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Abstract

This diploma thesis presents Parallel Pattern Quicksort (PPQSort), an innovative par-
allel quicksort algorithm designed to deliver exceptional performance and ease of use.
Using C++ threads, PPQSort eliminates the need for external dependencies and al-
lows seamless deployment across diverse computing environments. This thesis outlines
the innovative quicksort optimizations utilized by PPQSort, such as branchless paral-
lel partitioning and their efficient implementation. Furthermore, the study includes an
extensive comparative analysis of PPQSort versus existing parallel quicksort algorithms
on various machines and with different input data. The experimental evaluation results
demonstrate that PPQSort is both speedy and robust, consistently outperforming the
fastest existing parallel quicksort implementations on all inputs, often by an average of
50%.

Keywords parallel sorting, quicksort, C++20, thread pool, in-place sorting, parallel
partitioning, PPQSort

Abstrakt

V této diplomové práci je představen PPQSort, inovativńı paralelńı Quicksort algorit-
mus, který poskytuje excelentńı výkon a ćıĺı na snadné použit́ı. PPQSort je imple-
mentován pouze na základě vláken jazyka C++, tedy bez použit́ı exterńıch knihoven
a nestandardńıch rozš́ı̌reńı. Dı́ky tomu PPQSort umožňuje bezproblémové nasazeńı v
r̊uzných výpočetńıch prostřed́ıch. Práce popisuje nové optimalizace Quicksortu, které
PPQSort využ́ıvá, jako je paralelńı rozdělováńı bez větveńı a jejich efektivńı imple-
mentaci. Práce dále prezentuje rozsáhlou srovnávaćı analýzu algoritmu PPQSort oproti
stávaj́ıćım paralelńım Quicksort algoritmům na r̊uzných stroj́ıch a s r̊uznými vstupńımi
daty. Výsledky experimentálńıho vyhodnoceńı ukazuj́ı, že PPQSort je rychlý a robustńı
a trvale překonává nejrychleǰśı existuj́ıćı paralelńı implementace Quicksortu na všech
vstupech, často v pr̊uměru o 50%.

Kĺıčová slova paralelńı řazeńı, quicksort, C++20, fond vláken, in-place řazeńı, par-
alelńı rozdělováńı, PPQSort
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Introduction

Sorting algorithms are an essential part of computer science. They are used in many
programs and systems, and their efficiency and speed are crucial. Despite being one of
the oldest problems in computer science, sorting is still a highly active area of research
and development. Modern approach is to parallelize the sorting routines. This tech-
nique maximizes the utilization of multi-core CPUs, resulting in significant performance
improvements compared to sequential methods.

Although C++ has introduced parallel algorithms starting from the C++17 stan-
dard, their implementation and compiler support remain limited. Major compilers like
GCC and Clang offer minimal support. While compilers like MSVC and Intel OneAPI
C++ provide parallel algorithm implementations, they rely on complex, vendor-specific
libraries. This dependence can create portability and ease of use challenges.

Our research aims to provide an effective parallel quicksort implementation with-
out external dependencies. We focus on parallel quicksort implementations in shared-
memory environments. Existing solutions often rely on non-standard extensions like
OpenMP or external libraries such as oneTBB. We identified only two implementations
solely based on the standard library, but they lacked novel approaches and optimizations
for quicksort. To bridge this gap, we leverage the power of the C++ standard library to
introduce our fast parallel quicksort algorithm named Parallel Pattern Quicksort (PPQ-
Sort).

To establish the current state of the art, we provide a thoughtful analysis of novel and
effective sequential quicksort optimizations and their efficient implementations. Building
upon this foundation, we introduce our parallel implementation of these optimizations,
resulting in a fast parallel quicksort algorithm. Next, we focus on existing parallel sorting
algorithms, examining their properties and comparing them to PPQSort. We conduct
a comprehensive comparative analysis where PPQSort is compared with established
parallel quicksort implementations to solidify our findings.

Our thorough benchmarking process involves a broad range of data types, input dis-
tributions, input sizes, input cardinalities, and sparse matrices running on four different
machines. With such a comprehensive dataset, we can confidently validate our results.
In the appendix, we present complete benchmark results, which include outcomes for
different parallel sorting algorithms (not limited to quicksort).

1



2 Introduction



Chapter 1

Sorting Algorithms

This chapter begins by exploring the fundamental properties that define how sorting
algorithms operate. These properties will enable us to classify and compare different
sorting algorithms effectively. Following this, we present an overview of basic in-place
sorting algorithms, a crucial category that performs sorting without requiring additional
memory space.

The main objective of sorting is to arrange the data according to a specific criterion.
In a formal sense, it involves taking a sequence of n elements a1, ..., an as input, along with
a comparator that allows comparison of any two elements in the input. The output of the
sorting algorithm is a permutation of the input data such that ∀i ∈ ⟨0, n−1) : bi ≤ bi+1.
The resulting order depends on the comparator, which is denoted by the symbol < in
this thesis [1].

1.1 Classification

We can use different properties to evaluate and categorize sorting algorithms. Doing
so allows us to compare and determine which algorithm suits our specific needs. It is
important to note that no algorithm is flawless and possesses all the ideal properties.
Usually, if an algorithm excels in one property, it comes at the expense of another. As
a result, contemporary ranking algorithms often combine multiple algorithms to lever-
age their respective strengths. Besides time and memory complexity, the properties of
interest include stability, adaptivity, recursiveness, and whether the algorithm functions
within the comparison model.

1.1.1 Time Complexity
Time complexity is one of the most basic and essential properties we investigate in
sorting algorithms. The complexity depends on the input size, which we will refer to as
n from now on. We represent the time complexity using asymptotic notation, allowing
us to disregard any multiplicative and additive constants. We are concerned with the
best, average, and worst-case scenarios when considering time complexity.

The best-case scenario illustrates the algorithm’s performance under ideal circum-
stances. It represents the fastest possible case in terms of time complexity. For instance,

3



4 Sorting Algorithms

if the desired element is found immediately in the first position in a linear search, this
would be considered the best case. Similarly, applying the insertion sort algorithm [2,
p. 17] to an already sorted array represents a best-case scenario for the insertion sort
algorithm. Although the best-case complexity is not typically the primary focus when
evaluating algorithms, as we prioritize the average and worst-case scenarios, it can still
provide valuable insights.

In contrast, the maximum time required for an algorithm to complete a specific input
size, n, represents its worst-case scenario and is commonly used to evaluate its time
complexity. Consider a linear search, for example, where the element being searched
for is located at the very end. While the algorithm usually performs faster than its
worst-case time complexity, it may slow down for a few exceptional inputs. In such
cases, calculating the average case complexity may be more beneficial, which involves
taking the arithmetic mean of the algorithm’s time requirements across all inputs of a
particular size [1, 2].

The RAM model [1, p. 52] states that the sorting algorithms have a minimum
time complexity of O(n log(n)). It is because any sorting algorithm requires at least
O(n log(n)) comparisons [2, p. 207]. Sorting algorithms such as Merge sort [2, p. 34],
Quick sort [2, p. 182], and heap sort [2, p. 161] are well-known examples of algorithms
that have this average time complexity.

On the contrary, there exist sorting algorithms, such as radix sort [2, p. 211], that
have a lower time complexity but usually rely on specific conditions for the input data
and are not applicable in the comparison model. Our research aims for complete flexi-
bility and thus concentrates on comparison-based algorithms that can handle input data
without special requirements.

1.1.2 Memory Usage
Memory complexity is a crucial aspect that determines the memory needs of an algo-
rithm. It specifically refers to the amount of memory consumed based on the input size,
n. The memory complexity of an algorithm only takes into account the additional mem-
ory used for auxiliary computations, excluding the size of the input data. Algorithms are
categorized as either in-place or out-of-place, depending on their memory complexity.

In-place1 algorithms are known for their low memory usage, as they only require
constant extra memory to run, regardless of the input size. This results in a memory
complexity of O(1). On the other hand, out-of-place algorithms require additional mem-
ory allocation during execution, and the amount of memory needed is proportional to
the input size, n. Merge Sort is a famous example of an out-of-place algorithm with a
space complexity of O(n).

1.1.3 Other Properties
Beyond the time complexity and memory usage, the following additional properties of
sorting algorithms can still provide valuable insights into a given sorting algorithm:

1The Latin term ”in situ” is also used in literature.



Basic Sorting Algorithms 5

Stability is another crucial attribute. A sorting algorithm is considered stable if it
preserves the relative order of equal elements. In other words, if two items are equal
according to the sort key, their order in the sorted output will be the same as in the
input.

Adaptibility is another interesting characteristic. An adaptable algorithm can modify
its behavior in response to the specific structure of the input data. It allows it to
achieve improved performance when dealing with partially sorted data or data that
follows certain patterns. A prominent illustration of an adaptable sorting algorithm is
the insertion sort. This algorithm showcases the ability to adjust its time complexity
to almost O(n) when presented with almost sorted input, resulting in highly efficient
execution in such circumstances.

Recursivness property differentiates between recursive and non-recursive algorithms.
A recursive algorithm solves more minor instances of the problem by calling itself.
Recursion is a fundamental concept in divide-and-conquer strategies, where the input
is divided into smaller parts, each part is sorted independently, and then the sorted
parts are merged or combined to generate the final sorted output.

1.2 Basic Sorting Algorithms

Sorting algorithms are a fundamental concept in computer science. Basic sorting algo-
rithms are simple to implement, concise, and operate directly on the given sequence.
However, the time complexity of these algorithms often increases quadratically. Bubble
sort, selection sort, and insertion sort are examples of such non-recursive algorithms that
operate in-place. They are suitable for sorting smaller sequences or as components in a
recursive sorting algorithm. Among these, insertion sort is commonly preferred due to
its efficiency when dealing with nearly sorted inputs. In our work, we will extensively
use insertion sort and its variations, which Chapter 4 elaborates on in detail.

Apart from basic sorting algorithms, more intricate in-place sorting techniques exist
that are efficient and extensively utilized for larger datasets. Heap sort stands out as
a prominent example. This algorithm organizes the input data in a heap structure and
repeatedly extracts the largest element from the heap. This element is then placed at
the end of the sorted portion of the array. By reheapifying the remaining elements, heap
sort ensures that the next largest element is always ready for movement. This process
continues until all elements are sorted. Heap sort is notable for its guaranteed time
complexity of O(n log(n)), making it suitable for various applications.

Although many sorting algorithms are not in-place, like merge sort, our primary
focus will be on in-place sorting methods. Among these, quicksort is a highly advanced
in-place algorithm discussed in Chapter 2.
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Chapter 2

Quicksort Algorithm

Quicksort was first proposed by Tony Hoare in 1961 [3]. Over the years, it has gained
widespread popularity as one of the most efficient sorting algorithms for practical use.
Quicksort is a recursive comparison-based and unstable sorting algorithm. Quicksort
is considered in-place despite having a space complexity of O(log n) due to recursion
calls. Regarding average-case scenarios, the optimized version of quicksort generally
outperforms other sorting methods, such as merge sort or heapsort. That is why our
work focuses primarily on the quicksort algorithm.

2.1 Design of Quicksort

QuickSort is a prime example of the divide-and-conquer strategy in algorithm design. Its
main goal is to break down the task of sorting an entire array into smaller sub-problems.
The process starts by selecting a pivot element, which is then used to partition the
input sequence in-place into two subsequences. Once the partitioning is complete, all
elements in the left subsequence are smaller than the pivot, while all elements in the
right subsequence are greater than or equal. The algorithm is then recursively applied
to both subsequences until an empty or single-element subsequence is reached, which
is naturally sorted. The pseudocode in Code 2.1 demonstrates the complete concept.
There are various partitioning methods, including using multiple pivots to divide the
input sequence into multiple subsequences [4, 5]. However, our research mainly focuses
on partitioning using a single pivot.

Algorithm 2.1 QuickSort Algorithm
procedure Quicksort(A, lo, hi)

if lo < hi then
pivotIndex← Partition(A, lo, hi)
Quicksort(A, lo, pivotIndex− 1) ▷ Sort the left sub-array
Quicksort(A, pivotIndex + 1, hi) ▷ Sort the right sub-array

end if
end procedure

7
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< pivot ≥ pivot ?

i j

Figure 2.1 Lomuto partitioning

2.1.1 Partitioning Schemes
Partitioning is a crucial procedure in the quicksort algorithm, dividing the array into
subsequences. The two commonly used partition schemes in quicksort are Lomuto [6]
and Hoare [3].

The Lomuto partitioning technique involves two indices, i and j, incrementing from
left to right through the array. The key difference is that i separates the elements
smaller than the pivot from the larger ones. It acts as a pointer that indicates where the
next smaller element than the pivot should be inserted. Meanwhile, the j index iterates
through the array, examining each element sequentially. Whenever j comes across an
element smaller than the pivot, that element is swapped with the element at index i, and
i is incremented. This process continues until j traverses the entire array. At this point,
the pivot is swapped with the element at the i-th position, effectively placing it in its
correct sorted position. The code snippet 2.2 also exemplifies the primary idea, where
the function GetPivot selects a pivot and positions it at the beginning of the input data.
There are different techniques for selecting a pivot, and we discuss them in Chapter 2.1.2.
A visual representation of the Lomuto partitioning process is in Figure 2.1.

Algorithm 2.2 Lomuto Partition Scheme
procedure LomutoPartition(A, lo, hi)

pivot← getPivot(A, lo, hi) ▷ Place pivot at the begging and return copy
i← lo + 1
for j ← lo + 1 to hi do

if A[j] < pivot then
SWAP(A[i], A[j])
i← i + 1

end if
end for
SWAP(A[i], A[lo]) ▷ Place pivot on correct position
return i

end procedure

Conversely, the Hoare partitioning method, the original scheme devised by the quick-
sort creator, employs two indices that initiate from the opposite ends of the array and
move towards each other. This method is equally effective, but it has the potential to be
further optimized through parallelization, as elaborated in Chapter 2.4.2. The Code 2.3
demonstrates the main idea, while Figure 2.2 visually shows how the method works.
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Algorithm 2.3 Hoare Partition Scheme
procedure HoarePartition(A, lo, hi)

pivot← getPivot(A, lo, hi) ▷ Place pivot at the begging and return copy
l← lo + 1
r ← hi
while l < r do

while A[l] < pivot and l < r do l++ end while
while A[r] > pivot and l < r do r−− end while
if l < r then

SWAP(A[l], A[r])
l← l + 1
r ← r − 1

end if
end while
SWAP(A[lo], A[l]) ▷ Place pivot on correct position
return l

end procedure

< pivot ? ≥ pivot

l r

Figure 2.2 Hoare partitioning
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2.1.2 Pivot Selection
Selecting the optimal pivot is a critical factor for the success of any quicksort implemen-
tation. By choosing a pivot close to the median, the algorithm can divide the sequence
into two evenly distributed parts, resulting in high efficiency. However, the algorithm’s
time complexity can escalate to O(n2) if an unsuitable pivot is selected. The standard
techniques for selecting a pivot are the following:

Fixed Element: Typically choosing the first or last element of the array as the
pivot. It is simple but can lead to poor performance if the array is already or nearly
sorted.

Random Element: The pivot is selected randomly, which helps prevent slow per-
formance on sorted arrays and reduces the likelihood of encountering the worst-case
time complexity on average. However, there is still a non-negligible chance that the
chosen pivot will be unfavorable.

Median-of-n: Typically, the median is selected by considering three or five elements.
In the case of the Median-of-three approach, the pivot is chosen as the median value
from the first, middle, and last elements. Similarly, the same principle applies when
dealing with five or any number n of element samples. This approach enhances
balance and demonstrates efficient performance across different input distributions.

Median-of-Medians: To identify a suitable pivot in large arrays, a more complex
but efficient approach is to use the median-of-medians technique. For instance, the
median-of-three-medians technique is as follows: the first median is determined by
calculating the median of the first, middle, and last elements. Then, the second
median is determined by utilizing the elements at the indices first+1, middle+1,
and last−1, and so forth. The pivot is then chosen as the median value from these
calculated medians. By employing this algorithm, a pivot that is closer to the overall
median can be obtained, resulting in improved balance. John Tukey was the first to
describe this idea [7].

The pivot selection strategy can be customized based on the characteristics of the
input data, such as the input size. Typically, the more sophisticated the method of
selecting a pivot is, the more even the partitioning becomes; however, this also adds to
the computational overhead involved in determining it. More sophisticated techniques
exist, such as selecting a pivot as the median from a large number of samples. However,
some studies [8] indicate that finding a ”good” pivot may not necessarily enhance the
performance of quicksort. Surprisingly, intentionally selecting a skewed pivot can im-
prove performance. It is because, although the number of instructions decreases with a
higher quality pivot, there is also an increased likelihood of branch mispredictions.

2.2 Combining with Other Sorting Algorithms

Combining quicksort with other sorting algorithms can exploit the strengths and mitigate
the weaknesses of each sorting strategy. This hybrid approach often leads to improved
performance, particularly for certain datasets or specific computational environments.
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2.2.1 Insertion Sort
When dealing with small datasets or nearly sorted sequences, insertion sort is an excellent
choice due to its simplicity and efficiency. Combining it with quicksort can be especially
effective since quicksort can struggle with smaller partitions due to the overhead of
recursive calls. The recommended approach is to use quicksort for larger partitions
and switch to insertion sort when the partition size falls below a certain threshold,
typically determined empirically. This combination can significantly reduce the overhead
associated with quicksort’s recursive calls for small arrays while benefiting from insertion
sort’s ability to efficiently complete the sorting process once the array is nearly sorted.

2.2.2 Heapsort
Chapter 1.2 explains the sorting algorithm known as heapsort. This method utilizes a
heap data structure to sort the elements in the input sequence. First, the heap structure
is built in place with a time complexity of O(n). Then, the restructuring operation takes
place after the root is removed and requires O(log n) time. This operation is performed
O(n) times, resulting in an overall time complexity of O(n + n log n) = O(n log n) [9].
Due to its consistent time complexity in all scenarios, heapsort can be combined with
quicksort, particularly in situations where the worst-case performance of quicksort is a
concern. This approach is the main concept behind the hybrid sorting algorithm called
introsort.

2.2.3 Introsort
In this hybrid approach, quicksort is utilized for its fast average-case performance. How-
ever, if the depth of recursion suggests that the worst-case scenario might materialize
during execution, the algorithm can switch to heapsort to complete the sorting. This
strategy provides a safety net for quicksort, ensuring that the sorting process does not
degrade to time complexity O(n2) even in the worst case. Combining quicksort’s divide-
and-conquer efficiency with heapsort’s robustness achieves a more reliable and uniformly
efficient sorting process.

Quicksort is a highly efficient algorithm for real-world data, provided that the pivot is
selected carefully to avoid the unlikely worst-case time complexity of O(n2). However, it
is essential to note that quicksort can still be vulnerable to adversarial inputs intention-
ally designed to induce this worst-case scenario [10]. The past libc++ implementation
encountered issues related to this vulnerability [11]. That is why introsort comes into
play, emphasizing its significance.

