
When set to 𝑛 > 1, the agent will internally execute the incoming events in 𝑛 independent
tasks. This does not mean they will run in 𝑛 real threads but rather that the event loop
will be able to switch between the 𝑛 tasks, and no particular order will be enforced on the
order of processed elements. It is useful for collectors that perform I/O-bound operations,
such as network requests, as it allows the collector to process multiple events concurrently.

DNS collector

The DNS collector (collectors.dns) uses the dnspython library15 to perform DNS queries.
It can directly build DNS queries and send them to specified nameservers, but it also
provides a stub DNS resolver16 that provides DNS recursion using a remote full resolver. For
all APIs, the library provides both synchronous and asynchronous versions of the functions,
which can be leveraged by the asyncio-based collectors. For each DNS query, the collector
first tries to use the provided list of primary nameserver IPs. If a query to a nameserver

13logging facility: https://docs.python.org/3/library/logging.html
14Concurrency (Faust docum.): https://faust-streaming.github.io/faust/userguide/agents.html#

concurrency
15dnspython library: https://www.dnspython.org/
16Stub DNS resolver: https://dnspython.readthedocs.io/en/stable/resolver.html

73

https://docs.python.org/3/library/logging.html
https://faust-streaming.github.io/faust/userguide/agents.html#concurrency
https://faust-streaming.github.io/faust/userguide/agents.html#concurrency
https://www.dnspython.org/
https://dnspython.readthedocs.io/en/stable/resolver.html

fails, the address is removed from the list, and if no addresses are left, it falls back to using
the stub resolver with the globally configured DNS recursive resolvers.

Figure 7.4 shows a simplified time diagram drafting how the collector operates. The
program is based on a loop executing events from a runtime-managed queue. It accepts
a domain name and starts an asynchronous DNS query. This operation stores the program
context and the “execution flow” is suspended until the query completes. In the meantime,
the program may work on the next item from the queue (e.g. it can accept another domain
name). When a query completes, its result and the context are inserted as an event into
the queue. The program eventually jumps back to this context and proceeds by triggering
another query. This ensures that multiple queries are processed in parallel, but for each
DN, the implementation appears sequential to the programmer. This process is effective
when the collector is saturated, i.e. it always has domain names to process.

main
loop

I/O
ops.

time

Figure 7.4: An event-loop based implementation of the DNS collector. Each colour rep-
resents a single processed domain name. Each long horizontal line represents waiting for
a DNS response to a single query. Vertical lines show when the processing finished for
a single domain name.

Zone collector

The zone collector (collectors.zone) also uses the dnspython library. Here, only the stub
resolver is used to make the necessary queries using the configured recursive DNS resolvers.
The tldextract library17 determines the public suffixes of domain names. The collector
works similarly to the DNS collector. Its options include the target DNS resolvers, the
timeout for a single query and the round-robin target resolver selection option.

RDAP-DN collector

The RDAP-DN collector (collectors.rdap_dn) uses the whodap library18 to perform
RDAP queries and the asyncwhois library19 to perform WHOIS queries. The tldextract
library is again used to determine public suffixes (when trying the possible registered name).

The asyncwhois library automatically parses the WHOIS responses using an embed-
ded parser. In the current implementation, the output parsed dictionary is added to the
RDAPDomainResult model as an extra whoisParsed field. However, it may be removed in
the future, as it is the feature extractor’s responsibility to extract the features from the
WHOIS data.

17tldextract library: https://pypi.org/project/tldextract/
18whodap library: https://github.com/pogzyb/whodap
19asyncwhois library: https://github.com/pogzyb/asyncwhois

74

https://pypi.org/project/tldextract/
https://github.com/pogzyb/whodap
https://github.com/pogzyb/asyncwhois

The asynciolimiter library20 provides the local rate-limiting capability. The library
implements three subtly different algorithms for rate limiting based on maximum rate per
second that differ mainly in burst handling [52]:

• Limiter does not pass any bursts unless delayed by a long-running CPU task that
caused the limiter not to be checked in time,

• StrictLimiter never passes bursts, so the resulting rate is always bounded by the
specified one,

• LeakyBucketLimiter implements the leaky bucket (as a meter) algorithm. It allows
bursts up to the specified capacity but the request rate is bounded.

Users can configure the used rate limiter and its options globally and per RDAP end-
point or per TLD. The collectors.limiter module manages the limiter instances for the
individual endpoints. It also handles the immediate and queueing modes, wrapping the
asynciolimiter’s wait function with custom timeouts. It provides a function that forces the
limiter’s capacity to be exhausted, which is used to prevent the collector from sending more
requests when a rate-limiting error is received from the remote endpoint.

Some RDAP servers were found to use deprecated TLS ciphersuites. For this reason,
the collector creates a custom SSL/TLS context with the ALL:@SECLEVEL=1 parameter that
decreases the required security level to 1, which corresponds to a minimum of 80 bits of
security [97]. In the future, this should be made adjustable per endpoint.

RDAP-IP collector

The RDAP-IP collector (collectors.rdap_ip) is implemented similarly to the RDAP-DN
collector, using the whodap library and the same rate limiter infrastructure. Configuration
properties are also the same.

RTT collector

The RTT collector (collectors.rtt) uses the icmplib library21 to send and receive the
ICMP Echo/Echo Reply messages. It implements the necessary ICMP protocol functions
directly in Python without the need for external dependencies. It provides a straightfor-
ward asynchronous API for performing the pings that returns an object with the required
statistics of the completed operation.

On Linux, root privileges or the CAP_NET_RAW capability are required to send an ICMP
message, as they can only be sent through a raw socket. However, since 2011, there has
been an extra socket type that can be used to send an ICMP Echo message (and receive
the Echo Reply) specifically [69], and in 2013, it was extended to IPv6 [32]. This is done by
using a SOCK_DGRAM set to the ICMP_PROTO protocol type. The library can work both in an
“unprivileged” mode, leveraging this feature (if supported by the OS), and in a “privileged”
mode, using raw sockets. The collector can be configured to use either mode. The only
other available setting is the number of ping messages to send.

20asynciolimiter library: https://asynciolimiter.readthedocs.io/
21icmplib library: https://github.com/ValentinBELYN/icmplib

75

https://asynciolimiter.readthedocs.io/
https://github.com/ValentinBELYN/icmplib

7.4 The Feature Extractor
The feature extractor is another component implemented in Python using the Faust frame-
work. It is located in the /src/python_pipeline/extractor directory and shares the
common module with the collectors. The general information stated in the previous section
applies to the extractor as well. The transformation functions were largely adopted, re-
vised, and integrated from the DomainRadar experimental code22, originally developed by
Horák in [57]. The table in Appendix F lists all the features currently computed by the
feature extractor. The original feature extraction code and the feature descriptions were
written as a part of the DomainRadar project in cooperation with R. Hranický, A. Horák
and J. Polišenský.

Batched processing using pandas

Horák’s feature extraction system was designed for one-off extraction of large bounded
datasets. It represented the data using pandas23 data frames. Pandas is a data analysis
and manipulation library for Python that provides highly optimised, efficient operations
over tabular datasets [93]. A data frame is a two-dimensional, mutable, indexed data
container.

All input data objects were key-value mappings with the same uniform structure (set of
keys). The extractor loaded the objects from a database into a single data frame, where the
keys defined columns and each object was represented as a row. The data frame was then
processed by the transformation functions, which were implemented as operations over the
table. The resulting data frame was serialised into a binary format. When used properly,
this approach can be quite efficient, as the pandas operations are vectorised and executed
in native code.

The implementation of the feature extractor presented here adopts this approach of
processing batches of data using pandas data frames. To embrace the optimisations offered
by pandas, it does not process the incoming data one by one. Instead, the take_events
function provided by Faust gathers up incoming events into a batch of a configured size. The
data frame is then created from all the events in the batch. The transformation functions
are applied one by one to the data frame. The entire resulting data frame is serialised into
a binary format and published to the output topic, from which the classifier unit reads the
data and classifies all the objects in the batch at once. The extractor can also be configured
to output the feature vectors one by one, serialised in JSON. Note that a batch may also
be passed to processing after a configured time has passed since the first received event.
The effects of adjusting the batch size are evaluated in Section 8.3.

Compatibility with the original code

The transformation process adopted from [57] differs from the design defined in Section 6.6
in that it does not pass the collected data object as an immutable side input to the trans-
formations but rather initially converts the data objects to a data frame and mutates it.
For ease of transition, the implementation follows this pattern, so the transform function
is declared as (DataFrame) -> DataFrame.

22DomainRadar “playground”: https://github.com/OviOvocny/dr-playground/, the adopted transfor-
mation functions are in the transformers directory.

23pandas: https://pandas.pydata.org/

76

https://github.com/OviOvocny/dr-playground/
https://pandas.pydata.org/

The transformations were designed to work with data objects produced by the prototype
data collection tool. Although it collected similar data, their structure was largely different
to the one defined in this work. For this reason, the extractor includes a special “compat-
ibility transformation” that accepts an AllCollectedData-like dictionary and uses it to
create a new dictionary that reflects the legacy data object structure. The transformation
mostly re-shapes the data, although it also handles the extraction of RDAP and WHOIS
data, which was previously done by Horák’s collector. The transformation is implemented
in the extractor.compat module.

Operation

Transform

Merged data

Make a data frame Drop extra columns

Buffer data

Add new columns

Compatibility trans.

Ensure data types

Feature vector

Ensure data types

Figure 7.5: The implementation of the feature extractor. The white block includes the
sequential chain of transformations shown in Figure 6.2b. Error handling is omitted.

Figure 7.5 summarises the extraction process implemented in the extractor.extractor
module. The input to the extract_features function is the batch of deserialised input
data dictionaries. Note that the main loop calling the function appends the original event’s
key (the domain name) into the dictionary.

1. All entries in the batch are processed using the compatibility transformation.

2. A data frame is created from the processed dictionaries.

3. It is extended with new columns defined by the transformations.

4. Correct data types must be set for the columns, as they may not always be correctly
inferred from the input data.

5. The transformations are executed one by one. The order is specified by the module’s
_all_transformations field.

6. The final “drop” transformation removes the columns that are not needed in the
output, including the columns with the original data.

7. The predefined data types are again enforced to ensure that the feature vector matches
the structure expected by the classifier unit. Should any transformation produce
incorrect types, this step would raise an error for the entire batch.

77

Transformations

All transformations (excluding the compatibility one) are defined in the transformations
directory. The base abstract class Transformation is defined in the base_transformation
module.A transformation class may accept the configuration dictionary in its constructorIn-
heritors implement the transform method that mutates the data frame of feature vectors
and the features property getter that returns a dictionary where keys are the output
feature names and values are the string aliases of pandas data types24.

To extend the system, one must create a new transformation class that inherits from
the base and implements the two methods. The class object must be appended to the
_all_transformations dictionary in the extractor module, keyed with an identifier for
the new transformation. If the inheriting class has a constructor, it must contain exactly
one positional parameter (the configuration dictionary).

Serialisation

The input key-value pairs are expected to be serialised in the same way as in the collectors.
The feature extractor deserialises the input JSON string into a Python dictionary that
reflects the structure of the AllCollectedData model.

For use in the DomainRadar system, the output data frame is serialised using the Feather
V225 format, a binary format for storing data frames included in the Apache Arrow project.
It was selected for its good speed according to the pandas documentation [94]. Events
produced by the extractor have no keys; the source domain names are included in a column
of the data frame.

For debugging and use outside of DomainRadar, e.g. for standalone collection, the
feature extractor can also be configured to serialise the feature vectors as JSON objects
and produce them as individual messages. In this case, the serialisation follows the same
rules as in the collectors.

Configuration

Configuration works similarly to the collectors. The extractor-specific configuration is
stored in the extractor section. The configuration includes the batch size and batch
fill timeout, the options for producing JSON results, the enabled transformations and the
number of workers (see below).

Error handling

When an error occurs during the compatibility transformation, the extractor logs the error
and omits the entry from the data frame. However, when an error occurs inside one of the
common transformations, it logs the error and discards the entire batch. For this reason,
the transformations should internally handle all possible errors gracefully, e.g. by setting
the feature to None.

Internal parallelisation and the ineffectivity of the transformations

While batched processing can increase the extractor’s throughput in theory, it requires the
transformations to be implemented in a way that allows them to be vectorised by pandas.

24pandas data types: https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes
25Feather V2: https://arrow.apache.org/docs/python/feather.html

78

https://pandas.pydata.org/docs/user_guide/basics.html#basics-dtypes
https://arrow.apache.org/docs/python/feather.html

Unfortunately, the transformations from the research are not designed this way: they are
mostly based on pandas’ apply method26, which applies a given function to each row
sequentially, and thus it does not add any performance benefits when compared to manual
iteration.

Due to Python’s Global Interpreter Lock (GIL), only a single thread can execute Python
code at once [107], so the apply function cannot be trivially parallelised through thread-
ing. Several libraries exist that extend pandas with parallelism based on multi-processing:
they split the input data frame into chunks, distribute them to child processes, run the
user function, and collect the results back to the main process. However, this approach
adds overhead. Furthermore, it is also not suitable for the current implementation, as the
transformations execute the apply function separately for computing each feature. The
demanding process of splitting the data frame and collecting the results would be repeated
for each feature, leading to infeasible overhead.

Pandas also allows running the apply method using the numba engine, which can provide
a significant speedup by JIT-compiling the function and running it outside of the GIL. This
could be used to speed up the transformations, but it would still require an overhaul of the
implementation, as it requires the function to work with raw numpy arrays instead of the
abstraction from pandas.

The implementation tries to mitigate the issue by the explicit use of Python’s multi-
processing features. When computation_workers is set to a value greater than 1, the ex-
tractor creates a pool of worker processes. The main process collects and deserialises batches
of input messages and then distributes them across the workers that execute the pandas
operations. When a worker produces the final data frame, it is passed back to the main
process, which serialises it and sends it to the output topic. The worker_spawn_method
property can be used to change between the process spawn modes (spawn, fork, forkserver)
offered by Python; see [106] for more information.

7.5 Java-based Collectors and the Data Merger
The source code of the Java-based pipeline components (the collectors, the data merger,
and the KC extensions) is included in the /src/java_pipeline directory. The Java pro-
jects use Apache Maven27 for project and dependency management. They are organised
as a multi-module project. The top-level pom.xml file is an aggregator POM used to build
the entire project and to define the versions of common dependencies. The common mod-
ule (sub-project) contains shared code (models, constants), serialization contains custom
serialisers and deserialisers. standalone-collectors contains the collectors based on Con-
fluent Parallel Consumer (CPC). streams-components contains the components based on
KS – this is, currently, only the data merger.

Collectors based on Confluent Parallel Consumer

Each collector is implemented as a class in the cz.vut.fit.domainradar.standalone
.collectors package. The project contains two abstract classes:

26pandas apply: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html
27Apache Maven: https://maven.apache.org/

79

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.apply.html
https://maven.apache.org/

• BaseStandaloneCollector serves as the shared base for collectors. It initialises the
Kafka consumers for use with the parallel processor from CPC. It also provides utility
methods.

• IPStandaloneCollector extends the base with methods specific to the IP-based
collectors. It also initialises the single Kafka producer.

The project also contains the StandaloneCollectorRunner class, which serves as the
entrypoint. It provides a command-line interface, loads the configuration file and initialises
the requested collectors. An instance of the Java program may run multiple collectors at
once; they are selected using CLI parameters. For example:

java -cp [...] cz.vut.fit.domainradar.standalone.StandaloneCollectorRunner
--col-tls --col-nerd --col-geo -id <prefix> -p ./properties.config

executes all three collectors (TLS, NERD, GEO-ASN). The Kafka consumer group ID of
each collector will be set to [prefix]-[collector ID]. The configuration will be read
from properties.config.

The data merger based on Kafka Streams

The data merger topology is defined in the CollectedDataMergerComponent class. Here,
the StreamsPipelineRunner class serves as the entrypoint. It provides a command-line
interface, loads the configuration file, builds the KS topology and starts the processing.
The project is prepared for future extensions, offering the possibility to define multiple
KS topologies managed by the runner. The Java program is started with the following
command:

java -cp [...] cz.vut.fit.domainradar.streams.StreamsPipelineRunner
--merger -id <KS app ID> -p ./properties.config

The runner creates a KS builder, adds the merger topology (--merger), and configures the
KS application ID, which KS uses internally to construct the consumer group IDs. The
configuration will be read from properties.config.

Data models and de-/serialisation

Implementations of the data models are in the cz.vut.fit.domainradar.common.models
package. The models are implemented as plain Java record classes annotated with nullab-
ility annotations. Serialisation and deserialisation to/from the JSON format are achieved
with the Jackson library28 and its data-binding component that enables seamless mapping
between JSON and simple Java objects. Jackson can be extended with data format mod-
ules to provide support for other data formats. The system could easily switch to one of
the provided binary formats in the future.

The cz.vut.fit.domainradar.serialization package provides implementations of
Kafka’s Serializer<T> and Deserializer<T> interfaces used by the strongly typed Kafka
consumers and producers. They use Jackson to write and read JSON values. For string
values, the Kafka client library already contains an implementation of a (de)serialiser. The
package also provides an implementation of Serde<T>, a unified factory for a serialiser and
deserialiser used in KS.

28Jackson library: https://github.com/FasterXML/jackson

80

https://github.com/FasterXML/jackson

Note that when constructing the JSON deserialiser for a generic class, it must be
provided with a “type reference object” (note the curly braces):

var serializer = new JsonDeserializer<>(jacksonObjectMapper,
new TypeReference<CommonIPResult<NERDData>>() {});

This construct is used to obtain full generics type information by effectively subclassing the
TypeReference abstract class, as Java normally erases generic types at compile time. This
way, an anonymous inheriting class is materialised in the compiled bytecode that carries
the type information.

Configuration

The components use static configuration files loaded from the filesystem. Configuration is
stored in the line-oriented properties format defined in the java.util.Properties Java
API29. The configuration thus consists of a simple unstructured mapping of string keys to
string values. The loaded Properties object is passed to the collector instance, as well as
to all the Kafka consumers and producers. The properties are defined and documented in
the CollectorConfig class in the common project. An example properties file is included
in client.example.properties.

All CPC-based collectors offer properties that control the settings of the parallel pro-
cessor. Notably, the collectors.parallel.consumer.max.concurrency controls
the number of processing threads spawned by the parallel processor. Other prop-
erties are specific for each collector. The configuration file controls the settings of the
underlying Kafka consumers and producers.

The KS-based data merger does not define any custom configurable settings. The con-
figuration file may be used to control the behaviour of KS and its consumers or pro-
ducers.

Note that the CLI provides an optional –bootstrap-server/-s parameter that, when
used, overrides the bootstrap.servers property in the configuration file. In the KS-based
components specifically, the command-line parameter –app-id/-id is required and always
overrides the application.id KS property in the configuration file.

Configuration mapping

The configuration manager provides mapping between the properties format used in the
configuration files and the JSON format used by the runtime configuration exchange. The
JSON strings are handled using the json module from Python; the properties format is
simple enough to be read and written using custom code. The configuration exchange
object contains two top-level dictionaries (similar to the sections in Python):

• The configuration keys starting with collectors are placed in the collector dic-
tionary in the exchange object – the collectors. prefix is omitted.

• The rest of the keys are placed in the system dictionary.
29The properties format is specified in the documentation of the load method: https://docs.oracle.

com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

81

https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

Note that the manager does not have knowledge of the actual data types in the properties
files. When it reads and publishes an existing saved configuration, all values will be strings.
In all Java-based collectors, the static configuration (omitted by the manager) includes all
properties starting with ssl or security. An example of a mapping is shown in Listing E.2.

Logging

The components are developed using the SLF4J30 logging facade, enabling switching of the
underlying logging system. The project is configured with the Log4j 231 logging framework,
which provides rich and flexible logging configuration. The project includes a simple con-
figuration file in common/resources/log4j2.xml that outputs logs to the standard output.
The /infra/client_properties/log4j2.xml file contains an example of a configuration
that also sends logs to Kafka using the built-in Kafka appender.

The logger name for the components is constructed as [full name of component
class].[component ID]. The collectors use the same convention for the use of logging
levels as the Python ones. The data merger does not currently log anything.

The general structure of a CPC-based collector

A generalised structure of a collector class is shown in Listing D.3. A collector is a class
that:

1. extends BaseStandaloneCollector<InKey, InValue>, specifying the types of the
key and value of the input topic,

2. calls the superclass constructor with instances of the Serde serialiser/deserialiser fact-
ory interface for the key and value types,

3. reads its configuration from the provided Properties object,

4. initialises a Kafka producer for each output topic,

5. implements the run method that builds the parallel processor, subscribes to a topic
and starts the processor. The run method is called by the runner.

The parallel processor accepts a processing function that is called for each incoming event.
The function is executed in a number of threads running in parallel. In the example, as well
as in the NERD and TLS collectors, the actual long-running task (remote fetch) is executed
in a virtual thread – a Java threading primitive suitable for running tasks that spend most
of the time waiting for I/O operations [98]. The processing function calls a custom function
that returns a CompletableFuture object on which it can wait using join. The future
object is encapsulated with orTimeout, which sets up a monitoring thread that will cancel
the future if it does not complete in the specified time.

GEO-ASN collector

The GEO-ASN collector (GeoAsnCollector.java) uses MaxMind’s GeoIP2 Java library32

to read data from locally stored GeoLite2 databases. The free-to-use databases are in-
corporated in this work in accordance with the GeoLite2 EULA33 and are available from

30SLF4J: http://www.slf4j.org/
31Log4j 2: https://logging.apache.org/log4j/2.x/
32GeoIP2 Java library: https://github.com/maxmind/GeoIP2-java
33GeoLite2 EULA: https://www.maxmind.com/en/geolite2/eula

82

http://www.slf4j.org/
https://logging.apache.org/log4j/2.x/
https://github.com/maxmind/GeoIP2-java
https://www.maxmind.com/en/geolite2/eula

www.maxmind.com. This is the only collector that does not perform any remote fetches,
so the I/O operation time is negligible. The processing function is not executed in a virtual
thread, and no timeout can be set for it. The collector does not return the TIMEOUT code.

NERD collector

The NERD collector (NERDCollector.java) uses the bulk querying endpoint34 from the
NERD API, processing incoming data in batches. Batching is built in the parallel consumer
and may be configured. The binary format is used to decrease the size of the data sent over
the network.

TLS collector

The TLS collector (TLSCollector.java) uses Java’s built-in SSL/TLS capabilities. It
creates a socket, wraps it using SSLSocketFactory and performs the handshake. The
connect operation and the subsequent socket reads and writes follow the configured timeout.
For this reason, the global timeout for processing an event is set to the double of the
configured timeout.

Java’s SSL/TLS context is initialised with a TrustManager responsible for determining
if a certificate received from the remote party should be trusted. Because the collector needs
to connect to all servers to retrieve the necessary data, a custom dummy implementation,
NaiveTrustManager, is used to implement the checking method as a no-op, effectively
bypassing certificate checking.

The data merger

The data merger uses the Streams DSL to define the stream processing topology. The cur-
rent implementation closely reflects the structure of the operation defined in Listing B.2. It
aggregates all IP data per a domain name using the groupByKey and groupBy operations.
The conceptual COLLECT_TO_MAP operation is realised with the aggregate operation. All
result streams are interpreted as tables (leveraging the duality of streams and tables) that
are ultimately joined to create the AllCollectedData object. The two filtering operations
are implemented using the hasEnoughIpCollectorResults and hasTlsIfRequired meth-
ods. The expected IP results filtering is slightly weakened to also pass results that do not
yet have NERD results.

The implementation simplifies the design from Section 6.5. When using a stateful
operation or representing a stream as a table, the framework maintains a state store. It is
similar to the “most useful state store” but uses offset-based semantics: the entries are only
compared by the event’s offset in the Kafka log. The topology is defined so that the stream
of results of the DN-based collectors is directly used as a table changelog. Thus, this table
does not follow the usefulness ordering – the last produced entry will always be present in the
resulting merged data object. However, this should not affect the operation of the system,
as no collector should produce more than one result unless specifically requested (e.g. by
the re-collection controller that could account for the required ordering). Conversely, the
results from the IP-based will follow the usefulness ordering as the stream is not converted
to a table directly. Instead, a table is created using the aggregate operation with a custom
aggregator function that can easily implement the required logic.

34NERD bulk querying API: https://github.com/CESNET/NERD/wiki/API#bulk-querying

83

https://www.maxmind.com
https://github.com/CESNET/NERD/wiki/API#bulk-querying

Additionally, the component currently does not evict entries from the state stores back-
ing the materialised tables. This will eventually become a problem, as it allows the stores to
grow indefinitely. It seems that this could be solved using the windowing capabilities of KS:
“session windows” are currently used for the first IP data aggregation operation that limits
the maximum time between two records related to the same DN/IP pair. However, the
extension of this mechanism to the DN-based collectors is a subject of ongoing experiments
and has not yet been included in the implementation.

7.6 Database Integration using Kafka Connect
Kafka Connect is used together with the JDBC Source and Sink connectors by Confluent35,
the MongoDB Connector36 and several custom converters and transformations located in
the /src/java_pipeline/connect directory. The section will also refer to configuration
files located in /infra/connect_properties. PostgreSQL stores the input domain names
and the metadata on the last collection attempts. MongoDB stores the entire collected
data objects, and the feature vectors (if configured).

Domain names input

The table for the input domain names is defined by the snippet of SQL in Listing 7.1a.
Note that it uses the serial data type that creates an automatically incrementing sequence
for the IDs and creates a unique index on the domain name column. The filter_output
attribute is only populated when a domain name is filtered from processing but should be
transferred to MongoDB for display in the UI.

The loader uses the SQL in Listing 7.1b to perform the upsert operation for any number
of filtered input domain names: The unique index and the ON CONFLICT clause ensure that
when the list of values contains a DN that has already been added, the existing entry is
only updated with the current timestamp.

The JDBC Source connector configuration in 40_postgres-source.properties ingests
the domain names from the table and produces them to the to process zone topic. The
incremental mode of the connector works by periodically polling the database for new
records, internally keeping track of the last ingested record’s ID. It is configured with the
query shown in Listing 7.1c to select the domain names. The query is encapsulated in an
extra SELECT because the connector appends a WHERE clause to it, comparing the value of
id to the last seen value.

