
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Estimation of detection probability in multitarget filters using

object advanced image processing techniques

Bc. Michal Seibert

doc. Ing. Kamil Dedecius, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2024/2025

Instructions

Abstract: The subject of the thesis is the dynamic adjustment of the detection probability

in random finite set (RFS)-based filters. These filters can track objects in noisy

environments from imprecise measurements. However, they rely on the knowledge of

the object (mis)detection probability. If this quantity is set inappropriately, the filters are

oversensitive and prone to track loss. However, there is no convenient methodology for a

consistent estimation of the detection probability. The present thesis aims to focus on its

inference using algorithms for object detection and image segmentation. For object

detection, the YOLO model should be used, for segmentation, the Segment anything from

Meta AI is a possible way towards a solution. These models can recognize various

objects in the image. It is conjectured that the combination of these algorithms can yield

a filter with good robustness to target misdetections.

The goals are as follows:

- study the principles of the multitarget tracking algorithms

- study the principles of image segmentation and object detection

- propose a technique for estimation of object detection probability

- perform assessment of the proposed algorithm and discuss the obtained results

Literature:

[1] A. F. Garcia-Fernandez, A. S. Rahmathullah, and L. Svensson, “A Metric on the Space of

Finite Sets of Trajectories for Evaluation of Multi-Target Tracking Algorithms,” IEEE Trans.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 31 January 2024 in Prague.

Signal Process., vol. 68, pp. 3917–3928, 2020, doi: 10.1109/TSP.2020.3005309.

[2] R. Mahler, Advances in Statistical Multisource-Multitarget Information Fusion. Artech

house, 2014.

[3] B. N. Vo and W. K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE

Transactions on Signal Processing, vol. 54, no. 11, pp. 4091–4104, 2006, doi: 10.1109/TSP.

2006.881190.

[4] L. Stone, R. Streit, T. Corwin, and K. Bell, Bayesian Multiple Target Tracking. Artech

house, 2013.

[5] R. R. Sanaga, “Multi-target tracking with uncertainty in the probability of detection,”

MSc. Thesis, Purdue Univ., 2019.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 31 January 2024 in Prague.

Master’s thesis

ESTIMATION OF
DETECTION PROBABILITY
IN MULTITARGET FILTERS
USING OBJECT ADVANCED
IMAGE PROCESSING
TECHNIQUES

Bc. Michal Seibert

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: doc. Ing. Dedecius Kamil, Ph.D.
April 29, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Bc. Michal Seibert. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at Czech Technical
University in Prague, Faculty of Information Technology. The thesis is protected by the Copyright Act and its usage
without author’s permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Seibert Michal. Estimation of detection probability in multitarget filters using object ad-
vanced image processing techniques. Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of abbreviations x

1 Introduction 1
1.1 Evolution and development of multi-target tracking . 1
1.2 Applications of multi-target tracking . 2
1.3 Research interests . 2
1.4 Structure . 4

2 Theoretical Background 6
2.1 Bayesian inference . 6
2.2 Bayes’ rule . 7
2.3 Multivariate Gaussian distribution . 8
2.4 Gaussian mixture . 11
2.5 State-space model . 11

2.5.1 Constant velocity model . 14
2.5.2 Constant acceleration model . 16

2.6 Hidden Markov Model . 17
2.7 Bayes’ filter . 18
2.8 Kalman filter . 19

2.8.1 Kalman filter inference . 20

3 Target tracking 23
3.1 Data association . 24
3.2 Clutter . 24

3.2.1 Validation region . 24
3.3 Single target tracking . 27

3.3.1 PDA filter . 27
3.4 Multi-target tracking . 30

3.4.1 RFS statistics . 31
3.4.2 PHD filter . 33

4 Object detection and segmentation 42
4.1 Object detection . 42

4.1.1 YOLO . 45
4.2 Image segmentation . 46

4.2.1 Semantic segmentation . 47
4.2.2 Instance segmentation . 47
4.2.3 Panoptic segmentation . 48

ii

Contents iii

4.2.4 Traditional image segmentation . 49
4.2.5 Deep learning image segmentation . 50
4.2.6 Segment Anything . 53
4.2.7 Grounded Segment Anything . 54

5 Dynamic time and state varying detection probability 56
5.1 Problem definition . 56

5.1.1 The modified GM-PHD filter . 57
5.1.2 S1: YOLO + PHD . 59
5.1.3 S2: YOLO + SAM + PHD . 60
5.1.4 S3: Grounded SAM + PHD . 61

5.2 Dynamic detection probability in video data . 62
5.3 Modified pruning for GM-PHD filter . 65
5.4 Merging in GM-PHD filter with dynamic detection probability 67

6 Experiments 70
6.1 E1: Traffic without any obstacle . 71

6.1.1 V1 . 71
6.1.2 V1 – GM-PHD with the constant detection probability 71
6.1.3 V1 – GM-PHD with the dynamic detection probability 74
6.1.4 V2 . 81
6.1.5 V2 – GM-PHD with the constant detection probability 82
6.1.6 V2 – GM-PHD with the dynamic detection probability 84

6.2 E2: Traffic with an obstacle . 90
6.2.1 V3 . 90
6.2.2 V3 - GM-PHD with the constant detection probability 91
6.2.3 V3 – GM-PHD with the dynamic detection probability 93
6.2.4 V2a . 98
6.2.5 V2a – GM-PHD with the dynamic detection probability 98
6.2.6 V2b . 100
6.2.7 V2b – GM-PHD with the dynamic detection probability 101