A more reliable and uniformly efficient sorting process can be achieved by combining
the divide-and-conquer efficiency of quicksort with the robustness of heapsort. However,
determining the precise moment to switch from quicksort to heapsort can be a challenging
task. If the switch is made too soon, the speed of quicksort may be lost, but if it is made
too late, the worst-case scenario can significantly impact performance. The typical
method is to monitor the recursion depth and transition to heapsort when the depth
exceeds a certain threshold. This threshold is usually a logarithmic factor of the size
of the array [12]. Nevertheless, there are other methods available that could provide
increased accuracy and effectiveness, as outlined in Chapter 2.3.6.
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Currently, the introsort algorithm is widely integrated into various standard library
sorting functions. As of now, the three primary C++ implementations – libstdc++,
libc++, and Microsoft Visual C++ – all utilize the introsort algorithm or its optimized
variant as the std::sort algorithm in their respective libraries. We can confirm this by
examining their source code [13, 14, 15].

2.3 Quicksort Optimizations

In this section, we will explore the potential optimizations for quicksort to minimize its
time complexity. Our research will encompass innovative techniques, such as minimizing
recursive overheads and fine-tuning the algorithm for specific data patterns.

2.3.1 Recursion Elimination
In quicksort, eliminating recursion involves converting the algorithm’s recursive nature
into an iterative one. This technique can decrease the call stack size and potentially
enhance robustness, especially for larger datasets where deep recursion can lead to stack
overflow. One common strategy is to remove a single recursive call, as shown in Code 2.4.
Doing so can reduce the number of recursive calls from O(n) to O(log n) if the pivot is
the median or close to it. Another improvement is always performing recursion on the
smaller subsequence, ensuring that the recursion stack stays bounded by log2(n) even in
cases where the pivot is skewed [16].

Algorithm 2.4 QuickSort Algorithm recursion elimination
procedure QuickSort(A, lo, hi)

while lo < hi do
pivotIndex← Partition(A, lo, hi)
QuickSort(A, lo, pivotIndex− 1)
lo← pivotIndex + 1

end while
end procedure

2.3.2 Block Partitioning
One way to enhance the efficiency of novel quicksort implementations is by eliminating
expensive branch predictions during the partitioning stage. This optimization technique
is known as block partitioning and was showcased in the BlockQuicksort algorithm [17].

Block partitioning is a technique that replaces if constructs with data-dependent
moves to eliminate branch mispredictions. The process involves two stages: scanning
and rearranging. Two buffer offsets, namely offsetsL, and offsetsR, are used to store
pointers for misplaced elements. These buffers have a static size of B. The block
partitioning process begins with two pointers, one on each side, moving towards the
middle. Elements under the pointers are compared to the pivot, and instead of halting
at the first element requiring swapping, only a pointer (offset) is stored in the offset
buffer, and the pointer continues moving toward the middle. The misplaced elements



Quicksort Optimizations 13

are rearranged after scanning an entire block of B elements. This involves processing
offset buffers and swapping the elements they point to until one of them no longer
contains offsets. The scanning stage is then restarted, and the empty buffer is refilled.

The algorithm proceeds in this manner until fewer elements than twice the block size
remain. At that point, the algorithm scans the remaining elements as one or two final
blocks, which may be smaller, and carries out a final rearranging stage. Following this
stage, one buffer may be empty while the other may still contain elements. By passing
through the non-empty buffer, all of the corresponding elements can be shifted to the
left or right, similar to the process used in the Lomuto partitioning method, but without
actually performing comparisons. Code 2.5 and Figure 2.3 show the whole concept.

Algorithm 2.5 Block partitioning
procedure BlockPartition(A, lo, hi)

pivot← GetPivot(A, lo, hi) ▷ Place pivot at the begging and return copy
offsetsL[], offsetsR[], startL, startR, countL, countR ← 0
while 2 ∗ BlockSize > size← hi− lo + 1 do

if countL == 0 then
startL ← 0
for i← 0 to blockSize do ▷ Scanning stage for left side

offsetsL[countL]← i
countL ← countL + (A[lo + i] ≥ pivot)

end for
end if
if countR == 0 then

startR ← 0
for i← 0 to blockSize do ▷ Scanning stage for right side

offsetsR[countR]← i
countR ← countR + (A[hi− i] < pivot)

end for
end if
for i← 0 to count← min(countL, countR) do ▷ Rearranging stage

swap(A[lo + offsetsL[startL+i]], A[hi - offsetsR[startR + i]])
end for
countL ← countL − count; startL ← startL + count
countR ← countR − count; startR ← startR + count
if countL == 0 then lo← lo + BlockSize end if
if countR == 0 then hi← hi− BlockSize end if

end while
partition remaining() ▷ Process remaining elements using a similar concept

end procedure

This partition method effectively reduces the need for costly branch predictions. In
contrast, the number of element accesses is doubled compared to the standard approach.
However, if the block size B is chosen appropriately, the elements will still be stored in
the L1 cache when swapped. Therefore, the extra scan has no impact on runtime at
all. Edelkamp et al. [17, p.14] concluded, based on their experiments, that their final



14 Quicksort Algorithm

10 20 64 33 88 64 70 50 23 40 31 70 21 90 16

pivot

offsetsL offsetsR

10 20 64 33 88 64 70 50 23 40 31 70 21 90 16

2 0 2

offsetsL offsetsR

Scan

r

r

l

l

Rearrange

10 20 16 33 88 64 70 50 23 40 31 70 21 90 64

2

offsetsL offsetsR

l r

Figure 2.3 The figure above shows an example of the block partitioning process. The block
size is B = 4, and the pivot has a value of 50. The left side of the block is first scanned for incor-
rectly positioned elements, with only one (64) being found and its offset stored in the offsetsL
buffer. The same scanning process is performed on the right side, revealing two incorrectly placed
elements. The rearrangement stage involves swapping elements until one of the offset buffers is
emptied. This buffer is then refilled, and the swapping process continues iteratively.
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implementation of BlockQuicksort was 80% more efficient than GCC’s std::sort at
that time.

An additional method for optimization involves substituting swaps with cyclic per-
mutations during the rearranging phase. Abhyankar et al. were the first to introduce
this approach [18], which successfully eliminates the requirement for three swap codes
and reduces the overall instruction code. Code 2.6 illustrates the optimized rearranging
stage.

Algorithm 2.6 Cyclic permutation
Input: A, lo, hi: input array
Input: offsetsL, offsetsR: indices for misplaced elements
Input: count: number of elements to swap

temp← A[lo + offsetsL[0]]
A[lo + offsetsL[0]]← A[hi - offsetsR[0]]
for i← 1 to count− 1 do

A[hi - offsetsR[i - 1]]← A[lo + offsetsL[i]]
A[lo + offsetsL[i]]← A[hi - offsetsR[i]]

end for
A[hi - offsetsR[count - 1]]← temp

2.3.3 Quicksort Adaptivness
As mentioned in Chapter 1.1.3, adaptiveness refers to the ability to adjust to different
permutations of input data and to identify familiar patterns more efficiently. However,
detecting a pattern requires performing certain checks, which can be expensive and
increase time complexity. Therefore, achieving a balance between the complexity of
detection and the ability to adapt is crucial.

One of the most effective compromises is identifying a swap-free partition. Once
the partitioning process is completed, we can verify if any elements were swapped. If
no swaps occurred, we refer to this partition as swapless. This check can be performed
simply by comparing pointers without significantly increasing the time complexity. If
the partition is swapless, we can attempt a partial insertion sort on both partitions.
This sorting algorithm evaluates the number of swaps required, and if it exceeds a
small threshold, the regular sorting routine continues. However, if the sort successfully
arranges the partitions with only minor corrections, we have a sorted sequence, and
recursion is unnecessary. By appropriately selecting pivots, this approach can achieve
linear-time complexity when sorting ascending or descending inputs, even when arbitrary
elements are appended to the input sequence [19].

2.3.4 Detection of Duplicate Elements
The presence of duplicate elements can result in selecting the same pivot element as
the previous one. As a result, an imbalanced partitioning occurs, leading to a higher
recursion depth and eventually necessitating a switch to heapsort. Novel quicksort im-
plementations address this inefficiency by detecting input data with many duplicate ele-
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ments and taking advantage of it. In the following section, we will examine the methods
utilized by BlockQuicksort [17] and pdqsort [19].

The BlockQuicksort algorithm incorporates a check to determine if the pivot occurs
twice in the sample (in the case of a median of three) or if the partitioning is significantly
unbalanced. In either case, it performs a scan after partitioning to identify duplicate
elements that are equal to the pivot. The scan starts from the position of the pivot and
examines the larger half of the input sequence. Any elements that are found to be equal
to the pivot are moved to the side of the pivot. This scanning process continues as long
as every fourth element equals the pivot. This ratio can be adjusted, but it ensures that
the check stops quickly if there are only a few duplicates. After this check, any elements
identified as equal to the pivot are kept in the middle of the array, effectively excluding
them from future recursive calls [17, p.11].

The pdqsort algorithm functions differently. Before partitioning, it checks whether
the pivot chosen is the same as the one chosen in the previous partitioning. This check
only applies to subsequences, not on the input’s far left. The method compares the
current pivot to the element preceding the first element in the subsequence, which is
the previous pivot. Pdqsort applies a slightly different partitioning technique to the
subsequence if they are the same. This method is similar to the Hoare partition, except
that identical elements are positioned in the left subsequence instead of the right. After
partitioning, the left subsequence contains sorted elements identical to the pivot, elimi-
nating the need for further recursion on that subsequence. This concept is illustrated in
Figure 2.4. Orson demonstrated that this technique has a time complexity of O(k · n),
where k is the number of distinct values in the input. It should be noted that this is an
upper bound, and time complexity O(n · log(n)) applies when k is large. Please see the
original paper [19] for comprehensive proof.

2.3.5 Optimizing Small Sorts
When selecting a pivot as the median of medians of x elements, the algorithm relies on a
quick sorting function for a small fixed number of elements. For example, when choosing
a pivot as the median of 3 medians, the algorithm requires a fast sorting algorithm for
three elements, which we will refer to as sort3. Sorting networks is a practical approach
to implementing these small sorts. These networks consist of a fixed number of wires
that transport values and comparator modules that link pairs of wires. The comparator
modules exchange the values on the wires if they are not in the desired order [20].

Sorting networks can be evaluated using two metrics: size and depth. Size refers to
the number of compare-and-swap operations required, while depth measures the number
of parallel operation steps. Regarding visualization, compare-and-swap operations can
be seen as wires in the network diagram, while depth corresponds to vertical layers.
When sorting three elements, three compare-and-swap operations are needed. For four
elements, five operations are required, and for five elements, nine operations are needed
[21, pp. 219-247]. Figure 2.5 depicts the three essential sorting networks. For larger
inputs, the complexity increases. The optimal size of the sorting network was proven
for the input of a maximum of 12 elements [22]. The proof for bigger inputs remains an
open question.

Google recently conducted groundbreaking research that focused on improving the
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Figure 2.4 Partition to the left. First, the partitioning process follows the usual procedure of
dividing the input data into three segments: those lower than the pivot, the pivot itself, and those
greater than or equal to the pivot. During subsequent partitioning of the right side, the same
pivot is selected. In that case, we resort to partitioning to the left instead of the classic partition.
Elements that are equal to or lower than the pivot are placed to the left; however, no lower
elements are present, as they were already swapped in the initial iteration. Consequently, after
this partitioning step, the data will be segregated into a left segment that contains elements equal
to the pivot, the pivot itself, and a right segment containing elements larger than the pivot. In
the subsequent iteration, there is no need to recursively partition the left side, as it only consists
of elements equal to the pivot.
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Figure 2.5 The optimal sorting networks for three, four, and five elements have sizes of three,
five, and nine, and depths of three, three, and five, respectively.
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efficiency of small sorting algorithms, such as sort3. Using their AlphaDev AI, they
identified a faster sort3 algorithm by minimizing the number of assembly instructions
needed. AlphaDev is an extension of the renowned AlphaZero, which has already proven
its superiority by defeating human world champions in various games, including chess
and Go. The procedure followed by AlphaDev was uncommon. Instead of starting with
C++ code and translating it into assembly instructions, they took a reverse approach.
They iteratively explored various instructions to find the code with minimal assembly
instructions. The resulting code was then translated into C++ and implemented in the
LLVM framework [23, 24].

According to the authors of Google research [23], they stated that their sort3 algo-
rithm is both the fastest and the shortest, consisting of only 17 assembly instructions, and
no other faster algorithm exists. However, subsequent studies have introduced shorter
sorting algorithms (e.g., only 15 instructions) that claim to be slightly faster [25, 26].
Notably, these sorting algorithms enhance the time complexity by a mere few nanosec-
onds (which is understandable for such a small algorithm). However, they are usually
implemented in assembly language, making it challenging to write equivalent C++ code
independent of the processor architecture.

2.3.6 Switch to Heapsort
The conventional method for deciding when to transition to heapsort involves tracking
the recursion depth. Nevertheless, an alternative method involves monitoring the sizes
of the partitions. The pdqsort algorithm utilizes this technique [19, p.6].

Let us define a bad partition as any more unbalanced partition than p = 0.125, where
p is a percentile of the pivot, e.g., p = 0.5 for perfect partition. If p = 0.125, the pivot
position after partitioning is below the 12.5% percentile or above the 87.5% percentile.
At first, we initialize a counter to log n, and whenever we encounter a bad partition, we
reduce the counter. If the counter reaches 0 at the beginning of a recursive call, we use
heapsort to sort that subsequence. The p = 0.125 is not chosen arbitrarily. Our goal
is to determine an optimal value for p that will enhance the acceleration of the process
when transitioning to heapsort, ensuring that the switch to heapsort is not made too
early. The author of pdqsort measured that heapsort takes approximately twice as long
as quicksort when sorting randomly shuffled data. Therefore, it is preferred to switch to
heapsort if the unbalanced partitions will cause quicksort to slow down by roughly twice
as much. Suppose we imagine a situation in which the quicksort partition consistently
places pn elements in the left partition and (1− p)n in the right partition. In that case,
we can characterize its runtime using the following recurrence relation:

T (n, p) = n + T (pn, p) + T ((1− p)n, p)

The best-case scenario is when p = 0.5, while the worst-case scenario is when p = 0 or
p = 1. The Akra-Bazzi theorem proves that for any p in the range of (0, 1), the function
T (n, p) has a behavior of Θ(n log n) [27]. Moreover, by resolving the recurrence [28], we
can explore the deceleration of quicksort in contrast to the optimal scenario:

lim
n→∞

T (n, p)
T (n, 1

2)
= 1

H(p)
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Figure 2.6 The graph shows the decrease factor in the time complexity of T (n, p) for different
values of p. It nicely illustrates the reason for the overall speed of quicksort. For example, when
we partition the data into partitions with size ratios of 80/20, that means the p = 0.2, the
execution speed is only 40% slower than the optimal scenario (p = 0.5). Moreover, it is essential
to note that the difference between a high-quality pivot and an average one is slight, leading
to only a small advantage gained from consistently choosing a superior pivot. Conversely, the
contrast between an average and poor pivot is significant. This figure was taken from pdqsort
paper. [19, p.7].

where H denotes Shannon’s entropy function. Plotting this function offers a better
understanding of the essential performance characteristics of quicksort, as shown in
figure 2.6.

If we select a value p such that H(p)−1 = 2, a bad partition will result in poorer per-
formance than heapsort. The choice of p can be adjusted accordingly for various system
architectures or different worst-case sorting algorithms. The pdqsort algorithm selected
p = 0.125 due to its proximity to being twice as slow and because only simple bit shifts are
needed to calculate this value. This approach is more precise than introsort’s fixed log-
arithmic limit on recursive calls to prevent worst-case scenarios. Peterson observed that
introsort might encounter difficulties sorting inputs with unfavorable patterns, which
will diminish after a few partition procedures. Subsequently, his method switches to
utilizing the faster quicksort for the remaining sorting tasks, whereas introsort overly
emphasizes the initial challenges and reverts to using heapsort [19].

Specific input patterns exhibit a self-repeating structure upon partitioning, leading
to repeated selection of a similar pivot. Traditionally, quicksort algorithms address
this issue by introducing randomness in pivot selection. However, pdqsort offers an
alternative strategy. Following the partitioning step, it evaluates whether the partition
is bad, and if so, it deterministically swaps future pivot candidates with other elements
to disrupt specific input patterns.

2.4 Parallel Quicksort Algorithm

This section will explore the possibilities for parallelizing the quicksort algorithm. It will
provide a concise overview of how quicksort can be parallelized and give an idea of incor-
porating and parallelizing the optimizations discussed in Chapter 2.3. Parallelization of
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these optimizations is explored in detail in Chapter 4. Quicksort can be parallelized by
parallelizing the recursive calls, the partitioning process, or ultimately by parallelizing
both.

2.4.1 Parallel Recursive Calls
In the sequenced quicksort algorithm, the left subsequence is processed first, followed by
the right subsequence, after the partition step. It is important to emphasize that sorting
these subsequences is entirely independent. Therefore, they can be sorted in parallel
without waiting for one another. Parallelizing the recursive call is straightforward, direct,
and efficient. It can be easily accomplished in OpenMP using task parallelism. The code
2.7 demonstrates the idea. It is also needed to determine the appropriate threshold for
transitioning to the sequenced quicksort through empirical experiments.

However, this parallelization approach does not fully exploit the capabilities of multi-
core architecture. Initially, only one core is utilized, and as more parallel calls are made
over time (following the binary tree structure), additional cores are engaged. However,
the partition step, the most complex aspect of the quicksort algorithm, is not parallelized.
Therefore, it is crucial to parallelize the partition process to fully exploit the power of
multi-core CPUs [29].

Algorithm 2.7 QuickSort: Parallel Recursion
procedure Parallel QuickSort(A, lo, hi)

while lo < hi do
if hi− lo + 1 < threshold then

return QuickSort(A, lo, hi)
end if
pivotIndex← Partition(A, lo, hi)
Parallel call: Parallel QuickSort(A, lo, pivotIndex− 1)
lo← pivotIndex + 1

end while
end procedure
procedure QuickSort(A, lo, hi)

while lo < hi do
pivotIndex← Partition(A, lo, hi)
QuickSort(A, lo, pivotIndex− 1)
lo← pivotIndex + 1

end while
end procedure

2.4.2 Parallel Partition
Both in-place parallel partitioning algorithms and out-place algorithms exists. How-
ever, a significant number of out-place algorithms are commonly derived from the initial
method developed by Guy Blelloch [30], which relies on prefix scan1 and requires a mini-

1Other terms such as cumulative sum or sum scan are also utilized in the literature.
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mum of O(n) additional memory. Moreover, these algorithms are primarily designed for
GPU implementations [31], and therefore we will not go into their examination further.