The connector converts database entities to internal key-value message representations
called records. Each is associated with an abstract data type for both the key and the value,
specified using a Schema37. Records created by the JDBC connector have empty keys, and
values are constructed as structures with fields inferred from the database columns. The
target topic expects a domain name as a plain string in the key, so a KC transformation
must be used that extracts the domain field from the value and sets it as the key. This
custom transformation is implemented in the PostgresIngressTransformation class.

35Confluent JDBC connectors: https://docs.confluent.io/kafka-connectors/jdbc/current/
36MongoDB Connector: https://www.mongodb.com/docs/kafka-connector/current/
37Schema: https://kafka.apache.org/37/javadoc/org/apache/kafka/connect/data/Schema

84

https://docs.confluent.io/kafka-connectors/jdbc/current/
https://www.mongodb.com/docs/kafka-connector/current/
https://kafka.apache.org/37/javadoc/org/apache/kafka/connect/data/Schema

CREATE TABLE domains_input (
id serial

PRIMARY KEY,
domain text

NOT NULL UNIQUE,
first_seen timestamptz

NOT NULL DEFAULT now(),
added timestamptz

NOT NULL,
filter_output jsonb);

(a) DDL for the input domain names table

INSERT INTO domains_input
(domain, last_seen, filter_output)

VALUES
('domain name #1', now(), NULL),
('domain name #2', now(), NULL),
...

ON CONFLICT (domain)
DO UPDATE SET

last_seen = now()
RETURNING *;

(b) the loader’s upsert SQL

SELECT * FROM (
SELECT id, domain
FROM domains_input
WHERE filter_output IS NULL

)

(c) the query configured for the connector

SELECT * FROM (
SELECT id, domain, filter_output
FROM domains_input
WHERE filter_output IS NOT NULL

)

(d) the query configured for the filtered domains
passthrough connector

Listing 7.1: The SQL queries related to the input domain name table.

PostgreSQL collection metadata output

As a proof of concept, the current configuration also stores the metadata on the last
collection attempts in the PostgreSQL database. They are not used in the current imple-
mentation but may serve as the input for a re-collection controller or for quick diagnostics.
The tables for the DN-based and the IP-based collectors are defined in Listing 7.2. Note
that the inet type could be used to store the IP address, but the connector does not
support it.

The main output topics of all DN-based collectors (processed) are consumed by the
JDBC Sink connector configured in 30_postgres-sink-dn-collectors.properties. Sink
connectors must be configured with implementations of Converter38 that translate between
KC records and the binary data stored in Kafka. The built-in string converter is used for
keys, while values use a custom converter, CommonResultConverter, that deserialises the
JSON value and creates a KC structure that matches the scheme of the target tables. The
converter also infers the collector ID from the topic name, so a single connector instance
can be used for all (DN-based) collectors.

The connector performs the upsert operation to ensure that the table always con-
tains at most one record for each pair of a domain name and a collector. In order to
use the upsert mode, the collector needs to be configured with the key fields, and these
must be found within the KC record’s key. This is ensured by a custom transformation,
CollectorInValueToKeyTransformation, that creates the appropriate key structure from
the fields in the value.

38Converter: https://kafka.apache.org/37/javadoc/org/apache/kafka/connect/storage/Converter

85

https://kafka.apache.org/37/javadoc/org/apache/kafka/connect/storage/Converter

CREATE TABLE dn_collectors_states
(

domain_name text NOT NULL,
collector text NOT NULL,

last_attempt timestamp NOT NULL,
status_code smallint NOT NULL,
error text,
CONSTRAINT dncol_pk PRIMARY KEY

(domain_name, collector)
);
CREATE INDEX dn_states_index ON

dn_collectors_states (domain_name);

(a) DN-based collectors metadata table

CREATE TABLE ip_collectors_states
(

domain_name text NOT NULL,
ip text NOT NULL,
collector text NOT NULL,
last_attempt timestamp NOT NULL,
status_code smallint NOT NULL,
error text,
CONSTRAINT ipcol_pk PRIMARY KEY

(domain_name, ip, collector)
);
CREATE INDEX ip_states_index ON

ip_collectors_states (domain_name);

(b) IP-based collectors metadata table

Listing 7.2: The DDL scripts for the collector results metadata tables.

The IP-based collectors are handled by a similar but separate connector instance con-
figured in 31_postgres-sink-ip-collectors.properties. The custom value converter
and the transformation are the same, as they were designed to handle both cases. Events
in the collected IP data topic use complex values as keys, so another custom converter,
IPToProcessConverter, is used. The process is demonstrated in Figure 7.6.

MongoDB collection data output

MongoDB serves as a persistent storage for all collection results (and, in DomainRadar,
for classification results, too). Results from all DN-based collectors are put in a single
collection, dn_data, and results from IP-based collectors are put in ip_data. The key
(_id field) of each MongoDB document is composed of a domain name, a collector ID
and a timestamp, unambiguously identifying a result (results from IP-based collectors also
include the IP address). Listing 7.3 shows an example of how a collector result object maps
to the stored MongoDB document. Observe that for debugging and analysis purposes, the
document also includes the Kafka event offset and partition.

The MongoDB sink connector for all DN-based collectors is configured in 20_mongo-
sink-dn-collectors.properties. The built-in string converter is used for keys; values
are converted using the built-in JSON converter. A custom transformation, MongoKey
Transformation, creates the KC structure that will be mapped to the _id field. The
built-in InsertField transformation from KC inserts the offset and partition fields to the
value.

The MongoDB connector also provides post-processing chains that modify the BSON
document just before it is inserted into the database. The built-in DocumentIdAdder
processor with the FullKeyStrategy creates the _id field from the record’s key. The
BlockListValueProjector removes the lastAttempt field from the document, as it was
previously copied to the key. Finally, the ReplaceOneDefaultStrategy write strategy is
used to replace the document if the same key already exists. This can happen due to the
at-least-once nature of the message delivery. For the IP-based collectors, the configuration
is nearly the same, except that the keys are again converted using IPToProcessConverter.

86

Kafka Connect

IP-based coll. result
Kafka Event

Key

Value
IP

To
Pr

oc
es

sC
on

ve
rt

er

{
 "dn":"example.com",
 "ip":"1.2.3.4"
}

UTF-8
encoded value

{
 "statusCode": 0,
 ...
}

UTF-8
encoded value

Kafka Connect Structure
with schema (key)

domain_name
: STRING_SCHEMA
= "example.com"
ip
: STRING_SCHEMA
= "1.2.3.4"

C
om

m
on

R
es

ul
tC

on
ve

rt
er

Kafka Connect Structure
with schema (value)

error: OPTIONAL_
STRING_SCHEMA = ...
last_attempt
: TIMESTAMP_SCH = ...

collector
: STRING_SCHEMA = ...

status_code
: INT16_SCHEMA
= 0

C
ol

le
ct

or
In

Va
lu

eT
oK

ey
Tr

an
sf

or
m

at
io

n

Kafka Connect Structure
with schema (key)

domain_name
: STRING_SCHEMA
= "example.com"
ip
: STRING_SCHEMA
= "1.2.3.4"
collector
: STRING_SCHEMA
= ...

Kafka Connect Structure
with schema (value)

the value is unchanged

C
on

flu
en

t
JD

B
C

 C
on

ne
ct

or

Po
st

gr
eS

Q
L

Figure 7.6: The process of transferring a Kafka event with a result from an IP-based
collector to the PostgreSQL database. The blue blocks represent the custom converters,
the green block represents the custom transformation, and the pink block represents the
JDBC Sink connector.

Filtered domains passthrough

The filtered domains, where filter_output is not null, are ingested to Kafka by a separate
PostgreSQL connector instance configured in 41_postgres-source-filtered.json only
to be consumed by a MongoDB sink connector configured in 21_mongo-sink-filtered-
domains.properties. The source connector uses the query in Listing 7.1d to select the
records and transforms them using built-in transformations so that the resulting key is
the domain name, and the value is the JSON from filter_output. The sink connector
transforms the incoming records so that the key is composed of the domain name and the
Kafka event’s timestamp; the rest of the document corresponds to the value in the record.

Feature vectors

When the JSON output of the feature extractor is enabled, the MongoDB sink con-
figured in 24_mongo-sink-feature-vectors.properties stores the feature vectors in the
feature_vectors collection. The configuration is essentially the same as for the filtered
domains.

MongoDB aggregations

The /infra/mongo_aggregations directory contains several examples of MongoDB ag-
gregations that process the stored collection results data. The results.js file contains the
aggregation used for the DomainRadar UI. The aggregation in all_raw_data.js recon-
structs the merged data objects. The files can be executed using the mongosh MongoDB
shell:

mongosh "mongodb://[mongo URI]" --file [aggregation_file.js]

87

{

"lastAttempt": 1719813730907,

"statusCode": 0,
"error": null,

"rdapTarget": "my.zone.com",
"rdapData": {

"...": "[RDAP response fields]"
},
"...": "[other fields]"

}

(a) a collector result object

{
"_id": {

"domainName": "input.dn.zone.cz",
"collector": "rdap",
"timestamp": 1719813730907

},
"statusCode": 0,
"error": null,
"k_offset": 1234,
"k_partition": 12,
"rdapTarget": "zone.cz",
"rdapData": {

"...": "[RDAP response fields]"
},
"...": "[other fields]"

}

(b) the corresponding MongoDB document

Listing 7.3: An example of the storage format for the collector results.

At the end, all the files contain a call to a custom utility function defined in common.js.
When executed, it materialises the results of the aggregation pipeline into a collection.

7.7 Container Images
To simplify the testing and deployment, Dockerfiles39 are provided to build container images
for all the components. They have been tested and shown working using Docker (26.1.3)
with buildx (0.14.1), as well as podman (5.0.2) with buildah (1.35.3).

The bash script in /src/build_images.sh is provided to build the images for all
pipeline components at once. The images are tagged as domrad/[tag] where [tag] is the
collector ID (for Python-based components), java-streams, java-standalone (for Java-
based components), kafka-connect (for the KC image), standalone-input or config-
manager. For more information on the script, execute it with the -h (help) option. For
examples of the use of the individual images, refer to the /src/README.md file and the
included Compose file.

Images for Python-based components

The shared Dockerfile for the Python-based collectors and the feature extractor is in
/src/python_pipeline/Dockerfile. The build is controlled by the TARGET_UNIT argu-
ment that chooses the target project directory and the TARGET_MODULE argument that
chooses the Python module name.

The resulting image is based on the official Python 3.11 (on Debian 12) image. The
Dockerfile40 installs Poetry, the system packages needed for building dependencies, and the
dependencies. Cache mounts are used so that when the build is repeated, the dependencies

39I am keener on the “Containerfile” term, but for technical reasons, the project was mostly developed
with Docker, hence this naming of the file.

88

are cached on the host system. The final runtime image does not include Poetry and
the build packages; only the dependencies and project sources are copied from the build
stage. The entrypoint is set to the docker_entrypoint.sh script the executes the Faust
application from the specified Python module.41

Images for Java-based components

The Dockerfiles for the Java-based components are located in /src/java_pipeline. The
standalone.Dockerfile one builds the image for the collectors. streams.Dockerfile
builds the image for the data merger.

The build stage is based on the Eclipse Temurin 21 distribution of OpenJDK42 (on
Ubuntu 22.04); it installs Maven and uses it to build the project, producing a single JAR
file. The final runtime image is based on the Temurin Java Runtime Environment (JRE)
image. Only the JAR file is copied to it, keeping the image size small. The image for Kafka
Streams additionally includes the jemalloc allocator library to improve the performance of
the Kafka Streams application.

Kafka Connect image

The /src/java_pipeline/connect.Dockerfile file contains two stages: build sets up
Maven, builds the connect Java project with the custom KC plugins, and exports the
built JAR file together with the dependencies in standalone JAR files. The runtime stage
prepares a standalone KC image based on Temurin JRE: it downloads the Kafka 3.7.0
distribution, decompresses it and copies the JAR files from the previous stage to a plugins
directory. This image is then used by the Compose file (see below).

Other images

/src/config_manager/Dockerfile and /src/standalone_input/Dockerfile are Dock-
erfiles that build images for the configuration manager and the standalone input, respect-
ively. The Dockerfiles are essentially the same as for the Python-based pipeline components,
except that they specify another entrypoint and offer no build arguments.

7.8 Compose-based Orchestration
The system is composed of ca. 20 microservices, including Kafka and the database systems.
The attached storage contains the /infra directory with a Compose file43 and a set of
configuration files and scripts that can be used to start the system in a local environment
easily. The Compose file was tested with Docker Compose (2.27.1). For production and
large-scale use, a more sophisticated container orchestration system (such as Kubernetes)
should be used.

The Compose file defines the following services:

• kafka1 is a single-node Kafka broker,
41The Dockerfile was partially adopted from a publicly available Gist: https://gist.github.com/usr-

ein/c42d98abca3cb4632ab0c2c6aff8c88a, cit 2024-07-01.
42Eclipse Temurin: https://adoptium.net/en-GB/temurin/releases/
43See the Compose specification website for more information: https://compose-spec.io/

89

https://gist.github.com/usr-ein/c42d98abca3cb4632ab0c2c6aff8c88a
https://gist.github.com/usr-ein/c42d98abca3cb4632ab0c2c6aff8c88a
https://adoptium.net/en-GB/temurin/releases/
https://compose-spec.io/

• kafka-connect-full is a standalone KC instance with the full configuration, i.e. all
the connectors are enabled,

• kafka-connect-without-postgres is a standalone KC instance used in the stan-
dalone collector scenarios, configured not to include the PostgreSQL connectors,

• kafka-ui (Kafbat UI44) is a web-based user interface for Kafka management, included
for ease of testing,

• initializer waits for Kafka to start and executes the topic initialisation script; it
defers the execution of the other services until Kafka is ready,

• collector-[collector ID], merger, extractor, config-manager, standalone-
input, postgres, and mongo are self-explanatory,

• mongo-{domains, raw-data}-refresher periodically refresh the materialised views
in the MongoDB database.

The single Compose file can be used in several profiles for different use cases:

• The full profile starts all the services except kafka-connect-without-postgres and
standalone-input. This configuration simulates the DomainRadar system with all
the components (although the loader, the classifier unit, and the UI are not included).

• The col profile starts Kafka, Kafbat UI, MongoDB, the PostgreSQL-less KC service
and all the collectors. This configuration is used for the “standalone collector only”
scenario.

• The colext profile extends the previous one with the data merger and the feature ex-
tractor. This configuration is used for the “standalone collector and feature extractor”
scenario.

For example, the full configuration is started in the background using:

docker compose --profile full up -d

Additionally, the scaling of the services (collectors, extractor, merger) can be controlled
using the variables set in the .env file.

Exposed services

The Compose file exposes the following services to the host system (all ports are TCP):

• the Kafka broker on port 31013,

• the Kafbat UI web application on port 31000,

• the KC HTTP API on port 31002,

• the PostgreSQL database on port 31010,

• the MongoDB database on port 31011.
44Kafbat UI: https://github.com/kafbat/kafka-ui

90

https://github.com/kafbat/kafka-ui

To enable easier firewall management on the host system, if required, the services actually
communicate with each other using isolated networks. The ports are only exposed to the
host system when they are added to non-isolated networks. The Compose configuration in-
cludes two such networks: kafka-outside-world used only for Kafka, and outside-world
used by the other services. All services are assigned static IPs in these networks. This way,
it would be possible to remove Docker’s port forwarding and instead set up static routing
rules that forward traffic to the containers.

Security setup

Kafka is configured to use SSL/TLS for authentication and encryption. Before the first
start, SSL/TLS certificates must be generated for the broker and all the clients. The
bash script in /infra/generate_secrets.sh creates a custom certification authority (CA),
generates a required number of RSA keypairs and CSRs for the brokers and the clients, and
signs them with the CA. The generated secrets are saved in the secrets directory; their
use is pre-configured in the clients’ configurations. The generator script requires OpenSSL
and JRE. Alternatively, the /infra/generate_ secrets_docker.sh script is provided to
generate the secrets in a container.

The passwords for the exported keys and the keystores, the number of client and broker
certificates to generate, and their lifetime can all be set through the variables at the begin-
ning of the script. If deploying in production, the passwords should be changed, and the
CA private key must be stored securely. The generate_new_client_secret.sh script can
be used to generate additional client certificates (e.g. for future extensions of the system).

Moreover, the /infra/db directory contains the database initialisation scripts that cre-
ate database objects and users with passwords specified in the .secret files therein. For
PostgreSQL, the created users are master (a superuser), connect (for KC), controller
(for a re-collection controller) and prefilter (for the loader). Only the connect user
is used in the current implementation; the rest serve as placeholders for future develop-
ment. For MongoDB, the created users are master (a superuser) and connect (for KC).
The initialisation scripts are executed by the database services automatically. Again, the
passwords should be changed before deployment.

Using the configuration manager

When the manager applies a new configuration, it must restart the affected service. To do
this, the manager invokes the docker compose command. However, when used in a con-
tainer, the manager cannot access the host’s Docker Compose directly. For this reason, a re-
mote mode is included. The /src/config_manager/config_manager_daemon.py script
must be first started on the hosting machine. It creates a Unix socket that is then mounted
to the manager container. The script listens for commands from the manager and executes
them using the Docker Compose CLI. It only requires pure Python (tested on version 3.8).

The config-manager service is not included in any of the aforementioned Compose
profiles. To use the manager, start the daemon and add the configmanager profile:

Start the daemon with the correct Compose command
python config_manager_daemon.py "/tmp/domrad_control.sock" \

"docker compose --profile full -f /path/to/compose.yml" &
Start the config-manager service
docker compose --profile full --profile configmanager up -d

91

Note that the configuration manager is rather experimental and mainly included as a proof
of concept.

Using the standalone input controller

To use the system as a standalone collector, start the col or colext profile in the back-
ground. The standalone-input service can then be executed using docker compose run
to load domain names for processing or to start re-collection. For example, to load domain
names from a local file, use the following commands:

Start the system
docker compose --profile colext up -d
Run the loader
Remember to mount the file to the container
-d for direct mode, i.e. one domain per line
docker compose --profile colext run \

-v ./my/source/file.txt:/app/source.txt \
standalone-input load -d /app/source.txt

The progress can be monitored using Kafbat UI or by inspecting the MongoDB collections.

92

Chapter 8

Performance and Reliability
Evaluation

The implemented system was tested in both main use cases: for standalone collection and
processing of a large input batch and for real-time data collection for classification in the
DomainRadar system. The experiments targeted determining the system’s behaviour and
performance in different scaling, threading, and concurrency configurations. Additionally,
the composition of erroneous responses was analysed to identify potential bottlenecks and
to evaluate the system’s reliability.

The system was executed on two virtual machines (VM) in the CESNET network, both
running in the VMWare ESX 6.7.0 hypervisor on a server based on the Intel Xeon Gold
6226R CPU at 2.9 GHz. The infra VM had 6 virtual CPUs, 48 GiB of memory, and 500 GiB
of SSD storage; it ran Debian 12.6 on Linux kernel version 6.1.0. It was used to run all the
services except for the collectors (Kafka, Kafka Connect, the database systems, the data
merger and the feature extractor, the DomainRadar loader and classifiers). The scanner
VM had 4 virtual CPUs, 16 GiB of memory, and 100 GiB of SSD storage; it ran Oracle
Linux Server 8.10 on Linux kernel version 5.4.17. It was used to run the collectors. The
connection speed between the two VMs was measured using iperf31 to be about 3.5 Gbps.
This high-speed connection ensures minimal latency and efficient data transfer between the
components, supporting the system’s performance under high load.

The VM setup was chosen to isolate internet-facing services from strictly internal ones,
thereby mitigating risks of external attacks targeted at the entire system. Infra, running the
infrastructure, was placed inside a “private network”. It never opened internet connections,
it did not have a publicly routable IP address and could only be accessed through a VPN.
Scanner , used to fetch data from the internet, was placed in a “public network”. It had
a public IPv4 address and served a static webpage with a notice on the scanner’s purpose.
It could only reach the private network via the TCP port of Kafka running on infra.

This chapter provides an overview of the experiments performed to evaluate the system’s
performance and reliability. The findings emphasise its ability to handle high throughput
and the identification of possible bottlenecks. The experiments are documented with tables
and graphs showing the system resource usage, plots showing how the number of responses
from collectors rised over time, and tables and charts breaking down the composition of
errors in the responses from the collectors. They are available in Appendix H.

1iperf3: https://iperf.fr/

93

https://iperf.fr/

The forms of parallelism

The implemented system offers two approaches to parallelism in the pipeline components.
First, all the components may be scaled horizontally by increasing the number of partitions
in Kafka and running more independent instances of the collector process. In practice,
the instances could be executed on multiple machines, scaling the system out. Kafka’s
consumer group mechanism splits the work across the running instances. While starting
the component in more instances than the number of partitions is possible, they would idle
unless an active instance crashes. This chapter uses the following symbols to denote the
number of partitions and running instances:

• 𝑃𝐶 refers to the number of partitions set for the to process [. . .] Kafka topics used
for the collection requests, setting the maximum number of collector instances;

• 𝑃𝑀 refers to the number of partitions set for the processed [. . .] and collected IP
data topics, setting the maximum number of instances (or processing threads) of the
data merger;

• 𝑃𝐸 refers to the number of partitions set for the all collected data topic, i.e. the
maximum number of instances of the feature extractor;

• 𝐶𝑃𝑦, 𝐶𝐽 , 𝑀 , 𝐸 refer to the number of running individual instances of the Python-
based collectors, Java-based collectors, the data merger, and the feature extractor,
respectively.

Second, the components offer fine-grained control over the parallelism of the processing
tasks inside each instance:

• The Python-based collectors have the concurrency setting 𝐶𝑐
𝑃𝑦, which affects the

number of independent tasks planned in the event loop.

• The Java-based collectors offer to control the number of threads 𝐶𝑡
𝐽 in which the

Parallel Consumer library processes the incoming requests. (Observe that this setting
does not depend on the number of partitions.)

• Kafka Streams, used in the data merger, splits the input topic-partitions into tasks.
A single instance of the merger can create 𝑀 𝑡 threads in which the tasks are processed.
Each thread gets an independent consumer. As a result, the processing capacity
should be similar if 𝑀 = 1, 𝑀 𝑡 = 𝑁 and if 𝑀 = 𝑁, 𝑀 𝑡 = 1, although the system
resource usage may differ. (Observe that this setting depends on the number of
partitions: to increase the effective processing capacity, it must hold that 𝑁 ≤ 𝑃𝑀 .)

• Each instance of the feature extractor may spawn 𝐸𝑡 extra processes to which the
requests (accepted by the main process of the instance) are distributed. When chan-
ging 𝐸𝑡, the concurrency setting is also changed to the same value so that Faust can
use the extra processes in parallel.

Additionally, the feature extractor has a setting 𝐸𝑏 that controls the batch size. In the
current implementation, it should not affect the amount of parallelism much. However, it
can affect on the resource usage and processing time.

94

8.1 Standalone Collection Experiments
The goal of the standalone collection experiments was to determine the appropriate levels of
horizontal scaling for each collector, as well as the parallelism and concurrency configuration
inside of the instances.

This section first describes the individual experiments from the performance perspective.
Then, it discusses the observed collection errors and the expected load on the Kafka broker.
The results of these experiments are available in Appendix Section H.1.

Method

The steps repeated for each experiment were:

1. Stop the running system, back up and clear the data directories (Kafka, MongoDB).

2. Adjust the partitioning configuration in prepare_topics.sh.

3. Adjust the collector scaling options in .env and the collector configuration files.

4. Start the infrastructure (Kafka, MongoDB, KC) and wait for initialisation.

5. Start the collectors and wait for the completion of consumer rebalancing.

6. Load the testing domain list at once (to the to process zone topic).

7. Wait for all the consumers to reach zero lag (i.e. all requests have been consumed).

The collection results were transferred to a MongoDB database (through KC), where they
were later retrieved and analysed using the scripts in /analysis. The data merger and the
feature extractor were not used. Data on the system resource usage were collected via the
collectd2 monitoring tool.

All experiments used the configuration from /infra/client_properties, differing only
in the concurrency and threading settings mentioned above. The only exception was that
compression was turned off at the producers (in the attached files, it is set to ZSTD). The
local RDAP rate limiters were kept at the default setting: the queued mode with no time
bound, a maximum rate of 5 requests per second, and a maximum burst of 5 requests.

Observed performance metrics

The following performance metrics were observed for each collector:

• Total collection time (Tot, in hours and minutes) is the time elapsed between the first
and the last response of the collector.

• Average throughput (AvgTput, in processed requests per second) is the total number
of responses produced by the collector, divided by its total collection time. This
metric expresses the expectation of how many domain names (or IPs) the collector
can process “on its own”.

• Average collection time (AvgColT, in milliseconds per request) is the inverse of AvgT-
put, expressing the expectation of time needed to process a single domain name (or
IP).

2collectd: https://www.collectd.org/

95

https://www.collectd.org/

• Mean queued/collection time (MnQdColT, in seconds per request) calculates the av-
erage time between a collection request and its corresponding response. This metric
provides an estimate of the latency in the collector and reflects how well the collector
performed under a particular workload, taking into account requests that were wait-
ing in a queue at its input. Generally, this value should increase when the collector
is handling more requests and decrease when the throughput of requests increases
(for example, because of higher parallelism). The request timestamp is approximated
with the time of the response from the previous stage.

Each experiment is accompanied by two charts showing how each collector’s total num-
ber of responses evolves over time, separately for the DN-based and the IP-based collectors.
They visualise how much the collectors “lag behind” their input stages, i.e. the closer the
lines are to each other, the better.

Experiments #3 and #4 also include details on the system resource usage. “CPU usage”
refers to the relative CPU time spent in userspace, averaged across all cores. The graphs
show per-core relative CPU time spent in userspace and an across-cores average CPU time
spent in kernel and in userspace. The system load is a value reported by the Linux kernel
that shows the number of tasks waiting in the run queue (each sample measures the average
over 5 minutes). The network interface usage shows the traffic on the interface that connects
the machine to the internet. The memory usage is calculated as MemTotal - MemFree -
Buffers - Cached - SReclaimable (see the proc_meminfo(5) Linux manual page for
more information).

Input data

The testing list of 400,000 domain names was created from the CESNET data used in Sec-
tion 5.2. First, all domains belonging to one of the top 15 resolved eSLDs or one of the top
15 resolved e3LDs (sorted by subdomain count, see Table A.2) were removed. The domains
were then randomly sampled to make the list (available in /analysis/testing_domains.txt).
This particular number was chosen to mimic the expected throughput of the system in
a real-world scenario: The assumption was that if the collectors manage to process the list
in a couple of hours, the system should not get congested when processing the live feed
where a similar amount of domain names will be spread out over the day.