On the contrary, in-place partitioning techniques strive to perform partitioning di-
rectly within the original data array without requiring auxiliary memory. The most
known and used in-place parallel partitioning techniques are strided, F&A and technique
from the The Multi-core Standard Template Library (MCSTL)2. The F&A parallel par-
tition technique was introduced by Tsigas et al. [32] as an advance of the earlier strided
parallel partition method proposed by Francis and Pannan [33]. Johannes Singler et al.
[34] introduced the MCSTL method, similar to the F&A technique. All these parallel
partition algorithms involve two stages: the main stage and the cleanup stage.

Strided and Blocked Partition

Strided partitioning involves dividing the input data into p parts, where p represents
the number of threads. Subsequently, each thread processes elements at intervals of p,
implying that the i th thread will handle elements at positions i + 0, i + p, i + 2p, and
similarly. Once each thread sequentially partitions its elements, it returns a position
that separates the elements for that thread (referred to as a pivot for those elements).
Following this, these returned positions’ minimum and maximum values determine the
interval, which may be unsorted. Consequently, this unsorted segment (denoted as dirty)
is sequentially partitioned. The time complexity of the main stage is O(n/p), and the
time complexity of the cleanup stage is O(1) in the average case, but O(n) in the worst
case [33].

One drawback of this algorithm is the inefficient cache locality, as all threads tend
to access the sequence over its entire length. The algorithm can be extended to work
with blocks to enhance cache efficiency. Instead of assigning individual elements to each
thread, coherent blocks of elements are statically assigned. The size of the block is
represented by b, and if b = 1, the algorithm is called strided; otherwise, it is considered
blocked [35]. Figure 2.7 illustrates the procedure of strided partition, while Figure 2.8
depicts the process of block partition.

F&A and MCSTL Partition

The F&A (Fetch and Add) algorithm is an improved parallel strided/blocked partitioning
technique. In this approach, threads dynamically fetch new blocks of elements from both
sides as needed rather than being statically assigned specific blocks of elements. Initially,
each thread gets two blocks: one from the beginning and one from the end. The threads
then perform the partitioning process on their blocks. Once a block is fully processed,
meaning all its elements are either lower respective greater/equal to the pivot, the block
is called neutralized. The thread will then fetch a new block from the side where the
neutralized block was located. This algorithm is named fetch and add because it relies
on the atomic fetch-and-add instruction. All threads share left- and right-hand pointers,
which mark the boundary between the segment with assigned blocks and the segment
with unprocessed blocks. When a thread needs to fetch a new block, it must read the
current pointer value (indicating the start of the new block) and increment the pointer by

2This library is now outdated.
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Figure 2.7 Parallel strided partition. We use three threads and choose 50 as the pivot,
positioning it at the beginning. Following the main stage, the boundaries of the dirty segment
are determined, allowing for subsequent sequential cleaning.
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Figure 2.8 Parallel blocked partition. We use two threads, block size b = 4, and choose 50 as
the pivot, positioning it at the beginning. Following the main stage, the boundaries of the dirty
segment are determined, allowing for subsequent sequential cleaning.
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the block size to identify the elements taken. The fetch-and-add instruction is perfectly
suitable for this purpose [32].

Following the main stage, every thread may have one dirty block, leading to a poten-
tial maximum of p dirty blocks before the cleanup stage. These blocks are then swapped
in the middle of the whole sequence, creating a new continuous sequence, which is then
processed by a single thread.

The sole distinction between F&A and MCSTL lies in their approach to cleanup.
While F&A sequentially conducts the cleanup, MCSTL recursively applies the parallel
partition method to the new sequence with fewer threads. If there is only one block left
or just one thread accessible, the remaining partitioning is executed sequentially. The
time complexity of the main stage in the F&A and MCSTL algorithms is O(n/p), while
the cleanup stage requires O(b · p) for F&A and O(b · log p) for MCSTL.

Cleanup Phase Improvements

The cleanup stage is a topic of further analysis and research, as all these partition
algorithms disregard part of the completed work in the main stage, leading to redundant
comparisons. L. Frias et al. [35] introduced a parallel partition algorithm that achieves
minimal comparisons. Its improvement lies in the enhanced cleanup stage.

Let us define Frontier as a pointer that separates the processed part within a block
from the unprocessed part. Let us also define misplaced elements as unprocessed elements
that are not in the middle and processed elements that are in the middle. Therefore, a
misplaced block is defined as a block that includes at least one misplaced element. Then
m represents the total number of misplaced elements, and M represents the number
of misplaced blocks. It is important to note that the maximum number of misplaced
blocks is 2p, since after the main stage, there could be a maximum of p dirty blocks, all
of which may not be placed correctly, resulting in 2p misplaced blocks.

Following the main stage, a shared binary tree is created which is accessible to
all threads and holds information about incorrectly positioned blocks. It includes the
number of misplaced elements before the frontier, the number of misplaced elements
after the frontier, the total count of elements before the frontier, and the total count
after the frontier. The internal nodes accumulate information from the children. This
shared tree can then be used to determine exactly which elements need to be swapped
without making any extra comparisons.

This unique cleanup procedure reduces the parallel time of the F&A algorithm from
O(b · log p) to O(log2 p) while minimizing the number of comparisons. However, the
experimental findings by L. Frias et al. [35] indicate that the practical advantages of
their cleanup method are limited. This is primarily due to fact, that usually the number
of incorrectly positioned elements is minimal. Furthermore, other studies have noted
that this particular cleanup stage has not resulted in acceleration [36, p. 26]. Thus, the
optimal approach to conducting a cleanup stage without redundant comparisons and
with improved time complexity remains an open question.
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Chapter 3

Existing Implementations

Initially, Tsigas et al. [32] introduced a highly effective parallel quicksort algorithm
that utilizes the F&A partition method. Subsequent algorithms have drawn inspiration
from this approach. Nowadays, many parallel quicksort implementations in C++ exist.
However, many of the implementations available in public repositories lack efficiency,
often due to their utilization of sequential partitioning, resulting in low sorting perfor-
mance and scalability. Moreover, many of these algorithms require non-standard C++
language extensions such as OpenMP [37] or external libraries like Threading Building
Blocks (TBB) [38] or Boost [39]. We have discovered only two effective quicksort im-
plementations that were developed without utilizing external libraries or non-standard
extensions: cpp11sort [40] and poolstl’s sort [41].

This section will outline the distinctions among various methods for parallelizing
the code. Subsequently, we will examine different parallel quicksort implementations
that have been identified, as well as explore specific sequential approaches that have the
potential to be adapted into efficient parallel algorithms.

3.1 Parallelization Methods

Three primary options to parallelize an algorithm are: Open Multi-Processing (OpenMP),
OneAPI Threading Building Blocks (oneTBB), and C++ threading. Each of these varies
in their level of abstraction and specific implementation details.

OpenMP is a non-standard extension for C/C++ and Fortran languages that facili-
tates the straightforward parallelization of algorithms through preprocessor pragmas.
It allows for parallelization at a high level of abstraction, making it easy to imple-
ment without needing to work with low-level primitives. It also includes a library
that offers additional techniques for precisely synchronizing threads and similar tasks
[37].

oneTBB is a third-party library created by Intel. It is built upon the deprecated
Threading Building Blocks (TBB) and is largely compatible with its source code.
Thus, software initially created using TBB typically works smoothly with oneTBB.
This library offers a range of functions, interfaces, and classes for parallelizing code
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and enhanced control over aspects such as thread creation and scheduling. Nonethe-
less, it is necessary to write code that is tailored for oneTBB constructs [38].

C++ threading represents the third method. It allows for the parallelization of
code solely utilizing features from the C++ standard library without depending on
external resources. This choice provides extensive control over almost all multi-
threading aspects, including thread scheduling and atomic operations. Nevertheless,
it demands considerable development effort and expertise. However, employing low-
level primitive operations enables precise control over operations, while the library
provides some decent abstraction. Additionally, it is possible to create custom classes
and constructs to accomplish a high level of abstraction.

In summary, both OpenMP and oneTBB offer a straightforward approach to paral-
lelizing code, albeit at the cost of relying on external extensions and libraries. Conse-
quently, users are responsible for ensuring the installation of these dependencies to utilize
the implementation. Conversely, parallelizing the implementation solely with C++ fea-
tures demands extra work but presents the most convenient choice for end users.

3.2 Parallel Mode of Libstdc++

Libstdc++ implements the GNU C++ Standard Library, which includes a parallel mode
[42] providing parallel algorithms, such as two variations of parallel quicksort. It should
be noted that this parallel mode uses the Open Multi-Processing (OpenMP) exten-
sion. The quicksort implementation comes in two versions: the unbalanced and balanced
variants. In the unbalanced version, a reasonable number of elements (usually 100 by
default) are utilized to choose the pivot. Subsequently, the thread counts are evenly allo-
cated to each subtask following the partitioning step. Conversely, the balanced quicksort
algorithm only selects the pivot as the median of three elements. After partitioning, it
assigns threads to the new subtasks proportionally to the lengths of their subsequences.

3.3 GCC’s and Clang’s PSTL

Per the C++ standard, versions C++17 and above must include support for parallel
algorithms [43]. This entails the addition of new versions of standard library algorithms
template functions that take an Execution Policy as their first argument. These policies
dictate how the algorithm can be parallelized, such as enabling thread usage, vectoriza-
tion, or potentially executing on a GPU. These policies can be supplied by the compiler
or by linked third-party libraries. However, the level of compiler support differs. Accord-
ing to the information from cppreference [44], libstdc++ requires linking with TBB to
activate parallel algorithms. Alternatively, the libc++ library offers limited support for
parallel algorithms and requires linking with an experimental flag. We also performed
tests using various setups and verified that libstdc++ supports parallel sorting algo-
rithms when correctly linked with TBB. In contrast, libc++ does not compile without
the experimental flag, and when used, the speed of std::sort with the parallel exe-
cution policy remains the same as with the sequential policy, regardless of whether it
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is linked with TBB or OpenMP. Furthermore, the documentation states that no guar-
antees of API or ABI stability are given for experimental features. Our experiments
employed Clang and libc++ version 17.0.1, indicating that parallel functionalities will
likely be increasingly accessible in future releases.

The parallel algorithms in libstdc++ come from the intel library, which has been
partially merged to the libstdc++ [45, 46]. We have examined the source code of lib-
stdc++ to identify the section related to parallel sorting. The code reveals [47] that
the concurrent std::sort utilizes a parallel stable sorting method, which involves gen-
erating a task tree and performing a parallel merge, as proposed by A. Robinson [48].
Therefore, it is not the quicksort algorithm.

3.4 CPP11Sort

CPP11sort is a highly effective implementation of the multithreaded quicksort algorithm.
One of its key benefits is that it does not need external libraries or non-standard lan-
guage/compiler extensions. The implementation is header-only and complies with the
C++11 standard. Based on their benchmark findings, it offers better sorting perfor-
mance than the main existing implementations of GNU, Intel, and Microsoft.

Even after conducting a comprehensive examination, we did not discover any com-
parable implementations that are as efficient as the top three existing implementations
and do not depend on external third-party libraries or non-standard extensions. The
implementations we discovered that did not rely on external libraries were ineffective.
Although we did find effective implementations, they depended consistently on TBB or
OpenMP or similar non-standard libraries/extensions. Consequently, the cpp11sort is a
distinctive approach that combines portability and efficiency [40].

3.5 Other Parallel Sorting Algorithms

Several other well-known parallel sorting algorithms were discovered and examined. The
most significant ones we found are as follows:

oneTBB: library offers parallel sorting functionality [49], which can be accessed
through a function template tbb::parallel sort. Upon inspecting the source code
[50], it becomes evident that tbb::parallel sort internally employs parallel quick-
sort. Nevertheless, the quicksort algorithm depends on the specialized thread pool
and task scheduling mechanisms provided by this external library.

poolSTL: This compact library focuses on implementing parallel standard library
algorithms conforming with the C++17 standard. While it does not provide an
implementation for all functions, it is easy to integrate, has no external dependencies,
and includes a parallel quicksort implementation for std::sort along with parallel
partitioning [41].

Thrust: Thrust is a C++ library created by NVIDIA. It is part of CUDA C++ Core
Libraries (CCCL) and is commonly employed to facilitate performance portability
between GPUs and multicore CPUs. Thrust also offers parallel versions of standard
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algorithms such as std::sort. Although some adjustments may be necessary, it is
a header-only library that should be compilable without requiring NVIDIA Cuda
Compiler (NVCC). Also, it is crucial to note that for enabling parallel algorithms,
some parallel programming framework is needed, such as OpenMP, TBB or CUDA
[51].

Parallel Patterns Library (PPL): Microsoft Visual C++ (MSVC) incorporates
PPL, which implements parallel algorithms in accordance with the C++17 standard.
Nevertheless, it is integrated with Microsoft’s development tools and OS, limiting its
use in other environments [52].

Boost: Boost is an extensive collection of libraries designed for the C++ program-
ming language, offering a wide range of functionalities, such as multithreading sup-
port. It also provides a parallel sorting implementation called block indirect sort.
A small auxiliary memory of constant size is required for this merging algorithm [53].
However, the code is based on a multithreading framework within the Boost library.

AQsort: AQsort is a parallel quicksort algorithm that allows the user to specify a
function for swapping elements. This feature enables the sorting of multiple datasets,
such as arrays, simultaneously [29]. Before C++23, this functionality was a notable
advantage that was not available in other implementations. With the introduction
of C++23, the std::ranges::views::zip can partly replace this capability.

MPQsort: MPQsort is an innovative parallel quicksort algorithm that differs from
traditional implementations by using multiple pivots for parallel partitioning. This
unique approach sets MPQsort apart as the first algorithm of its kind [4]. The
provided implementation is contained within a single header file, making it straight-
forward to integrate. Nevertheless, the parallelization is achieved using non-standard
extensions OpenMP [54].

IPS4o: IPS4o stands for in-place Superscalar Samplesort. This comparison-based
algorithm incorporates numerous enhancements, such as dynamic load balancing and
reducing branch mispredictions by using a branchless decision tree. It uses OpenMP
if available. Otherwise, it uses C++ threads. However, in both cases, it still depends
on a third-party library. It must be linked against TBB and against GCC’s libatomic
to enable 16-byte atomic compare-and-exchange instructions. Although it is not a
quicksort algorithm, we included it in our extended benchmarks due to its reputation
as one of the most efficient parallel comparison-based algorithms [55].

3.6 pdqsort

The Pattern-defeating Quicksort (pdqsort) is an optimized sequential quicksort algo-
rithm. It uses a variant of block partitioning as described in Chapter 2.3.2. However,
the implementation applies this specific partitioning technique exclusively when the in-
put elements are native numeric types, and the comparison function is std::less or a
similar function. Otherwise, a classic Hoare partitioning technique is used. Additional
optimizations include the removal of recursion (Chapter 2.3.1), adaptiveness to input
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Name Algorithm Memory
usage

External
dependen-

cies

Highlight

PPQSort quicksort in-place None Parallel Pattern
Quicksort

GCC
std::sort

merging
algorithm

out-place oneTBB Ported from
oneTBB

Libstdc++
(unbalanced)

quicksort in-place OpenMP evenly splitting
threads

Libstdc++
(balanced)

quicksort in-place OpenMP allocating threads
proportionally to

subtask sizes
CPP11Sort quicksort in-place None Header-only,

C++11 compliant
oneTBB sort quicksort out-place oneTBB Splits input to

small tasks
poolSTL quicksort in-place None Header-only,

C++17 compliant
Thrust k-way

mergesort
out-place CUDA,

OpenMP,
oneTBB (one

required)

Thrust internal
implementation

PPL quicksort in-place MSVC Microsoft Parallel
Patterns Library

Boost block
indirect sort

merging
algorithm

out-place Boost Upper bounded
small memory usage

AQsort quicksort in-place OpenMP Allows the sorting
of multiple datasets

at once
MPQsort quicksort in-place OpenMP Multiway parallel

Quicksort algorithm
IPS4o Samplesort in-place oneTBB Divides data into

buckets and sort
them recursively

Table 3.1 Comparison of existing implementations
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permutations (Chapter 2.3.3), which involves the identification of numerous duplicate
elements (Chapter 2.3.4) and also preventing the worst case by identifying bad partitions
(Chapter 2.3.6).

The pdqsort has demonstrated notable speed and efficiency in various benchmark
evaluations. We have also examined several well-known quicksort implementations by
Igor van den Hoven, such as crumsort [56]. As their benchmarks indicate, he has cre-
ated a diverse collection of rapid and intriguing sorting algorithms. Unfortunately, the
code is written in C rather than C++, offering an old C API. Understanding the source
code can sometimes be challenging, and technical papers for these sorting methods are
unavailable. However, these algorithms have introduced some innovative and fascinat-
ing techniques, including a stable quicksort known as fluxsort. We observed that these
algorithms perform well on small arrays (up to 1e5 elements), but for larger arrays
(up to 1e9), pdqsort tends to outperform them. Exploring the parallelization of these
algorithms in the future would be intriguing; however, for now, we have chosen to de-
velop a quick and efficient parallel sorting algorithm called Parallel Pattern Quicksort
(PPQSort), drawing inspiration from pdqsort.



Chapter 4

PPQSort (Parallel Pattern
Quicksort)

The aim was to consolidate all the optimization methods identified in the study and
develop an effective and fast parallel quicksort algorithm. This section introduces our
approach – Parallel Pattern Quicksort (PPQSort), based on the introsort algorithm.
The Parallel Pattern Quicksort draws inspiration from the sequential sorting technique
of Pattern-defeating Quicksort and integrates various improvements from it. It also
draws inspiration from CPP11sort in terms of parallelization. We developed two imple-
mentations in C++. One is based on the OpenMP framework, while the other can be
compiled without external libraries, using only the standard C++20 library. This chap-
ter will describe the design of the PPQSort algorithm and discuss both implementations.
Code 4.1 illustrates the general structure of the algorithm.

4.1 Thread Balance

The implementation of PPQSort relies on a thread pool. Initially, it generates p threads,
where p equals the number of CPU cores. Subsequently, the threads await tasks and are
executed from the thread pool. Firstly, the primary thread initiates the algorithm and
generates a new task. Subsequently, two threads are active, each creating another task,
and so forth. The challenge lies in achieving parallel partitioning effectively, as we aim
to maximize CPU usage, while an excessive number of concurrent threads could result
in performance degradation.

The main concept is to ensure that we do not exceed the number of CPU cores with
the threads that we use. Specifically, the goal is to utilize p threads consistently. For
example, if CPU has 16 cores, initially, all 16 threads should be used for partitioning.
However, in subsequent recursive calls, with two threads already executing the algo-
rithm’s main loop, the aim is to limit the partitioning to only eight threads for both
subtasks. In our research, we have analyzed various implementations, such as AQsort,
which balance thread usage based on the lengths of the subsequences generated by par-
titioning. In our experiments, we did not observe any speedup for our implementation
when modifying thread distribution; in some cases, the opposite effect was noted. Hence,
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Algorithm 4.1 Parallel Pattern Quicksort Algorithm
procedure parallel ppqsort(A, lo, hi, bad allowed, threads)

while true do
size← hi− lo
if size < seq threshold then

return seq ppqsort(A, lo, hi)
end if
choose pivot(A, lo, hi) ▷ will put pivot at the begining
if sorting right side and pivot same as previous then

pivotIndex← partition left(A, lo, hi)
lo← pivotIndex + 1 and continue

end if
pivotIndex← partition right(A, lo, hi)
if swappless partitioning and check sorted(A, lo, hi) then return end if
if l size < size/ratio or r side < size/ratio then

if bad allowed == 0 then return HeapSort(A, lo, hi) end if
bad allowed← bad allowed− 1
Shuffle

end if
threads← threads/2
Add task: parallel ppqsort(A, lo, pivotIndex− 1, bad allowed, threads)
lo← pivotIndex + 1

end while
end procedure
procedure seq ppqsort(A, lo, hi, bad allowed)

while true do
size← hi− lo
if size < insert threshold then return insertion sort(A, lo, hi) end if
choose pivot(A, lo, hi)
if sorting right side and pivot same as previous then

pivotIndex← partition left(A, lo, hi)
lo← pivotIndex + 1 and continue

end if
pivotIndex← partition right(A, lo, hi)
if swappless partitioning and check sorted(A, lo, hi) then return end if
if l size < size/ratio or r side < size/ratio then

if bad allowed == 0 then return HeapSort(A, lo, hi) end if
bad allowed← bad allowed− 1
Shuffle

end if
seq ppqsort(A, lo, pivotIndex− 1, bad allowed)
lo← pivotIndex + 1

end while
end procedure
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PPQSort does not distribute threads fairly but instead allocates half of the threads to
each created subsequence. The division by 2 can also be quickly calculated using bit
shifting.

Sorting small subsequences concurrently, even though they could be sorted more
effectively sequentially, is not preferred. Therefore, initially, we verify the size of the
subsequences to ensure that they are not too small. We sort them using the sequential
version if they are too small. The sequential threshold for transitioning to the sequential
version must be determined thoughtfully to achieve an optimal balance in the distribution
of thread workload. We could use this formula:

seq thr = n

p

However, in that scenario, the threshold is too large. In such cases, certain threads
could hinder performance as they work on sorting a lengthy and intricate subsequence
while others have finished their tasks and are just waiting for the slower thread to com-
plete. The PPQSort employs an improved formula to determine the sequential threshold:

seq thr = n

p
· 1

k

In this scenario, k > 1 represents a small value determined through empirical ex-
periments. This strategy will result in a situation where there are many more tasks in
the thread pool than threads, leading to a more evenly distributed workload among the
threads.

4.2 Pivot Selection

Efficient and rapid selection of a pivot is crucial, requiring a balance between the quality
of the pivot and the speed of its selection. Figure 2.6 illustrates that the distinction
between a superior pivot and an average one is slight. Therefore, investing time in
selecting the optimal pivot is not justified. Hence, the PPQSort algorithm selects pivots
based on the median of three medians, with each median being determined from three
elements. These medians are computed within the array itself: the first one is derived
from the first, middle, and last elements, the second one from the second element, the one
after the middle, the one before the last element, and so forth. In the end, the medians
will be positioned in the middle; we will sort them and select the middle element as the
pivot. If the input array is small, we will use the median of three elements (first, middle,
and last).

Efficiently sorting three elements is crucial, as this operation is repeated frequently
when selecting a pivot. We have developed two versions of the function sort3. One
is based on the optimized sort3 from Google AlphaDev, while the other is a custom
implementation. The key distinction is that the first relies solely on conditional moves,
eliminating the need for the compiler to generate branches in the code. However, it
always performs three comparisons. On the other hand, custom sort3 will result in
branch code. However, in the best-case scenario, it only requires two comparisons,
making it beneficial when the comparison function is expensive.
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Figure 4.1 End of the main stage. The main stage of parallel partitioning has been completed.
All threads have finished their assignments, and no more blocks are left. As a result, the algorithm
moves on to the cleanup stage.

We also implemented a method for selecting the pivot as the median of five medians.
Nevertheless, this strategy did not enhance efficiency, prompting us to use three medians
instead. The decision of whether to use the branchy or branchless version of the sorting
algorithm is made during compilation, although users also have the option to specify
their preferences. Further details can be found in Chapter 4.8.

4.3 Parallel Partitioning

Similar to sort3, we have developed two variations of partitioning. The first one involves
branching and is founded on the F&A algorithm. The second version is a parallelized
branchless partitioning method adapted from the sequential block partitioning method
discussed in Chapter 2.3.2.

4.3.1 Fetch and Add Method
We employ F&A partitioning as detailed in Chapter 2.4.2. Initially, we assess whether
the input data are sufficiently large to enable parallel partitioning, ensuring a minimum
of two blocks per thread. If this criterion is not met, we will transition to sequential
partitioning. The optimal block size B was empirically determined in Chapter 5.3.
Parallel partitioning starts by initially assigning two blocks to each thread to avoid
collisions during startup. Following this, the threads will continue to process and fetch
subsequent blocks until the entire input sequence is processed (see Figure 4.1).

Subsequently, there may be some dirty blocks present. Each thread will check if the
blocks it last processed are dirty, which will determine the total number of dirty blocks
on each side. This information allows us to identify the separators that divide the data
into separate sections, specifically clean and dirty segments, as shown in Figure 4.2.

We manage an array called reserved that is used to reserve a spot in the dirty
segment. Each thread containing at least one dirty block will verify whether its dirty
blocks are positioned correctly, specifically within the middle dirty segment. If so, they
will update the reserved array with this information. Subsequently, the reserved array
enables threads with dirty blocks in clean segments to locate suitable clean blocks in dirty
segments and exchange them. This operation is illustrated in Figure 4.3. Following this,
we proceed to process the dirty blocks sequentially. We also considered enhancing the
cleanup stage (Chapter 2.4.2), but this method introduces significantly more complexity
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t2 t3 t1t3t4t4 t4t1

clean left segment clean right segment

t2

dirty segment

Figure 4.2 Start of cleanup stage. The cleanup stage begins by determining the number of
dirty blocks on the left and right sides. Based on this information, the splitters that mark the
borders of the dirty segment are identified. In this instance, two dirty blocks are on the left
side and one on the right. As a result, the dirty segment will start two blocks to the left of the
midpoint and continue one block to the right of the midpoint. The next step is to rearrange the
blocks so that the dirty segment will contain all the dirty blocks.

t2 t3 t1t3t4t4 t4t1 t2

Reserved
0 1 0 0

Figure 4.3 Swapping blocks in the cleanup stage. During the cleanup stage, blocks are being
swapped. The reserved array indicates which blocks have a reserved spot in the dirty segment
before swapping. Any blocks which did not reserved a spot will be subject to swapping. The
size of the reserved array is determined by the number of threads, which corresponds to the
maximum number of dirty blocks. In this scenario, only three blocks are considered dirty. While
the second block from the left of thread t4 has a reserved spot, the remaining two blocks do not
have reserved spots in the dirty segment and will be swapped out by dirty blocks.

and, based on the benchmarks provided by the author, only offers a minimal speed-up.
Therefore, we chose to go with a more straightforward sequential cleanup instead.

Recognizing the significance of correctly synchronizing threads is crucial to avoid data
races and associated problems. It is necessary to utilize appropriate atomic constructs,
such as atomic variables in C++ implementation and the atomic clause in OpenMP. In
order to guarantee that all threads can access the same information, two barriers must
be established. The first barrier is employed to determine the overall count of dirty
blocks. The second barrier is required before swapping dirty blocks to the center. The
implementation has been enhanced to monitor whether the partition was swapless (see
Chapter 2.3.3). Each thread now tracks whether any elements were swapped, and we
also check if any elements were swapped during the cleanup stage. If no elements were
swapped at all, we identify a swapless partition, indicating that the input data is likely
sorted, enabling us to adjust the algorithm.
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Figure 4.4 Final sequential partition. All dirty blocks have been moved to the middle.
Subsequently, the middle segment is neutralized sequentially.

4.3.2 Branchless Parallel Partition
The parallel branchless partitioning implementation adopts a similar approach, utilizing
an almost identical algorithm. The primary difference lies in the way threads manage
block neutralization. Initially, the concept was for each thread to perform branchless
partitioning within the block repeatedly. This process included acquiring a block, con-
stantly filling offset buffers, exchanging elements, and obtaining a new block if necessary.
However, this method would introduce significant complexity and more conditional code
due to the need to verify if the block concludes during the scanning stage. We have opted
to pursue an alternative approach. Consequently, when the thread encounters the next
block, it will scan the entire block in one iteration. This allows us to accomplish this
task using a single straightforward loop without the need for any conditional code. It is
crucial, however, to carefully select the block size; a block that is too small may result
in threads blocking and causing delays for each other. Conversely, a too large block may
cause not all scanned elements to fit in the L1 cache. The branchless method is also
used in sequential cleanup. Additionally, we have also integrated the identification of
swapless partition.

4.4 Further Optimizations

In addition to the optimized partitioning, optimized pivot selection, and thread balanc-
ing as previously discussed, our PPQSort algorithm includes additional improvements.
Moreover, we have parallelized certain sequential optimizations to increase effectiveness
even more.

Recursion elimination Instead of employing two recursive calls, we utilize a while
loop and a single recursive call. This approach helps decrease the number of recursive
calls to O(log n), thereby reducing the stack memory needed.

Adaptivness As previously mentioned, we verify whether the partition is swapless.
If so, we infer that the input data is already sorted and adjust our algorithm ac-
cordingly. In the scenario where only one thread is available, we attempt to sort the
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partitioned data using a sequential partial insertion sort (Chapter 2.3.3). In cases
where multiple threads are present, the input data is distributed among them, with
each thread handling a segment that overlaps by one element and verifying if its
assigned segment is sorted. If all threads confirm the sorted status of their segments,
then the input data is considered sorted. Otherwise, we abandon this approach and
revert to the previous quicksort algorithm.

Duplicate elements We check whether the chosen pivot is identical to the pivot
used in the previous partitioning. If they are the same, we alter the partitioning
method by putting the elements equal to the pivot on the left side of it. Following
this partitioning step, there is no need to recursively process the left side, as it
would solely consist of elements that are equal to the pivot. This optimization can
only be performed when partitioning a segment that is not the leftmost. The visual
representation can be seen in Figure 2.4.

Insertion sort When the length of the input sequence is less than a specific thresh-
old, we opt for insertion sort as it is typically faster for a small number of elements.
We establish a larger threshold for basic elements with the default comparison func-
tion as comparisons are less costly. Additionally, to manage the elimination of du-
plicate elements, we keep track of whether we are processing the leftmost partition.
Exploiting this information, when sorting a partition that is not the leftmost, we can
eliminate one boundary check and further improve the speed.

Unbalanced partition We employed a technique to count bad partitions. If an bad
partition is detected, we will rearrange the elements to introduce new candidates
for the next partition’s pivot. Otherwise, we will use heap sort if the number of
bad partitions surpasses a specific limit. This strategy is inspired by the pdqsort
algorithm, and further information can be found in Chapter 2.3.6.

4.5 OpenMP Implementation

Both of our implementations are written in C++, allowing us to have extensive control
over memory and other low-level operations while still being able to utilize abstract
and modular programming techniques. Our first implementation is based on OpenMP,
simplifying the process of parallelizing code and incorporating synchronization constructs
and other functionalities to support parallel programming. Our code works fully with
OpenMP version 4.5. It can also use newer features from OpenMP version 5.1, but
only if your compiler supports those features. Compilers that fully support OpenMP
4.5 include GCC version 11 or later and Clang version 6 or later. To use the optional
features from OpenMP 5.1, you will need GCC version 12 or later or Clang version 17
or later.

OpenMP’s task construct is a precious feature for our implementation. OpenMP pro-
vides an efficient task pool, which makes it straightforward to parallelize recursive calls
within quicksort using task parallelism. We naturally used the task construct to paral-
lelize our PPQSort algorithm effectively. Another key feature that we employed is nested
parallelism. In OpenMP, nested parallelism allows threads within a parallel region to
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create a limited number of subthreads and wait for their completion. This functional-
ity was crucial in implementing parallel partitioning in our code. Our implementation
also relies on OpenMP’s barrier and atomic operations of OpenMP’s, including atomic
capture. We leverage the more efficient atomic compare capture construct when using
OpenMP version 5.1 or later. We achieve the same functionality by employing a critical
section if an older version of OpenMP is used (below 5.1).

4.6 C++ Threading Implementation

Our second implementation is based solely on standard C++ features and uses no ex-
ternal libraries or non-standard extensions. This makes our implementation portable
and architecture-independent, which is a significant advantage over other parallel quick-
sort implementations that typically rely on third-party libraries. Our implementation
complies with the C++20 standard.

4.6.1 Standard Library Features
The Concurrency support library was introduced in C++11, and C++20 has included
some extra beneficial features to enhance this library, which we have utilized, namely:

Jthread: In order to achieve parallelism, we use std::jthread, which is based
on std::thread but incorporates additional functionalities like stopping the thread
under specific conditions.

Memory order semantics: We use memory order semantics to specify the order
in which different threads see memory operations. This is essential to ensure correct
and consistent behavior in a multi-threaded environment. Refer to Chapter 4.6.2 for
detailed description.

Barriers: We utilize std::barrier to synchronize threads at specific points in the
algorithm. This ensures that all threads have completed their tasks before proceed-
ing to the next stage. In some cases, std::latch is utilized, which is similar to
std::barrier, except that it is not reusable; once it reaches zero after being decre-
mented and all threads are unblocked, there is no option to reset the counter.

Semaphores: We use std::binary semaphore for managing access to shared re-
sources and synchronizing threads. Instead of utilizing std::condition variable,
we opt for semaphores to obstruct and await signals. This approach offers a simpler
implementation and, in some cases, better performance according to the cpp reference
[57]: ”semaphores can be considered alternatives to std::condition variables, of-
ten with better performance.”

Atomics and locks: std::atomic or std::atomic ref are employed for creating
atomic variables. Further std::mutex and its wrappers, such as std::unique lock
or std::lock guard are utilized for establishing locks and implementing diverse
synchronization and communication mechanisms.
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4.6.2 Memory Order Semantics
Modern CPUs optimize performance by potentially reordering instructions and memory
accesses. The memory model of the programming language governs this behavior.

A memory model defines the expected order of memory operations from the perspec-
tive of a program. C++ allows specifying the memory order for each atomic operation,
influencing how surrounding memory accesses are ordered. The default seq cst (se-
quentially consistent) order ensures a safe and strict execution order but can be overly
conservative.

C++ offers a variety of memory order semantics, but processors have varying levels
of support. When the specified combination is not supported, the compiler inserts
instructions with ”stronger” semantics (limiting reordering possibilities). For example,
x86-64 lacks relaxed-store semantics, so every write automatically becomes a release-
store. On the contrary, relaxed-store is available on architectures like ARMv8.1.

In PPQSort, we carefully choose appropriate memory order semantics for atomic op-
erations. Since most operations are independent, we use relaxed semantics for efficiency.
However, in specific cases, stronger ordering is necessary. We typically use the release
in combination with acquire semantics.

On strongly-ordered architectures, explicitly specifying memory order has a minor
performance impact. However, specifying memory order on weakly-ordered models, such
as ARM processors, allows the code to benefit from weaker ordering and potentially
achieve faster execution.

4.6.3 Thread Pool
C++20 introduced several valuable features for concurrent programming, yet it still
lacks a key element: a thread pool. This feature is required to parallelize the control
flow of our quicksort algorithm, particularly the recursive calls. To achieve this, we have
developed a custom thread pool.

The custom thread pool we developed draws inspiration from the concept presented
by Sean Parent [58]. Instead of using a single atomic queue for thread tasks, which
may become inefficient and cause thread blocking due to potential queue overload, we
opt for a more effective strategy. Our approach involves employing multiple queues to
enhance the throughput of the thread pool, with each thread being assigned its queue.
This technique is illustrated in Figure 4.5.

Task Scheduler

When a new task is created, the scheduler determines the appropriate queue for the task.
The aim is to reduce instances where a thread must wait to acquire a lock to improve
the efficiency of CPU utilization. We have developed a thread-safe queue that uses a
lock to achieve this goal. Nevertheless, this queue includes unique functions, namely
try push and try pop. Suppose one of these functions is invoked while another thread
currently holds the lock. In that case, the function will immediately return a failure
indication instead of waiting for the lock to be released. This approach allows us to
iterate through the queues and assign the task to one that is not busy without blocking.
If all queues are occupied, we can iterate through the queues K times. We do not know
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Figure 4.5 Thread pool diagram. Every thread possesses its queue. The scheduler distributes
new tasks to the thread’s queues, and task stealing prevents thread starvation.
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Code listing 4.1 Task scheduler. The following code snippet demonstrates how our task
scheduler adds new tasks to the queues. Initially, we attempt to add the task without pausing to
acquire the lock and prevent blocking. However, if unsuccessful for K attempts, we add a task
to the queue indicated by our index while waiting for the lock to be obtained.

void push_task(taskType&& task) {
total_tasks_.fetch_add(1, std::memory_order_release);

// spin around queues to find non-busy queue
const std::size_t i = idx_.fetch_add(1, std::memory_order_relaxed);
constexpr unsigned int K = 2;
for (std::size_t n = 0; n < t_ * K; ++n) {

if (q_[(i + n) % t_].try_push(std::forward<taskType>(task))) {
pending_tasks_.fetch_add(1, std::memory_order_release);
pending_tasks_.notify_all();
return;

}
}

// if all queues busy, wait for the first one
q_[i % t_].push(std::forward<taskType>(task));
pending_tasks_.fetch_add(1, std::memory_order_release);
pending_tasks_.notify_all();

}

which queue will become free first, so this approach is logical instead of waiting for one
queue. However, if all the queues are still busy after K repeats, we can utilize the push
function, which will wait until the lock is acquired. In addition, we maintain an atomic
index to determine the starting point for iterating through the queues. This index is
incremented each time a task is assigned to ensure a more balanced distribution of tasks.
This technique is demonstrated in the Code 4.1.