The failed experiment

After initially setting the system up in the testing environment, it was executed with
𝑃𝐶 = 𝐶𝑃𝑦 = 𝐶𝐽 = 16, mainly to verify the overall function in a high-load scenario.
This configuration seemed too demaning for the scanner VM, where it used up almost all
memory and CPU resources. However, the critical observation was that the Python-based
collectors were randomly starting to hang: the instances were running but not consuming
any messages or producing output. This misbehaviour may have been related to issues 1753

and 5234 tracked in the Faust repository that reported Faust agents dying over time.
The issue was mitigated by increasing the timeout settings for various low-level Kafka

operations and decreasing the maximum polled records limit. The collectors always suc-
cessfully processed all the data with these adjustments in place. They were incorporated
into the Compose file. However, the charts in Figures H.1 and H.7 show the zone collector

3Faust issue #175: https://github.com/faust-streaming/faust/issues/175, cit. 2024-07-11.
4Faust issue #523: https://github.com/faust-streaming/faust/issues/523, cit. 2024-07-11.

96

https://github.com/faust-streaming/faust/issues/175
https://github.com/faust-streaming/faust/issues/523

sometimes stopping randomly for a few minutes. The reason for this behaviour is unknown
but may be related to the same Faust issue. When running in real time, the issue was not
observed.

Experiment #1: 2 partitions

The first experiment was set up with 𝑃𝐶 = 𝐶𝑃𝑦 = 𝐶𝐽 = 2 and 𝐶𝑐
𝑃𝑦 = 𝐶𝑡

𝐽 = 4. The
configuration had been chosen to start with a low amount of parallelism and get some
baseline results in a reasonable time. Table H.1 shows the per-collector metrics.

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

Figure 8.1: Number of responses from the DN-based collectors over time in experiment #1.
Random periods of inactivity and the struggle of the DNS and RDAP collectors are visible.
In contrast, the TLS collector line closely follows the DNS one, showing low processing
latency.

Findings:

• The zone collector processed all entries in 8.5 hours, with the dependent DNS collector
lagging considerably, finishing in 14 hours (see Figure 8.1). This was expected as the
DNS collector performs more queries per entry. It suggests the need for more instances
of the DNS collector.

• The Java-based TLS, GEO-ASN, and NERD collectors were clearly underutilised and
collected the IPs coming from the DNS collector almost immediately, apparent from
the low values of MnQdColT. They may not require higher scaling.

• Both RDAP collectors processed the entries in over 19 hours, lagging behind the
DNS collector. High values of MnQdColT suggest that domain names long before
being processed, likely due to the rate limiter in the RDAP collectors slowing the
processing down. In addition to scaling, the optimal rate limiter settings should be
further evaluated.

• The RTT collector was extremely slow: after 21 hours, it had only processed under
10,000 domain names. The experiment was terminated here.

97

• The usage of the system resources was not metered in this experiment due to technical
issues. However, manual observation showed that the system was underutilised, with
the CPU usage not exceeding 15% and the memory usage not exceeding 3 GiB.

Experiment #2: 4 partitions

In the second experiment, the partitioning was doubled to 𝑃𝐶 = 4. The Python-based
collectors were also set to 𝐶𝑃𝑦 = 4 instances, as they were the bottleneck in the previous
experiment. The Java-based collectors were kept at 𝐶𝐽 = 2 instances because they handled
the throughput well in the previous experiment. The concurrency and parallelism were
kept at 𝐶𝑐

𝑃𝑦 = 𝐶𝑡
𝐽 = 4 to observe the effects of scaling only. Table H.3 shows the resulting

per-collector metrics.

Findings:

• Most collectors showed over 50% decrease in total processing time compared to the
previous experiment. Excluding the RTTs, the batch was processed in below 10 hours
– the zones were processed in 5:43, the DNS requests took 6:34.

• The QdMnColT values of the Java-based TLS, GEO-ASN and NERD collectors in-
creased, showing how the collectors were more utilised. The increase was especially
significant in the TLS collector, showing the need for higher parallelism if the through-
put grows.

• The QdMnColT value decreased for the DNS collector, showing that the additional
parallelism helped the collector to process faster even though the load was higher (as
the zone collector was also faster).

• QdMnColT also decreased for the RDAP collectors. This is likely because the in-
stances do not share the rate limiter, allowing them to contact the RDAP servers
more often overall. This is also supported by the error breakdown charts showing
a slight increase in both the total amount of errors and the RATE_LIMITED results.
However, both RDAP collectors still lagged behind the others at 8:23 (IP) and 9:56
(DN).

• The RTT collector still struggled with the throughput, processing only about 150,000
requests in 22 hours.

• The usage of the system resources was still small. The CPU usage did not exceed
30%; the peak memory usage was about 4.5 GiB.

As the RTT collector was struggling, it was terminated after about 23 hours and re-
configured with 𝐶𝑐

𝑃𝑦 = 64. After this change, the throughput increased considerably (see
Figure 8.2), showing that the concurrency setting affects the process positively.

Experiment #3: 8 partitions

In the third experiment, the partitioning was set to 𝑃𝐶 = 8. The Python-based collectors
were set to match the partitioning 𝐶𝑃𝑦 = 8; all the collectors except for the RTT one were
set to 𝐶𝑐

𝑃𝑦 = 4. The RTT collector was set to 𝐶𝑐
𝑃𝑦 = 64 based on the findings from the

previous experiment. The Java-based collectors were kept at two instances (𝐶𝐽 = 2), but

98

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 26:00
Time [hours:minutes]

0
20

0,0
00

40
0,0

00
60

0,0
00

80
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure 8.2: Number of responses from the IP-based collectors over time in experiment
#2. Note how the RTT lags behind but increases the throughput significantly after the
reconfiguration.

the number of threads was increased to 𝐶𝑡
𝐽 = 8 to account for the additional input load.

Table H.5 shows the per-collector metrics. Figure H.5 shows the response accumulation
and the system resource usage measurements.

Findings:

• The average CPU usage was 31%; the peak was 39%. The average memory usage was
7.91 GiB; the peak was 9.54 GiB.

• The performance of the zone collector was almost the same as in the previous test
(5:29 vs 5:43), which is somewhat surprising, given the improvements in the similarly
operating DNS collector.

• On the contrary, the performance of the other Python-based collectors improved sig-
nificantly. As shown in Figure 8.3, the DNS, RDAP-IP, and RTT collectors did not
lag significantly behind their input; their total processing time (5:29) was also equal
to the one of the zone collector. In the case of the RTT collector, the MnQdColT
value shows that it was likely approaching its limits.

• The RDAP-DN collector took only 29 minutes more than the other collectors, signific-
antly improving compared to the previous experiment. Its overall error rate increased
by 2.4%.

• The Java-based collectors had no issues with the throughput.

The results show the system can handle real-time traffic of approximately 20 domain
names per second in this configuration. This conclusion is based on the observed throughput
of the zone collector and the fact that the other collectors did not lag behind it (although
the RDAP-DN rate limiter configuration must be tuned). However, the memory usage
chart (see Figure H.5) shows an alarming trend: memory usage was steadily increasing over
time, suggesting a memory leak in one of the components. This is a subject for further
evaluation.

99

00:00 01:00 02:00 03:00 04:00 05:00 06:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 01:00 02:00 03:00 04:00 05:00 06:00
Time [hours:minutes]

0
20

0,0
00

40
0,0

00
60

0,0
00

80
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure 8.3: Number of responses from all collectors over time during experiment #3.

Experiment #4: 12 partitions

In the final experiment, the number of partitions was increased to 𝑃𝐶 = 12, mainly to allow
for additional scaling of the zone and DNS collectors. The Python-based collectors were
set to 𝐶𝑃𝑦 = 12. The RTT collector was set to 𝐶𝑐

𝑃𝑦 = 128, the zone and DNS collectors
were set to 𝐶𝑐

𝑃𝑦 = 64, and the RDAP collectors were set to 𝐶𝑐
𝑃𝑦 = 16, as here, the rate

limiter is likely slowing the collectors down anyway. The Java-based collectors were kept
at two instances (𝐶𝐽 = 2) but the number of threads was increased to 𝐶𝑡

𝐽 = 12 to account
for the additional input load. Table H.7 shows the per-collector metrics. Figure H.7 shows
the response accumulation and the system resource usage measurements.

100

Findings:

• The average CPU usage was 42%; the peak was 69%. The average memory usage was
12.13 GiB; the peak was 13.88 GiB.

• The increase in the number of partitions positively affected the throughput of the
zone collector, which managed to process all the entries in slightly over 3 hours.

• All the collectors except for RDAP-DN kept up with this throughput.

• The MnQdColT value decreased in the DNS collector, suggesting the increase in
withstandable throughput is higher than the increase of the input load.

• Conversely, MnQdColT increased in the TLS, GEO-ASN, NERD, and RDAP-IP col-
lectors, showing they are more utilised.

The same conclusions apply here as in the previous experiment. Here, the RDAP-DN
collector is considerably more of a bottleneck, in comparison to the previous configuration.
The memory usage trend is also similar: the 50% increase in collector instance count resulted
in about a 53% increase in average memory usage.

Figure 8.4: Scanner memory usage during experiment #4.

Collection errors

Tables H.2, H.4, H.6 and H.8 show the percentage of erroneous responses out of the total
number of requests delivered to the collector (the “req” rows). For the DN-based collectors,
they also list the percentages relative to 400,000 – the total number of input domain names
in the system (the “all” rows). In the “WHOIS” column, the “req” values instead refer
to the ratio of erroneous WHOIS responses to the total number of WHOIS requests only.
The charts in Figures H.2, H.4, H.6 and H.8 show the breakdown of error codes reported in
the collectors’ responses in the respective experiments. The RTT collector never returned
a non-zero status code, so it is not included in the charts or tables. The error rate of the
GEO-ASN collector was always below 0.1% of the IP addresses, so it was also omitted from
the charts for clarity.

Because the experiments used the same input data, the error rates were expected to
be similar across them. The results confirm this: the success rates generally differ by less

101

than 1%. Specifically, the Java-based TLS, NERD and GEO-ASN collectors were the most
“stable”, producing nearly the same result sets across all configurations. The charts suggest
a slight rise in timeout errors in the TLS collector, but it is a statistically insignificant
difference of units in a set of 400,000. The DNS collector was similarly consistent: here, the
success rate was always over 99.94%, making the differences in the error composition also
insignificant. The zone collector was consistent in the first three experiments but exhibited
notably more timeout errors in the fourth. This is likely due to the increased number
of requests targeted at only two remote DNS servers. The RDAP-IP collector was also
surprisingly consistent, successfully processing over 99.7% of requests in all experiments,
showing that the RIRs’ RDAP servers do not enforce too strict rate limits.

RDAP-DN

The highest variability in the error composition was observed in the results of the RDAP-
DN collector, which was expected, given that it contacts a high number of heterogeneous
remote servers. Only 37% to 46% of the RDAP requests were successful, although when
the WHOIS backup is considered, the overall success rate of the collector was 89% to 94%.
With more parallelism, the overall error rate and the amount of timeout errors increased.

The error breakdown charts show RDAP and WHOIS errors separately. Note that the
base count for the two bars is different: the RDAP error percentages are derived from the
total number of responses with non-zero status codes, including the ones where WHOIS later
succeeded (i.e. “Errors” + “WHOIS success”). The WHOIS error percentages are derived
from the total number of failed WHOIS requests only (i.e. “Errors”). During evaluation,
it was discovered that there had been an error in the WHOIS exception handling, which
suppressed the actual result codes from both services when WHOIS was triggered. The
charts represent these results as the “unknown” RDAP error and the INTERNAL_ERROR
WHOIS error.

The results show that some RDAP servers do not use the HTTP 429 (Too Many
Requests) status code when the rate limit is reached – for example, the server for the
.cz TLD returns HTTP 503 (Service Unavailable). Such responses are represented by
the CANNOT_FETCH result code instead of RATE_LIMITED. However, even when adding the
amounts of the two errors, the total percentage of rate-limited queries (out of all requests)
is about 11.4% in exp. #1, 13.8% in exp. #2, 12.9% in exp. #3, and 14.6% in exp. #4,
showing that the amount of rate-limiting errors does not necessarily increase with scaling.
In experiment #4, over 10% of the errors were timeouts, likely due to the increased load on
the system.

Internal errors

The INTERNAL_ERROR result code was present in some results from the zone, DNS, RDAP-
DN and RDAP-IP colllectors. However, further analysis shows that many of these are
network-related and are only inappropriately reported. The following paragraphs describe
the composition of internal errors in each collector based on the results from experiment
#3.

Zone: All the internal errors were caused by the function that finds the IP addresses of
the authoritative name servers. It did not handle the DNS SERVFAIL responses correctly,
leading to an unhandled exception.

102

DNS: There were 36 internal errors: 33 were caused by the same problem as in the zone
collector (when resolving the IP addresses for the CNAME, MX and NS records). The
remaining three were caused by a UTF-8 decoding error when reading the TXT records.
Additionally, there were 44 OTHER_DNS_ERROR errors, all caused by remote authoritative
DNS servers not responding or returning invalid responses.

RDAP-DN: It is harder to determine the cause of the internal errors in the RDAP-DN
collector as the errors were often caught at the top level of the collector, and some of the
exceptions had no string representation. There were 47,645 responses marked as an internal
error in total (incl. those represented in the charts as “unknown”), and 36,737 had a non-
empty error string. Of these, 29,757 (81%) were caused by various network errors and 6,612
(18%) were caused by a TLS certificate verification failure. The other errors were related
to the whodap library trying to process invalid RDAP responses.

RDAP-IP: Out of the total 567 internal errors here, 425 (75%) were caused by network
errors (e.g. the server disconnecting without sending a response), and 142 (25%) were again
caused by the whodap library processing.

Load on the broker

While the collectors were tested on a separate VM and optimised to process the data
as fast as possible by maximising the use of the VM’s resources, it is necessary to also
determine how this affects the broker running on the other VM. A separate experiment
was executed in a configuration similar to exp. #4, with 12 partitions and slightly tuned
concurrency/threading settings. The experiment ran for about 3 hours and 20 minutes, but
in the last 30 minutes, only the RDAP-DN collector was actively working. The graphs in
Figure 8.5 show the CPU load on the two machines throughout the experiment. The average
CPU usage on the infra VM was about 17%, and the average memory usage was about
3.83 GiB. The average CPU usage on the scanner VM was about 62%, and the memory
usage was about 11.39 GiB. The load was nearly constant throughout the experiment,
showing that the broker could handle the collectors’ load without performance degradation.
Figure H.9 shows the disk and network interface usage plots.

Figure 8.5: Comparison of the load on both VMs during collection.

103

Summary of the standalone collection experiments

The comprehensive experiments demonstrated that the implemented system can effectively
manage horizontal scaling and adjust to high volumes of data with minimal errors. The
experiments indicated that all collectors, except for RDAP-DN, maintained a consistent
throughput. For instance, the collectors processed a list of 400,000 input entries in slightly
over three hours when the number of partitions was increased to twelve. However, the
RDAP-DN collector remains a bottleneck, reflecting its dependency on numerous and di-
verse remote servers. In production, the rate limiter settings and the throughput of the
preceding stages must be adjusted to match the RDAP-DN collector’s processing capabil-
ities.

In the most demanding configuration, the system exhibited efficient resource utilisation
with an average CPU usage of 42% and a peak of 69%. Memory usage was also within
acceptable limits, with an average of 12.13 GiB and a peak of 13.88 GiB. However, a possible
memory leak was detected as memory usage steadily increased over time. The load on the
Kafka broker was also monitored, showing that the broker could handle the throughput of
the collector pipeline.

The error rates remained low across most collectors. The RDAP-DN collector exhibited
more variability in its success rates due to the heterogeneity of the remote servers it contacts.
Nonetheless, the success rate ranged between 86% and 100%, even in the most resource-
demanding configuration (not accounting for the NERD collector that does not support
IPv6 addresses).

8.2 Data Merging Experiments
The data merger component was tested to evaluate the requirements on the system re-
sources and to determine whether it makes sense to scale the process out when running on
a single machine rather than to modify the number of processing threads. The experiment
configurations differ in their settings of 𝑀 and 𝑀 𝑡.

Method

All the experiments were run on the same set of collected data. For each configuration,
these steps were repeated:

1. Stop the running mergers.

2. Remove the intermediary topics made by KS, and recreate the all collected data
topic.

3. Remove the mergers’ state directories.

4. Adjust the merger scaling and threading options.

5. Change the mergers’ application ID.

6. Start the merger services.

The merging results were not further analysed; only the total time and the system resource
usage were monitored. The only services running on the system were the Kafka broker, the
data merger, and Kafbat UI.

104

Observed metrics

• Total processing time (Tot, in minutes) is the time elapsed between the start of the
merger services and the last produced message.

• Mean processing time (MnProcT, in milliseconds) is the average time of processing
an input domain by the merger. It is the total processing time divided by 347,711
(the number of input domains with successful zone results).

• Merger throughput (MTput, in domain names per second) is the inverse of the mean
processing time.

• Average CPU usage (CPU, in %) is the across-cores average relative CPU time spent
in userspace over the whole run.

• Average memory usage (Mem, in GiB) is computed as the average memory usage
(defined similarly to above) over the whole run.

Note that the MnProcT and MTput use the unique input domain names as the base, but
the actual “event throughput” of the merger is higher, as it must process multiple events
for each domain name. The number of events per domain name is highly variable, mainly
because it depends on the number of IP addresses. The system resource metrics include
CPU usage, memory usage, system load, and disk usage (which is important because the
merger materialises its intermediary states both on the disk and in Kafka).

Input data

All the experiments below were executed on the same set of data collected in the last
standalone collection experiment. The dataset consisted of:

• 401,207 zone results,

• 347,711 DNS and RDAP-DN results,

• 338,225 TLS results,

• 3,332,620 IP results (ca. 833,150 results from each IP-based collector or 9.58 IP ad-
dresses per DNS result).

In total, the merger processed 4,767,474 Kafka events in each run.

Configurations

The experiments were run with the following configurations:

1. 𝑀 = 4, 𝑀 𝑡 = 4,

2. 𝑀 = 1, 𝑀 𝑡 = 16,

3. 𝑀 = 1, 𝑀 𝑡 = 8.

105

Exp. Tot [min] MnProcT [ms] MTput [DN/s] CPU [%] Mem [GiB]
#1 33 5.69 175.61 47 36.63
#2 25 4.31 231.81 59 21.03
#3 24 4.14 241.47 57 18.08

Table 8.1: Metrics of the three merger runs. The best values are in bold.

Results

The metrics values for the three experiments are summarised in Table 8.1. The resource
usage is plotted in Figure 8.6. The complete graphs plotting CPU usage, memory usage,
system load, and disk usage during these tests are available in Appendix Section H.2.
Surprisingly, the configuration #3 with the least “workers” had the highest throughput but
not the lowest CPU usage. This suggests that the additional bookkeeping of multiple worker
instances degrades the overall performance on these data. Also, when running on a single
machine, it is way less memory-heavy to run the merger with multiple threads rather than
in multiple instances.

Figure 8.6: System metrics showing the differences between the three merger configurations.

Observe that the merging operation is quite resource-demanding in the default Kafka
Streams configuration. The memory usage seems to be the limiting factor in the standalone
collection use case. However, KS and RocksDB (used for the persistence of the state stores)
both offer a variety of configuration options that can be used to tune the memory usage,
as described in [11] and [21]. The need for low-level tuning is a drawback of the KS-based
solution, as it requires a deep understanding of the underlying technologies. For example,

106

both articles mention that it is advised to use an alternative memory allocator as the default
one leads to increased memory consumption. This thesis does not focus on KS performance
fine-tuning, but some attempts at memory usage optimisation were made for the real-time
data processing experiments.

8.3 Standalone Feature Extraction Experiments
The feature extractor was also tested to evaluate the appropriate scaling in order to reach
high throughputs. The effects of the instance count, batch size, and multiprocessing were
evaluated.

Method

The steps repeated for each experiment were:

1. Stop the running extractor instances.

2. Adjust the extractor scaling and threading options.

3. Change the extractors’ application ID.

4. Start the extractor services.

The feature extraction results were not further analysed. During the experiments, only the
broker and Kafbat UI were running on the machine.

Input data

All the experiments were executed on the same set of data collected in the last standalone
collection experiment. The input all collected data topic contained 419,204 events. In all
experiments, the data were spread over 16 partitions.

Configurations

The experiments were run in a total of 11 configurations. For 𝐸 ∈ {1, 4}, the experiments
used a fixed batch size and varying amounts of the multiprocessing-based workers. For
𝐸 ∈ {8, 16}, the experiments varied in batch sizes of 50, 100, and 200 but did not use
multiprocessing. These configurations were selected with respect to the CPU and memory
usage to keep the total process count around the number of partitions.

Observed metrics

In these experiments, only the average CPU and memory usage were metered. They are
defined similarly to the previous experiments.

Results

The values of the metrics are summarised in Table 8.2. The complete graphs plotting the
CPU and memory usage during the experiments are available in Appendix Section H.3. The
results confirm that the extractor is CPU-intensive, with CPU usage consistently exceeding
60% in all configurations that employed scaling.

107

Tot CPU Mem Tot CPU Mem Tot CPU Mem
[min] [%] [GiB] [min] [%] [GiB] [min] [%] [GiB]

Inst.𝐸 𝐸𝑏 = 200, 𝐸𝑡 = 4 𝐸𝑏 = 200, 𝐸𝑡 = 8 𝐸𝑏 = 200, 𝐸𝑡 = 16

1 22 46 3.276 22 45 3.954 19 46 5.162
4 10 78 6.520 11 78 8.671

Inst.𝐸 𝐸𝑏 = 50 𝐸𝑏 = 100 𝐸𝑏 = 200

8 11 71 4.025 9 76 4.037 9 66 4.097
16 15 67 5.244 12 65 5.151 9 72 5.354

Table 8.2: System metrics during the feature extractor experiments.

The results also show that the multiprocessing-based scaling is not too effective in this
configuration, as it did not lead to a decrease in the total processing time. This is quite
surprising and should be further evaluated. The CPU usage does not increase with the
number of workers, suggesting that the additional workers were actually not being utilised.
It is possible that the de/serialisation process, performed in the main loop, takes more time
than the actual feature extraction, suppressing the benefits of parallelism. This should be
further investigated with the use of profiling.

The total performance did not increase considerably with scaling out; the total time was
similar with 4 and 8 instances, and in some cases even higher with 16 instances. Apparently,
the increased load on the system is preventing the workers from processing the data faster.
Increasing the batch size seems to make processing slightly faster overall, although the
difference is likely insignificant. The effects of batching could be increased by optimising
the adopted transformations.

8.4 Real-time Data Processing Experiments
The next step was running all the system’s components together in a real-world scenario
to show how it copes with the required throughput.

Method

The original intention was to evaluate the system under full load from the CESNET aca-
demic network. However, due to technical issues on the CESNET side, the input (non-
filtered) traffic rate was capped at 33 DN/s. As the final experiment showed, this yields
a way-below-expected load of about 1.11 input domain names per second on the collector
(after filtering). For this reason, synthetic data were added in some experiments to show
the system’s behaviour under higher loads.

The system configuration was tweaked based on the findings from the previous ex-
periments. Five real-time experiments were executed. For the first two, the system was
populated only with synthetic load – the domain names were loaded from a file at a given
maximum rate. The third and fourth experiments combined synthetic load and traffic com-
ing from the CESNET academic network in real time. In the final experiment, only the
real network data were processed.

108

Configuration

The pipeline components were set up according to Table 8.3. All the experiments were
executed with the same Kafka partitioning configuration: 𝑃𝐶 = 𝑃𝑀 = 𝑃𝐸 = 20. The
NERD batch size was 100, the extractor batch size was 100, and the batch timeout was
10 seconds. The merger configuration was slightly tweaked: it used the jemalloc memory
allocator, the maximum cache size was set to 2 GiB total, and the commit interval was set
to 2 seconds. Otherwise, the config matched the included configuration files. Note that the
infra VM also ran the DomainRadar loader and classifier components and both database
systems, which all contributed significantly to the overall system load.

Component Instances Concurrency Threads Timeout [s]
Zone 10 8 - 8
DNS 10 8 - 8
TLS 2 - 10 3

RDAP-DN 10 20 - 6
GEO-ASN 2 - 10 -

NERD 2 - 10 8
RDAP-IP 10 20 - 6

RTT 20 128 - -
Extractor 5 - 1 -

Merger 1 - 20 -

Table 8.3: Configuration of the system for the real-time processing experiments.

Input data

Domain names from real traffic on the CESNET network were captured by the Suricata
network analysis software and transferred to Elasticsearch. From there, they were loaded by
the DomainRadar loader and pre-filter. The system published a batch of 20,000 records to
Elasticsearch every 10 minutes, yielding an average rate of 33 DN/s. The loader was polling
Elasticsearch for new records each second. It stored the domain names in the PostgreSQL
database, from where they were polled by Kafka Connect. The source connector’s poll rate
was set to 1 second.

The input list of domain names for generating the synthetic load was created by merging
the testing list from the standalone experiments with the Cloudflare top one million domain
names list5 from July 22, 2024 (see [80] for more information on the lists). The merged
list, with 1,002,243 total entries, was then shuffled. The loader published 𝐷 ± 𝐽𝐷 domain
names from the synthetic list each 𝑅 ± 𝐽𝑅 milliseconds – the time interval and DN count
were randomised after each publish to better simulate real traffic. The randomisation was
uniform, so the expected mean throughput was 𝐸[𝑇] = 1000

𝑅 𝐷 domain names per second.
Note that the actual throughput reported below was lower than the expectation, as the
loader only provides an upper bound on the throughput.

The experiments were executed with the following configurations of synthetic load:
5Cloudflare domain rankings: https://radar.cloudflare.com/domains

109

https://radar.cloudflare.com/domains

• Exp. #1: 𝐷 = 4, 𝐽𝐷 = 2, 𝑅 = 600, 𝐽𝑅 = 400 ⇒ 𝐸[𝑇] = 6.66 DN/s,

• Exp. #2 and #3: 𝐷 = 5, 𝐽𝐷 = 1, 𝑅 = 460, 𝐽𝑅 = 450 ⇒ 𝐸[𝑇] = 10.87 DN/s,

• Exp. #4: 𝐷 = 5, 𝐽𝐷 = 0, 𝑅 = 250, 𝐽𝑅 = 200 ⇒ 𝐸[𝑇] = 20.00 DN/s.