Task Stealing

Another exciting optimization within our thread pool concerns the distribution of tasks
from queues to threads. If each thread were to retrieve tasks exclusively from its queue,
it would result in a significant load imbalance issue. Therefore, when a thread seeks new
tasks, it adopts a strategy similar to when tasks are added to the queues. This strategy
involves traversing the queues using the try pop function, which immediately reports
a failure if the queue is busy or empty. Consequently, threads can acquire tasks from
various queues if their queue is busy or empty. When all queues are occupied, the pop
method is employed for our queue, which patiently waits for the lock before returning
a task or signaling that the queue is empty. We call this approach task stealing and it
enhances the load distribution and speeds up the processing rate, as demonstrated in
Code 4.2.
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Code listing 4.2 Task stealing. The code snippet below illustrates how our threads retrieve
tasks from queues. At first, we try to obtain the task without stopping to acquire the lock and
avoid blocking. We cycle through all queues, allowing us to take tasks from other queues, which
is why we call it task stealing. Nevertheless, if this attempt is unsuccessful, we fetch a task from
our queue, even if it requires waiting for the lock.

bool get_next_task(const unsigned int id) {
bool found = false;

// spin around all queues to find a task, start with my queue
for (std::size_t n = 0; n < threads_count_; ++n) {

if (auto task = queues_[(id + n) % threads_count_].try_pop()) {
run_task(std::forward<taskType>(task.value()));
found = true;
break;

}
}

// if all queues busy or empty, check our queue if empty
if (!found) {

if (auto task = queues_[id].pop()) {
run_task(std::forward<taskType>(task.value()));
found = true;

}
}

return found;
}
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Thread-Safe Queue Implementation Considerations

In selecting a container for our thread-safe queue implementation, we initially consid-
ered using std::deque, known for its constant-time insertion and removal at both ends.
However, the standard implementation of std::deque typically involves individually al-
located fixed-size arrays with additional bookkeeping, leading to two-pointer dereferences
for indexed access and noncontiguous storage of elements. While expanding a deque is
fast due to the absence of element copying, it comes with a high minimum memory over-
head. Consequently, we decided to utilize std::vector instead, which offers quicker
element access. Although expanding a vector is slower, we proactively reserve sufficient
memory to prevent reallocations. However, std::vector provides constant-time inser-
tion and deletion operations only at the end, making it behave more like a thread-safe
stack than a queue in this scenario. However, since the task processing order is irrelevant
in our scenario, we can leverage the performance benefits of the vector container.

Worker Thread Wait Strategy

We aim to avoid having our threads engage in spinlock and continuously monitoring
for pending tasks. Therefore, we have incorporated a basic sleep mechanism for cases
with no tasks awaiting processing. The common practice involves using a mutex with
std::condition variable and waiting for the condition variable to be signaled. We
decided to utilize the latest features of C++20, which are seen as an alternative approach
and better suited for our situation. A thread-safe queue is already in place, and the num-
ber of pending tasks is monitored. Consequently, we utilized the std::atomic::wait
function. This method is more straightforward and efficient than a condition variable as
it eliminates the need for an extra mutex. At the start of the loop, the working thread
verifies if there are any tasks (i.e. if the atomic counter is not 0). However, if there are
no tasks, the thread sleeps and waits for signals to wake up. As a result, when another
thread adds a new task to the queue, it notifies all the waiting threads. Notifying all of
them is preferable to expedite gathering new tasks.

It is essential to mention that a sleeping thread can spontaneously awaken, but it
will verify whether the atomic variable has been modified. If not, it will return to a
sleeping state. Hence, we can be confident that the thread will be unblocked only when
the variable has been modified. The documentation also mentions that transient changes
from an old value to another value and then back to the old value may not be captured
due to the ABA problem, and the thread will not unblock [59]. The ABA issue may
occur when the atomic counter transitions from 0 to 1 and then back to 0 rapidly. In
such a scenario, certain threads that are in a sleep state might not detect this rapid
change. However, in our situation, this is not a concern because the reversion of the
variable to 0 signals that another thread has already taken over the task. Therefore, the
sleeping threads can sleep undisturbed.

Thread Pool Shutdown

When the master thread is waiting for the thread pool to complete, it verifies the ex-
istence of any pending or currently executing tasks. If there are none, the thread pool
can be shut down. However, constantly checking for pending tasks would only be inef-
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Code listing 4.3 Worker routine. The following code snippet demonstrates the procedure for
the active thread. Initially, it enters a sleep state if there are no pending tasks. Upon awakening,
it verifies whether it should terminate its operation, as the thread pool has completed its tasks.
Subsequently, it retrieves its assigned tasks or obtains tasks from alternative queues. If no tasks
are acquired, it assesses whether there are no remaining tasks and, if so, sends a signal.

void worker(const std::stop_token& stop_token, const unsigned int id) {
while (true) {

// sleep until there are any tasks in queues
pending_tasks_.wait(0, std::memory_order_acquire);
if (stop_token.stop_requested())

break;

// while there are tasks, execute them (mine or stolen)
while (get_next_task(id));

// no tasks are in queues or handled --> signal that our work
is done↪→

if (total_tasks_.load(std::memory_order_acquire) == 0)
threads_done_semaphore_.release();

}
}

ficient. In this scenario, utilizing the wait function on an atomic variable is impossible
because it only checks if the variable transitioned from an old state to a new one rather
than a specific state (e.g., 0). Therefore, we have employed a semaphore, specifically
std::binary semaphore. The master thread will wait on this semaphore, and once the
final thread completes its work, it will signal through the binary semaphore that all
threads have finished their work.

Alternative Approaches

An alternative option to our solution is the implementation of a lock-free queue. How-
ever, implementing the lock-free queue in a model with multiple producers and consumers
is quite complex. Therefore, we stay with our initial approach, a great hybrid imple-
mentation that balances speed and simplicity. It is crucial to mention that the scenario
in which all queues are occupied occurs rarely, resulting in threads barely having to wait
for locks.

4.7 Memory Usage

Our implementation leverages two auxiliary arrays for storing offsets, but these arrays
are crafted to be small and constant. Each array occupies a mere 2048 bytes (2 KB),
resulting in a negligible memory footprint.

A key element of our strategy involves using a thread pool and a method that balances
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the number of running threads. These techniques control a set number of active threads,
which helps prevent excessive memory consumption caused by running too many threads.
The thread count (p) stays constant, ensuring that the total memory usage follows the
equation: 4KB ∗ p.

As a result, the memory usage is a small constant value independent of the input size.
This characteristic aligns with the definition of in-place algorithms in Big O notation.
Constant factors are disregarded when expressing Big O complexity. Even with the
auxiliary arrays, the algorithm’s memory usage remains O(1), effectively classifying it
as in-place.

4.8 Application Programming Interface (API)

Our implementation is designed to be header-only, simplifying the integration process.
Additionally, we provide a compact CMake file along with our implementation, allowing
users already utilizing CMake to incorporate the implementation into their projects
seamlessly. The API we offer adheres to the C++ standard and is similar to the
std::sort API. Users can utilize execution policies to define the characteristics of an
algorithm. These politics are predefined in ppqsort::execution. If no execution poli-
cies are explicitly defined, the implementation will proceed sequentially. The choice of
the branchless version is determined by the type of element and the comparison function
used. When the element type satisfies std::is arithmetic and the default comparison
function like std::less is employed, the branchless variant is chosen. In other cases, the
algorithm will utilize the non-branchless version, but the user can enforce the branchless
version. Possible usages are presented in code 4.4.

If the implementation is linked with OpenMP, it utilizes OpenMP. Otherwise, it re-
sorts to C++ threads. The user can enforce the use of C++ threads, even if the program
is linked with OpenMP, as shown in the code 4.5. Within the ppqsort::parameters
namespace, programmers can adjust specific parameters to suit their preferences. These
default values have been established through empirical testing.

4.9 Testing Suite

The repository we have published is a comprehensive suite that includes the imple-
mentation itself and other used components, such as automated tests, benchmarks, and
documentation. The suite utilizes the modernCppStarter template [60], which effectively
automates and integrates everything using cmake files. Another benefit is that the suite
can be effortlessly integrated into IDEs such as CLion or Visual Studio, which natively
support cmake files.

The tests are implemented using the GoogleTest framework (gtest), a popular and
comprehensive C++ testing framework [61]. The gtest enables the creation of well-
structured unit tests that promote clean code and maintainability. Some essential aspects
of gtest include fixtures, tests that values and types can parameterize, and a wide range
of assertions. Fixtures are specialized classes designed to establish and dismantle the
necessary test environment for each test case. This approach minimizes redundant code
and guarantees that tests are executed independently. The gtest framework enables the
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Code listing 4.4 Example of usage. An example of usage is presented below, demonstrating
the API and the various ways it can be invoked.

#include <vector>
#include <string>
#include <ppqsort.h>

int main() {
std::vector<int> input{3, 4, 5, 5, 6, 2, 5};
std::vector<std::string> input_str{"fdf", "fdgdf", "hytre",

"wrea"};↪→

auto cmp = [](int a, int b) { return b - a < a - b; };

// possible overloads
ppqsort::sort(input.begin(), input.end());
ppqsort::sort(input.begin(), input.end(), cmp);

// use parallel version
ppqsort::sort(ppqsort::execution::par, input.begin(), input.end());
ppqsort::sort(ppqsort::execution::par, input.begin(), input.end(),

cmp);↪→

// specify number of threads
ppqsort::sort(ppqsort::execution::par, input.begin(), input.end(),

16);↪→

// force parallel branchless version on strings
ppqsort::sort(ppqsort::execution::par_force_branchless,

input_str.begin(), input_str.end());↪→

}
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Code listing 4.5 Use C++ threading. The following code exemplifies how a programmer
can mandate the utilization of C++ threading in the implementation, even when the program
is linked with OpenMP.

#include <vector>
#include <string>

// enforce cpp threads
#define FORCE_CPP
#include <ppqsort.h>

int main() {
std::vector<int> input{3, 4, 5, 5, 6, 2, 5};

// call as usual
ppqsort::sort(ppqsort::execution::par, input.begin(), input.end());

}

Code listing 4.6 Cmake integration. This code demonstrates how users can conveniently
integrate this project into their CMake projects using CPM.cmake. Alternatively, they can use
other approaches, such as FetchContent, or directly download the implementation directory.

include(cmake/CPM.cmake)
CPMAddPackage(

NAME PPQSort
GITHUB_REPOSITORY GabTux/PPQSort
VERSION 1.0.3 # change this to latest commit or release tag

)
target_link_libraries(YOUR_TARGET PPQSort::PPQSort)
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Code listing 4.7 Build and run scripts. Users can utilize these scripts to execute or build spe-
cific components conveniently. Permitted commands include all, standalone, tests, benchmark,
docs, and clean.

@cf-frontend03-prod:˜/PPQSort$ scripts/build.sh all
...
@cf-frontend03-prod:˜/PPQSort$ scripts/run.sh standalone
...

creation of value- and type-parameterized tests, allowing them to be executed multiple
times with varying input values or types. Moreover, it also includes a comprehensive
collection of assertion macros for conveniently verifying conditions.

We have integrated Codecov into our GitHub repository [62] to ensure comprehensive
code coverage and identify potential testing gaps. Codecov is a valuable tool that ana-
lyzes and reports on the effectiveness of the test suite. It provides detailed information
on the percentage of code lines covered by tests, pinpointing areas where tests might be
lacking. In our situation, Codecov typically indicates a notable 99 − 100% code cover-
age, with occasional minor differences due to thread synchronization. It demonstrates
that our test suite effectively tests every line of code. This high coverage level instills
confidence in the code’s quality and functionality.

For our benchmarks, we used Google’s benchmark framework [63], which is widely
used and shares a close API resemblance with gtest. We made use of fixtures and
template macros, which helped us avoid redundant code and resulted in cleaner and
more straightforward code. Lastly, for the documentation, we used Doxygen, which is
a widely-used documentation generator tool [64]. We have also created bash scripts for
easy use, allowing users to build or run all projects or specific parts. The script usage is
demonstrated in Code 4.7.

We have released the whole suite including the implementation on GitHub [62] and
published it to the general public.



Chapter 5

Comparative Analysis

Thorough testing is critical to the development of the PPQSort algorithm. We verified
the correctness of the implementation, evaluated its efficiency, and compared it with
other popular implementations.

In this chapter, we will first present the utilized testing environments. Subsequently,
we will examine the preparation of input data. Following that, the succeeding section
will elaborate on determining the optimal parameter values for our algorithm. Finally,
we will compare the performance of our optimized implementation with other existing
parallel quicksort implementations.

5.1 Testing Enviroments

We utilized four different setups to evaluate and compare our implementation, ensuring
it is not optimized for a particular system architecture. Details about these environments
can be found in Table 5.1. Each time we conduct tests and benchmarks on these clusters,
we use a task scheduler to queue our executions. The scheduler ensures that the execution
of tasks does not interfere with the execution of other tasks. Consequently, only one task
is run on a single back-end node to ensure our results remain unaffected.

5.2 Input Data

In order to thoroughly evaluate and analyze efficiency, we have created two categories of
data. The initial category consists of synthetic pseudorandomly generated data, while
the second category comprises data generated through actual natural processes or ap-
plications.

We produce the synthetic data randomly in parallel with the help of OpenMP. A
static seed guarantees consistent random data across all algorithms tested to ensure fair
comparisons. Following data generation, we further process the data to create specific
input patterns (e.g., ascending, descending). Details of all synthetically generated data
sets are provided in Table 5.2.

We used the following basic types for our benchmarks:

short Half-size integer (2 bytes)
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Cluster
STAR

ClusterFIT
Intel

ClusterFIT
ARM

RCI Cluster

CPU
architecture

amd64/x86 64 amd64/x86 64 aarch64 amd64/x86 64

CPU Intel Xeon
E5-2630 v4
2.20GHz

Intel Xeon
Gold 6254
3.10GHz

Fujitsu
A64FX

AMD EPYC
7543

HW
architecture

NUMA NUMA NUMA NUMA

Cores 2CPU ·
10cores ==

20

2CPU ·
18cores ==

36

4CPU ·
12cores ==

48

2CPU ·
32cores ==

64
L1 cache 32KB (x20) 32KB (x36) 64KB (x48) 32KB (x64)
L2 cache 256KB (x20) 1024KB (x36) 8MB (x4) 512KB (x64)
L3 cache 25600KB (x2) 25344KB (x1) – 256MB (x2)

RAM 64GB 64GB 32GB 1TB
OS CentOS

7.9.2009
Ubuntu 22.04 Rocky Linux

8.9
Rocky Linux

8.8
Compiler GCC 11.2.1 GCC 11.4.0 GCC 13.1.1 GCC 13.2.0
Table 5.1 Overview of testing environments

int Integer (4 bytes)

double Decimal numbers with double precision according to IEEE 754 (8 bytes)

string A std::string containing 1001 elements, where the first 1000 elements are
set to 0, and the last element is assigned a random value. This setup allows us to
mimic elements with an expensive comparison function.

To encompass data commonly encountered in real-world applications and natural
processes, we incorporated sparse matrices into our testing from SuiteSparse Matrix
Collection [65]. Details about these matrices can be found in Table 5.3.

The sparse matrices were stored in the Coordinate Storage Format (COO) format
[66, 67]. COO stores non-zero elements in three arrays: row indices, column indices, and
values. This format requires no specific element order, making it ideal for assembling
sparse matrices as generated non-zero elements are appended.

However, the Compressed Sparse Row (CSR) and Compressed Sparse Column (CSC)
formats are often preferred for efficient computations. Converting from COO to CSR
requires a multi-array sorting of the non-zero elements based on row and column indices.
This underscores the significance of efficiently sorting sparse matrices.

Among the sorting algorithms considered, only AQsort is capable of natively han-
dling multi-array sorting. Other algorithms require transforming from the Structure
of Arrays (SoA) to the Array of Structures (AoS) format. While C++23 offers the
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(a) Random data (b) Ascending data

(c) Descending data (d) Organ pipe data

(e) Rotated data (f) Heap data

Figure 5.1 Visualization of specific input data patterns for 30 elements.
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Name Types Description
Random short, int, double, string truly random data

Ascending short, int, double, string sorted according to the <
operator

Descending short, int, double, string sorted and reversed
OrganPipe short, int, double, string first half is ascending,

second half is descending
Rotated short, int, double, string sorted and then shifted by

one to the left
Heap short, int, double, string in-place transformed into

heap from random data
Small cardinality int random data, the

cardinality (range) is
limited

Small size int random data, smaller size
Table 5.2 Overview of generated input data

std::views::zip functionality for simplifying this task, we focused on C++20 for
broader compatibility.

Therefore, we leveraged AQsort for direct multi-array sorting of COO matrices. For
other algorithms, we performed the SoA-to-AoS transformation before sorting. Trans-
formation time was excluded from benchmarks as it can vary significantly based on
implementation details.

To facilitate efficient and memory-conscious loading of the matrices, we used the
well-tested Fast Matrix Market (FMM) library [68]. By utilizing its enhanced parallel
features, FMM enabled the effective loading of matrices into memory.

5.3 Finding Parameters

Several tunable parameters that control its behavior can influence the performance of
the PPQSort algorithm. Finding the optimal configuration often requires careful con-
sideration and experimentation. During development, we conducted extensive empirical
testing on the STAR cluster (details in Table 5.1) to identify the most critical parameters:
block size and sequential threshold. This chapter shows the impact of these parameters
and presents results from the STAR cluster.

We evaluated PPQSort using various block sizes for both Hoare partitioning (see
Figure 5.2) and branchless partitioning (see Figure 5.3). This analysis revealed that a
block size of 214 elements yielded optimal performance for Hoare partitioning. The block
size 210 = 1024 for storing offsets indices was ideal for branchless partitioning.

We also analyzed the effect of the constant k (described in Chapter 4.1) on per-
formance. This constant determines where PPQSort transitions to a sequential sorting
algorithm for smaller subarrays. Based on the results presented in Figure 5.4, we identi-
fied an optimal k-value of 8. The choice of this value likely involves a trade-off between
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mawi
201512020330

uk-2005 dielFilterV3clx Queen 4147

Rows 226, 196, 185 39, 459, 925 420, 408 4, 147, 110
Columns 226, 196, 185 39, 459, 925 420, 408 4, 147, 110
Nonzeros 480, 047, 894 936, 364, 282 32, 886208 316, 548, 962

Symmetric Yes No Yes Yes
Type Integer Binary Complex Real

Description Packet trace
data from the

WIDE
backbone

crawl of the
.uk domain

analysis of a
4th-pole
dielectric
resonator

3D
discretization

by
isoparametric

hexahedral
Finite

Elements
Table 5.3 Sparse matrices. Overview of sparse matrices used in benchmarks.

20 23 27 28 210 212 214 216 218 220

Block size

0

5

10

15

20

25

30

35

So
rti

ng
 ti

m
e 

(s
ec

on
ds

)

Random_string

Figure 5.2 Comparison of various block sizes in Hoare partition. The PPQSort algorithm was
executed using various block sizes on n = 2e7 prepended random strings (chapter 5.2). These
tests were conducted with the OpenMP variant, although the outcomes for the C++ version
showed similar results.
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Figure 5.3 Comparison of various block sizes in branchless partition. The PPQSort algorithm
was executed with different block sizes on a set of n = 1e9 random integers. These experiments
were conducted with the C++ version, while the OpenMP version yielded comparable outcomes.

parallelization overhead for very small sub-arrays and the benefits of parallel processing
for larger ones.