Observed metrics

The complete results in Appendix Section H.4 contain the same tables and charts as in the
standalone collector experiments, that is, the per-collector metrics of average throughput,
average collection time and mean queued/collection time, the error rates breakdown table
and charts, and the system resource usage charts. Some charts were intentionally omitted
for experiments #1 and #2. The results table included in this section focuses only on the
average and maximum CPU and memory usage.

Summary of the results

infra scanner
Run Loaded Time 𝑇 CPU [%] Mem [GiB] CPU [%] Mem [GiB]

[DN] [h] [DN/s] avg max avg max avg max avg max
Synthetic load only

#1 291,896 18 4.50 27 92 21.22 23.98 12 20 9.33 10.43
#2 99,975 4.5 6.17 30 35 22.59 27.38 15 17 11.10 11.50

Synthetic load & real traffic
#3 72,864 2.1 9.54 37 47 27.99 28.84 18 24 11.83 12.02
#4 340,070 12 7.89 34 52 32.33 35.50 16 24 9.58 10.71

Real traffic only
#5 144,563 36 1.11 7 33 27.32 30.18 6 12 6.90 7.15

Table 8.4: System metrics during the real-time experiments.

The values of the resource usage metrics are summarised in Table 8.4. The results
show that the system handled the throughput in all cases with a solid amount of headroom
for increased load. The estimated common daily throughput was 300,000 domain names,
corresponding to an average of 3.47 DN/s. Most experiments put more pressure on the
collector (albeit in real traffic, the load will vary throughout the day), showing that it
handles the requirement with ease.

In experiment #1, the data merger crashed for a short time after it tried to fetch a record
that was larger than the default maximum size. This is apparent from Figure H.23 at around
18:30, where the CPU usage in the infra VM dropped. The merger was reconfigured to
accept larger records and restarted.

The experiments confirm the increasing trend in memory usage both in the infra and
scanner VMs. However, the measurements do not show a strong relation between the
throughput or total number of processed items and memory usage, with the most memory-
intensive experiment being the one with the lowest number of processed domain names.
Even in the 36-hour experiment, the memory usage did not reach the limits of the VMs. Fur-
thermore, manual observation showed that in the case of the infra, the increasing memory

110

usage may have been caused by the MongoDB database system. At the end of experiment
#4, it was using about 20 GiB of memory even when the system was idle. It is up to future
tests to confirm or deny this hypothesis.

There were no notable problems in CPU usage. Here, the results show a stronger
relation between throughput and CPU usage. A simple linear regression model over the
data shows about a 3.48% increase in the average CPU usage on infra per 1 DN/s increase
in the throughput. For scanner , the increase is about 1.42%. However, the amount of data
here must be higher to draw firm conclusions.

The resource usage graphs in Figures H.27, H.30, and H.33 for experiments #3 to #5
show repetitive increases and decreases in both CPU and memory usage. These were caused
by the CESNET infrastructure that inserted new domain names into the system in batches,
causing periods of more intense work followed by periods where only the synthetic load was
keeping the system busy.

Collection errors in the real-time operation

Tables H.10, H.12, and H.14 show the percentage of erroneous responses in experiments
#3 to #5. They are accompanied by the charts in Figures H.26, H.29, and H.32, similar to
the standalone collection tests. Note that for the two final experiments, error handling was
adjusted according to the findings from the standalone collection experiments. Specifically,
the WHOIS exception handling was fixed so that the RDAP-DN collector correctly reported
the RDAP errors. The zone and DNS collectors were adjusted to handle the SERVFAIL
responses correctly.

Overall, the structure of errors corresponds to findings from the standalone experiments.
When comparing the real-time exp. #5 and the standalone collector exp. #3 (see Figure H.6),
there is a notable increase in timeout errors across all the collectors, suggesting the need
for a more relaxed timeout configuration. It was significant in the TLS collector: The total
timeout error rate was 1.74% in the standalone experiment, while it reached 31.46% in the
real-time operation.

It is interesting to compare the structure of errors between exp. #4, which included
synthetic data from worldwide traffic, and exp. #5, which only processed the CESNET
traffic from the Czech academic environment. For example, the total TLS timeout rate
was significantly higher in #5 than in #4 (31.46% vs 9.04%), suggesting a trend in the
configuration of local services. Conversely, the rate of the NO_ENDPOINT error from RDAP-
DN, signalling that no RDAP service is provided for the TLD, was lower in #5 than in #4
(17.02% vs 23.69%).

In exp. #5, 9,920 zones (6.86%) were not found, which is not a large number overall but
may seem surprising given that the names come from live traffic. Detailed analysis showed
that out of these, 423 (4.3%) are “local” (i.e. without TLD or ending with .local), 149
(1.5%) contain characters that are not allowed in domain names, and 779 (7.9%) are likely
DGA-generated (longer than 47 characters).

8.5 Discussion
The conducted experiments highlighted several key findings concerning the system’s per-
formance, reliability, and scalability. The system was tested in the two main use scenarios:
standalone batch processing and real-time data collection for the DomainRadar system.
The experiments utilised two virtual machines (VMs) within the CESNET network, each

111

configured with specific hardware and software environments to manage different system
components. The experiments demonstrated that the system could effectively handle high
throughput with acceptable use of system resources. It managed the required throughput
in the real-time experiments with sufficient headroom for increased load. The experiments
also identified potential bottlenecks, particularly in the RDAP-DN collector and the data
merger operation.

The experiments targeting the collectors evaluated the system’s ability to scale horizont-
ally by increasing Kafka partitions and the number of collector instances. They revealed
that most collectors could handle the increased load effectively, with processing times de-
creasing as parallelism increased. However, the RDAP-DN collector consistently emerged
as a bottleneck due to its reliance on numerous heterogeneous remote servers, leading to
higher error rates. When processing a large batch of data, the collector was also notably
slower than others, but its performance was sufficient in a real-time scenario. The experi-
ments also showed that error rates remained low across the collectors and configurations,
although they followed a slightly rising tendency when scaling. It is up to future experi-
ments to observe how the system would behave if scaled out through multiple machines.

The measurements of the data merger component focused on determining whether in-
stance scaling or increasing the number of processing threads would be more effective. The
findings suggest that running the merger with multiple threads on a single machine is more
efficient and less memory-intensive than running multiple instances. The merger processed
almost 5 million records in under 30 minutes. However, the experiments highlighted the
memory-intensive nature of the operation. While low-level tuning may optimise resource
usage further, it is essential to implement a mechanism for removing old data from the state
stores to prevent an indefinite growth of memory and disk usage. Nonetheless, the real-time
experiments show that using the component in the current target production environment
will be feasible until it is optimised further.

The feature extractor was tested to identify optimal scaling configurations. The res-
ults indicated that multiprocessing-based scaling was not as effective as expected, with
additional workers not significantly reducing total processing time. This inefficiency was
attributed to the de/serialisation process taking longer than the feature extraction itself,
highlighting the need for further investigation and optimisation. Increasing the batch size
slightly improved processing times, but the difference was minimal, suggesting that batching
effects could be enhanced by optimising the transformations.

Overall, the evaluation demonstrated that the system could scale and adjust to high
volumes of data with minimal errors. It was able to withstand the required throughput and
handle the load effectively, with enough room for possible spikes in traffic. Some compon-
ents, such as the RDAP-DN collector, the data merger, and possibly the feature extractor,
offer room for further optimisation. The experiments highlighted the importance of tuning
configurations to balance resource usage and performance, particularly in memory-intensive
operations like data merging. Future work should address the identified bottlenecks and op-
timise the critical components’ performance to ensure the system’s reliability and efficiency
in production environments.

112

Chapter 9

Conclusion

The research presented in this thesis addresses the issue of effective large-scale collection of
information related to domain names based on sources such as the DNS, TLS handshakes,
domain and IP address registration data, IP address reputation, and geolocation. The
motivation for this work stemmed from my engagement in the FETA DomainRadar project.
When designing the overall system, I brought forward the discussion on how to approach
the problem of data processing. It became apparent quickly that the existing tooling would
not be usable in production scenarios, necessitating evaluation of the expectations and
introduction of a new data collection component.

We devised the high-level architecture of DomainRadar in the team. In this thesis,
I evaluated the expected throughput and implemented the system’s key component for data
collection and storage. I showed that it handles the load while efficiently using available
computing resources. I also integrated the research feature extraction process with the new
system, ensuring the data are transformed into a form suitable for ML-based classification.
As a part of this endeavour, I also significantly contributed to the overall design of the
DomainRadar system. I devised how it would exchange data between its components and
how both the operation data and evaluated data would be stored and processed.

I studied the common problems in distributed systems and data processing. I also
researched the available technologies that could be used to implement the system. Based
on my findings, I proposed a solution that utilises Apache Kafka, a distributed streaming
platform, which provides a scalable and fault-tolerant solution for real-time data processing.
Integrating PostgreSQL and MongoDB for data storage provided a reliable backend for
managing the collected data. Kafka Connect facilitated smooth data transfer between the
processing pipeline and the storage systems.

My experiments demonstrated the system’s ability to scale out effectively, maximising
resource usage to achieve higher throughput. In testing, the collectors maintained consistent
performance across different configurations. When loaded with a batch of 400,000 domain
names, the system collected all the data within 4 hours and 16 minutes, reaching the overall
throughput of 22.65 domain names per second, while some of the components processed up
to 75 records per second. In the real-time experiments, the system steadily processed data
coming at a rate of up to 9.54 domain names per second with CPU usage well below 20%
and an acceptable memory usage of below 12 GiB.

The system exhibited low error rates of between 0% and 20% across most components.
Moreover, most errors were related to network limitations, which are solvable by vertical
or horizontal scaling. The system’s design ensured the errors were managed effectively and
did not impact the overall function.

113

The thesis has demonstrated the feasibility of large-scale collection of domain-related
data for use in malicious domain name classification. Its main contribution, the implement-
ation of a large portion of the DomainRadar system, provides a solid foundation for future
development and practical deployments, showing potential for enhancing the security of
computer networks. Thinking beyond DomainRadar, the collection pipeline could find its
uses in other projects in the network security field. The system’s design and implementa-
tion can be adapted to other use cases that work with domain names or IP addresses, such
as the enrichment of monitoring data or analysis of network logs.

Future work

The future development of the DomainRadar system can explore several promising direc-
tions to enhance performance and reliability. One area to consider is optimising the RDAP
collectors by investigating the rate-limiting mechanisms of individual RDAP servers and
fine-tuning local rate limiters to improve efficiency. Evaluating and optimising the reli-
ability of individual components, particularly the Python-based collectors, is also crucial.
Reimplementing all components in Java could be beneficial, given the superior performance
of Java-based collectors observed in the experiments. Optimising the feature extraction pro-
cess to reduce CPU usage and adopting a more efficient serialisation format than JSON
could improve system performance and resource utilisation. The real-time data processing
capabilities can be expanded by addressing the identified memory usage trends. These
enhancements will contribute to the overall efficiency and reliability of the DomainRadar
system, supporting its deployment in practical environments.

114

Bibliography

[1] Adams, T. ScoutDNS Most Abused Top Level Domains List – October 2020. 2020.
Available at: https://www.scoutdns.com/most-abused-top-level-domains-list-
october-scoutdns/.

[2] AFRINIC. Registration Data Access Protocol (RDAP). Online. October 2023.
Available at: https://afrinic.net/whois/rdap. [cit. 2024-01-10].

[3] Akidau, T.; Bradshaw, R.; Chambers, C.; Chernyak, S.; Fernández
Moctezuma, R. J. et al. The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-Order Data
Processing. Proceedings of the VLDB Endowment, 2015, vol. 8, p. 1792–1803.
Available at: https://doi.org/10.14778/2824032.2824076.

[4] Anderson, B. and McGrew, D. Identifying Encrypted Malware Traffic with
Contextual Flow Data. In: Proceedings of the 2016 ACM Workshop on Artificial
Intelligence and Security. New York, NY, USA: Association for Computing
Machinery, 2016, p. 35–46. AISec ’16. ISBN 9781450345736. Available at:
https://doi.org/10.1145/2996758.2996768.

[5] Antonakakis, M.; Perdisci, R.; Dagon, D.; Lee, W. and Feamster, N.
Building a Dynamic Reputation System for DNS. In: 19th USENIX Security
Symposium (USENIX Security 10). 2010, p. 273–290.

[6] Antonakakis, M.; Perdisci, R.; Lee, W.; II, N. V. and Dagon, D. Detecting
Malware Domains at the Upper DNS Hierarchy. In: 20th USENIX Security
Symposium (USENIX Security 11). San Francisco, CA: USENIX Association,
August 2011. Available at: https://www.usenix.org/conference/usenix-security-
11/detecting-malware-domains-upper-dns-hierarchy.

[7] Apache Software Foundation. Apache Flink (v1.18.0). Stateful Stream
Processing. Online. 2023. Available at:
https://nightlies.apache.org/flink/flink-docs-release-
1.18/docs/concepts/stateful-stream-processing/. [cit. 2024-01-07].

[8] Apache Software Foundation. Apache Kafka. Documentation. Online. 2024.
Available at: https://kafka.apache.org/37/documentation.html. [cit. 2024-06-20].

[9] Apache Software Foundation. Apache Kafka. Introduction. Online. 2024.
Available at: https://kafka.apache.org/intro. [cit. 2024-01-08].

[10] Apache Software Foundation. Apache Kafka. Kafka Streams – Core Concepts.
Online. 2024. Available at:

115

https://www.scoutdns.com/most-abused-top-level-domains-list-october-scoutdns/
https://www.scoutdns.com/most-abused-top-level-domains-list-october-scoutdns/
https://afrinic.net/whois/rdap
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/2996758.2996768
https://www.usenix.org/conference/usenix-security-11/detecting-malware-domains-upper-dns-hierarchy
https://www.usenix.org/conference/usenix-security-11/detecting-malware-domains-upper-dns-hierarchy
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/stateful-stream-processing/
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/stateful-stream-processing/
https://kafka.apache.org/37/documentation.html
https://kafka.apache.org/intro

https://kafka.apache.org/37/documentation/streams/core-concepts. [cit.
2024-06-20].

[11] Apache Software Foundation. Apache Kafka. Kafka Streams – Memory
Management. Online. 2024. Available at: https:
//kafka.apache.org/37/documentation/streams/developer-guide/memory-mgmt. [cit.
2024-07-10].

[12] Apache Software Foundation. Apache Kafka. Kafka Streams DSL. Online.
2024. Available at:
https://kafka.apache.org/37/documentation/streams/developer-guide/dsl-api.
[cit. 2024-07-20].

[13] Apache Software Foundation. Apache Kafka. Powered By. Online. 2024.
Available at: https://kafka.apache.org/powered-by. [cit. 2024-06-20].

[14] Arends, R.; Austein, R.; Larson, M.; Massey, D. and Rose, S. DNS Security
Introduction and Requirements RFC 4033 (Proposed Standard). Request for
Comments (RFC) 4033. Internet Engineering Task Force (IETF), march 2005.
Available at: http://www.ietf.org/rfc/rfc4033.txt. Updated by RFCs 6014, 6840.

[15] Bartoš, V. NERD: Network Entity Reputation Database. In: Proceedings of the
14th International Conference on Availability, Reliability and Security. New York,
NY, USA: Association for Computing Machinery, 2019. ARES ’19. ISBN
9781450371643. Available at: https://doi.org/10.1145/3339252.3340512.

[16] Barut, O.; Luo, Y.; Zhang, T.; Li, W. and Li, P. NetML: A Challenge for
Network Traffic Analytics. 2020.

[17] Bilge, L.; Kirda, E.; Kruegel, C. and Balduzzi, M. EXPOSURE: Finding
malicious domains using passive DNS analysis. In: NDSS. 2011, p. 1–17.

[18] Blum, A.; Wardman, B.; Solorio, T. and Warner, G. Lexical Feature Based
Phishing URL Detection Using Online Learning. In: Proceedings of the 3rd ACM
Workshop on Artificial Intelligence and Security. New York, NY, USA: Association
for Computing Machinery, 2010, p. 54–60. AISec ’10. ISBN 9781450300889.
Available at: https://doi.org/10.1145/1866423.1866434.

[19] Buber, E.; Diri, B. and Sahingoz, O. K. NLP Based Phishing Attack Detection
from URLs. In: Abraham, A.; Muhuri, P. K.; Muda, A. K. and Gandhi, N.,
ed. Intelligent Systems Design and Applications. Cham: Springer International
Publishing, 2018, p. 608–618. ISBN 978-3-319-76348-4.

[20] Bučko, F. Klasifikácia doménových mien generovaných alogirtmami DGA. Brno,
CZ, 2023. Bachelor’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Hranický, R. Available at:
https://www.vut.cz/studenti/zav-prace/detail/147226.

[21] Cadonna, B. How to Tune RocksDB for Your Kafka Streams Application. Online.
Mar 2021. Available at: https:
//kafka.apache.org/37/documentation/streams/developer-guide/memory-mgmt. [cit.
2024-07-10].

116

https://kafka.apache.org/37/documentation/streams/core-concepts
https://kafka.apache.org/37/documentation/streams/developer-guide/memory-mgmt
https://kafka.apache.org/37/documentation/streams/developer-guide/memory-mgmt
https://kafka.apache.org/37/documentation/streams/developer-guide/dsl-api
https://kafka.apache.org/powered-by
http://www.ietf.org/rfc/rfc4033.txt
https://doi.org/10.1145/3339252.3340512
https://doi.org/10.1145/1866423.1866434
https://www.vut.cz/studenti/zav-prace/detail/147226
https://kafka.apache.org/37/documentation/streams/developer-guide/memory-mgmt
https://kafka.apache.org/37/documentation/streams/developer-guide/memory-mgmt

[22] Canali, D.; Cova, M.; Vigna, G. and Kruegel, C. Prophiler: A Fast Filter for
the Large-Scale Detection of Malicious Web Pages. In: Proceedings of the 20th
International Conference on World Wide Web. New York, NY, USA: Association for
Computing Machinery, 2011, p. 197–206. WWW ’11. ISBN 9781450306324.
Available at: https://doi.org/10.1145/1963405.1963436.

[23] Cersosimo, M. and Lara, A. Detecting Malicious Domains using the Splunk
Machine Learning Toolkit. In: NOMS 2022-2022 IEEE/IFIP Network Operations
and Management Symposium. 2022, p. 1–6.

[24] CESNET. CESNET. Online. 2023. Available at:
https://www.cesnet.cz/cesnet/?lang=en. [cit. 2023-12-28].

[25] CESNET. Members. Online. 2023. Available at:
https://www.cesnet.cz/cesnet/members/?lang=en. [cit. 2023-12-28].

[26] Chatterjee, M. and Namin, A.-S. Detecting phishing websites through deep
reinforcement learning. In: IEEE. 2019 IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC). 2019, vol. 2, p. 227–232.

[27] Chen, T. and Guestrin, C. XGBoost: A Scalable Tree Boosting System.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: Association for Computing
Machinery, 2016, p. 785–794. KDD ’16. ISBN 978-1-4503-4232-2. Available at:
https://doi.org/10.1145/2939672.2939785.

[28] Christou, O.; Pitropakis, N.; Papadopoulos, P.; McKeown, S.
and Buchanan, W. Phishing URL Detection Through Top-level Domain Analysis:
A Descriptive Approach. In: Proceedings of the 6th International Conference on
Information Systems Security and Privacy. SCITEPRESS - Science and Technology
Publications, 2020. Available at: http://dx.doi.org/10.5220/0008902202890298.

[29] Chronicle Cybersecurity. Virustotal. 2012. Available at:
https://www.virustotal.com/.

[30] Cisco Systems. PhishTank. 2006. Available at: https://phishtank.org/.

[31] Cisco Systems. Umbrella Popularity List. Online. 2016. Available at:
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html. [cit.
2023-12-02].

[32] Colitti, L. net: ipv6: Add IPv6 support to the ping socket. May 2013. Available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git. Commit
6d0bfe22611602f36617bc7aa2ffa1bbb2f54c67.

[33] Confluent, Inc. Confluent Cloud. Online. 2024. Available at:
https://www.confluent.io/confluent-cloud/. [cit. 2024-06-20].

[34] Confluent, Inc. Confluent Platform. Online. 2024. Available at:
https://www.confluent.io/product/confluent-platform/. [cit. 2024-06-20].

117

https://doi.org/10.1145/1963405.1963436
https://www.cesnet.cz/cesnet/?lang=en
https://www.cesnet.cz/cesnet/members/?lang=en
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.5220/0008902202890298
https://www.virustotal.com/
https://phishtank.org/
https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://www.confluent.io/confluent-cloud/
https://www.confluent.io/product/confluent-platform/

[35] Crocker, D.; Hansen, T. and Kucherawy, M. DomainKeys Identified Mail
(DKIM) Signatures RFC 6376 (Internet Standard). Request for Comments (RFC)
6376. Internet Engineering Task Force (IETF), september 2011. Available at:
http://www.ietf.org/rfc/rfc6376.txt.

[36] Daigle, L. WHOIS Protocol Specification RFC 3912 (Draft Standard). Request for
Comments (RFC) 3912. Internet Engineering Task Force (IETF), september 2004.
Available at: http://www.ietf.org/rfc/rfc3912.txt.

[37] Darling, M.; Heileman, G.; Gressel, G.; Ashok, A. and Poornachandran, P.
A lexical approach for classifying malicious URLs. In: 2015 International Conference
on High Performance Computing & Simulation (HPCS). 2015, p. 195–202.

[38] Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on Large
Clusters. In: OSDI’04: Sixth Symposium on Operating System Design and
Implementation. San Francisco, CA: USENIX Association, 2004, p. 137–150.
Available at: https://doi.org/10.1145/1327452.1327492.

[39] Deng, L. and Yu, D. Deep Learning: Methods and Applications. Foundations and
Trends in Signal Processing, 2014, vol. 7, 3–4, p. 197–387. ISSN 1932-8346.
Available at: http://dx.doi.org/10.1561/2000000039.

[40] Dierks, T. and Rescorla, E. The Transport Layer Security (TLS) Protocol
Version 1.2 RFC 5246 (Proposed Standard). Request for Comments (RFC) 5246.
Internet Engineering Task Force (IETF), august 2008. Available at:
http://www.ietf.org/rfc/rfc5246.txt. Updated by RFCs 5746, 5878, 6176, 7465,
7507, 7568, 7627, 7685.

[41] Drichel, A.; Drury, V.; Brandt, J. von and Meyer, U. Finding phish in a
haystack: A pipeline for phishing classification on certificate transparency logs.
In: Proceedings of the 16th International Conference on Availability, Reliability and
Security. 2021, p. 1–12.

[42] Drichel, A.; Faerber, N. and Meyer, U. First step towards explainable DGA
multiclass classification. In: Proceedings of the 16th International Conference on
Availability, Reliability and Security. Association for Computing Machinery, 2021,
p. 1–13. ISBN 978-1-4503-9051-4. Available at:
https://doi.org/10.48550/arXiv.2106.12336.

[43] Eastlake, D. Transport Layer Security (TLS) Extensions: Extension Definitions
RFC 6066 (Proposed Standard). Request for Comments (RFC) 6066. Internet
Engineering Task Force (IETF), january 2011. Available at:
http://www.ietf.org/rfc/rfc6066.txt.

[44] Ecma International. ECMA-404: The JSON Data Interchange Syntax. Ecma
Standard 404, 2nd ed. December 2017. Available at: https://www.ecma-
international.org/publications-and-standards/standards/ecma-404/.

[45] Elastic. Elasticsearch: The Official Distributed Search & Analytics Engine. Online.
2023. Available at: https://www.elastic.co/elasticsearch. [cit. 2023-12-01].

118

http://www.ietf.org/rfc/rfc6376.txt
http://www.ietf.org/rfc/rfc3912.txt
https://doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1561/2000000039
http://www.ietf.org/rfc/rfc5246.txt
https://doi.org/10.48550/arXiv.2106.12336
http://www.ietf.org/rfc/rfc6066.txt
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.elastic.co/elasticsearch

[46] Elz, R. and Bush, R. Clarifications to the DNS Specification RFC 2181 (Proposed
Standard). Request for Comments (RFC) 2181. Internet Engineering Task Force
(IETF), july 1997. Available at: http://www.ietf.org/rfc/rfc2181.txt. Updated
by RFCs 4035, 2535, 4343, 4033, 4034, 5452.

[47] Feng, J.; Zhang, Y. and Qiao, Y. A Detection Method for Phishing Web Page
Using DOM-Based Doc2Vec Model. Journal of Computing and Information
Technology, july 2020, vol. 28, p. 19–31. Available at:
http://cit.fer.hr/index.php/CIT/article/view/4899.

[48] García, S.; Hynek, K.; Vekshin, D.; Čejka, T. and Wasicek, A. Large Scale
Measurement on the Adoption of Encrypted DNS. CoRR, 2021, abs/2107.04436.
Available at: https://arxiv.org/abs/2107.04436.

[49] Hajaj, C.; Hason, N. and Dvir, A. Less is more: Robust and novel features for
malicious domain detection. Electronics. MDPI, 2022, vol. 11, no. 6, p. 969.

[50] Hamroun, C.; Amamou, A.; Haddadou, K.; Haroun, H. and Pujolle, G. A
Review On Lexical Based Malicious Domain Name Detection Methods. In: 2022 6th
Cyber Security in Networking Conference (CSNet). 2022, p. 1–7. Available at:
https://ieeexplore.ieee.org/abstract/document/9955618.

[51] Hao, S.; Feamster, N. and Pandrangi, R. Monitoring the initial DNS behavior
of malicious domains. In: Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference. New York, NY, USA: Association for Computing
Machinery, 2011, p. 269–278. IMC ’11. ISBN 9781450310130. Available at:
https://doi.org/10.1145/2068816.2068842.

[52] Harel, B. AsyncIO Rate Limiter for Python. Online. 2023. Available at:
https://asynciolimiter.readthedocs.io/en/latest/. [cit. 2024-06-29].

[53] Hason, N.; Dvir, A. and Hajaj, C. Robust malicious domain detection. In:
Springer. Cyber Security Cryptography and Machine Learning: Fourth International
Symposium, CSCML 2020, July 2–3, 2020, Proceedings 4. 2020, p. 45–61.