5.4 OpenMP vs. C++ Threading

This chapter evaluates the performance characteristics of our implementations, focusing
on both time complexity and scalability. We achieved this by running the implementa-
tions on various input data. Our experiments were carried out on the STAR and Intel
clusters, as outlined in Table 5.1. Unless explicitly mentioned otherwise, the input data
size for each experiment was set to 2 billion elements (2e9).

5.4.1 Scalability
Our initial experiments focused on understanding the impact of thread count on perfor-
mance. The Intel cluster we used uses a NUMA architecture, where each CPU possesses
18 cores. To account for this NUMA architecture, our benchmarks were designed such
that when using less than 18 threads, all threads were assigned to a CPU. The results
presented in Figure 5.5 demonstrate the favorable scaling characteristics of our imple-
mentation. Additionally, the figure highlights a fundamental property of NUMA archi-
tectures: the increased overhead associated with thread synchronization across multiple
CPUs compared to a single CPU.

5.4.2 Data Patterns
To further evaluate the performance of our implementations, we performed tests on the
STAR cluster using various basic input data patterns (depicted in Figure 5.1). The



OpenMP vs. C++ Threading 55

1 3 5 7 8 10 15 20
k

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9
So

rti
ng

 ti
m

e 
(s

ec
on

ds
)

Random_int

Figure 5.4 Comparison of various sequential thresholds. We experimented with various values
of the constant k, which directly impacts the point at which the Parallel Pattern Quicksort
(PPQSort) transitions to the sequential variant.

experiments were conducted using the basic data type short, int, double and the
more intricate type std::string with 1, 000 zeros added at the beginning to increase
the duration of the comparison. In particular, for these tests, we used the maximum
available cores, resulting in a 1:1 thread-to-core mapping and a total of 20 threads.

Random data presents a complex scenario due to the absence of exploitable patterns.
This requires a large number of comparisons and swaps for the algorithm to achieve
sorting.

In the case of pre-sorted ascending data, the algorithm efficiently recognizes this
state and avoids unnecessary swaps after the initial partition. It effectively detects a
”swapless partition,” indicating that the data is already sorted.

Descending pre-sorted data incurs a slightly higher complexity compared to ascending
data. Nevertheless, the algorithm remains efficient because of its ability to perform a
significant number of symmetrical swaps.

The organ pipe pattern can hinder certain algorithms due to its inherent symmetry
and the possibility of selecting an unfavorable pivot. However, our implementation
effectively addresses this issue by detecting ”bad partitions” and strategically shuffling
future pivot candidates to eliminate symmetry-induced slowdowns.

Other data patterns, such as rotated and heaped data, can challenge some algo-
rithms, but adaptive algorithms can exploit these patterns to improve efficiency. Our
implementation demonstrates this by performing well on rotated data and exhibiting
average performance on heap data.

Figure 5.6 offers a comprehensive comparison of the performance of our implementa-
tions across various types and data patterns. This figure provides valuable insight into
how each implementation handles different data structures.

Figures 5.7 and 5.8 presents the performance comparison for specific data types. Fig-
ure 5.7 focuses on the execution time of both implementations when sorting int data
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Figure 5.5 The figure shows the scalability of C++ and OpenMP implementation on an Intel
cluster with a NUMA architecture. The experiment was conducted on random data with a size
of n = 2e9. Note that the x-axis utilizes a logarithmic scale to enhance visibility. The findings
demonstrate that our implementation exhibits good scalability, with the sequential version being
over twice as fast as std::sort. It is noteworthy that with only 18 threads allocated, the imple-
mentations perform better than when 28 threads are allocated. This behavior is characteristic
of NUMA architecture. The synchronization overhead between multiple CPUs (with more than
18 threads) is higher compared to a single CPU.
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Figure 5.6 Evaluation of the performance of PPQSort C++ and OMP implementations on
different data patterns. For the short, int, and double data types, we employed a size of
n = 2e9, while for the std::string data type, the size was n = 2e7. Tests were conducted on
the STAR cluster.
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Figure 5.7 Evaluation of the performance of our implementations on different data patterns.
The tests were conducted using n = 2e9 int elements.

across the various patterns. Similarly, Figure 5.8 compares the performance of implemen-
tations for std::string data patterns. Analyzing these figures along with Figure 5.6
allows for a granular examination of how the data type and pattern interplay influence
the efficiency of our implementations. Both implementations demonstrate excellent per-
formance and consistency across various data patterns. This versatility suggests their
suitability for handling diverse sorting tasks.

Although the benchmarks in this chapter indicate a slight edge for the OpenMP im-
plementation, Chapter 5.5 explores performance on different machines, where the C++
implementation often excels. These findings highlight the importance of considering the
target hardware and application requirements when choosing between the two.

5.4.3 Different Cardinality and Size
To comprehensively assess the performance of our implementations, we performed ad-
ditional tests on the STAR cluster. The tests examined random data with different
attributes, including data cardinality (the number of unique elements) and data size.
We investigated how efficiently the implementations handle data with low cardinality
(all elements might be the same) and a range of data sizes to ensure they excel at sort-
ing small and large datasets. The results in Figures 5.9 and 5.10 demonstrate that both
implementations exhibit excellent performance and remarkably similar behavior in these
data variations.

5.4.4 Matrices
To assess the effectiveness of our implementations beyond synthetic data, we conducted
benchmarks using sparse matrices generated from real-world applications or processes.
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Figure 5.8 Evaluation of the performance of our implementations on different data patterns.
The tests were conducted using n = 2e7 prepended std::string elements.
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Figure 5.9 This figure illustrates the performance comparison of our implementations for
sorting random integer (int) data with a size of 2 billion elements (n = 2e9). Cardinality, which
signifies the number of unique elements, is varied in this experiment to examine its influence on
sorting time.
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Figure 5.10 This figure showcases the scalability of our implementations by comparing their
performance on sorting random integer (int) data with varying input sizes. While the data
cardinality remains constant at int maximum (n ≈ 4e9), the figure explores how sorting time
changes as the overall data size increases.

Figure 5.11 compares our implementations’ performance when sorting sparse matrices
from the real world. The results are encouraging, demonstrating that both implementa-
tions achieve excellent sorting times. In particular, the figure highlights the remarkable
similarity in performance between the two approaches.

For detailed benchmark results, refer to Appendix A).

5.5 Comparing with Other Implementations

We conducted benchmarks against various parallel quicksort algorithms to assess our
implementation comprehensively. In our benchmarks, GCC BQS denotes the balanced
libstdc++ quicksort, while GCC QS refers to the unbalanced libstdc++ quicksort (see
Table 3.1 for further details). In the attachments (Appendix A), we provide a comparison
with additional high-performance parallel sorting algorithms, not limited to parallel
quicksort algorithms. We conducted performance tests on four clusters to thoroughly
assess our implementation. We always used the maximum available cores for these
benchmarks, resulting in a 1:1 thread-to-core mapping.

5.5.1 STAR Cluster
On the STAR cluster (refer to Table 5.1 for more details about the testing environment),
our PPQSort implementation exhibits exceptional performance. It consistently outper-
forms the state-of-the-art parallel quicksort implementations from GCC in nearly all test
cases, sometimes by significant margins.
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Figure 5.11 Comparison of our implementation’s performance on various sparse matrices.
These matrices are detailed in Table 5.3.

Data patterns

Figure 5.12 presents the results of sorting differently distributed input data using various
algorithms. The graph shows that our PPQSort algorithm exhibits superior performance
on all patterns. For randomly distributed data, it outperforms GCC BQS, by a factor
of approximately 2.26.

The results for the ascending data distribution show that the oneTBB parallel sort is
superior. However, this advantage stems from a pre-sorting check it performs before any
actual sorting operation. While this check benefits already-sorted data, it introduces
overhead for other distributions, potentially slowing down the algorithm. In contrast,
cpp11sort shows a noticeable slowdown of approximately 1.62x for ascending data. On
the other hand, our PPQSort implementation maintains impressive performance even
without a pre-sorting check. It outperforms GCC implementations by approximately
2.43x.

Although our PPQSort implementation remains the fastest for descending data dis-
tributions, the performance gap compared to other fast implementations narrows in this
case. However, PPQSort still maintains its lead, demonstrating its effectiveness on the
descending data distribution.

Rotated data distribution is exciting in the context of adaptive algorithms. Although
it presents an opportunity for these algorithms to exploit data characteristics and im-
prove performance potentially, it can also lead to significant slowdowns. Our benchmarks
demonstrate this trade-off. The rotated distribution results in a noticeable slowdown for
the GCC algorithms. However, the MPQsort algorithm exhibits excellent speed when
handling this data distribution. Despite this, the PPQSort OMP still proves to be sig-
nificantly faster (approximately 1.88 times) compared to MPQsort, even when dealing
with rotated distributions.

The OrganPipe distribution, known for its inherent symmetry, presents another in-
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Figure 5.12 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing differently distributed input data in a massive dataset of 2 billion (2e9) integers,
running on STAR cluster.
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teresting test case. Although the sorting times for various algorithms are similar, our
PPQSort implementation still emerges as the fastest. We hypothesize that PPQSort
ability to effectively detect bad partition and shuffle future pivot candidates plays a cru-
cial role in its advantage. This capability allows PPQSort to disrupt the symmetrical
nature of OrganPipe data, potentially leading to more efficient partitioning and sorting
in this specific scenario.

The final data pattern we evaluated involved elements prearranged in a heap structure
(refer to Chapter 5.2 for details). Interestingly, all the sorting algorithms exhibited a
slowdown when handling these data. This behavior can be attributed to the inherent
symmetry present in the heap structures. Breaking this symmetry to achieve efficient
sorting is more complex than other patterns, such as organ-pipe distribution. Despite
this slowdown, our implementations remained the fastest overall. This highlights the
robustness of our implementations, even under challenging data conditions.

Low Cardinality and Small Size

We have also compared the algorithm’s performance when sorting randomly generated
data with low cardinality (few unique values). In low-cardinality data, many elements
are identical. Here, an algorithm’s ability to recognize and adapt to such data becomes
crucial to avoid slowdowns. Our algorithm excels in this scenario due to its duplicate
pivot check. This check significantly improves the sorting speed for low-cardinality
data. Although oneTBB sort might be faster for inputs with cardinality 1 (all elements
are identical) due to its presort check, our algorithm remains highly competitive for
most cases of low cardinality. Furthermore, AQsort also shows excellent speed for low-
cardinality arrays (Figure 5.13).

We compared the algorithm’s performance on smaller, randomly generated arrays to
verify their ability to switch to a more efficient sequential sort at the right time. The
benchmark suite repeats these tests multiple times to account for potential variations
– typically 1, 000 times for the smallest size and around 10 times for larger sizes. As
shown in Figure 5.14, while the differences are minor, our implementation consistently
outperforms others due to its optimized sequential version.

Matrices

Finally, we compare algorithms for sorting sparse matrices (see Table 5.3 for additional
information). Figure 5.15 reveals some intriguing observations. Most algorithms yield
similar results. Typically, our implementations are the fastest; when they are not, the
differences are negligible. Our performance consistently delivers impressive speeds, fre-
quently exceeding those of GCC implementations.

5.5.2 ClusterFIT Intel
We ran the benchmarks on ClusterFIT Intel, a cluster with more cores (36) and faster
CPUs (details in Table 5.1). As expected, all algorithms exhibited performance improve-
ments compared to the STAR cluster (see Figure 5.16). Our implementations maintained
their dominance for randomly distributed data. Interestingly, cpp11sort demonstrated a
dramatic speedup, highlighting its ability to take advantage of additional cores. However,
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Figure 5.13 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing dataset of 2 billion (2e9) integers with low cardinality and distributed randomly.
Benchmarks were conducted on the STAR cluster.
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Figure 5.14 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing smaller datasets with randomly distributed integers. Benchmarks were conducted
on the STAR cluster.
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Figure 5.15 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing different sparse matrices. Benchmarks were conducted on the STAR cluster.
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the C++ implementation of our PPQSort exhibited remarkable robustness by providing
excellent sorting speeds, outperforming the second-fastest cpp11sort by a factor of 1.56x
on randomly distributed data even when running on this different hardware setup.

For ascendingly distributed data, our PPQSort C++ variant still exhibited excellent
speed, and the OMP variant was slightly slower but still maintained great performance.
All algorithms performed as expected for descendingly distributed data except cpp11sort,
which showed remarkable speed and was the fastest.

PPQSort dominance trend extends to organ pipe and heap data, as well as for smaller
input sizes and low cardinality data (see Figures 5.17 and 5.18). Our implementations
consistently rank among the fastest, often taking the lead. While cpp11sort again shows
remarkable sorting times, other algorithms exhibit varying performance, some experi-
encing slowdowns and others showing speedups.

Although the sorting times for the sparse matrices exhibit some variation (see Fig-
ure 5.19), our implementations continue demonstrating impressive performance. They
consistently rank among the fastest algorithms, particularly for large and complex ma-
trices like mawi 201512020330 and uk-2005. The performance difference is minimal for
smaller matrices like dielFilterV3clx, where cpp11sort takes the lead. Our OMP imple-
mentation remains the second-fastest, and our C++ implementation still ranks within
the top five. Cpp11sort emerges as the fastest for the Queen 4147 matrix. However,
our C++ implementation maintains a close third position, trailing only a few hundred
milliseconds.

In summary, our implementations showcase exceptional robustness. Although not
always the absolute leader, they consistently rank among the fastest algorithms, offering
excellent performance across a wide range of input data and showcasing great hardware
adaptability. Refer to Appendix A for detailed measurements.

5.5.3 ARM Cluster
We conducted performance tests on the ARM Cluster (see Table 5.1). The ARM archi-
tecture is notable for its utilization of a weakly ordered memory model, unlike AMD,
which uses a more ”strong” ordered model (see Chapter 4.6.2).

On the ARM cluster, the performance appears comparable to that on other hardware,
with the PPQSort C++ consistently proving to be the fastest implementation. This
is likely attributed to the effective utilization of explicit memory semantics. These
semantics allow PPQSort to optimize memory access patterns and potentially benefit
from weaker memory ordering of the ARM architecture, leading to performance gains.

Our implementations maintained consistent leadership across various data distri-
butions (see Figure 5.20), except for ascending data where oneTBB took the lead. For
both smaller sizes and varying cardinalities (Figures 5.21 and 5.22), our implementations
consistently achieved the fastest sorting times.

When considering sparse matrices, cpp11sort exhibited competitive performance,
even slightly outperforming our implementations on the mawi 201512020330 matrix.
However, our implementations remained dominant across the other matrices tested.

Our implementations consistently ranked among the fastest sorting algorithms on
this hardware setup. In particular, the C++ implementation of PPQSort demonstrated
a significant speedup due to its effective utilization of memory order semantics.
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Figure 5.16 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing differently distributed input data in a massive dataset of 2 billion (2e9) integers,
running on Intel cluster.
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Figure 5.17 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing dataset of 2 billion (2e9) integers distributed randomly. These random integers
have a low cardinality (number of unique elements). Benchmarks were conducted on the Intel
cluster.
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Figure 5.18 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing smaller datasets with randomly distributed integers. Benchmarks were conducted
on the Intel cluster.
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Figure 5.19 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing different sparse matrices. Benchmarks were conducted on the Intel cluster.
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Figure 5.20 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing differently distributed input data in a massive dataset of 2 billion (2e9) integers,
running on ARM cluster.
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Figure 5.21 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing dataset of 2 billion (2e9) integers distributed randomly. These random integers
have a low cardinality (number of unique elements). Benchmarks were conducted on the ARM
cluster.
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Figure 5.22 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing smaller datasets with randomly distributed integers. Benchmarks were conducted
on the ARM cluster.
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Figure 5.23 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing different sparse matrices. Benchmarks were conducted on the ARM cluster.
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5.5.4 RCI Cluster
The RCI cluster has multiple computing nodes containing CPUs that have 64 cores. De-
spite the capability to run 126 threads simultaneously, our benchmarks were specifically
carried out using 64 threads on 64 cores. This approach consistently mapped one thread
to one CPU core.

The RCI cluster benchmarks echo the trends observed on other hardware configu-
rations. Our PPQSort implementations consistently demonstrate strong performance,
frequently ranking as the fastest among the evaluated parallel quicksort algorithms (see
Figures 5.24, 5.25, 5.26 and 5.27).

Although the cpp11sort algorithm exhibits exceptional performance on certain input
data, often achieving speeds comparable to our implementations, PPQSort remains a
leader. This highlights the competitiveness of the sorting landscape.
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Figure 5.24 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing differently distributed input data in a massive dataset of 2 billion (2e9) integers,
running on RCI cluster.
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Figure 5.25 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing dataset of 2 billion (2e9) integers distributed randomly. These random integers
have a low cardinality (number of unique elements). Benchmarks were conducted on the RCI
cluster.
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Figure 5.26 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing smaller datasets with randomly distributed integers. Benchmarks were conducted
on the RCI cluster.
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Figure 5.27 Comparison of sorting times for all evaluated parallel Quicksort algorithms when
processing different sparse matrices. Benchmarks were conducted on the RCI cluster.



Chapter 6

Conclusion

In this paper, we have focused on in-place sorting algorithms and implemented a fast
parallel quicksort algorithm.

Initially, in the research section, we have focused on the quicksort algorithm and its
potential optimization opportunities. We have also analyzed the potential of combining
quicksort with other sorting algorithms. Moreover, we have investigated and analyzed
numerous shared memory parallel implementations of quicksort.

Based on the results of the research section, we have designed an effective parallel
quicksort algorithm named PPQSort. We have implemented PPQSort initially using
OpenMP and later developed a PPQSort implementation using C++ threads. Ul-
timately, we merged these implementations, resulting in header-only implementation,
which can use OpenMP if available or C++ threads, as the user needs. We published
the implementation alongside the testing and benchmarking suite.

We ran extensive benchmarks on four different machines. The benchmark results
demonstrate that PPQSort is exceptionally fast, outperforming state-of-the-art parallel
quicksort implementations on almost all inputs and all machines by a significant margin.
For example, on an ARM cluster, PPQSort is approximately 1.6 times faster on random
data than the second-fastest parallel quicksort implementation, cpp11sort.

PPQSort also performed exceptionally well in benchmarking against other parallel
algorithms, not limited to quicksorts. IPS4o was the only algorithm that surpassed
PPQSort in many cases, but it has external dependencies that make it less versatile.
Notably, on ARM cluster, PPQSort consistently outperformed all other algorithms in-
cluding IPS4o.

In future works, exploring the sample sort algorithm and devising a new hybrid sort-
ing algorithm that combines optimizations from PPQsort and IPS4o would be intriguing.
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Appendix A

More Measurements

This Appendix presents an in-depth analysis of benchmark results for the hardware con-
figurations outlined in Table 5.1. In many cases, the IPS4o algorithm outperformed our
PPQSort implementation. However, it is essential to note that IPS4o relies on external
dependencies such as TBB and is tied with GCC’s libatomic library. On the other hand,
PPQSort utilizes C++20 standard features, making it self-contained and potentially eas-
ier to integrate into existing projects without external dependencies. Notably, PPQSort
emerged as the fastest implementation on the ARM cluster.