[54] Hoffman, P.; Sullivan, A. and Fujiwara, K. DNS Terminology RFC 8499 (Best
Current Practice). Request for Comments (RFC) 8499. Internet Engineering Task
Force (IETF), march 2019. Available at: http://www.ietf.org/rfc/rfc8499.txt.

[55] Hoffman, P. E. DNS Security Extensions (DNSSEC) RFC 9364 (Best Current
Practice). Request for Comments (RFC) 9364. Internet Engineering Task Force
(IETF), february 2023. Available at: http://www.ietf.org/rfc/rfc9364.txt.

[56] Hollenbeck, S. and Newton, A. JSON Responses for the Registration Data
Access Protocol (RDAP) RFC 9083 (Internet Standard). Request for Comments
(RFC) 9083. Internet Engineering Task Force (IETF), june 2021. Available at:
http://www.ietf.org/rfc/rfc9083.txt.

[57] Horák, A. Detekce škodlivých domén na základě externích zdrojů dat. Brno, CZ,
2023. Master’s thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Hranický, R. Available at:
https://www.vut.cz/studenti/zav-prace/detail/146391.

119

http://www.ietf.org/rfc/rfc2181.txt
http://cit.fer.hr/index.php/CIT/article/view/4899
https://arxiv.org/abs/2107.04436
https://ieeexplore.ieee.org/abstract/document/9955618
https://doi.org/10.1145/2068816.2068842
https://asynciolimiter.readthedocs.io/en/latest/
http://www.ietf.org/rfc/rfc8499.txt
http://www.ietf.org/rfc/rfc9364.txt
http://www.ietf.org/rfc/rfc9083.txt
https://www.vut.cz/studenti/zav-prace/detail/146391

[58] Hranický, R.; Horák, A.; Polišenský, J.; Pouč, P. and Ondryáš, O. Phishing
and Benign Domain Dataset (DNS, IP, WHOIS/RDAP, TLS, GeoIP). Zenodo,
september 2023. Available at: https://doi.org/10.5281/zenodo.8364668.

[59] Hranický, R.; Horák, A.; Polišenský, J.; Jeřábek, K. and Ryšavý, O.
Unmasking the Phishermen: Phishing Domain Detection with Machine Learning
and Multi-Source Intelligence. In: NOMS 2024-2024 IEEE Network Operations and
Management Symposium. 2024, p. 1–5.

[60] Hueske, F. and Kalavri, V. Stream Processing with Apache Flink. 1st ed.
Sebastopol, CA, USA: O’Reilly Media, 2019. ISBN 978-1-491-97429-2.

[61] ICANN. GTLD RDAP Profile. Online. February 2019. Available at:
https://www.icann.org/gtld-rdap-profile. [cit. 2023-01-07].

[62] ICANN. 2013 Registrar Accreditations Agreement. Online. June 2023. Available at:
https://www.icann.org/resources/pages/registrar-accreditation-agreement-
2023-06-08-en. [cit. 2024-01-07].

[63] ICANN. 2023 Global Amendments to the Base gTLD Registry Agreement (RA),
Specification 13, and 2013 Registrar Accreditation Agreement (RAA). Online. 2023.
Available at: https://www.icann.org/resources/pages/global-amendment-2023-en.
[cit. 2023-12-20].

[64] ICANN GAC. WHOIS and Data Protection. Online. October 2021. Available at:
https://gac.icann.org/activity/whois-and-data-protection. [cit. 2023-01-07].

[65] Jeyaraj, R.; Pugalendhi, G. and Paul, A. Big Data with Hadoop MapReduce:
A Classroom Approach. 1st ed. Apple Academic Press, 2021. 426 p. ISBN
9781774634844.

[66] Kitterman, S. Sender Policy Framework (SPF) for Authorizing Use of Domains
in Email, Version 1 RFC 7208 (Proposed Standard). Request for Comments (RFC)
7208. Internet Engineering Task Force (IETF), april 2014. Available at:
http://www.ietf.org/rfc/rfc7208.txt. Updated by RFC 7372.

[67] Kshemkalyani, A. D. and Singhal, M. Distributed Computing: Principles,
Algorithms, and Systems. 1st ed. Cambridge University Press, 2008. 756 p. ISBN
9780521876346.

[68] Kucherawy, M. and Zwicky, E. Domain-based Message Authentication,
Reporting, and Conformance (DMARC) RFC 7489 (Informational). Request for
Comments (RFC) 7489. Internet Engineering Task Force (IETF), march 2015.
Available at: http://www.ietf.org/rfc/rfc7489.txt.

[69] Kulikov, V. net: ipv4: add IPPROTO_ICMP socket kind. May 2011. Available at:
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git. Commit
c319b4d76b9e583a5d88d6bf190e079c4e43213d.

[70] Kuyama, M.; Kakizaki, Y. and Sasaki, R. Method for detecting a malicious
domain by using WHOIS and DNS features. In: 3rd International Conference on
Digital Security and Forensics. 2016, vol. 74.

120

https://doi.org/10.5281/zenodo.8364668
https://www.icann.org/gtld-rdap-profile
https://www.icann.org/resources/pages/registrar-accreditation-agreement-2023-06-08-en
https://www.icann.org/resources/pages/registrar-accreditation-agreement-2023-06-08-en
https://www.icann.org/resources/pages/global-amendment-2023-en
https://gac.icann.org/activity/whois-and-data-protection
http://www.ietf.org/rfc/rfc7208.txt
http://www.ietf.org/rfc/rfc7489.txt
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

[71] LACNIC. Accessing RDAP. Online. 2024. Available at:
https://www.lacnic.net/676/2/lacnic/request-rdap-access. [cit. 2024-01-10].

[72] Let’s Encrypt. Let’s Encrypt Stats. Percentage of Web Pages Loaded by Firefox
Using HTTPS. Online. 2023. Available at:
https://letsencrypt.org/stats/#percent-pageloads. [cit. 2023-12-21].

[73] Ligthbend, Inc.. Akka Documentation. Basics and working with Flows. Online.
2024. Available at:
https://doc.akka.io/docs/akka/current/stream/stream-flows-and-basics.html.
[cit. 2024-05-20].

[74] Ligthbend, Inc.. Akka Documentation. Getting Started Guide. Online. 2024.
Available at: https://doc.akka.io/docs/akka/current/typed/guide/index.html.
[cit. 2024-05-20].

[75] Lin, M.-S.; Chiu, C.-Y.; Lee, Y.-J. and Pao, H.-K. Malicious URL filtering – A big
data application. In: 2013 IEEE International Conference on Big Data. 2013,
p. 589–596.

[76] Lin, T.; Capecci, D. E.; Ellis, D. M.; Rocha, H. A.; Dommaraju, S. et al.
Susceptibility to Spear-Phishing Emails: Effects of Internet User Demographics and
Email Content. ACM Trans. Comput.-Hum. Interact. New York, NY, USA:
Association for Computing Machinery, jul 2019, vol. 26, no. 5. ISSN 1073-0516.
Available at: https://doi.org/10.1145/3336141.

[77] Liu, Z.; Zeng, Y.; Zhang, P.; Xue, J.; Zhang, J. et al. An Imbalanced Malicious
Domains Detection Method Based on Passive DNS Traffic Analysis. Security and
Communication Networks. Hindawi, 2018, vol. 2018, p. 7. Available at:
https://www.hindawi.com/journals/scn/2018/6510381/.

[78] LOVOO and Goka community. Goka. Online. 2024. Available at:
https://github.com/lovoo/goka. [cit. 2024-06-20].

[79] Maas, G. and Garillot, F. Stream Processing with Apache Spark. 1st ed.
Sebastopol, CA, USA: O’Reilly Media, 2019. ISBN 978-1-491-94424-0.

[80] Martinho, C. and Zejnilovic, S. Goodbye, Alexa. Hello, Clouflare Radar Domain
Rankings. The Cloudflare Blog. Online. Sep 2022. Available at:
https://blog.cloudflare.com/radar-domain-rankings. [cit. 2024-07-22].

[81] Michaelson, G. New RDAP profile to improve cross-RIR consistency. APNIC
Blog online, february 2021. Available at: https://blog.apnic.net/2021/02/16/new-
rdap-profile-to-improve-cross-rir-consistency/. [cit. 2023-01-10].

[82] Mishra, S. and Soni, D. Smishing Detector: A security model to detect smishing
through SMS content analysis and URL behavior analysis. Future Generation
Computer Systems, 2020, vol. 108, p. 803–815. ISSN 0167-739X. Available at:
https://www.sciencedirect.com/science/article/pii/S0167739X19318758.

[83] MISP Contributors. Quick Start – User guide of MISP intelligence sharing
platform. Online. January 2023. Available at:
https://www.circl.lu/doc/misp/quick-start/. [cit. 2023-12-10].

121

https://www.lacnic.net/676/2/lacnic/request-rdap-access
https://letsencrypt.org/stats/#percent-pageloads
https://doc.akka.io/docs/akka/current/stream/stream-flows-and-basics.html
https://doc.akka.io/docs/akka/current/typed/guide/index.html
https://doi.org/10.1145/3336141
https://www.hindawi.com/journals/scn/2018/6510381/
https://github.com/lovoo/goka
https://blog.cloudflare.com/radar-domain-rankings
https://blog.apnic.net/2021/02/16/new-rdap-profile-to-improve-cross-rir-consistency/
https://blog.apnic.net/2021/02/16/new-rdap-profile-to-improve-cross-rir-consistency/
https://www.sciencedirect.com/science/article/pii/S0167739X19318758
https://www.circl.lu/doc/misp/quick-start/

[84] Mockapetris, P. Domain names - concepts and facilities RFC 1034 (Internet
Standard). Request for Comments (RFC) 1034. Internet Engineering Task Force
(IETF), november 1987. Available at: http://www.ietf.org/rfc/rfc1034.txt.
Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033, 4034,
4035, 4343, 4035, 4592, 5936.

[85] Mockapetris, P. Domain names - implementation and specification RFC 1035
(Internet Standard). Request for Comments (RFC) 1035. Internet Engineering Task
Force (IETF), november 1987. Available at: http://www.ietf.org/rfc/rfc1035.txt.
Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137,
2308, 2535, 2673, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604.

[86] MongoDB, Inc. MongoDB Community Edition. Online. 2024. Available at:
https://www.mongodb.com/products/self-managed/community-edition. [cit.
2024-06-25].

[87] Mozilla. Public Suffix List. Online. 2022. Available at:
https://publicsuffix.org/. [cit. 2023-12-21].

[88] Newton, A.; Ellacott, B. and Kong, N. HTTP Usage in the Registration Data
Access Protocol (RDAP) RFC 7480 (Proposed Standard). Request for Comments
(RFC) 7480. Internet Engineering Task Force (IETF), march 2015. Available at:
http://www.ietf.org/rfc/rfc7480.txt.

[89] Newton, A. and Hollenbeck, S. Registration Data Access Protocol (RDAP)
Query Format RFC 7482 (Proposed Standard). Request for Comments (RFC) 7482.
Internet Engineering Task Force (IETF), march 2015. Available at:
http://www.ietf.org/rfc/rfc7482.txt.

[90] Niakanlahiji, A.; Chu, B.-T. and Al Shaer, E. PhishMon: A Machine Learning
Framework for Detecting Phishing Webpages. In: 2018 IEEE International
Conference on Intelligence and Security Informatics (ISI). 2018, p. 220–225.
Available at: https://ieeexplore.ieee.org/document/8587410.

[91] Nominet. Our domain names: Which .uk is right for you? Online. 2023. Available
at: https://theukdomain.uk/uk-domain-family/. [cit. 2023-12-28].

[92] NRO. NRO RDAP Profile Online. RDAP. The Number Resource Organization
(NRO), january 2021. Available at: https://bitbucket.org/nroecg/nro-rdap-
profile/src/master/nro-rdap-profile.txt.

[93] NumFOCUS, Inc. About pandas. Online. 2024. Available at:
https://pandas.pydata.org/about/index.html. [cit. 2024-07-01].

[94] NumFOCUS, Inc. IO tools. Pandas 2.2.2 documentation. Online. 2024. Available
at: https://pandas.pydata.org/docs/user_guide/io.html. [cit. 2024-07-01].

[95] Ongaro, D. and Ousterhout, J. In search of an understandable consensus
algorithm. In: Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference. USA: USENIX Association, 2014, p. 305–320. USENIX
ATC’14. ISBN 9781931971102.

122

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
https://www.mongodb.com/products/self-managed/community-edition
https://publicsuffix.org/
http://www.ietf.org/rfc/rfc7480.txt
http://www.ietf.org/rfc/rfc7482.txt
https://ieeexplore.ieee.org/document/8587410
https://theukdomain.uk/uk-domain-family/
https://bitbucket.org/nroecg/nro-rdap-profile/src/master/nro-rdap-profile.txt
https://bitbucket.org/nroecg/nro-rdap-profile/src/master/nro-rdap-profile.txt
https://pandas.pydata.org/about/index.html
https://pandas.pydata.org/docs/user_guide/io.html

[96] OpenPhish. OpenPhish. 2014. Available at: https://openphish.com/.

[97] OpenSSL Project Authors. SSL_CTX_set_security_level. OpenSSL. Online.
2024. Available at:
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_security_level.html.
[cit. 2024-06-30].

[98] Oracle. Virtual Threads. Java SE 21 Core Libraries. Online. 2024. Available at:
https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html. [cit.
2024-07-02].

[99] Palaniappan, G.; Sangeetha, S.; Rajendran, B.; Goyal, S.; Bindhumadhava,
B. et al. Malicious domain detection using machine learning on domain name
features, host-based features and web-based features. Procedia Computer Science.
Elsevier, 2020, vol. 171, p. 654–661.

[100] Passerini, E.; Paleari, R.; Martignoni, L. and Bruschi, D. FluXOR: Detecting
and Monitoring Fast-Flux Service Networks. In: Zamboni, D., ed. Detection of
Intrusions and Malware, and Vulnerability Assessment. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, p. 186–206. ISBN 978-3-540-70542-0.

[101] Perdisci, R.; Corona, I. and Giacinto, G. Early detection of malicious flux
networks via large-scale passive DNS traffic analysis. IEEE Transactions on
Dependable and Secure Computing. IEEE, 2012, vol. 9, no. 5, p. 714–726.

[102] Pienta, D.; Jason, B. T. and Johnston, A. Protecting a whale in a sea of phish.
Journal of Information Technology, september 2020, vol. 35, no. 3, p. 214–231.
Available at: https://www.proquest.com/scholarly-journals/protecting-whale-
sea-phish/docview/2439229129/se-2.

[103] Postel, J. Domain Name System Structure and Delegation RFC 1591
(Informational). Request for Comments (RFC) 1591. Internet Engineering Task
Force (IETF), march 1994. Available at: http://www.ietf.org/rfc/rfc1591.txt.

[104] Postel, J. and Reynolds, J. Domain requirements RFC 920. Request for
Comments (RFC) 920. Internet Engineering Task Force (IETF), october 1984.
Available at: http://www.ietf.org/rfc/rfc920.txt.

[105] Prieto, I.; Magaña, E.; Morato, D. and Izal, M. Botnet Detection based on
DNS Records and Active Probing. In: Proceedings of the International Conference
on Security and Cryptography. IEEE, January 2011, p. 307–316. ISBN
978-989-8425-71-3.

[106] Python Software Foundation. multiprocessing – Process-based parallelism.
Python 3.12.4 documentation: Contexts and start methods. Online. Jul 2024.
Available at: https://docs.python.org/3/library/multiprocessing.html#contexts-
and-start-methods. [cit. 2024-07-20].

[107] Python Wiki Contributors. GlobalInterpreterLock. Online. 2020. Available at:
https://wiki.python.org/moin/GlobalInterpreterLock. [cit. 2023-12-20].

123

https://openphish.com/
https://www.openssl.org/docs/man1.1.1/man3/SSL_CTX_set_security_level.html
https://docs.oracle.com/en/java/javase/21/core/virtual-threads.html
https://www.proquest.com/scholarly-journals/protecting-whale-sea-phish/docview/2439229129/se-2
https://www.proquest.com/scholarly-journals/protecting-whale-sea-phish/docview/2439229129/se-2
http://www.ietf.org/rfc/rfc1591.txt
http://www.ietf.org/rfc/rfc920.txt
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
https://wiki.python.org/moin/GlobalInterpreterLock

[108] Quix Analytics, Ltd. Processing & Transforming Data. Quix documentation.
Online. 2024. Available at: https://quix.io/docs/quix-streams/processing.html.
[cit. 2024-06-20].

[109] Rahbarinia, B.; Perdisci, R. and Antonakakis, M. Efficient and Accurate
Behavior-Based Tracking of Malware-Control Domains in Large ISP Networks.
ACM Trans. Priv. Secur. New York, NY, USA: Association for Computing
Machinery, 2016, vol. 19, no. 2. ISSN 2471-2566. Available at:
https://doi.org/10.1145/2960409.

[110] Redpanda Data Inc. Features and capabilities for getting your real-time game on.
Redpanda. Online. 2024. Available at:
https://redpanda.com/platform-capabilities. [cit. 2024-06-20].

[111] RIPE NCC. RIPE Database Docs. Registration Data Access Protocol (RDAP).
Online. 2023. Available at: https://apps.db.ripe.net/docs/How-to-Query-the-
RIPE-Database/Registration-Data-Access-Protocol/. [cit. 2024-01-10].

[112] Robinhood Markets, Inc. and faust-streaming community. Faust 0.11.0
documentation. Introducing Faust. Online. 2024. Available at:
https://faust-streaming.github.io/faust/introduction.html. [cit. 2024-06-20].

[113] Sadique, F.; Kaul, R.; Badsha, S. and Sengupta, S. An automated framework
for real-time phishing URL detection. In: IEEE. 2020 10th Annual Computing and
Communication Workshop and Conference (CCWC). 2020, p. 0335–0341. Available
at: https://ieeexplore.ieee.org/document/9031269.

[114] Shi, Y.; Chen, G. and Li, J. Malicious domain name detection based on extreme
machine learning. Neural Processing Letters. Springer, 2018, vol. 48, p. 1347–1357.

[115] Singh, A. and Goyal, N. A comparison of machine learning attributes for
detecting malicious websites. In: IEEE. 2019 11th International Conference on
Communication Systems & Networks (COMSNETS). 2019, p. 352–358.

[116] Singh, J. ARIN Achieves NRO RDAP Profile Conformance. ARIN Blog online,
march 2022. Available at:
https://www.arin.net/blog/2022/03/09/nro-rdap-profile-conformance/. [cit.
2023-01-10].

[117] Stubbs, A. Introducing the Confluent Parallel Consumer. Online. 2020. Available
at: https://www.confluent.io/blog/introducing-confluent-parallel-message-
processing-client/. [cit. 2024-06-20].

[118] Technologická agentura ČR. Flow-based Encrypted Traffic Analysis. Online.
2022. Available at: https://starfos.tacr.cz/en/projekty/VJ02010024. [cit.
2023-12-01].

[119] The PostgreSQL Global Development Group. About. PostgreSQL. Online.
2024. Available at: https://www.postgresql.org/about/contact/. [cit. 2024-06-25].

[120] Thomson, S.; Huitema, C.; Ksinant, V. and Souissi, M. DNS Extensions to
Support IP Version 6 RFC 3596 (Draft Standard). Request for Comments (RFC)

124

https://quix.io/docs/quix-streams/processing.html
https://doi.org/10.1145/2960409
https://redpanda.com/platform-capabilities
https://apps.db.ripe.net/docs/How-to-Query-the-RIPE-Database/Registration-Data-Access-Protocol/
https://apps.db.ripe.net/docs/How-to-Query-the-RIPE-Database/Registration-Data-Access-Protocol/
https://faust-streaming.github.io/faust/introduction.html
https://ieeexplore.ieee.org/document/9031269
https://www.arin.net/blog/2022/03/09/nro-rdap-profile-conformance/
https://www.confluent.io/blog/introducing-confluent-parallel-message-processing-client/
https://www.confluent.io/blog/introducing-confluent-parallel-message-processing-client/
https://starfos.tacr.cz/en/projekty/VJ02010024
https://www.postgresql.org/about/contact/

3596. Internet Engineering Task Force (IETF), october 2003. Available at:
http://www.ietf.org/rfc/rfc3596.txt.

[121] Torroledo, I.; Camacho, L. D. and Bahnsen, A. C. Hunting malicious TLS
certificates with deep neural networks. In: Proceedings of the 11th ACM workshop
on Artificial Intelligence and Security. 2018, p. 64–73.

[122] Tuan, T. A.; Long, H. V. and Taniar, D. On Detecting and Classifying DGA
Botnets and their Families. Computers & Security, 2022, vol. 113, p. 102549. ISSN
0167-4048. Available at:
https://www.sciencedirect.com/science/article/pii/S0167404821003734.

[123] Visser, M. FLIP-265 Deprecate and remove Scala API support FLIP-265. Flink
Improvement Proposal (FLIP) 265. Apache Software Foundation, october 2022.
Available at: https://cwiki.apache.org/confluence/display/FLINK/FLIP-
265+Deprecate+and+remove+Scala+API+support. [cit. 2024-01-07].

[124] Yadav, S.; Reddy, A. K. K.; Reddy, A. L. N. and Ranjan, S. Detecting
Algorithmically Generated Domain-Flux Attacks With DNS Traffic Analysis.
IEEE/ACM Transactions on Networking, 2012, vol. 20, no. 5, p. 1663–1677.

[125] Zhao, H.; Chang, Z.; Bao, G. and Zeng, X. Malicious Domain Names Detection
Algorithm Based on N-Gram. Journal of Computer Networks and Communications,
2019, vol. 2019.

[126] Zhauniarovich, Y.; Khalil, I.; Yu, T. and Dacier, M. A Survey on Malicious
Domains Detection through DNS Data Analysis. ACM Comput. Surv. New York,
NY, USA: Association for Computing Machinery, jul 2018, vol. 51, no. 4. ISSN
0360-0300. Available at: https://doi.org/10.1145/3191329.

[127] Zhou, L.; Kong, N.; Shen, S.; Sheng, S. and Servin, A. Inventory and Analysis
of WHOIS Registration Objects RFC 7485 (Informational). Request for Comments
(RFC) 7485. Internet Engineering Task Force (IETF), march 2015. Available at:
http://www.ietf.org/rfc/rfc7485.txt.

[128] Zieni, R.; Massari, L. and Calzarossa, M. C. Phishing or Not Phishing? A
Survey on the Detection of Phishing Websites. IEEE Access, 2023, vol. 11,
p. 18499–18519.

[129] Zomaya, A. Y. and Sakr, S., ed. Handbook of Big Data Technologies. 1st ed.
Cham: Springer, 2017. ISBN 978-3-319-49339-8.

125

http://www.ietf.org/rfc/rfc3596.txt
https://www.sciencedirect.com/science/article/pii/S0167404821003734
https://cwiki.apache.org/confluence/display/FLINK/FLIP-265+Deprecate+and+remove+Scala+API+support
https://cwiki.apache.org/confluence/display/FLINK/FLIP-265+Deprecate+and+remove+Scala+API+support
https://doi.org/10.1145/3191329
http://www.ietf.org/rfc/rfc7485.txt

126

Appendix A

CESNET Domains Analysis
Table A.1 shows the top 15 individual domain names, effective third-level domains and
effective second-level domains in the CESNET sample (discussed in Section 5.2) according
to the average number of resolutions per day. In the aggregates, the number of resolutions
for all domains in a given e3LD/eSLD was added and divided by the number of days in
which the e3LD/eSLD was present.

Table A.2 then shows the top 15 e3LDs and eSLDs according to the average number
of subdomains observed for each. In the aggregates, the number of subdomains in a given
e3LD/eSLD was added and divided by the number of days in which the e3LD/eSLD was
present.

Table A.1: Top domain names/e3LDs/eSLDs by request count.

Domain name Avg. req. per day
Top domain names (whole)

1 gateway.icloud.com 9,607,822
2 v10.events.data.microsoft.com 8,596,945
3 graph.facebook.com 7,103,137
4 outlook.office365.com 6,986,901
5 login.microsoftonline.com 6,337,459
6 settings-win.data.microsoft.com 5,494,072
7 web.facebook.com 4,480,572
8 graph.microsoft.com 4,174,902
9 eu-v20.events.data.microsoft.com 3,986,292
10 is.cuni.cz 3,767,726
11 self.events.data.microsoft.com 3,701,912
12 www.google.com 3,545,446
13 assets.msn.com 3,501,037
14 client.wns.windows.com 3,474,030
15 edge-mqtt.facebook.com 3,396,467

127

Domain name Avg. req. per day
Top effective third-level domains

1 data.microsoft.com 32,615,060
2 mp.microsoft.com 15,055,218
3 gateway.icloud.com 9,613,051
4 officeapps.live.com 8,291,242
5 graph.facebook.com 7,103,137
6 outlook.office365.com 6,986,902
7 teams.microsoft.com 6,484,081
8 login.microsoftonline.com 6,338,988
9 itunes.apple.com 5,529,952
10 web.facebook.com 4,480,572
11 ls.apple.com 4,331,743
12 smartscreen.microsoft.com 4,286,834
13 is.cuni.cz 4,178,080
14 graph.microsoft.com 4,174,902
15 wns.windows.com 3,654,477

Top effective second-level domains
1 microsoft.com 77,163,962
2 apple.com 24,529,528
3 facebook.com 22,744,655
4 googleapis.com 16,093,404
5 seznam.cz 16,013,777
6 icloud.com 15,150,699
7 live.com 14,968,418
8 google.com 13,842,479
9 msn.com 9,382,622
10 cuni.cz 7,981,147
11 office365.com 7,336,673
12 tiktokv.com 6,792,486
13 tiktokcdn.com 6,435,627
14 microsoftonline.com 6,378,520
15 bing.com 6,278,633

128

Table A.2: Top e3LDs/eSLDs by subdomain count.

Domain name Avg. subdomains per day
Top effective third-level domains

1 safeframe.googlesyndication.com 452,592
2 measure.office.com 185,939
3 init.cedexis-radar.net 49,663
4 metric.gstatic.com 31,924
5 clo.footprintdns.com 17,280
6 nuid.imrworldwide.com 10,697
7 wc.yahoodns.net 8,235
8 fna.fbcdn.net 7,616
9 nrb.footprintdns.com 4,674
10 files.wordpress.com 4,655
11 u.fastly-insights.com 4,540
12 l4.adsco.re 4,029
13 services.video.ibm 3,978
14 aa.online-metrix.net 3,666
15 cdn.ampproject.org 3,660

Top effective second-level domains
1 googlesyndication.com 452,598
2 office.com 186,072
3 cedexis-radar.net 49,663
4 gstatic.com 31,947
5 footprintdns.com 22,304
6 imrworldwide.com 15,448
7 cloudfront.net 10,394
8 adsco.re 10,032
9 fbcdn.net 9,160
10 akamaihd.net 8,653
11 yahoodns.net 8,240
12 fastly-insights.com 6,598
13 wordpress.com 6,418
14 amazonaws.com 5,783
15 sharepoint.com 5,257

129

Appendix B

Functional Specification of the
Collectors and the Merger
This appendix provides a detailed specification of the collectors used in this thesis. The
specification includes the input and output channels, the request and response models, the
error codes, and the general behaviour of the collectors. At the beginning, there is a table
listing the collector’s inputs and outputs, referring to listings with the respective models.
The specification is divided into sections, each describing a single collector. For general
information on what the collectors do, refer to Section 6.4. Section B.10 shows an SQL
representation of the data merger operation. Sections B.11, B.12, B.13 and B.14 provide
the models used in the specification, examples of the input and output of the collectors, the
collector response status codes, and the models and status codes used in the configuration
mechanism, respectively.

B.1 Zone Collector
The input and output channels are defined in Table B.1. The collector has two side output
channels that are used to provide requests for the DNS and RDAP-DN collectors.

Input
Key: str a domain name
Value: ZoneRequest | None request options, see B.3
Main output (processed zone)
Key: str the input domain name
Value: ZoneResult a collection result, see B.3
DNS requests output
Key: str the input domain name
Value: DNSRequest a DNS collection request, see B.4
RDAP-DN requests output
Key: str the input domain name
Value: RDAPDomainRequest a RDAP-DN collection request, see B.6

Table B.1: The zone collector’s I/O paths.

Request: The request body is optional. If present, it contains two booleans that control
whether the DNS and RDAP-DN requests will be published. It may also contain two sets
that control the options of the generated DNS request. If the body is missing, the collector
will publish both requests and will pass None values for the sełts.

130

Response: A successful response contains a ZoneData value with:

• the zone domain name, the zone’s SOA record, the public suffix,

• a set of all found secondary nameservers,

• a set of all resolved primary nameserver IPs,

• a set of all resolved secondary nameserver IPs,

• the hasDNSKEY field that will be True if a DNSKEY record exists, False if it does
not, and None if any error occurred during the DNS query.

The three sets may be empty if the corresponding DNS resolutions fail.
If the zone was found, a DNS request and an RDAP-DN request are produced with the

resulting zone information. If the request body contained DNS request options, they will
be passed to the corresponding fields in the generated DNS request as-is.

Errors:

• TIMEOUT if a DNS response was not received in a configured time frame,

• NOT_FOUND if the SOA record was not found.

Remarks: When the input is a public suffix (e.g.cz, co.uk or hakodate.hokkaido.jp),
the resolution is performed so that the result is the SOA record of the suffix. Otherwise, the
public suffix is skipped (e.g. for fit.vut.cz, the query is made for vut.cz and fit.vut.cz
but not cz). This is done to prevent skewing the results for names that do not exist in the
DNS with legitimate values.

Example: See Listing B.12.

Input subscription: The zone collector typically subscribes to an external source of
input domain names to process.

B.2 DNS Collector
The input and output channels are defined in Table B.2. The collector has two side output
channels that are used to provide requests for the TLS collector and all the IP-based
collectors.

131

Input
Key: str a domain name
Value: DNSRequest | None request options, see B.4
Main output (DNS scan result)
Key: str the input domain name
Value: DNSResult a collection result, see B.4
TLS requests output
Key: str the input domain name
Value: str a selected target IP for the TLS collector
IP requests output
Key: IPToProcess a pair of the input domain name and an

IP address, see Section B.5
Value: None always empty

Table B.2: The DNS collector’s I/O paths.

Request: The request body is required.
• The zoneInfo field must contain a valid zone data object (see B.3).

• The typesToCollect set is optional and controls which DNS record types will be
queried. If the set is None or empty, a pre-configured value will be used.

• The typesToProcessIPsFrom set is optional and controls the source records types
from which IP addresses will be published to the IP request output channel. If the
set is None, a pre-configured value will be used. If the set is not None but empty, no
IP addresses will be published.

Response: A successful response contains a DNSData value.
• Each property named by a record type will be not None iff the record exists in DNS

and was fetched successfully; otherwise, it will be None.

• ttlValues is a map where the key is a successfully fetched record type and the value
is the TTL value for the corresponding RRset.

• The relatedIPs properties of CNAMERecord, MXRecord, NSRecord may contain a set
of IP addresses acquired by querying a common recursive DNS resolver for the A and
AAAA records related to the CNAME value/MX value/nameserver.

IP requests are published for all IPs related to the records specified in the effective value of
the typesToProcessIPsFrom set. A TLS request is generated if any IP address has been
resolved:

1. as a related IP of a resolved CNAME record, or

2. from an A record, or

3. from an AAAA record.
A single address is selected from the records in this order. If an address related to a CNAME
is selected, IPv4 is preferred. No other constraints are imposed on which address is selected.

132

Errors:

• TIMEOUT if all the issued DNS queries timed out (no response received in a configured
time frame),

• OTHER_DNS_ERROR if all the issued DNS queries failed for another reason than timeout.

• In addition to the status and error fields, the data value bears information on per-
query errors:

– If an error occurs during a single DNS query, the corresponding property in the
result is None. The errors map is populated with a pair keyed by the record
type and a value giving a human-readable error description (e.g. “Timeout”).

– If all queries fail and at least one of the errors is not a timeout, the response will
have the OTHER_DNS_ERROR status code but the dnsData field will have a value
with the populated errors map.

– If all queries fail with a timeout, the dnsData field will be None.

Remarks: The collector queries for the following record types and collects their values:
A, AAAA, CNAME, MX, NS, TXT. IP addresses may be published to the respective side
channel from the A, AAAA, CNAME, MX and NS records.

Example: See Listing B.13

Input subscription: The DNS collector typically subscribes to the “DNS request out-
put” of the zone collector.

B.3 TLS Collector
The input and output channels are defined in Table B.3. The collector has no side output
channels.

Input
Key: str a domain name
Value: ip an IP address
Main output (TLS result)
Key: str the input domain name
Value: TLSResult a collection result, see B.5

Table B.3: The TLS collector’s I/O paths.

Request: The request body is required. It contains the IP address that the collector will
connect to.

Response: A successful response contains a TLSData value.

• fromIP contains the IP address the collector connected to.

133

• protocol contains one of the values “TLSv1”, “TLSv1.1”, “TLSv1.2”, “TLSv1.3”,
according to the chosen protocol.

• cipher contains an IANA name (description)1 of the chosen ciphersuite.

• certificates contains a list of Certificate values. The list represents the certific-
ate chain presented by the server and is order so that the leaf certificate comes first.
Each value is a pair of the certificate Distinguished Name (DN) and its DER-encoded
representation.

Errors:

• UNSUPPORTED_ADDRESS if the collector runs on a system that does not support the IP
family of the input address (typically IPv6),

• TIMEOUT if the TLS handshake was not completed in a configured time frame (con-
nection or socket I/O timed out),

• CANNOT_FETCH if the TLS handshake failed for another reason than timeout.

Remarks: The implementation must offer the TLS versions 1.0 to 1.3 to the remote hosts.
The offered ciphersuites are not defined.

Example: See Listing B.14

Input subscription: The TLS collector typically subscribes to the “TLS request output”
of the DNS collector.

B.4 RDAP-DN Collector
The input and output channels are defined in Table B.4. The collector has no side output
channels.

Input
Key: str a domain name
Value: RDAPDomainRequest | None request options, see B.6
Main output (RDAP-DN result)
Key: str the input domain name
Value: RDAPDomainResult a collection result, see B.6

Table B.4: The RDAP-DN collector’s I/O paths.

Request: The request body is optional. If present and the value of the zone field is not
None, this value will be used as the RDAP (or WHOIS) query target.

1See https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-
4 for the list of known TLS ciphersuites.

134

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4
https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

Response: A response provides means to determine the success both of the RDAP query
and the WHOIS query.

• statusCode signalises the result of the RDAP query.

• rdapTarget contains the target domain name that the query succeeded for (iff RDAP
succeeds).

• rdapData contains the deserialised RDAP response JSON (iff RDAP succeeds).

• entitites contains the processed entities from the RDAP response (iff RDAP suc-
ceeds), see below.

• whoisStatusCode signalises the result (or lack thereof) of the WHOIS query.

• whoisRaw contains the raw WHOIS response (iff WHOIS succeeds). If several WHOIS
requests were made (e.g. if the target WHOIS endpoint was determined by querying
IANA’s WHOIS service), this field is a list of raw responses ordered so that the
response from the most specific endpoint comes first.

Errors (RDAP): The following codes may be returned in the statusCode field:

• NO_ENDPOINT if no RDAP endpoint is known for the TLD,

• NOT_FOUND if the RDAP endpoint returned HTTP status code 404 (not found, i.e.
the DN does not exist at the queried RDAP endpoint),

• RATE_LIMITED if the RDAP endpoint returned HTTP status code 429 (too many
requests),

• TIMEOUT if the RDAP query was not completed in a configured time frame,

• CANNOT_FETCH if the RDAP query failed for another reason (incl. another non-OK
HTTP status code).

• LOCAL_RATE_LIMIT, LRL_TIMEOUT if the local rate limit is triggered, see below.

Errors (WHOIS): The following codes may be returned in the whoisStatusCode field:

• WHOIS_NOT_PERFORMED if the RDAP query succeeded, so no WHOIS query was made,

• all the error codes defined for the RDAP response may also be returned here with
analogous meanings.

Entity processing: An RDAP-DN may contain a list of entities [56, Sec. 5.3]. An entity
may specify, for example, information on the registrar and registrant. Some RDAP servers
choose not to include the full details of an entity in the response, but rather provide a link
(according to Section 4.2 of [56]) to the full entity data. If an entitites array is present in
the RDAP response, the collector processes each entity:

• If the entity does not have a links key or has a vcardArray key, it is placed in the
result entities field as-is.

135

• If the entity has a link with the rel attribute equal to “self”, an RDAP query is made
for the target of this link.

• If the query succeeds, the roles array from the original entity is placed in the received
object. Then, this modified entity object is placed in the result.

• If the query fails, the original entity object is placed in the result.

Rate limiting prevention: The collector must implement a local rate limiting mech-
anism to prevent triggering rate limiting at the remote RDAP servers. Queries to each
individual RDAP endpoint are controlled by an independent, endpoint-specific local rate
limiter. It is up to the implementation to decide how this mechanism is implemented – for
example, the leaky bucket algorithm may be used. The parameters of the rate limiter must
be configurable independently for each endpoint. Local rate limiting can be enforced in two
modes:

• Queueing: The collector will queue the rate-limited requests and will retry them
after the rate limit is lifted. Optionally, the collector may implement time bounding
for the queued requests. In this case, the LRL_TIMEOUT error code is returned if the
request is not processed within a configured time frame.

• Immediate: The collector will immediately return the LOCAL_RATE_LIMIT error code
if the rate limit is triggered.

The immediate mode can be simulated by using the queueing mode with a very strict (low)
time bound but the appropriate error code must always be used. The mode setting is a part
of the collector’s configuration.

Example: See Listing B.15.

Input subscription: The RDAP-DN collector typically subscribes to the “RDAP-DN
request output” of the zone collector.

B.5 Common Specification of the IP-Based Collectors
The key of messages accepted by the RDAP-IP, NERD, RTT and GEO-ASN collectors is
always an IPToProcess value, a pair of a domain name and an IP address. Both IPv4 and
IPv6 addresses are supported. The key model, as well as the request and response models,
are defined in Listing B.1.

Requests: The request value may be None or an instance of IPRequest. If the re-
quest value or the collectors set is None, all collectors will process the request. If the
collectors set is not None but empty, no collectors will process the request. Otherwise,
a collector will only process the message if its type identifier is in the set.

Responses: The base result model for all IP-based collector results is CommonIPResult.
It always has a field collector that contains the type identifier of the source collector.
The data field is defined as a general object, each collector re-defines this field with a more
specific type of the data it provides.

136

Errors: All collectors must validate the input address and return the INVALID_ADDRESS
code if it is not.
class IPToProcess:

dn: str
ip: ip

class IPRequest:
collectors: set[str] | None

class CommonIPResult(Result):
collector: str
None iff statusCode != 0
data: object | None

Listing B.1: The general IP models.

B.6 RDAP-IP Collector
The collector follows the common specification from Section B.5. The input and output
channels are defined in Table B.5. The collector has no side output channels.

Input
Key: IPToProcess a domain name/IP pair
Value: IPRequest | None request options, see above
Main output (RDAP-IP result)
Key: IPToProcess the input pair
Value: RDAPIPResult a collection result, see B.7

Table B.5: The RDAP-IP collector’s I/O paths.

Request: As described above for all IP-based collectors.

Response: The data field of a successful response contains the deserialised RDAP re-
sponse JSON. It is taken as-is without any further processing.

Errors:

• NOT_FOUND if the RDAP endpoint returned HTTP status code 404 (not found, i.e.
the IP does not exist),

• RATE_LIMITED if the RDAP endpoint returned HTTP status code 429 (too many
requests),

• TIMEOUT if the RDAP query was not completed in a configured time frame,

• CANNOT_FETCH if the RDAP query failed for another reason (incl. another non-OK
HTTP status code),

137

• LOCAL_RATE_LIMIT, LRL_TIMEOUT if the local rate limit is triggered, see RDAP-DN
collector.

Rate limiting prevention: The collector must implement a local rate limiting mechan-
ism to prevent triggering rate limiting at the remote RDAP servers. The mechanism is the
same as described in RDAP-DN collector.

Example: See Listing B.16.

B.7 NERD Collector
The collector follows the common specification from Section B.5. The input and output
channels are defined in Table B.6. The collector has no side output channels.

Input
Key: IPToProcess a domain name/IP pair
Value: IPRequest | None request options, see above
Main output (NERD result)
Key: IPToProcess the input pair
Value: NERDResult a collection result, see B.8

Table B.6: The NERD collector’s I/O paths.

Request: As described above for all IP-based collectors.

Response: The data field of a successful response contains a NERDData value with a single
field, reputation, that contains the retrieved reputation score. Note that NERD returns
a zero score for unknown IPs. For IPv6 addresses, the result status code will always be
UNSUPPORTED_ADDRESS as NERD does not support IPv6 at the moment2.

Errors:

• UNSUPPORTED_ADDRESS if the input address is an IPv6 address,

• TIMEOUT if the NERD query was not completed in a configured time frame,

• CANNOT_FETCH if the NERD query failed for another reason (incl. a non-OK HTTP
status code),

• INVALID_RESPONSE if the NERD response was not in the expected format (content
length mismatch).

Example: See Listing B.17.
2While not namely unsupported, in time of writing, the implementation of the primary source for

NERD, Warden, discards IPv6 addresses: https://github.com/CESNET/NERD/blob/3b6972d/NERDd/war
den_receiver.py#L500 (cit. 2024-07-04).

138

https://github.com/CESNET/NERD/blob/3b6972d/NERDd/warden_receiver.py#L500
https://github.com/CESNET/NERD/blob/3b6972d/NERDd/warden_receiver.py#L500

B.8 GEO-ASN Collector
The collector follows the common specification from Section B.5. The input and output
channels are defined in Table B.7. The collector has no side output channels.

Input
Key: IPToProcess a domain name/IP pair
Value: IPRequest | None request options, see above
Main output (GEO-ASN result)
Key: IPToProcess the input pair
Value: GeoIPResult a collection result, see B.9

Table B.7: The GEO-ASN collector’s I/O paths.

Request: As described above for all IP-based collectors.

Response: The data field of a successful response contains a GeoIPData value with data
found in the GeoIP databases. If neither the City nor ASN database contains information
on the IP, the status code will be NOT_FOUND. However, if the IP is found in only one of the
databases, the response will be successful and the fields sourced from the database with
missing data will be None.

Errors:

• NOT_FOUND if neither the City nor ASN database contains information on the IP.

Example: See Listing B.18.

B.9 RTT Collector
The collector follows the common specification from Section B.5. The input and output
channels are defined in Table B.8. The collector has no side output channels.

Input
Key: IPToProcess a domain name/IP pair
Value: IPRequest | None request options, see above
Main output (RTT result)
Key: IPToProcess the input pair
Value: RTTResult a collection result, see B.10

Table B.8: The RTT collector’s I/O paths.

Request: As described above for all IP-based collectors.

139

Response: The data field of a successful response contains a RTTData value with common
information on the finished ping: the number of sent and received datagrams, the minimum,
maximum and average RTT values, and the mean jitter (the mean absolute difference
between consecutive RTTs), all in milliseconds.

Errors:

• ICMP_DEST_UNREACHABLE if a destination unreachable ICMP message was received.

• ICMP_TIME_EXCEEDED if a time exceeded ICMP message was received, i.e. a datagram
was discarded due to the TTL field reaching zero.

Example: See Listing B.19.

B.10 The Data Merger Operation
Listing B.2 is a snippet of SQL code that describes the operation performed by the data
merger. The relations ending with Results represent the most useful state stores, the
actual messages are mapped to the relational model so that the key domain name is the
domainName attribute; for IP-based collectors, there are also the ip and collector at-
tributes. The complex message data object is stored in the result attribute. For the
description of operation, refer to Section 6.5 and Figure 6.3.

1 -- Step 1: Aggregate collected IP data
2 WITH
3 -- The entries are essentialy mappings of unique
4 -- (DN, IP) -> map of (collector ID -> data)
5 AggregatedDataPerIP AS (
6 SELECT
7 domainName, ip,
8 COLLECT_TO_MAP(collector,
9 result->data) AS collectedData

10 FROM IPCollectorResults
11 GROUP BY domainName, ip),
12 -- The entries are essentially mappings of unique
13 -- DN -> map of (IP -> (map of collector ID -> data))
14 AggregatedDataPerDN AS (
15 SELECT
16 domainName,
17 COLLECT_TO_MAP(ip, collectedData) AS ipDataMap
18 FROM AggregatedDataPerIP
19 GROUP BY domainName)
20 -- Step 2: Join all data by domain name
21 SELECT
22 dns.domainName domainName,
23 zone.result->zone zone,
24 dns.result dnsResult,
25 tls.result tlsResult,

140

26 rdap.result rdapDomainResult
27 allIpResults.ipDataMap ipResults
28 FROM DNSResults dns
29 INNER JOIN ZoneResults zone
30 ON dns.domainName = zone.domainName
31 INNER JOIN RDAPDomainResults rdap
32 ON dns.domainName = rdap.domainName
33 LEFT JOIN TLSResults tls
34 ON dns.domainName = tls.domainName
35 LEFT JOIN AggregatedDataPerDN allIpResults
36 ON dns.domainName = allIpResults.domainName
37 -- Step 3: Only output complete data
38 WHERE dns.result IS NULL OR
39 HAS_EXPECTED_IP_RESULTS(dns.result, allIpResults.ipDataMap) OR
40 (HAS_IPS_FOR_TLS(dns.result) AND tls.domainName IS NOT NULL)

Listing B.2: The join operation perfomed by the merger.

141

B.11 Data Models

class ZoneRequest:
collectDNS: bool
collectRDAP: bool
dnsTypesToCollect: set[str] | None
dnsTypesToProcessIPsFrom: set[str] | None

class ZoneResult(Result):
None iff statusCode != 0
zone: ZoneInfo | None

class ZoneInfo:
zone: str
soa: SOARecord
publicSuffix: str
hasDNSKEY: bool | None
primaryNameserverIPs: set[ip]
secondaryNameservers: set[str]
secondaryNameserverIPs: set[ip]

class SOARecord:
primaryNS: str
respMailboxDname: str
serial: str
refresh: int
retry: int
expire: int
minTTL: int

Listing B.3: Data models for the zone collector.

142

class DNSRequest:
typesToCollect: set[str] | None
typesToProcessIPsFrom: set[ip] | None
zoneInfo: ZoneInfo

class DNSResult(Result):
None iff statusCode not in (0, OTHER_DNS_ERROR)
dnsData: DNSData | None
None iff statusCode != 0
ips: list[IPFromRecord] | None

class IPFromRecord:
ip: ip
rrType: str

class DNSData:
A: set[ip] | None
AAAA: set[ip] | None
CNAME: CNAMERecord | None
MX: list[MXRecord] | None
NS: list[NSRecord] | None
TXT: list[str] | None
mappings of "A", "AAAA", ... -> error desc.
errors: dict[str, str] | None
mappings of "A", "AAAA", ... -> TTL value
ttlValues: dict[str, int]

class CNAMERecord:
value: str
relatedIPs: set[ip] | None

class MXRecord:
value: str
priority: int
relatedIPs: set[ip] | None

class NSRecord:
nameserver: str
relatedIPs: set[ip] | None

Listing B.4: Data models for the DNS collector.

143

class TLSResult(Result):
None iff statusCode != 0
tlsData: TLSData | None

class TLSData:
fromIP: ip
protocol: str
cipher: str
certificates: list[Certificate]

class Certificate:
dn: str
derData: bytes

Listing B.5: Data models for the TLS collector.

class RDAPDomainRequest:
zone: str | None

class RDAPDomainResult(Result):
rdapTarget: str
both None iff statusCode != 0
rdapData: json | None
entities: json | None

whoisStatusCode: int = -1
all None iff whoisStatusCode != 0
whoisError: str | None
whoisRaw: str | list[str] | None

Listing B.6: Data models for the RDAP-DN collector.

class RDAPIPResult(CommonIPResult):
collector: str = "rdap-ip"
data: json | None

Listing B.7: Data models for the RDAP-IP collector.

144

class NERDResult(CommonIPResult):
collector: str = "nerd"
data: NERDData | None

class NERDData:
reputation: float = 0.0

Listing B.8: Data models for the NERD collector.

class GeoIPResult(CommonIPResult):
collector: str = "geo-asn"
data: GeoIPData | None

class GeoIPData:
continentCode: str | None
countryCode: str | None
region: str | None
regionCode: str | None
city: str | None
postalCode: str | None
latitude: float | None
longitude: float | None
timezone: str | None
registeredCountryGeoNameId: int | None
representedCountryGeoNameId: int | None
asn: int | None
asnOrg: str | None
networkAddress: str | None
prefixLength: int | None

Listing B.9: Data models for the GEO-ASN collector.

class RTTResult(CommonIPResult):
collector: str = "rtt"
data: RTTData | None

class RTTData:
min: float
avg: float
max: float
sent: int
received: int
jitter: float

Listing B.10: Data models for the RTT collector.

145

class AllCollectedData:
zone: ZoneInfo
dnsResult: ExtendedDNSResult
tlsResult: TLSResult | None
rdapDomainResult: RDAPDomainResult | None
ipResults: dict[str, dict[str, CommonIPResult]] | None

Listing B.11: The data model for the final gather operation.

B.12 Input/Output Examples
Request:
("merlin.fit.vutbr.cz", None)

Output (main channel):
key = "merlin.fit.vutbr.cz"
ZoneResult(

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
zone=ZoneInfo(

zone="fit.vutbr.cz",
soaRecord=SOARecord(

primaryNS="guta.fit.vutbr.cz",
...

),
publicSuffix="cz",
primaryNameserverIPs={"147.229.9.11",

"2001:67c:1220:809::93e5:90b"},
secondaryNameservers={"rhino.cis.vutbr.cz",

"kazi.fit.vutbr.cz",
"gate.feec.vutbr.cz"},

secondaryNameserverIPs={...}
)

)

Output (DNS request):
key = "merlin.fit.vutbr.cz"
DNSRequest(

typesToCollect=None,
typesToProcessIPsFrom=None,
zoneInfo=ZoneInfo(

zone="fit.vutbr.cz",
...

)
)

146

Output (RDAP-DN request):
key = "merlin.fit.vutbr.cz"
RDAPDomainRequest(

zone="fit.vutbr.cz"
)

Listing B.12: Example of a zone collector input and output.

Request:
("fit.vut.cz", DNSRequest(

typesToCollect={"A", "AAAA", "MX", "TXT"},
typesToProcessIPsFrom={"A"},
zoneInfo=ZoneInfo(

zone="fit.vut.cz",
...

)
))

Output (main channel):
key = "fit.vut.cz"
DNSResult(

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
dnsData=DNSData(

A={"147.229.9.65", "1.2.3.4"},
AAAA={"2001:67c:1220:809::93e5:941"},
MX=[

MXRecord(
value="kazi.fit.vutbr.cz",
priority=10,
relatedIPs={"147.229.8.12",

"2001:67c:1220:808::93e5:80c"})
],
TXT=[

"v=spf1 a:kazi.fit.vutbr.cz ..."
],
CNAME=None,
NS=None,
hasDNSKEY=True,
errors=None,
ttlValues={

"A": 14400,
"AAAA": 14400,
"MX": 14400,
"TXT": 14400

}
),

147

ips=[
IPFromRecord(rrType="A",

ip="147.229.9.65"),
IPFromRecord(rrType="A",

ip="1.2.3.4")
]

)

Output (TLS request):
key = "fit.vut.cz"
value = "2001:67c:1220:809::93e5:941"

Output (IP requests):
two messages published, values are None, keys are:
IPToProcess(domainName="fit.vut.cz",

ip="147.229.9.65"),
IPToProcess(domainName="fit.vut.cz",

ip="1.2.3.4")

Listing B.13: Example of a DNS collector input and output.

Request:
("fit.vut.cz", "147.229.8.12")

Output (main channel):
key = "fit.vut.cz"
TLSResult(

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
tlsData=TLSData(

fromIP="147.229.8.12",
protocol="TLSv1.3",
cipher="TLS_AES_256_GCM_SHA384",
certificates=[

Certificate(dn="CN=imap.fit.vut.cz", derData=...),
Certificate(dn="CN=R3, O=Let's Encrypt, C=US", derData=...),

]
)

)

Listing B.14: Example of a TLS collector input and output.

Request:
("fit.vut.cz", None)

Output (main channel):
key = "fit.vut.cz"

148

RDAPDomainResult(
statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
rdapTarget="vut.cz",
rdapData={

"objectClassName": "domain",
"rdapConformance": [

"rdap_level_0",
"fred_version_0"

],
"handle": "vut.cz",
...