Note that we omitted the Thrust sorting algorithm from the ARM cluster bench-
marks as it has shown a tendency to consume all available RAM when working with
more complex data types, such as doubles and strings. Additionally, the MPQsort could
not sort specific string inputs, which resulted in a segfault. We marked these run results
as ”X”.
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PPQSort C++ 4.84s 1.73s 2.38s 1.61s 2.14s 5.99s 18.69s 3
PPQSort OMP 4.96s 1.68s 2.19s 1.63s 2.12s 5.62s 18.2s 2
GCC BQS 11.19s 5.61s 6.63s 18.02s 6.3s 11.8s 59.55s 7
GCC QS 16.52s 2.96s 3.17s 15.65s 2.92s 12.71s 53.93s 6
oneTBB 28.74s 0.13s 6.14s 5.36s 5.29s 25.39s 71.05s 9
poolSTL 25.96s 3.69s 4.96s 16.74s 4.62s 23.5s 79.47s 10
MPQsort 13.91s 4.83s 6.04s 4.83s 5.39s 12.9s 47.9s 5
cpp11sort 34.4s 62.58s 63.1s 61.68s 54.08s 50.13s 325.97s 12
AQsort 16.53s 2.42s 30.79s 28.39s 27.53s 17.03s 122.69s 11
Boost 14.95s 1.35s 1.86s 4.21s 3.83s 10.16s 36.36s 4
Thrust 18.91s 6.46s 6.04s 7.47s 6.35s 16.58s 61.81s 8
IPS4o 2.71s 0.13s 2.42s 2.67s 2.51s 2.52s 12.96s 1

Table A.1 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the STAR cluster. The input size was 2e9
and the data type used was short.
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PPQSort C++ 9.5s 2.41s 5.88s 3.14s 4.52s 10.88s 36.33s 3
PPQSort OMP 8.94s 1.97s 5.7s 2.73s 3.87s 10.62s 33.83s 2
GCC BQS 20.24s 4.87s 12.19s 20.34s 6.01s 18.35s 82.0s 6
GCC QS 21.94s 4.79s 6.01s 22.6s 8.63s 20.0s 83.97s 7
oneTBB 34.0s 0.25s 6.26s 15.41s 6.56s 29.86s 92.34s 8
poolSTL 29.37s 5.43s 7.86s 20.02s 6.23s 27.11s 96.02s 9
MPQsort 22.91s 4.75s 6.48s 5.13s 5.63s 18.95s 63.85s 5
cpp11sort 28.9s 53.73s 42.97s 32.57s 39.8s 33.13s 231.1s 12
AQsort 38.12s 5.34s 32.02s 35.91s 34.53s 36.46s 182.38s 11
Boost 13.78s 1.92s 2.53s 5.48s 4.89s 13.42s 42.02s 4
Thrust 44.69s 16.41s 14.06s 16.28s 14.59s 32.38s 138.41s 10
IPS4o 6.48s 0.32s 6.01s 4.91s 5.62s 6.5s 29.84s 1

Table A.2 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the STAR cluster. The input size was 2e9
and the data type used was int.
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PPQSort C++ 17.52s 4.22s 9.61s 5.55s 7.08s 17.88s 61.86s 2
PPQSort OMP 18.44s 4.57s 7.75s 5.93s 5.95s 21.29s 63.93s 3
GCC BQS 23.68s 7.49s 15.66s 32.53s 19.5s 24.63s 123.49s 6
GCC QS 37.45s 8.5s 15.38s 38.67s 10.27s 27.86s 138.13s 8
oneTBB 43.53s 0.52s 9.09s 29.34s 10.14s 36.02s 128.64s 7
poolSTL 44.54s 10.96s 14.3s 35.73s 10.57s 38.56s 154.66s 9
MPQsort 25.97s 17.43s 11.28s 9.21s 10.11s 29.19s 103.19s 5
cpp11sort 37.7s 52.49s 38.74s 30.78s 40.91s 38.57s 239.19s 10
AQsort 43.27s 8.17s 44.02s 53.68s 51.54s 38.65s 239.33s 11
Boost 19.9s 3.71s 4.35s 9.4s 8.78s 20.82s 66.96s 4
Thrust 69.23s 47.33s 43.77s 42.91s 42.28s 58.19s 303.71s 12
IPS4o 8.78s 0.82s 7.89s 7.01s 7.99s 9.61s 42.1s 1

Table A.3 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the STAR cluster. The input size was 2e9
and the data type used was double.
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PPQSort C++ 7.91s 1.38s 4.7s 5.24s 5.36s 10.99s 35.58s 3
PPQSort OMP 6.83s 1.85s 4.89s 5.08s 3.81s 8.62s 31.08s 2
GCC BQS 5.76s 6.56s 13.63s 42.01s 10.7s 8.45s 87.11s 9
GCC QS 13.72s 12.05s 11.95s 16.01s 12.09s 20.94s 86.76s 8
oneTBB 16.26s 0.8s 15.88s 15.96s 16.87s 20.45s 86.22s 7
poolSTL 23.59s 14.99s 18.26s 12.97s 15.69s 36.45s 121.95s 11
MPQsort 30.21s X X X X X X X
cpp11sort 12.86s 12.12s 11.85s 11.89s 11.8s 17.71s 78.23s 6
AQsort 7.45s 5.22s 5.04s 4.54s 5.94s 8.99s 37.18s 4
Boost 8.15s 5.61s 5.69s 11.86s 4.84s 7.46s 43.61s 5
Thrust 16.09s 14.9s 14.57s 14.25s 15.22s 24.73s 99.76s 10
IPS4o 2.71s 0.82s 1.38s 1.28s 1.58s 1.53s 9.3s 1

Table A.4 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the STAR cluster. The input size was
2e7 and the data type used was std::string. Some algorithms faced errors during the sorting
process, which resulted in missing results for certain patterns.
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PPQSort C++ 0.87s 2.22s 4.39s 4.89s 7.53s 9.17s 29.07s 2
PPQSort OMP 1.04s 2.18s 5.27s 5.56s 8.89s 8.13s 31.07s 3
GCC BQS 13.9s 5.96s 6.8s 8.36s 12.62s 12.27s 59.91s 6
GCC QS 66.58s 27.03s 11.58s 12.13s 15.59s 17.42s 150.33s 9
oneTBB 0.36s 26.69s 32.79s 30.61s 32.51s 29.02s 151.98s 10
poolSTL 55.17s 51.17s 32.88s 23.72s 25.31s 32.27s 220.52s 12
MPQsort 16.65s 14.9s 12.12s 12.32s 17.45s 14.62s 88.06s 8
cpp11sort 45.6s 19.63s 10.63s 36.75s 48.44s 35.7s 196.75s 11
AQsort 1.62s 3.7s 5.69s 9.81s 15.95s 17.74s 54.51s 5
Boost 1.43s 4.57s 5.57s 8.27s 9.18s 15.61s 44.63s 4
Thrust 12.13s 13.01s 15.6s 13.69s 16.16s 15.9s 86.49s 7
IPS4o 0.37s 3.31s 2.23s 1.88s 3.41s 3.6s 14.8s 1

Table A.5 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the STAR clus-
ter. The input size was 2e9 and the data type we used was int.
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PPQSort C++ 0.35ms 4.05ms 9.07ms 43.9ms 246.0ms 505.0ms 808.37ms 3
PPQSort OMP 0.35ms 4.05ms 6.17ms 35.0ms 207.0ms 442.0ms 694.57ms 2
GCC BQS 1.15ms 27.5ms 24.3ms 77.7ms 414.0ms 827.0ms 1371.65ms 6
GCC QS 0.43ms 4.06ms 13.2ms 87.4ms 529.0ms 987.0ms 1621.09ms 8
oneTBB 0.41ms 1.68ms 14.7ms 175.0ms 837.0ms 1739.0ms 2767.79ms 11
poolSTL 1.75ms 2.36ms 15.1ms 171.0ms 844.0ms 1419.0ms 2453.21ms 9
MPQsort 0.62ms 8.01ms 13.5ms 103.0ms 439.0ms 857.0ms 1421.13ms 7
cpp11sort 2.27ms 5.29ms 13.1ms 84.3ms 382.0ms 768.0ms 1254.96ms 5
AQsort 1.61ms 3.65ms 14.5ms 140.0ms 831.0ms 1655.0ms 2645.76ms 10
Boost 0.35ms 4.1ms 24.4ms 50.7ms 283.0ms 590.0ms 952.55ms 4
Thrust 75.1ms 70.8ms 86.1ms 307.0ms 987.0ms 1912.0ms 3438.0ms 12
IPS4o 0.38ms 1.28ms 5.7ms 37.9ms 295.0ms 350.0ms 690.26ms 1

Table A.6 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the STAR clus-
ter. The data type we used int.
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PPQSort C++ 3.73s 8.55s 0.61s 4.94s 17.83s 2
PPQSort OMP 3.85s 7.18s 0.55s 5.43s 17.01s 1
GCC BQS 4.65s 12.95s 0.73s 6.04s 24.37s 8
GCC QS 6.55s 11.13s 0.69s 6.0s 24.37s 9
oneTBB 4.87s 8.54s 0.6s 4.91s 18.92s 4
poolSTL 12.37s 13.2s 2.89s 33.48s 61.94s 11
MPQsort 4.38s 10.16s 0.58s 4.29s 19.41s 5
cpp11sort 5.52s 12.32s 0.42s 5.13s 23.39s 7
AQsort 14.07s 27.21s 0.82s 6.08s 48.18s 10
Boost 5.29s 12.29s 0.48s 2.98s 21.04s 6
Thrust 21.39s 45.78s 1.87s 15.9s 84.94s 12
IPS4o 3.93s 10.59s 0.45s 3.07s 18.04s 3

Table A.7 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on sparse matrices, conducted on the STAR cluster.
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PPQSort C++ 2.66s 1.34s 1.94s 3.96s 1.54s 3.24s 14.68s 2
PPQSort OMP 3.1s 3.92s 2.02s 1.77s 3.57s 3.76s 18.14s 3
GCC BQS 7.72s 13.64s 13.6s 33.59s 13.04s 8.97s 90.56s 11
GCC QS 11.19s 6.08s 6.97s 12.62s 8.27s 11.78s 56.91s 7
oneTBB 18.11s 0.28s 5.9s 13.86s 6.31s 18.09s 62.55s 8
poolSTL 21.16s 4.7s 4.62s 10.52s 4.47s 20.19s 65.66s 9
MPQsort 12.52s 4.59s 7.94s 5.65s 12.01s 9.14s 51.85s 5
cpp11sort 5.15s 1.93s 2.74s 2.1s 2.46s 4.78s 19.16s 4
AQsort 8.36s 2.51s 19.36s 15.49s 14.14s 8.74s 68.6s 10
Boost 24.82s 1.84s 1.61s 6.46s 4.76s 14.06s 53.55s 6
Thrust 25.48s 18.4s 20.06s 17.5s 19.18s 23.52s 124.14s 12
IPS4o 1.35s 0.46s 1.14s 1.14s 1.32s 2.38s 7.79s 1

Table A.8 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the Intel cluster. The input size was 2e9
and the data type used was short.
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PPQSort C++ 4.95s 2.97s 4.46s 4.26s 3.61s 4.59s 24.84s 2
PPQSort OMP 6.1s 6.06s 3.99s 3.39s 5.79s 5.31s 30.64s 3
GCC BQS 10.03s 7.76s 23.85s 68.42s 20.97s 11.51s 142.54s 11
GCC QS 16.31s 8.06s 11.23s 23.26s 7.24s 20.2s 86.3s 7
oneTBB 23.65s 0.43s 9.37s 13.77s 11.19s 18.32s 76.73s 6
poolSTL 27.35s 8.83s 7.03s 15.12s 7.67s 23.77s 89.77s 8
MPQsort 17.04s 6.1s 29.31s 16.59s 19.39s 21.52s 109.95s 10
cpp11sort 7.71s 4.65s 3.81s 6.63s 6.43s 7.31s 36.54s 5
AQsort 17.42s 5.09s 17.77s 24.55s 19.08s 16.74s 100.65s 9
Boost 7.53s 2.45s 3.25s 7.04s 6.23s 7.45s 33.95s 4
Thrust 52.92s 46.37s 40.54s 43.79s 36.79s 44.76s 265.17s 12
IPS4o 3.01s 0.35s 2.56s 2.09s 2.74s 2.59s 13.34s 1

Table A.9 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the Intel cluster. The input size was 2e9
and the data type used was int.
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PPQSort C++ 9.63s 8.15s 6.42s 6.67s 7.27s 9.56s 47.7s 3
PPQSort OMP 10.8s 8.8s 6.51s 6.59s 7.94s 9.81s 50.45s 4
GCC BQS 17.25s 12.39s 30.46s 75.82s 18.75s 13.44s 168.11s 11
GCC QS 22.04s 29.14s 11.62s 34.66s 13.48s 22.26s 133.2s 8
oneTBB 29.93s 0.68s 16.54s 26.8s 15.16s 20.53s 109.64s 6
poolSTL 42.12s 11.9s 16.94s 24.38s 13.7s 37.77s 146.81s 10
MPQsort 18.79s 14.95s 29.09s 20.38s 14.65s 33.54s 131.4s 7
cpp11sort 10.71s 5.6s 4.62s 8.12s 5.64s 10.72s 45.41s 2
AQsort 22.76s 7.78s 28.41s 32.85s 28.9s 23.9s 144.6s 9
Boost 10.56s 4.95s 4.48s 19.66s 11.41s 11.09s 62.15s 5
Thrust 99.41s 85.42s 86.69s 87.04s 86.81s 88.57s 533.94s 12
IPS4o 4.34s 0.58s 3.73s 14.17s 3.84s 4.42s 31.08s 1

Table A.10 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the Intel cluster. The input size was 2e9
and the data type used was double.
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PPQSort C++ 3.05s 1.3s 3.7s 5.12s 3.24s 6.78s 23.19s 3
PPQSort OMP 4.08s 1.63s 3.84s 4.49s 2.16s 6.79s 22.99s 2
GCC BQS 8.6s 15.12s 33.45s 56.71s 22.36s 10.52s 146.76s 10
GCC QS 11.63s 13.09s 11.34s 14.78s 14.89s 10.51s 76.24s 7
oneTBB 21.0s 0.52s 18.1s 21.46s 26.59s 25.5s 113.17s 8
poolSTL 30.02s 17.17s 27.57s 17.88s 17.04s 26.33s 136.01s 9
MPQsort 21.06s X X X X X X X
cpp11sort 5.65s 6.2s 5.88s 6.24s 6.11s 8.15s 38.23s 4
AQsort 8.88s 4.95s 5.54s 5.98s 6.05s 9.18s 40.58s 5
Boost 6.63s 7.09s 9.1s 15.01s 5.74s 8.31s 51.88s 6
Thrust 340.12s 285.0s 255.41s 285.59s 272.12s 354.2s 1792.44s 11
IPS4o 1.71s 1.04s 1.66s 1.76s 1.6s 1.35s 9.12s 1

Table A.11 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the Intel cluster. The input size was 2e7
and the data type used was std::string. Some algorithms faced errors during the sorting process,
which resulted in missing results for certain patterns.
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PPQSort C++ 0.63s 1.7s 3.21s 2.37s 4.36s 5.68s 17.95s 2
PPQSort OMP 1.56s 2.77s 4.42s 4.46s 5.29s 5.07s 23.57s 3
GCC BQS 73.02s 15.84s 9.67s 6.94s 9.51s 9.56s 124.54s 9
GCC QS 73.22s 24.61s 20.7s 10.88s 11.47s 15.18s 156.06s 10
oneTBB 0.16s 20.64s 19.46s 22.57s 34.83s 22.34s 120.0s 8
poolSTL 59.65s 73.62s 51.06s 20.26s 18.02s 17.83s 240.44s 12
MPQsort 52.32s 18.52s 10.59s 10.4s 10.43s 10.6s 112.86s 7
cpp11sort 13.92s 7.57s 6.36s 4.04s 4.7s 5.19s 41.78s 5
AQsort 2.36s 4.28s 5.07s 6.75s 10.14s 10.78s 39.38s 4
Boost 1.33s 4.68s 5.11s 6.7s 9.26s 16.69s 43.77s 6
Thrust 34.77s 42.9s 38.38s 40.7s 37.22s 38.13s 232.1s 11
IPS4o 0.38s 1.24s 0.81s 1.78s 2.12s 2.02s 8.35s 1

Table A.12 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the Intel cluster.
The input size was 2e9 and the data type we used was int.
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PPQSort C++ 231.0ms 126.0ms 42.9ms 19.5ms 2.91ms 0.27ms 422.58ms 2
PPQSort OMP 240.0ms 119.0ms 40.2ms 19.3ms 2.53ms 0.31ms 421.34ms 1
GCC BQS 574.0ms 333.0ms 132.0ms 86.4ms 85.8ms 17.9ms 1229.1ms 7
GCC QS 765.0ms 325.0ms 108.0ms 41.2ms 45.0ms 10.4ms 1294.6ms 8
oneTBB 1215.0ms 551.0ms 112.0ms 14.9ms 3.15ms 1.29ms 1897.34ms 10
poolSTL 1276.0ms 698.0ms 139.0ms 23.5ms 15.7ms 9.77ms 2161.97ms 11
MPQsort 598.0ms 314.0ms 78.4ms 20.1ms 5.39ms 0.51ms 1016.4ms 6
cpp11sort 415.0ms 247.0ms 92.3ms 16.3ms 8.18ms 5.32ms 784.1ms 5
AQsort 753.0ms 416.0ms 90.3ms 23.5ms 18.5ms 17.2ms 1318.5ms 9
Boost 328.0ms 214.0ms 53.6ms 20.7ms 3.12ms 0.3ms 619.72ms 4
Thrust 1878.0ms 1161.0ms 409.0ms 300.0ms 289.0ms 339.0ms 4376.0ms 12
IPS4o 257.0ms 168.0ms 60.1ms 9.87ms 3.91ms 0.24ms 499.12ms 3

Table A.13 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the Intel cluster.
The data type we used int.
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PPQSort C++ 2.75s 4.99s 0.54s 2.89s 11.17s 4
PPQSort OMP 2.41s 4.93s 0.4s 3.33s 11.07s 3
GCC BQS 3.45s 24.2s 0.45s 7.62s 35.72s 9
GCC QS 5.79s 9.66s 0.66s 3.95s 20.06s 6
oneTBB 4.39s 19.49s 3.32s 8.56s 35.76s 10
poolSTL 13.81s 14.96s 4.23s 59.08s 92.08s 11
MPQsort 4.82s 17.06s 3.47s 4.01s 29.36s 8
cpp11sort 2.91s 5.42s 0.29s 1.92s 10.54s 2
AQsort 8.99s 12.98s 0.51s 3.42s 25.9s 7
Boost 3.64s 6.94s 0.41s 1.95s 12.94s 5
Thrust 30.48s 63.63s 3.79s 25.23s 123.13s 12
IPS4o 1.57s 3.6s 0.21s 1.42s 6.8s 1