},
entities=[

{
"objectClassName": "entity",

"rdapConformance": [
"rdap_level_0"

],
"handle": "SB:VUTBR-CZ",
"vcardArray": ...,

...
}

],
whoisStatusCode=WHOIS_NOT_PERFORMED,
whoisError=None,
whoisRaw=None

)

Request:
("ondryaso.eu", None)

Output (main channel):
key = "ondryaso.eu"
RDAPDomainResult(

statusCode=NO_ENDPOINT,
error="No RDAP endpoint available for the domain name",
lastAttempt="2024-06-14T20:00:00Z",
rdapTarget="ondryaso.eu",
rdapData=None,
entities=None,
whoisStatusCode=0,
whoisError=None,
whoisRaw="% The WHOIS service offered by EURid ..."

)

Listing B.15: Example of a RDAP-DN collector input and output.

149

Request:
(IPToProcess(domainName="fit.vut.cz",

ip="147.229.9.65"), None)

Output (main channel):
key = IPToProcess(...)
RDAPIPResult(

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
collector="rdap-ip",
data={

"handle": "147.229.0.0 - 147.229.254.255",
"name": "VUTBRNET",
"ipVersion": "v4",
"country": "CZ",
"entities": [...],
...

}
)

Listing B.16: Example of a RDAP-IP collector input and output.

Request:
(IPToProcess(domainName="fit.vut.cz",

ip="147.229.9.65"), None)

Output (main channel):
key = IPToProcess(...)
NERDResult(

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
collector="nerd",
data=NERDData(

reputation=0.0
)

)

Listing B.17: Example of a NERD collector input and output.

Request:
(IPToProcess(domainName="fit.vut.cz",

ip="147.229.9.65"), None)

Output (main channel):
key = IPToProcess(...)
GeoIPResult(

150

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
collector="geo-asn",
data=GeoIPData(

continentCode="EU",
countryCode="CZ",
latitude=49.2067,
longitude=16.5888,
...,
asn=197451,
asnOrg="Brno University of Technology",
networkAddress="147.229.0.0",
prefixLength=17

)
)

Listing B.18: Example of a GEO-ASN collector input and output.

Request:
(IPToProcess(domainName="fit.vut.cz",

ip="147.229.9.65"), None)

Output (main channel):
key = IPToProcess(...)
RTTResult(

statusCode=0,
error=None,
lastAttempt="2024-06-14T20:00:00Z",
collector="rtt",
data=RTTData(

min=0.812,
avg=1.099,
max=1.657,
sent=5,
received=5,
jitter=0.446

)
)

Listing B.19: Example of a RTT collector input and output.

151

B.13 Collector Result Codes

Code Name Description
Success and general errors

0 SUCCESS The collection was successful.
1 INVALID_MESSAGE Invalid input message format (model deserialisation

error).
2 INVALID_DOMAIN_NAME Invalid domain name in request.
3 INVALID_ADDRESS Invalid IP address in request.
4 UNSUPPORTED_ADDRESS The IP address is valid but the collector cannot

process it (e.g., IPv6 is not available).
5 INTERNAL_ERROR Unspecified internal error.

General remote fetch errors
10 CANNOT_FETCH General error when fetching data (e.g., non-success

status code in the response from the remote party).
11 TIMEOUT Could not finish the request in a configured time.
12 NOT_FOUND No data found at the remote party for the requested

domain name/IP address.
13 RATE_LIMITED The remote party rate-limited the request.
14 INVALID_RESPONSE Invalid format of the response from the remote

party (deserialisation error).
15 LOCAL_RATE_LIMIT Local rate limiter in the immediate mode prevented

the request.
16 LRL_TIMEOUT Could not pass the local rate limiter in a configured

time.
DNS-specific errors

20 OTHER_DNS_ERROR of all issued queries (for all RRtypes) failed.
dnsData is not null and its errors field is set.

RDAP-DN-specific errors
30 NO_ENDPOINT No RDAP endpoint found for the domain (TLD).
35 WHOIS_NOT_PERFORMED RDAP succeeded, no WHOIS query was made.

RTT-specific errors
40 ICMP_DEST_UNREACHABLE The remote host or its inbound gateway indicated

that the destination is unreachable for some reason.
41 ICMP_TIME_EXCEEDED The datagram was discarded due to the TTL field

reaching zero.

152

B.14 Collector Configuration

class ConfigurationValidationError:
propertyPath: str
errorCode: int
error: str | None
soft: bool

class ConfigurationChangeResult:
success: bool
errors: list[ConfigurationValidationError] | None
message: str | None
currentConfig: dict[str, json]

Listing B.20: Data model for a configuration change result message.

Code Name Description
1 OTHER Unspecified error.
2 INVALID_MESSAGE Invalid input message format (configuration model

deserialisation error).
3 INVALID_PROPERTY No such configuration property exists.
4 INVALID_TYPE Invalid data type of the provided value.
5 OUT_OF_RANGE The provided value is out of the allowed range.
6 READ_ONLY The property cannot be changed dynamically.
7 MISSING The property must be explicitly defined.

Table B.9: The configuration validation error codes.

153

Appendix C

Component Identifiers
Each pipeline component is assigned a component ID. It is used in the configuration ex-
change keys and as the name of the Docker Compose service. Additionally, the collector
components have a collector ID, used inside the messages (e.g. for specifying which IP
collector should run). One of the identifiers is used in the generation of Kafka consumer
group ID, Kafka Streams application ID, and Faust application ID.

Component Component ID Collector ID
Zone collector collector-zone zone
DNS collector collector-dns dns
TLS collector collector-tls tls
RDAP-DN collector collector-rdap-dn rdap-dn
RDAP-IP collector collector-rdap-ip rdap-ip
NERD collector collector-nerd nerd
GEO-ASN collector collector-geoip geo-asn
RTT collector collector-rtt rtt
Data merger merger -
Feature extractor extractor -
Classifier unit classifier-unit -
Loader & Pre-filter loader -

154

Appendix D

Examples of Collector
Implementation
from common import read_config, make_app, ensure_model, log
COLLECTOR = "Faust app ID (Kafka group ID)"
COMPONENT_NAME = "collector-" + COLLECTOR
1. Logging and configuration
config = read_config()
component_config = config.get(COLLECTOR, {})
logger = log.init(COMPONENT_NAME, config)
CONCURRENCY = component_config.get("concurrency", 4)
(read other configuration values)
2. Init the Faust application
app = make_app(COLLECTOR, config)
3. Define the used topics (additional side outputs may be used)
topic_to_process = app.topic("to_process_X", key_type=str)
topic_processed = app.topic("processed_X")
4. Custom functions
5. The Faust agent processing the input topic
@app.agent(topic_to_process, concurrency=CONCURRENCY)
async def process_entries(stream):

6. Custom initialization
7. The async for loop consumes incoming events
async for dn, value in stream.items():

8. Deserialise the request
ensure_model never throws but may return None
request = ensure_model(RequestModelClass, value)
try:

9. Custom processing
response = await custom_processing_fun(dn, request)
10. Produce the result(s)
await topic_processed.send(key=dn, value=response)

except Exception as e:
Main logging
logger.k_unhandled_error(e, dn)
Produces a result with the INTERNAL_ERROR status code
await handle_top_level_component_exception(e, COLLECTOR, dn,

ResultModelClass, topic_processed) # from collectors.utils

Listing D.1: A Faust-based collector module framework.

155

from common import read_config, make_app, ensure_model, log
COLLECTOR = "Faust app ID (Kafka group ID)"
COMPONENT_NAME = "collector-" + COLLECTOR
1. Logging and configuration
config = read_config()
component_config = config.get(COLLECTOR, {})
logger = log.init(COMPONENT_NAME, config)
CONCURRENCY = component_config.get("concurrency", 4)
(read other configuration values)
2. Init the Faust application
app = make_app(COLLECTOR, config)
3. Define the used topics (additional side outputs may be used)
topic_to_process = app.topic("to_process_IP")
topic_processed = app.topic("collected_IP_data")
4. Custom functions
5. The Faust agent processing the input topic
@app.agent(topic_to_process, concurrency=CONCURRENCY)
async def process_entries(stream):

6. Custom initialization
7. The async for loop consumes incoming events
async for dn_ip, value in stream.items():

8. Deserialise the domain name / IP pair and the request
ensure_model never throws but may return None
dn_ip = ensure_model(IPToProcess, dn_ip)
if dn_ip is None:

continue # Deserialisation error
request = ensure_model(IPProcessRequest, value)
9. Omit the entry if the collector is not requested
if request is not None and request.collectors is not None and \

COLLECTOR not in request.collectors:
continue

try:
10. Custom processing
response = await custom_processing_fun(dn_ip, request)
11. Produce the result(s)
await topic_processed.send(key=dn_ip, value=response)

except Exception as e:
Main logging
logger.k_unhandled_error(e, str(dn_ip))
Produces a result with the INTERNAL_ERROR status code
await handle_top_level_component_exception(e, COLLECTOR, dn_ip,

ResultModelClass, topic_processed) # from collectors.utils

Listing D.2: A Faust-based IP collector module framework.

156

public class SomeCollector
extends BaseStandaloneCollector<String, InValueType> {
// Collector ID and component ID
public static final String NAME = "some";
public static final String COMPONENT_NAME = "collector-" + NAME;
// Logging
private static final org.slf4j.Logger Logger =
Common.getComponentLogger(SomeCollector.class);

// Options
private final int _batchSize, _timeout;
// Producer(s)
private final KafkaProducer<String, ResultType> _mainProducer;
// Async task executor
private final ExecutorService _executor;

public Collector(@NotNull ObjectMapper jsonMapper,
@NotNull String appName,
@NotNull Properties properties) {

super(jsonMapper, appName, properties,
// The base constructor expects a Serde (serializer/deserializer)
// for the input key and value.
Serdes.String(), JsonSerde.of(jsonMapper, InValueType.class));

// Initialize the options
_batchSize = Integer.parseInt(properties.getProperty(

"collectors.some.batch.size", "32"));
_timeout = Integer.parseInt(properties.getProperty(

"collectors.some.timeout", "1000"));
// Initialize the producer(s) using the given serializers
_mainProducer = super.createProducer(new StringSerializer(),

new JsonSerializer<ResultType>(jsonMapper));
// Initialize the async task executor
_executor = Executors.newVirtualThreadPerTaskExecutor();

}

@Override
public void run(CommandLine cmd) {

// Initialize the parallel processor
super.buildProcessor(_batchSize);
// Subscribe to the source topic
_parallelProcessor.subscribe(UniLists.of(Topics.IN_TOPIC));
// Start the parallel processor
_parallelProcessor.poll(entryContext -> {

final String key = entryContext.key();
final InValueType value = entryContext.value();
// Start the processing
var resultFuture = customProcess(key, value)

.orTimeout(_timeout, TimeUnit.MILLISECONDS);
// Wait for the result on the processor's thread

157

try {
resultFuture.join();

} catch (CompletionException e) {
if (e.getCause() instanceof TimeoutException) {

// The processing timeout was triggered
_mainProducer.send(new ProducerRecord<>(Topics.OUT_TOPIC, key,

errorResult(ResultCodes.TIMEOUT, "Timeout")));
} else {

// The processing failed with an exception
_mainProducer.send(new ProducerRecord<>(Topics.OUT_TOPIC, key,

errorResult(ResultCodes.INTERNAL_ERROR, e.getMessage())));
}

}
});

}

private CompletableFuture<Void> customProcess(String key,
InValueType value) {

// Schedule the processing on the executor
return CompletableFuture.runAsync(() -> {

// Process the input somehow
final ResultType result = ...;
// Send the result
_mainProducer.send(new ProducerRecord<>(Topics.OUT_TOPIC, key,

result));
}, _executor);

}
}

Listing D.3: A generalised structure of a collector based on Confluent Parallel Consumer.

158

Appendix E

Examples of Configuration
Mappings

{
"connection": {

"ssl": {
"ca_file": "evil.pem"

}
},
"faust": {

"blocking_timeout": 10.5,
"something": null

},
"rdap_ip": {

"app_id": "this-wont-be-used",
"http_timeout_sec": 5

}
}

(a) The exchange object

#
kept from the previous config:
[connection.ssl]
ca_file="legit_ca.pem"
#
#
[faust]
blocking_timeout=10.5
null value omitted
#
[rdap_ip]
app_id="rdap-ip-collector"
http_timeout_sec=5
#
#

(b) The target properties file

Listing E.1: Example of the configuration mapping for Python collectors.

{
"collector": {

"max.concurrency": 32,
"nerd.token": "xyz"

},
"system": {

"compression.type": "zstd",
"security.foobar": "baz"

}
}

(a) the exchange object

#
#
collectors.max.concurrency=32
collectors.nerd.token=xyz
#
#
compression.type=zstd
security.foobar is not mapped
kept from the previous config:
security.protocol=SSL

(b) the target properties file

Listing E.2: Example of the configuration mapping for Java collectors.

159

Appendix F

List of Features
Each feature is prefixed with a specifier of the feature’s category noted in the head-
ing of the respective part of the table. The quoted implementation files can be found
in src/python_pipeline/extractor/extractor/transformations. Features with refer-
ences were adopted from related literature, those without references were proposed by the
DomainRadar team. Curly braces in the feature name column denote that the several
features are actually computed.

Feature name Description and references
Lexical features (lex_ prefix, impl. in lexical.py)

name_len Length of the domain name [114, 53, 49, 6]
has_digit True if the DN contains a digit [41]
phishing_keyword_count Occurence count of 45 phishing keywords [41]
benign_keyword_count Occurence count of 43 benign keywords [41]
consecutive_chars Longest consecutive sequence length [114, 53, 49]
tld_len Length of the TLD
tld_abuse_score Score for most-abused TLD according to [1]
tld_hash Hash of the TLD
sld_len Length of the second-level domain (SLD)
sld_norm_entropy Normalised entropy of the SLD
sld_phishing_keyword_count Occurence count of 47 phishing keywords in the SLD
sub_count Number of subdomains (domain level) [99]
stld_unique_char_cnt Number of unique characters in the TLD and SLD
begins_with_digit True if the name begins with a digit
www_flag True if the name begins with “www”
sub_max_conson_len Longest consonant sequence length in subdomains [41]
sub_norm_entropy Normalised entropy of subdomains [114, 49, 42, 113]
{sub,sld}_digit_count Number of digits in the subdomains/SLD [99]
{sub,sld}_digit_ratio Ratio of digits in the subdomains/SLD
{sub,sld}_vowel_count Number of vowels in the subdomains/SLD[113]
{sub,sld}_vowel_ratio Ratio of vowels in the subdomains/SLD
{sub,sld}_consonant_count Number of consonants in the subdomains/SLD
{sub,sld}_consonant_ratio Ratio of consonants in the subdomains/SLD
{sub,sld}_non_alpanum_count Total number of hyphens in the subdomains/SLD[99]
{sub,sld}_non_alpanum_ratio Ratio of underscores and hyphens in the subdomains/SLD
{sub,sld}_hex_count Number of hex symbols in the subdomains/SLD
{sub,sld}_hex_ratio Ratio of hex symbols in the subdomains/SLD
{phishing, malware, dga}_
bigram_matches

Number of common phishing/malware/DGA 2-gram matches
[125]

{phishing, malware, dga}_
trigram_matches

Number of common phishing/malware/DGA 3-gram matches
[125]

160

Feature name Description and references
{phishing, malware, dga}_
tetragram_matches

Number of common phishing/malware/DGA 4-gram matches
[125]

{phishing, malware, dga}_
pentagram_matches

Number of common phishing/malware/DGA 5-gram matches
[125]

avg_part_len Average length of domain name parts
stdev_part_lens Standard deviation of domain name part lengths
longest_part_len Length of the longest domain name part
shortest_sub_len Length of the shortest subdomain
ipv4_in_domain True if the DN contains an IPv4 address
has_{trusted, wellknown,
cdn, vps, img}_suffix

True if the DN ends with one of well-known suffixes

suffix_score 10𝑇 + 5𝑊 + 3𝐶 + 2𝑉 + 8𝐼
where 𝑇 = 1⇔ has_trusted_suffix is true, etc.

DNS-based features (dns_ prefix, impl. in dns.py)
A_count Number of A records [100]
AAAA_count Number of AAAA records
MX_count Number of MX records [70, 105]
NS_count Number of NS records [70]
TXT_count Number of TXT records
CNAME_count Number of CNAME records
resolved_record_types Number of discovered RRsets
has_dnskey True if a DNSKEY RRset was found in the zone
dnssec_score DNSSEC scoring (always zero, for compatibility only)
ttl_avg Average TTL value across RRsets [49, 53, 100, 101, 114]
ttl_stdev Standard deviation of TTLs across RRsets [49, 53, 114]
ttl_low Number of RRsets with TTL ∈ [0,100] [17]
ttl_mid Number of RRsets with TTL ∈ [101,500] [17]
ttl_distinct_count Number of distinct TTL values across RRsets [17]
soa_refresh SOA refresh parameter
soa_retry SOA retry parameter
soa_expire SOA expire parameter
soa_min_ttl SOA minimum TTL
domain_name_in_mx True if any mailserver is a subdomain of the DN
txt_external_
verification_score

Number of known vendor verification strings in TXT RRs
(e.g. google-site-verification=)

txt_spf_exists True if an SPF record is in the TXT RRs
txt_dkim_exists True if a DKIM record is in the TXT RRs
txt_dmarc_exists True if a DMARC record is in the TXT RRs

DNS-based lexical features
zone_level Number of subdomains in the zone DN
zone_digit_count Number of digits in the zone DN
zone_len Number of characters in the zone DN
zone_entropy Normalised entropy of the zone DN
soa_primary_ns_level Number of subdomains in the primary NS DN
soa_primary_ns_digit_count Number of digits in the primary NS DN
soa_primary_ns_len Number of characters in the primary NS DN

161

Feature name Description and references
soa_primary_ns_entropy Normalised entropy of the primary NS DN
soa_email_level Number of subdomains in the admin’s email DN
soa_email_digit_count Number of digits in the admin’s email DN
soa_email_len Number of characters in the admin’s email DN
soa_email_entropy Normalised entropy of the admin’s email DN
mx_avg_len Average number of characters of the DNs in MX records
mx_avg_entropy Average Normalised entropy of the DNs in MX records
txt_avg_len Average length of TXT RRs values
txt_avg_entropy Average normalised entropy of TXT RRs values

IP-based features (ip_ prefix, impl. in ip.py)
count Number of IP addresses [114, 17, 53, 49, 6, 4]
mean_average_rtt Average RTT of all ICMP Echo attempts
v4_ratio Ratio: IPv4 count : all related IPs count
aaaa_to_all_ratio Ratio: A/AAAA-sourced IPs count : all related IPs count
entropy Entropy of /16 IPv4 prefixes + entropy of /64 IPv6 prefixes

[101, 51]
as_address_entropy Entropy of autonomous system (AS) IP prefixes [51]
asn_entropy Entropy of AS numbers (ASNs) [99, 113]
distinct_as_count Number of distinct ASNs [5, 6, 100]

Features based on domain registration data (rdap_ prefix, impl. in rdap_dn.py)
registration_period Diff. between expiration and registration date [114, 53, 49]
domain_age Days elapsed since the domain registration [100]
time_from_last_change Days elapsed since the last change [113]
domain_active_time min(today, expiration) - registration date [114, 53, 49]
has_dnssec True if domain uses DNSSEC (according to RDAP)
registrar_name_len Length of the registrar’s name [99, 113, 100]
registrar_name_entropy Entropy of the registrar’s name [99, 113, 100]
registrar_name_hash Hash of the registrar’s name [99, 113, 100]
registrant_name_len Length of the registrant’s name [99, 113]
registrant_name_entropy Entropy of the registrant’s name [99, 113]
admin_name_len Length of the administrative contact’s name
admin_name_entropy Entropy of the administrative contact’s name
admin_email_len Length of the administrative contact’s email [70]
admin_email_entropy Entropy of the administrative contact’s email [70]

Features based on IP registration data (rdap_ip_ prefix, impl. in rdap_ip.py)
v4_count Number of IPv4 addresses with avail. RDAP data
v6_count Number of IPv6 addresses with avail. RDAP data
shortest_v4_prefix_len Length of the shortest IPv4 prefix
longest_v4_prefix_len Length of the longest IPv4 prefix
shortest_v6_prefix_len Length of the shortest IPv6 prefix
longest_v6_prefix_len Length of the longest IPv6 prefix
avg_admin_name_len Average length of the admins’ names
avg_admin_name_ent Average entropy of the admins’ names
avg_admin_email_len Average length of the admins’ emails
avg_admin_email_ent Average entropy of the admins’ emails

162

Feature name Description and references
TLS-based features (tls_ prefix, impl. in tls.py)

has_tls True if a TLS conn. to 443 was established [115, 90]
chain_len Length of the certificate chain [4]
is_self_signed True if leaf ceriticate is self-signed [4, 121]
root_authority_hash Hash of the root certificate’s authority name
leaf_authority_hash Hash of the leaf certificate’s authority name
negotiated_version_id Negotiated TLS version number (TLSv1.𝑥)
negotiated_cipher_id Identifier of the negotiated TLS cipher [16, 4]
root_cert_validity_len Length of the validity period of the root certificate
leaf_cert_validity_len Length of the validity period of the leaf cert. [121, 90, 4]
broken_chain True if there is a certificate that was never valid
expired_chain True if there is an expired certificate in the chain
total_extension_count Total extensions in all certificates in the chain [16, 121]
critical_extensions Total extensions flagged as “critical” in all certificates
with_policies_crt_count Number of certificates that include the “policies” extension
percentage_crt_
with_policies

Ratio: with the “policies” extension : all

x509_anypolicy_crt_count Number of certificates not enforcing any policy
iso_policy_crt_count Total discovered policies in the 1.* OID space
joint_isoitu_policy_
crt_count

Total discovered policies in the 2.* OID space

subject_count Number of subject alt. names (SANs) in the leaf cert. [121, 4]
server_auth_crt_count Number of certs. with “Server Authentication” key usage
client_auth_crt_count Number of certs. with “Client Authentication” key usage
unique_SLD_count Number of unique SAN of the “DNS name” type
CA_certs_in_chain_ratio Ratio: CA certificates : all
common_name_count Number of common names in the chain

Geolocation-based features (geo_ prefix, impl. in geo.py)
countries_count Number of distinct countries [114, 17, 53, 49, 6]
continent_count Number of distinct continents
countries_hash Unique hash for each combination of countries [99]
continent_hash Unique hash for each combination of continents
malic_host_country Number of IPs from specific countries
lat_stdev Standard deviation of the IP location latitudes
lon_stdev Standard deviation of the IP location longitudes
{min, max, mean}_lat Minimum/maximum latitude and the average of all lat.
{min, max, mean}_lon Minimum/maximum longitude and the average of all long.
lat_range max_lat − min_lat
lon_range max_lon − min_lon
centroid_lat (max_lat + min_lat)/2
centroid_lon (max_lon + min_lon)/2
estimated_area lat_range × lon_range

163

Appendix G

Used Packages and Licences
The following table lists the libraries used in the project, including transitive dependencies,
and their licences. The table uses these abbreviations:

Apache Apache License, version 2.0:
https://www.apache.org/licenses/LICENSE-2.0

BSD The 3-Clause BSD License:
https://opensource.org/license/bsd-3-clause

BSD2 The 2-Clause BSD License:
https://opensource.org/license/bsd-2-clause

CC0 Creative Commons Zero 1.0 Universal:
https://creativecommons.org/public-domain/cc0/

EPL 1.0/2.0 Eclipse Public License:
Version 1.0: https://www.eclipse.org/legal/epl-v10.html
Version 2.0: https://www.eclipse.org/legal/epl-2.0/

ISC ISC License:
https://opensource.org/license/isc-license-txt

LGPL GNU Lesser General Public License, version 3:
https://www.gnu.org/licenses/lgpl-3.0.en.html

MIT The MIT License:
https://opensource.org/license/mit

Repoze Repoze Public License (a derivative of the BSD License):
https://github.com/Pylons/venusian/blob/main/LICENSE.txt

The Unlicense https://choosealicense.com/licenses/unlicense/

Package Version Licence
Python

aiohttp 3.9.5 Apache
aiohttp_cors 0.7.0 Apache
aiokafka 0.10.0 Apache
annotated-types 0.7.0 MIT
async-timeout 4.0.3 Apache
asynciolimiter 1.0.0 MIT

164

https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/license/bsd-3-clause
https://opensource.org/license/bsd-2-clause
https://creativecommons.org/public-domain/cc0/
https://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-2.0/
https://opensource.org/license/isc-license-txt
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://opensource.org/license/mit
https://github.com/Pylons/venusian/blob/main/LICENSE.txt
https://choosealicense.com/licenses/unlicense/

Package Version Licence
asyncwhois 1.1.4 MIT
cffi 1.16.0 MIT
click 8.1.7 BSD
cramjam 2.8.3 MIT
croniter 2.0.5 MIT
cryptography 42.0.8 Apache or BSD
dnspython 2.6.1 ISC
faust-streaming 0.11.0 BSD
feather-format 0.4.1 Apache
filelock 3.15.4 The Unlicense
fsspec 2024.6.1 Apache
httpx 0.27.0 BSD
icmplib 3.0.4 LGPL
idna 3.7 BSD
intervaltree 3.1.0 Apache
mode-streaming 0.4.1 BSD
mypy-extensions 1.0.0 MIT
numpy 2.0.0 BSD
opentracing 2.4.0 Apache
pandas 2.2.2 BSD
pyarrow 16.1.0 Apache
pydantic 2.8.2 MIT
pydantic-core 2.20.1 MIT
python-dateutil 2.9.0 Apache or BSD
python-socks 2.5.0 Apache
python-whois 0.9.4 MIT
requests 2.32.3 Apache
requests-file 2.1.0 Apache
six 1.16.0 MIT
terminaltables 3.1.10 MIT
tldextract 5.1.2 BSD
tzdata 2024.1 Apache
venusian 3.1.0 Repoze
whodap 0.1.12 MIT
whoisit 2.7.7 BSD
yarl 1.9.4 Apache

165

Package Version Licence
Java

Jackson-annotations 2.17.1 Apache
Jackson-core 2.17.1 Apache
Jackson-databind 2.17.1 Apache
Jackson datatype: JSR310 2.17.1 Apache
zstd-jni 1.5.5 BSD2
FindBugs-jsr305 3.0.2 Apache
error-prone annotations 2.26.1 Apache
Guava: Google Core Libraries for Java 33.1.0 Apache
Guava and InternalFutures 1.0.2 Apache
Guava ListenableFuture only 9999.0 Apache
J2ObjC Annotations 3.0.0 Apache
MaxMind DB Reader 3.1.0 Apache
MaxMind GeoIP2 API 4.2.0 Apache
Apache Commons CLI 1.6.0 Apache
Confluent Parallel Consumer Core 0.5.3.0 Apache
micrometer-commons 1.13.0 Apache
micrometer-core 1.13.0 Apache
micrometer-observation 1.13.0 Apache
javax.ws.rs-api 2.1.1 EPL 2.0
JUnit 4.13.1 EPL 1.0
Apache Kafka 3.7.0 Apache
(Clients, Streams, Connect API)
Checker Qual 3.42.0 MIT
Hamcrest Core 1.3 BSD
HdrHistogram 2.2.1 BSD2
JetBrains Java Annotations 24.1.0 Apache
LatencyUtils 2.0.3 CC0
LZ4 and xxHash 1.8.0 Apache
RocksDB JNI 7.9.2 Apache
SLF4J API Module 2.0.13 MIT
SLF4J Simple Provider 2.0.13 MIT
snappy-java 1.1.10.5 Apache
UniJ 0.1.3 Apache

166

Appendix H

Results of the Evaluation
Experiments
For the explanation of the following tables and charts, refer to Chapter 8. Space is used as
the digit group separator in large numbers to prevent confusion with the decimal point.