Table A.14 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on sparse matrices, conducted on the Intel cluster.
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PPQSort C++ 3.11s 1.72s 2.1s 1.69s 1.72s 2.79s 13.13s 1
PPQSort OMP 3.37s 1.88s 2.12s 1.67s 2.04s 2.98s 14.06s 3
GCC BQS 9.6s 16.54s 16.9s 40.98s 17.07s 9.37s 110.46s 10
GCC QS 11.62s 2.89s 3.87s 12.81s 8.92s 10.98s 51.09s 6
oneTBB 42.53s 0.1s 8.96s 7.27s 7.84s 40.71s 107.41s 9
poolSTL 34.64s 4.84s 8.41s 20.39s 7.72s 42.13s 118.13s 11
MPQsort 12.46s 7.1s 6.46s 6.26s 6.94s 10.94s 50.16s 5
cpp11sort 6.67s 2.41s 2.18s 2.12s 2.16s 6.6s 22.14s 4
AQsort 11.74s 2.31s 21.01s 19.63s 20.77s 11.37s 86.83s 8
Boost 32.81s 2.73s 3.2s 8.36s 6.35s 23.05s 76.5s 7
IPS4o 1.9s 0.64s 2.83s 2.83s 2.81s 2.32s 13.33s 2

Table A.15 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the ARM cluster. The input size was 2e9
and the data type used was short.
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PPQSort C++ 5.84s 1.84s 4.55s 1.38s 2.96s 5.58s 22.15s 1
PPQSort OMP 5.89s 2.02s 4.67s 1.77s 3.15s 5.72s 23.22s 2
GCC BQS 13.72s 4.18s 19.11s 49.89s 8.24s 13.78s 108.92s 8
GCC QS 18.33s 4.1s 14.62s 12.51s 14.01s 19.16s 82.73s 7
oneTBB 43.66s 0.09s 8.62s 13.84s 8.12s 43.9s 118.23s 10
poolSTL 34.63s 5.61s 7.23s 14.78s 7.81s 46.88s 116.94s 9
MPQsort 13.35s 5.74s 5.77s 4.67s 7.71s 12.87s 50.11s 6
cpp11sort 9.58s 2.47s 2.66s 5.47s 3.42s 9.9s 33.5s 4
AQsort 24.72s 3.66s 23.14s 21.83s 22.6s 25.31s 121.26s 11
Boost 8.2s 3.0s 4.26s 13.96s 6.97s 7.92s 44.31s 5
IPS4o 4.8s 0.19s 5.97s 5.21s 5.59s 4.91s 26.67s 3

Table A.16 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the ARM cluster. The input size was 2e9
and the data type used was int.



92 More Measurements

Algorithm

R
an

do
m

A
sc

en
di

ng

D
es

ce
nd

in
g

R
ot

at
ed

O
rg

an
Pi

pe

H
ea

p

To
ta

l

R
an

k

PPQSort C++ 6.12s 1.95s 4.76s 1.72s 3.16s 6.09s 23.8s 1
PPQSort OMP 6.38s 2.45s 5.25s 1.98s 4.04s 6.16s 26.26s 2
GCC BQS 14.47s 4.38s 18.53s 44.96s 17.32s 14.95s 114.61s 8
GCC QS 18.99s 3.43s 14.09s 13.43s 9.31s 17.7s 76.95s 7
oneTBB 47.07s 0.13s 9.42s 15.5s 10.14s 48.66s 130.92s 10
poolSTL 41.14s 5.41s 8.98s 14.05s 8.34s 42.58s 120.5s 9
MPQsort 21.18s 6.65s 6.81s 6.07s 7.4s 15.21s 63.32s 6
cpp11sort 11.77s 2.33s 2.85s 7.25s 3.73s 11.21s 39.14s 4
AQsort 29.46s 3.97s 31.92s 29.19s 31.44s 28.65s 154.63s 11
Boost 9.64s 3.98s 4.54s 15.67s 7.29s 9.23s 50.35s 5
IPS4o 7.87s 0.17s 7.5s 6.91s 7.23s 7.15s 36.83s 3

Table A.17 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the ARM cluster. The input size was 2e9
and the data type used was double.
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PPQSort C++ 5.53s 3.09s 3.24s 3.39s 3.15s 10.31s 28.71s 2
PPQSort OMP 5.38s 2.92s 3.08s 3.48s 3.65s 11.32s 29.83s 3
GCC BQS 12.0s 22.15s 31.85s 77.86s 17.14s 6.83s 167.83s 9
GCC QS 14.2s 13.41s 13.91s 17.18s 13.57s 18.09s 90.36s 7
oneTBB 33.29s 0.26s 22.04s 21.69s 24.65s 42.06s 143.99s 8
poolSTL 32.18s 22.9s 42.4s 23.45s 35.88s 66.69s 223.5s 10
MPQsort 25.38s X X X X X X X
cpp11sort 5.87s 5.7s 5.45s 5.38s 5.86s 9.6s 37.86s 4
AQsort 5.89s 5.38s 6.08s 5.27s 5.0s 40.49s 68.11s 5
Boost 7.5s 11.46s 11.21s 24.68s 7.87s 6.54s 69.26s 6
IPS4o 0.92s 0.47s 1.68s 1.51s 1.88s 1.5s 7.96s 1

Table A.18 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the ARM cluster. The input size was 2e9
and the data type used was string.
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PPQSort C++ 0.41s 2.1s 3.08s 4.19s 3.24s 4.07s 17.09s 1
PPQSort OMP 1.04s 2.36s 3.44s 3.75s 4.11s 4.1s 18.8s 2
GCC BQS 39.98s 12.97s 7.15s 9.48s 9.26s 9.95s 88.79s 8
GCC QS 103.69s 38.04s 15.7s 9.69s 13.0s 13.65s 193.77s 10
oneTBB 0.08s 30.73s 36.59s 40.16s 44.7s 40.43s 192.69s 9
poolSTL 98.52s 142.4s 154.41s 36.57s 38.96s 36.07s 506.93s 11
MPQsort 26.79s 14.78s 11.18s 11.06s 11.03s 11.52s 86.36s 7
cpp11sort 10.88s 5.26s 6.4s 4.64s 6.02s 6.68s 39.88s 5
AQsort 2.34s 3.48s 3.76s 5.86s 10.02s 10.88s 36.34s 4
Boost 2.84s 3.44s 3.35s 4.08s 13.5s 20.72s 47.93s 6
IPS4o 12.84s 5.04s 2.93s 1.81s 2.69s 3.11s 28.42s 3

Table A.19 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the ARM cluster.
The input size was 2e9 and the data type we used was int.
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PPQSort C++ 50.1ms 0.39ms 2.53ms 22.3ms 158.0ms 282.0ms 515.32ms 1
PPQSort OMP 45.3ms 0.4ms 2.7ms 18.4ms 170.0ms 293.0ms 529.8ms 2
GCC BQS 97.7ms 20.6ms 41.9ms 50.0ms 368.0ms 669.0ms 1247.2ms 7
GCC QS 103.0ms 4.49ms 17.0ms 26.4ms 449.0ms 881.0ms 1480.89ms 8
oneTBB 202.0ms 0.46ms 3.14ms 23.9ms 1111.0ms 2017.0ms 3357.5ms 11
poolSTL 124.0ms 3.72ms 6.96ms 19.5ms 828.0ms 1759.0ms 2741.18ms 10
MPQsort 93.7ms 0.97ms 11.7ms 21.3ms 368.0ms 675.0ms 1170.67ms 6
cpp11sort 101.0ms 9.93ms 15.3ms 28.6ms 337.0ms 608.0ms 1099.83ms 5
AQsort 130.0ms 17.5ms 16.1ms 28.1ms 576.0ms 1162.0ms 1929.7ms 9
Boost 76.4ms 0.6ms 6.7ms 30.6ms 227.0ms 395.0ms 736.3ms 4
IPS4o 36.4ms 0.58ms 6.1ms 28.0ms 132.0ms 333.0ms 536.08ms 3

Table A.20 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the ARM cluster.
The data type we used int.
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PPQSort C++ 1.86s 3.35s 0.19s 1.37s 6.77s 1
PPQSort OMP 1.87s 3.33s 0.18s 1.47s 6.85s 2
GCC BQS 2.44s 10.61s 0.27s 2.1s 15.42s 8
GCC QS 3.35s 7.63s 0.25s 1.64s 12.87s 6
oneTBB 4.29s 6.8s 0.31s 2.48s 13.88s 7
poolSTL 16.52s 12.53s 3.31s 23.84s 56.2s 11
MPQsort 3.7s 5.67s 0.41s 2.1s 11.88s 5
cpp11sort 1.75s 3.89s 0.28s 1.63s 7.55s 3
AQsort 17.81s 26.12s 0.51s 4.4s 48.84s 10
Boost 2.87s 4.08s 0.26s 1.75s 8.96s 4
IPS4o 3.52s 8.88s 0.52s 2.53s 15.45s 9

Table A.21 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on sparse matrices, conducted on the ARM cluster.
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PPQSort C++ 1.55s 0.63s 0.75s 0.62s 0.68s 1.39s 5.62s 2
PPQSort OMP 1.62s 0.98s 1.1s 0.99s 1.07s 1.78s 7.54s 3
GCC BQS 3.92s 6.6s 8.07s 17.53s 6.77s 3.85s 46.74s 11
GCC QS 4.38s 0.98s 1.34s 4.05s 1.41s 3.81s 15.97s 6
oneTBB 15.88s 0.04s 3.21s 2.74s 2.99s 11.46s 36.32s 10
poolSTL 13.59s 1.38s 2.39s 3.93s 2.3s 10.25s 33.84s 8
MPQsort 3.86s 1.87s 2.31s 1.84s 2.06s 3.9s 15.84s 5
cpp11sort 1.98s 0.81s 0.94s 0.83s 0.92s 2.07s 7.55s 4
AQsort 4.89s 1.12s 8.62s 8.16s 8.05s 4.89s 35.73s 9
Boost 7.26s 0.58s 0.8s 3.42s 4.08s 10.21s 26.35s 7
IPS4o 0.59s 0.04s 0.68s 0.63s 0.68s 0.7s 3.32s 1

Table A.22 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the RCI cluster. The input size was 2e9
and the data type used was short.
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PPQSort C++ 2.22s 1.07s 1.01s 1.13s 1.35s 2.22s 9.0s 2
PPQSort OMP 2.39s 1.08s 1.11s 1.42s 1.43s 3.08s 10.51s 3
GCC BQS 5.43s 1.2s 9.37s 14.74s 1.64s 5.27s 37.65s 10
GCC QS 6.38s 1.44s 2.07s 5.99s 2.84s 5.77s 24.49s 7
oneTBB 15.34s 0.05s 2.47s 3.88s 2.39s 10.9s 35.03s 9
poolSTL 11.54s 1.69s 2.6s 5.11s 2.17s 10.94s 34.05s 8
MPQsort 5.2s 1.86s 2.42s 1.93s 2.18s 5.6s 19.19s 6
cpp11sort 3.54s 1.07s 1.14s 1.94s 1.51s 3.46s 12.66s 4
AQsort 7.93s 1.87s 10.27s 10.55s 8.95s 8.17s 47.74s 11
Boost 3.47s 0.63s 0.9s 3.27s 3.66s 3.18s 15.11s 5
IPS4o 1.29s 0.15s 1.41s 1.13s 1.29s 1.5s 6.77s 1

Table A.23 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the RCI cluster. The input size was 2e9
and the data type used was int.
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PPQSort C++ 3.53s 1.95s 2.08s 2.11s 1.97s 3.73s 15.37s 2
PPQSort OMP 3.67s 1.95s 2.28s 2.36s 2.35s 3.59s 16.2s 3
GCC BQS 6.04s 1.99s 12.3s 20.69s 2.33s 6.36s 49.71s 9
GCC QS 8.96s 2.45s 2.73s 8.94s 3.24s 7.66s 33.98s 7
oneTBB 20.47s 0.1s 4.0s 4.75s 3.44s 14.47s 47.23s 8
poolSTL 21.84s 2.5s 4.42s 8.06s 3.32s 13.51s 53.65s 10
MPQsort 8.48s 2.74s 3.27s 2.89s 3.1s 8.05s 28.53s 6
cpp11sort 5.48s 1.65s 1.81s 3.13s 2.2s 5.43s 19.7s 5
AQsort 10.79s 2.14s 12.36s 15.13s 12.55s 10.67s 63.64s 11
Boost 4.58s 1.19s 1.36s 3.82s 3.23s 4.62s 18.8s 4
IPS4o 1.94s 0.11s 1.76s 1.39s 1.59s 2.02s 8.81s 1

Table A.24 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the RCI cluster. The input size was 2e9
and the data type used was double.
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PPQSort C++ 1.85s 1.14s 1.16s 1.08s 0.95s 2.93s 9.11s 3
PPQSort OMP 1.81s 1.29s 1.27s 1.09s 1.14s 2.44s 9.04s 2
GCC BQS 2.42s 6.13s 14.66s 34.28s 8.51s 3.61s 69.61s 10
GCC QS 2.85s 2.93s 2.86s 4.7s 2.64s 3.55s 19.53s 6
oneTBB 5.84s 0.18s 6.83s 6.31s 6.65s 12.21s 38.02s 8
poolSTL 10.53s 4.76s 4.87s 4.64s 5.33s 20.78s 50.91s 9
MPQsort 5.91s 105.56s 4.39s X 4.56s X X X
cpp11sort 2.37s 2.29s 1.91s 2.0s 2.15s 3.11s 13.83s 5
AQsort 1.44s 1.46s 1.5s 1.93s 2.09s 3.44s 11.86s 4
Boost 1.79s 2.93s 2.58s 8.26s 3.21s 1.76s 20.53s 7
IPS4o 0.27s 0.17s 0.34s 0.37s 0.34s 0.3s 1.79s 1

Table A.25 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on different data patterns, conducted on the RCI cluster. The input size was 2e9
and the data type used was string.
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PPQSort C++ 0.19s 0.73s 2.37s 1.5s 1.94s 2.29s 9.02s 2
PPQSort OMP 0.41s 0.97s 2.23s 1.69s 1.91s 2.14s 9.35s 3
GCC BQS 13.6s 5.62s 3.05s 3.22s 3.85s 3.82s 33.16s 8
GCC QS 26.83s 10.07s 7.7s 3.29s 4.63s 4.23s 56.75s 9
oneTBB 0.06s 10.37s 13.87s 14.25s 16.06s 15.78s 70.39s 10
poolSTL 24.29s 23.51s 12.64s 10.65s 11.29s 9.92s 92.3s 11
MPQsort 8.93s 5.36s 4.06s 3.83s 3.81s 3.99s 29.98s 6
cpp11sort 7.0s 3.2s 4.82s 1.71s 2.0s 2.29s 21.02s 5
AQsort 0.72s 1.72s 1.94s 3.05s 4.42s 4.84s 16.69s 4
Boost 0.64s 1.56s 1.51s 1.48s 8.33s 16.59s 30.11s 7
IPS4o 0.06s 0.35s 0.36s 0.42s 0.68s 0.76s 2.63s 1

Table A.26 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the RCI cluster.
The input size was 2e9 and the data type we used was int.
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PPQSort C++ 0.26ms 2.15ms 9.1ms 28.8ms 82.9ms 168.0ms 291.21ms 3
PPQSort OMP 0.23ms 2.02ms 9.9ms 30.7ms 87.1ms 155.0ms 284.95ms 2
GCC BQS 9.97ms 11.5ms 39.6ms 37.4ms 132.0ms 257.0ms 487.47ms 5
GCC QS 12.0ms 15.5ms 28.4ms 45.5ms 147.0ms 263.0ms 511.4ms 7
oneTBB 0.52ms 2.22ms 10.1ms 80.2ms 410.0ms 766.0ms 1269.04ms 11
poolSTL 3.67ms 7.05ms 10.3ms 73.9ms 320.0ms 586.0ms 1000.92ms 10
MPQsort 0.39ms 5.25ms 39.1ms 50.9ms 148.0ms 278.0ms 521.64ms 8
cpp11sort 9.9ms 11.9ms 19.9ms 50.2ms 162.0ms 255.0ms 508.9ms 6
AQsort 17.6ms 18.6ms 22.6ms 49.8ms 201.0ms 386.0ms 695.6ms 9
Boost 0.23ms 3.02ms 14.9ms 38.7ms 92.0ms 170.0ms 318.85ms 4
IPS4o 0.2ms 2.1ms 3.97ms 11.2ms 35.4ms 69.4ms 122.27ms 1

Table A.27 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on random data patterns with different cardinalities, conducted on the RCI cluster.
The data type we used int.
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PPQSort C++ 0.8s 1.64s 0.16s 0.81s 3.41s 3
PPQSort OMP 0.9s 1.53s 0.17s 0.8s 3.4s 2
GCC BQS 1.4s 2.74s 0.37s 2.9s 7.41s 8
GCC QS 1.36s 3.61s 0.22s 1.28s 6.47s 7
oneTBB 1.64s 2.56s 0.25s 1.63s 6.08s 6
poolSTL 3.79s 3.33s 1.48s 9.45s 18.05s 11
MPQsort 2.28s 3.84s 0.25s 1.73s 8.1s 9
cpp11sort 0.91s 1.8s 0.17s 0.83s 3.71s 4
AQsort 3.09s 5.45s 0.21s 1.27s 10.02s 10
Boost 1.14s 2.28s 0.13s 0.64s 4.19s 5
IPS4o 0.68s 1.58s 0.08s 0.6s 2.94s 1

Table A.28 A thorough comparison of all assessed implementations (not limited to quicksort
algorithms) on sparse matrices, conducted on the RCI cluster.
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1. MAREŠ, Martin; VALLA, Tomáš. Pr̊uvodce labyrintem algoritm̊u [online]. 2. vyd.
Praha: CZ.NIC, 2022 [visited on 2024-02-02]. isbn 978-80-88168-66-9. Available
from: https://pruvodce.ucw.cz/static/pruvodce.pdf. Errata up to 2023-12-
08.

2. CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN,
Clifford. Introduction to Algorithms [online]. 4th ed. Cambridge, Massachusetts:
The MIT Press, 2022 [visited on 2024-02-02]. isbn 9780262046305. Available from:
https://dl.ebooksworld.ir/books/Introduction.to.Algorithms.4th.Leise
rson.Stein.Rivest.Cormen.MIT.Press.9780262046305.EBooksWorld.ir.pdf.

3. HOARE, C. A. R. Algorithm 64: Quicksort. Commun. ACM. 1961, vol. 4, no. 7,
p. 321. issn 0001-0782. Available from doi: 10.1145/366622.366644.
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