H.1 Collector Experiments
Note that the RTT collector never exhibited errors so it is omitted from the error tables
and charts for clarity. The GEO-ASN collector is omitted from the charts because the
error rate was always below 0.1%. The categories used in the error rate tables map to the
collector result codes as follows:

• NotFound: NOT_FOUND, UNSUPPORTED_ADDRESS,

• Remote: CANNOT_FETCH, TIMEOUT, OTHER_DNS_ERROR,

• Internal: INTERNAL_ERROR,

• RateLimit: RATE_LIMITED,

• NoEndpt: NO_ENDPOINT,

• Other: all other non-zero result codes.

Experiment #1 (2 partitions)

Collector Tot AvgTput AvgColT MnQdColT
[h:m] [req/s] [ms] [s]

Zone 8:34 12.96 77 18 704
DNS 14:06 7.51 133 7 862
TLS 14:06 7.30 137 0.370

RDAP-DN 19:53 5.33 188 21 245
GEO-ASN 14:06 18.12 55 0.008

NERD 14:06 18.15 55 0.018
RDAP-IP 19:02 13.42 75 10 066

RTT 21:00* 0.43 2 314 36 289

Table H.1: Per-collector metrics in experiment #1. The RTT collector was extremely slow
and was terminated prematurely.

167

Zone DNS TLS R-DN WHOIS GEO NERD R-IP

NotFound req% 4.20 0 0 0.12 0.46 0.03 29.75 0
all% 4.21 0 0 0.11 - - - -

Remote req% 0.14 0.03 8.44 15.27 0 0 0.65 0.02
all% 0.14 0.03 7.82 14.56 - - - -

Internal req% 0.38 0.03 0 1.91 10.49 0 0 0.02
all% 0.38 0.03 0 1.82 - - - -

RateLimit req% - - - 11.39 0 - - 0
all% - - - 10.86 - - - -

NoEndpt req% - - - 19.57 0 - - 0
all% - - - 18.66 - - - -

Other req% 0 0 0 5.66 0 0 0 0
all% 0 0 0 5.39 - - - -

Total req% 4.72 0.06 8.44 53.92 10.95 0.03 30.40 0.04
all% 4.72 0.05 7.82 51.41 0 0 0 0

Table H.2: Error rates in experiment #1.

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00
Time [hours:minutes]

0
20

0,0
00

40
0,0

00
60

0,0
00

80
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.1: Number of responses over time in experiment #1.

168

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT
INTERNAL_ERROR

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors

Error types
WHOIS
NOT_FOUND
WHOIS
INTERNAL_ERROR
unknown
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
CANNOT_FETCH
UNSUPPORTED_ADDRESS

Figure H.2: Error types in experiment #1.

169

Experiment #2 (4 partitions)

Collector Tot AvgTput AvgColT MnQdColT
[h:m] Δ [req/s] Δ [ms/req] Δ [s/req] Δ

Zone 5:43 -33% 19.42 +50% 51 -34% 10 823 -42%

DNS 6:34 -53% 16.09 +114% 62 -53% 982 -88%

TLS 6:34 -53% 15.65 +114% 64 -53% 2.017 +445%

RDAP-DN 9:56 -50% 10.65 +99% 94 -50% 6 683 -69%

GEO-ASN 6:34 -53% 38.79 +114% 26 -53% 0.012 +50%

NERD 6:34 -53% 38.79 +114% 26 -53% 0.023 +28%

RDAP-IP 8:23 -56% 30.42 +126% 33 -56% 3 235 -68%

RTT 27:21* - 6.18 - 162 - 69 340 -

Table H.3: Per-collector metrics in experiment #2, showing the differences to experiment
#1. The RTT collector was again extremely slow in this test and was first reconfigured and
then terminated prematurely, so the differences would be meaningless.

Zone DNS TLS R-DN WHOIS GEO NERD R-IP

NotFound req% 4.21 0 0 0.01 0.42 0.04 29.74 0.00
all% 4.21 0 0 0.01 - - - -

Remote req% 0.13 0.03 8.40 16.93 0 0 0 0.03
all% 0.13 0.02 7.79 16.13 - - - -

Internal req% 0.37 0.01 0 1.89 14.08 0 0 0.02
all% 0.37 0.01 0 1.80 - - - -

RateLimit req% - - - 13.76 0 - - 0.06
all% - - - 13.11 - - - -

NoEndpt req% - - - 17.75 0 - - 0
all% - - - 16.92 - - - -

Other req% 0 0 0 8.25 0 0 0 0
all% 0 0 0 7.86 - - - -

Total req% 4.72 0.03 8.40 58.59 14.49 0.04 29.74 0.11
all% 4.72 0.03 7.79 55.83 0 0 0 0

Table H.4: Error rates in experiment #2.

170

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 26:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 26:00
Time [hours:minutes]

0
20

0,0
00

40
0,0

00
60

0,0
00

80
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.3: Number of responses over time in experiment #2. The chart for the DN-based
collectors is shown twice: the top one is scoped to the runtime of the DN-based collectors
only, the bottom one shows the entire test duration to provide better comparison with the
IP-based collectors in the bottom chart.

171

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT
INTERNAL_ERROR

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors

Error types
WHOIS
NOT_FOUND
WHOIS
INTERNAL_ERROR
unknown
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
UNSUPPORTED_ADDRESS

Figure H.4: Error types in experiment #2.

172

Experiment #3 (8 partitions)

Collector Tot AvgTput AvgColT MnQdColT
[h:m] Δ [req/s] Δ [ms/req] Δ [s/req] Δ

Zone 5:29 -4% 20.23 +4% 49 -4% 10 443 -4%

DNS 5:29 -16% 19.24 +20% 52 -16% 2.194 +123%

TLS 5:29 -16% 18.72 +20% 53 -17% 0.279 -86%

RDAP-DN 5:58 -40% 17.72 +66% 56 -40% 486 -93%

GEO-ASN 5:29 -16% 46.43 +20% 22 -16% 0.023 +92%

NERD 5:29 -16% 46.43 +20% 22 -16% 0.033 +43%

RDAP-IP 5:29 -35% 46.43 +53% 22 -33% 0.933 -71%

RTT 5:29 - 46.42 - 22 - 8.603 -

Table H.5: Per-collector metrics in experiment #3, showing the differences to experiment
#2.

Zone DNS TLS R-DN WHOIS GEO NERD R-IP

NotFound req% 4.22 0 0 0.07 0.38 0.03 29.75 0.00
all% 4.22 0 0 0.06 - - - -

Remote req% 0.15 0.02 8.65 17.94 0 0 0 0.02
all% 0.15 0.02 8.01 17.09 - - - -

Internal req% 0.40 0.01 0 1.85 17.69 0 0 0.06
all% 0.40 0.01 0 1.76 - - - -

RateLimit req% - - - 12.87 0 - - 0.01
all% - - - 12.26 - - - -

NoEndpt req% - - - 16.84 0 - - 0
all% - - - 16.04 - - - -

Other req% 0 0 0 10.66 0 0 0 0
all% 0 0 0 10.15 - - - -

Total req% 4.77 0.03 8.65 60.23 18.07 0.03 29.75 0.09
all% 4.77 0.03 8.01 57.36 0 0 0 0

Table H.6: Error rates in experiment #3.

173

00:00 01:00 02:00 03:00 04:00 05:00 06:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 01:00 02:00 03:00 04:00 05:00 06:00
Time [hours:minutes]

0
20

0,0
00

40
0,0

00
60

0,0
00

80
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.5: Number of responses and resource usage over time in experiment #3.

174

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT
INTERNAL_ERROR

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors

Error types
WHOIS
NOT_FOUND
WHOIS
INTERNAL_ERROR
unknown
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
UNSUPPORTED_ADDRESS

Figure H.6: Error types in experiment #3.

175

Experiment #4 (12 partitions)

Collector Tot AvgTput AvgColT MnQdColT
[h:m] Δ [req/s] Δ [ms/req] Δ [s/req] Δ

Zone 3:04 -44% 36.29 +79% 28 -43% 5 133 -51%

DNS 3:04 -44% 31.44 +63% 32 -38% 0.960 -56%

TLS 3:04 -44% 30.59 +63% 33 -38% 0.337 +21%

RDAP-DN 4:16 -28% 22.65 +28% 44 -21% 2 489 +412%

GEO-ASN 3:04 -44% 75.78 +63% 13 -41% 0.044 +91%

NERD 3:04 -44% 75.78 +63% 13 -41% 0.141 +327%

RDAP-IP 3:04 -44% 75.76 +63% 13 -41% 1.837 +97%

RTT 3:04 -44% 75.75 +63% 13 -41% 8.425 -2%

Table H.7: Per-collector metrics in experiment #4.

Zone DNS TLS R-DN WHOIS GEO NERD R-IP

NotFound req% 4.02 0 0 0.01 0.33 0.03 29.84 0
all% 4.03 0 0 0.01 - - - -

Remote req% 9.13 0.02 8.49 18.62 0 0 0.01 0.04
all% 9.16 0.02 7.19 16.21 - - - -

Internal req% 0.15 0.01 0 1.84 17.56 0 0.01 0.06
all% 0.15 0.01 0 1.60 - - - -

RateLimit req% - - - 14.56 0 - - 0.20
all% - - - 12.67 - - - -

NoEndpt req% - - - 16.65 0 - - 0
all% - - - 14.49 - - - -

Other req% 0 0 0 11.01 0 0 0 0
all% 0 0 0 9.58 - - - -

Total req% 13.29 0.03 8.49 62.68 17.89 0.03 29.85 0.29
all% 13.35 0.03 7.19 54.56 0 0 0 0

Table H.8: Error rates in experiment #4.

176

00:00 01:00 02:00 03:00 04:00
Time [hours:minutes]

0
10

0,0
00

20
0,0

00
30

0,0
00

40
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 01:00 02:00 03:00 04:00
Time [hours:minutes]

0
20

0,0
00

40
0,0

00
60

0,0
00

80
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.7: Number of responses and resource usage over time in experiment #4.

177

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT
INTERNAL_ERROR

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors

Error types
WHOIS
NOT_FOUND
WHOIS
INTERNAL_ERROR
unknown
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
TIMEOUT
INTERNAL_ERROR
UNSUPPORTED_ADDRESS

Figure H.8: Error types in experiment #4.

178

Load on the Broker

infra scanner
Tot [min] CPU [%] Mem [GiB] CPU [%] Mem [GiB]

200 17 3.83 62 11.39

Metrics of the broker load experiment.

Figure H.9: Comparison of the load on both VMs during collection.

H.2 Data Merger Experiments

Test Tot [min] MnProcT [ms] MTput [DN/s] CPU [%] Mem [GiB]
#1 33 5.69 175.61 47 36.63
#2 25 4.31 231.81 59 21.03
#3 24 4.14 241.47 57 18.08

Metrics of the three merger runs. The best values are in bold.

179

Figure H.10: Data merger system resources usage in the test with 𝑀 = 4,𝑀 𝑡 = 4.

Figure H.11: Data merger system resources usage in the test with 𝑀 = 1,𝑀 𝑡 = 16.

180

Figure H.12: Data merger system resources usage in the test with 𝑀 = 1,𝑀 𝑡 = 8.

181

H.3 Feature Extractor Experiments

Tot CPU Mem Tot CPU Mem Tot CPU Mem
[min] [%] [GiB] [min] [%] [GiB] [min] [%] [GiB]

Inst. 𝐸 𝐸𝑏 = 200, 𝐸𝑡 = 4 𝐸𝑏 = 200, 𝐸𝑡 = 8 𝐸𝑏 = 200, 𝐸𝑡 = 16

1 22 46 3.276 22 45 3.954 19 46 5.162
4 10 78 6.520 11 78 8.671

Inst. 𝐸 𝐸𝑏 = 50 𝐸𝑏 = 100 𝐸𝑏 = 200

8 11 71 4.025 9 76 4.037 9 66 4.097
16 15 67 5.244 12 65 5.151 9 72 5.354

System metrics during the feature extractor experiments.

1 partition, multiprocessing

Figure H.13: System resources usage in the test with 𝐸 = 1, 𝐸𝑏 = 200, 𝐸𝑡 = 4.

Figure H.14: System resources usage in the test with 𝐸 = 1, 𝐸𝑏 = 200, 𝐸𝑡 = 8.

182

Figure H.15: System resources usage in the test with 𝐸 = 1, 𝐸𝑏 = 200, 𝐸𝑡 = 16.

4 partitions, multiprocessing

Figure H.16: System resources usage in the test with 𝐸 = 4, 𝐸𝑏 = 200, 𝐸𝑡 = 4.

System resources usage in the test with 𝐸 = 4, 𝐸𝑏 = 200, 𝐸𝑡 = 8.

183

8 partitions

Figure H.17: Extractor system resources usage in the test with 𝐸 = 8, 𝐸𝑏 = 50, 𝐸𝑡 = 1.

Figure H.18: Extractor system resources usage in the test with 𝐸 = 8, 𝐸𝑏 = 100, 𝐸𝑡 = 1.

Figure H.19: Extractor system resources usage in the test with 𝐸 = 8, 𝐸𝑏 = 200, 𝐸𝑡 = 1.

184

16 partitions

Figure H.20: System resources usage in the test with 𝐸 = 16, 𝐸𝑏 = 50, 𝐸𝑡 = 1.

Figure H.21: System resources usage in the test with 𝐸 = 16, 𝐸𝑏 = 100, 𝐸𝑡 = 1.

Figure H.22: System resources usage in the test with 𝐸 = 16, 𝐸𝑏 = 200, 𝐸𝑡 = 1.

185

H.4 Real-time Processing Experiments

Figure H.23: System resources usage of the two VMs in experiment #1.

186

Figure H.24: System resources usage of the two VMs in experiment #2.

187

Real-time Experiment #3

Collector Tot AvgTput AvgColT MnQdColT
[h:m] [req/s] [ms/req] [s/req]

Zone 02:08 9.43 106 -
DNS 02:08 9.04 110 11.23

RDAP-DN 02:08 8.79 113 4.96
TLS 02:08 7.42 134 0.46

GEO-ASN 02:08 18.19 54 0.01
NERD 02:08 18.19 54 0.02

RDAP-IP 02:08 18.20 54 0.52
RTT 02:08 18.20 54 6.54

Table H.9: Per-collector metrics in real-time experiment #3.

Zone DNS TLS R-DN WHOIS GEO NERD R-IP
NotFound req% 1.92 0 0 0.01 0.58 0.21 30.55 0.00
Remote req% 1.15 0.02 16.88 11.46 0 0 0.01 0.41
Internal req% 0.86 0 0.13 0.08 12.55 0 0 0.92

RateLimit req% - - - 13.54 0 - - 0.18
NoEndpt req% - - - 28.77 0 - - 0

Other req% 0 0 0 7.73 0 0 0 0
Total req% 3.93 0.02 17.01 61.59 13.12 0.21 30.56 1.51

Table H.10: Error rates in real-time experiment #3.

188

00:00 01:00 02:00
Time [hours:minutes]

0
20

,00
0

40
,00

0
60

,00
0

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 01:00 02:00
Time [hours:minutes]

020
,00

040
,00

060
,00

080
,00

010
0,0

0012
0,0

0014
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.25: Number of responses over time in real-time experiment #3.

189

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors

Error types
WHOIS
NOT_FOUND
WHOIS
INTERNAL_ERROR
unknown
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
CANNOT_FETCH
UNSUPPORTED_ADDRESS

Figure H.26: Error types in real-time experiment #3.

190

Figure H.27: System resources usage of the two VMs in experiment #3.

191

Real-time Experiment #4

Collector Tot AvgTput AvgColT MnQdColT
[h:m] [req/s] [ms/req] [s/req]

Zone 11:59 7.87 127 -
DNS 11:59 7.57 132 4.06
TLS 11:59 6.76 147 0.53

RDAP-DN 11:59 7.57 132 12.63
GEO-ASN 11:59 15.76 63 0.01

NERD 11:59 15.76 63 0.02
RDAP-IP 11:59 15.76 63 0.42

RTT 11:59 15.76 63 6.32

Table H.11: Per-collector metrics in real-time experiment #4.

Zone DNS TLS R-DN WHOIS GEO NERD R-IP
NotFound req% 2.81 0 0 0.03 0.53 0.22 29.39 0.00
Remote req% 1.03 0.01 13.85 12.95 0.00 0 0.00 0.50
Internal req% 0 0 0.03 0.13 19.51 0 0 1.07

RateLimit req% - - - 21.58 0 - - 0.35
NoEndpt req% - - - 23.69 0 - - 0

Other req% 0 0 0 0 0 0 0 0
Total req% 3.84 0.01 13.88 58.38 20.04 0.22 29.39 1.92

Table H.12: Error rates in real-time experiment #4.

192

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
Time [hours:minutes]

050
,00

010
0,0

0015
0,0

0020
0,0

0025
0,0

0030
0,0

0035
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
Time [hours:minutes]

010
0,0

0020
0,0

0030
0,0

0040
0,0

0050
0,0

0060
0,0

0070
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.28: Number of responses over time in real-time experiment #4.

193

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
CANNOT_FETCH

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors
Error types

WHOIS
NOT_FOUND
WHOIS
CANNOT_FETCH
WHOIS
INTERNAL_ERROR
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
CANNOT_FETCH
UNSUPPORTED_ADDRESS

Figure H.29: Error types in real-time experiment #4.

194

Figure H.30: System resources usage of the two VMs in real-time experiment #4.

195

Real-Time Experiment #5

Collector Tot AvgTput AvgColT MnQdColT
[h:m] [req/s] [ms/req] [s/req]

Zone 36:02 1.11 897 -
DNS 36:02 0.99 1008 10.54

RDAP-DN 36:02 0.99 1007 14.54
TLS 36:02 0.78 1281 3.81

GEO-ASN 36:02 1.36 736 0.12
NERD 36:02 1.36 736 0.13

RDAP-IP 36:02 1.36 736 0.64
RTT 36:02 1.36 736 6.84

Table H.13: Per-collector metrics in real-time experiment #5.

Zone DNS TLS R-DN WHOIS GEO NERD R-IP
NotFound req% 6.86 0 0 0.03 0.44 1.87 20.08 0.00
Remote req% 4.07 0.16 47.77 23.84 0.01 0 0.00 2.54
Internal req% 0 0 0.33 0.10 6.97 0 0.00 2.38

RateLimit req% - - - 15.93 0 - - 0.02
NoEndpt req% - - - 17.02 0 - - 0

Other req% 0.04 0 0 0 0 0 0 0
Total req% 10.97 0.16 48.10 56.93 7.42 1.87 20.09 4.93

Table H.14: Error rates in real-time experiment #5.

196

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 26:00 28:00 30:00 32:00 34:00 36:00
Time [hours:minutes]

020
,00

040
,00

060
,00

080
,00

010
0,0

0012
0,0

0014
0,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

dns
rdap-dn

tls
zone

dns success
rdap-dn success

tls success
zone success

rdap whois only

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 26:00 28:00 30:00 32:00 34:00 36:00
Time [hours:minutes]

025
,00

050
,00

075
,00

010
0,0

0012
5,0

0015
0,0

0017
5,0

00

T
ot

al
 n

um
be

r
of

 r
es

ul
ts

geo-asn
nerd

rdap-ip
rtt

geo-asn success
nerd success

rdap-ip success
rtt success

Figure H.31: Number of responses over time in real-time experiment #5.

197

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
zone

Success rate
Success
Errors

Error types
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INVALID_DOMAIN_NAME

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

dns
Success rate

Success
Errors

Error types
OTHER_DNS_ERROR
TIMEOUT

Success
rate

RDAP
errors

WHOIS
errors

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-dn
Success rate

RDAP success
WHOIS success
Errors
Error types

WHOIS
NOT_FOUND
WHOIS
CANNOT_FETCH
WHOIS
INTERNAL_ERROR
NO_ENDPOINT
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%
Pe

rc
en

ta
ge

tls
Success rate

Success
Errors

Error types
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

rdap-ip
Success rate

Success
Errors

Error types
RATE_LIMITED
NOT_FOUND
TIMEOUT
CANNOT_FETCH
INTERNAL_ERROR

Success
rate

Errors
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge

nerd
Success rate

Success
Errors

Error types
CANNOT_FETCH
INTERNAL_ERROR
UNSUPPORTED_ADDRESS

Figure H.32: Error types in real-time experiment #5.

198

Figure H.33: System resources usage of the two VMs in experiment #5. The measurements
are missing for the scanner VM between 10:00 and 21:00 because of an unexpected system
restart killing the collectd measurement daemon.

199

Appendix I

Contents of the Attached Data
Storage
/

analysis: the scripts used for analysing the collection results

src: the source codes

java_pipeline: Java-based pipeline components

common: models, shared constants

connect: transformations and converters for Kafka Connect

serialization: shared serialisation code

standalone-collectors: Parallel Consumer based collectors

streams-components: the data merger component

python_pipeline: Python-based pipeline components

collector: the collectors

collectors

dns: the DNS collector

rdap_dn: the RDAP-DN collector

rdap_ip: the RDAP-IP collector

rtt: the RTT collector

zone: the zone collector

common: models, shared constants, logging and utility functions

extractor: the feature extractor

config_manager: the configuration manager

standalone_input: the standalone input controller

infra: the infrastructure Docker Compose

client_properties: configurations for the components

connect_plugins: plugins for Kafka Connect

connect_properties: configurations for Kafka Connect

data: runtime files for the collectors

db: database init scripts and configurations

dockerfiles: Dockerfiles for the supplementary services

envs: environment files for the services

extractor_data: supplementary files for the feature extractor

geoip_data: the GeoLite2 databases (by MaxMind)

kafka_scripts: Kafka setup scripts

misc: testing data and other supplementary files

mongo_aggregations: example MongoDB aggregations

200

/

analysis: the scripts used for analysing the collection results

src: the source codes

java_pipeline: Java-based pipeline components

common: models, shared constants

connect: transformations and converters for Kafka Connect

serialization: shared serialisation code

standalone-collectors: Parallel Consumer based collectors

streams-components: the data merger component

python_pipeline: Python-based pipeline components

collector: the collectors

collectors

dns: the DNS collector

rdap_dn: the RDAP-DN collector

rdap_ip: the RDAP-IP collector

rtt: the RTT collector

zone: the zone collector

common: models, shared constants, logging and utility functions

extractor: the feature extractor

config_manager: the configuration manager

standalone_input: the standalone input controller

infra: the infrastructure Docker Compose

client_properties: configurations for the components

connect_plugins: plugins for Kafka Connect

connect_properties: configurations for Kafka Connect

data: runtime files for the collectors

db: database init scripts and configurations

dockerfiles: Dockerfiles for the supplementary services

envs: environment files for the services

extractor_data: supplementary files for the feature extractor

geoip_data: the GeoLite2 databases (by MaxMind)

kafka_scripts: Kafka setup scripts

misc: testing data and other supplementary files

mongo_aggregations: example MongoDB aggregations

201

	Introduction
	Malicious Traffic Detection Based on Domains and Related Sources
	Approaches to Malicious Domain Name Detection
	Previously Studied Features for Malicious Domain Name Detection
	Project FETA and Goals of the DomainRadar Group

	Parallel and Distributed Approaches to Data Processing
	Big Data Processing
	Batch vs. Stream Processing
	Examples of Distributed Data Processing Frameworks
	Apache Kafka
	Stream Processing with Kafka

	Sourcing Domain-Related Data and Features
	Scanning the DNS
	Sourcing Registration Data using RDAP and WHOIS
	Discovering Information Related to IPs
	Limitations of the Prototype Data Collection Tool

	DomainRadar and its Requirements on the Data Processing Subsystem
	The Proposed Architecture
	Expected Throughput Assessment
	Requirements on the Collector Unit
	Requirements on the Feature Extraction Unit

	Design of the Data Processing Pipeline
	Parallelism Granularity and Data Gathering
	The Final Pipeline Model
	Common Definitions for the Functional Specifications
	The Collectors
	Merging the Collected Data
	Feature Extractor
	Re-collection Controller

	Implementation
	The Big Picture: the Technologies of DomainRadar
	The Kafka-based Data Processing Pipeline
	Python-based Collectors
	The Feature Extractor
	Java-based Collectors and the Data Merger
	Database Integration using Kafka Connect
	Container Images
	Compose-based Orchestration

	Performance and Reliability Evaluation
	Standalone Collection Experiments
	Data Merging Experiments
	Standalone Feature Extraction Experiments
	Real-time Data Processing Experiments
	Discussion

	Conclusion
	Bibliography
	CESNET Domains Analysis
	Functional Specification of the Collectors and the Merger
	Zone Collector
	DNS Collector
	TLS Collector
	RDAP-DN Collector
	Common Specification of the IP-Based Collectors
	RDAP-IP Collector
	NERD Collector
	GEO-ASN Collector
	RTT Collector
	The Data Merger Operation
	Data Models
	Input/Output Examples
	Collector Result Codes
	Collector Configuration

	Component Identifiers
	Examples of Collector Implementation
	Examples of Configuration Mappings
	List of Features
	Used Packages and Licences
	Results of the Evaluation Experiments
	Collector Experiments
	Data Merger Experiments
	Feature Extractor Experiments
	Real-time Processing Experiments

	Contents of the Attached Data Storage