6.3 E3: Changing the model . 102
6.3.1 V2 . 103
6.3.2 V2b – GM-PHD with the dynamic detection probability 104

7 Conclusion 109

Gitlab repository 115

List of Figures

2.1 Examples of plots of multivariate Gaussian distribution. 10
2.2 Gaussian distribution with corresponding marginals. 10
2.3 Examples of plots of multivariate Gaussian mixture distribution. There are three compo-

nents in figures with means {[0, 0], [3, 3], [−3,−1]}. Note that the density of peaks is
very low, because the sum has to be equal 1. 12

2.4 Gaussian mixture distribution with means {[0, 0], [2, 2]}, weights {[0.6, 0.4]} and corre-
sponding marginals. 12

2.5 Demonstration of the course of the hidden Markov process. 18

3.1 Several measurements I8 appeared in the validation region of a single target. Î is a
predicted measurement and none or any of the measurement I1 − I3 may have originated
from the target. 26

3.2 Several measurements I8 appeared in the validation region of one of targets Î1 or Î2. Î1
and Î2 are predicted measurements and none or any of the measurement I1 − I3 may
have originated from the target Î1 and none or any of the measurement I3 − I4 may have
originated from the target Î2. 27

4.1 Image detection and segmentation task types. (Source: techvidvan.com.) 43
4.2 CNN architecture example. (Source learnopencv.com) 44
4.3 Yolo architecture proposed in [35] has 24 convolutinal layers followed by 2 fully con-

nected layers. Convolutional layers were pretrained on the ImageNet classificator at half
resolution (224 x 224 input image) and the doubled the resolution for detection. (Source
[35].) . 46

4.4 U-net architecture (example for 32x32 pixels in the lowest resolution). (Source [55]) . . 51
4.5 Transformer architecture. (Source [57]) . 51
4.6 Multi-head attention. (Source [57]) . 52
4.7 SAM architecture (Source [62]) . 54
4.8 The demonstration of SAM’s performance. These masks were annotated fully automati-

cally by SAM and are part of the SA-1B dataset. (Source [62]) 54

5.1 YOLO segmentation example. This picture shows all detected objects the YOLOmodel is
trained for and also the segmented objects’ masks. These masks are imperfect, but often
sufficient enough. (Kartouzská street, Prague) . 60

5.2 Comparison of using only a bounding box vs combination of a bounding box and a point
as an input for SAM. 61

5.3 The cooperation of YOLO and SAM models. The YOLO provides bounding boxes of
objects, which are inputs to SAM. The SAMmodel then makes segmented masks of these
objects. (Kartouzská street, Prague) . 61

5.4 The result of the Grounded SAM model. Grounding DINO marks objects with bounding
boxes and SAM segments objects inside these bboxes. Marked objects are founded by
Grounding DINO with text input person, car. (Kartouzská street, Prague) 62

6.1 Development chart of number of detected targets, targets in the filter’s queue, displayed
targets and the true targets’ count. 73

iv

https://techvidvan.com/tutorials/image-segmentation-machine-learning/
https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

List of Figures v

6.2 Image sequence of tracked objects using the GM-PHD filter with the constant detection
probability. 74

6.3 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and the true targets’ count. 76

6.4 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability and YOLO only. 77

6.5 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and the true targets’ count. 78

6.6 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, the YOLO object detector and the SAM image segmentation model. 79

6.7 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and the true targets’ count. 80

6.8 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability and the Grounded SAM model. 81

6.9 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and the true targets’ count. 83

6.10 Image sequence of tracked objects using the GM-PHD filter with the constant detection
probability. 83

6.11 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and the true targets’ count. 85

6.12 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability and YOLO only. 86

6.13 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and true targets’ count. 87

6.14 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, the YOLO object detector and the SAM image segmentation model. 88

6.15 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and true targets’ count. 89

6.16 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, the DINO object detector and the SAM image segmentation model. 90

6.17 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and true targets’ count. 92

6.18 Image sequence of tracked objects using the GM-PHD filter with the constant detection
probability. 92

6.19 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and true targets’ count. 94

6.20 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability and YOLO only. 94

6.21 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and true targets’ count. 95

6.22 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, the YOLO object detector and the SAM image segmentation model. 96

6.23 Development chart of the number of detected targets, targets in the filter’s queue, displayed
targets and true targets’ count. 97

6.24 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, the DINO object detector and the SAM image segmentation model. 98

6.25 Image sequence of the tracked objects using theGM-PHDfilter with the dynamic detection
probability and YOLO only. 100

6.26 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability and YOLO only. 102

6.27 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, Grounded SAM and adjusted models – part 1. 105

6.28 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection
probability, Grounded SAM and adjusted models – part 2. 106

6.29 The evolution of targets’ detection probabilities and weights. 107

List of Tables

6.1 The parameter settings for Experiment E1-V1 with the constant detection probability. . . 71
6.2 The parameter settings for Experiment E1-V1-S1 with the dynamic detection probability. 75
6.3 The parameter settings for Experiment E1-V1-S2 with the dynamic detection probability. 78
6.4 The parameter settings for Experiment E1-V1-S3 with the dynamic detection probability. 80
6.5 The parameter settings for Experiment E1-V2 with the constant detection probability. . . 82
6.6 The parameter settings for Experiment E1-V2-S1 with the dynamic detection probability. 84
6.7 The parameter settings for Experiment E1-V2-S2 with the dynamic detection probability. 86
6.8 The parameter settings for Experiment E1-V2-S3 with the dynamic detection probability. 88
6.9 The parameter settings for Experiment E2-V3 with the constant detection probability. . . 91
6.10 The parameter settings for Experiment E2-V3-S1 with the dynamic detection probability. 93
6.11 The parameter settings for Experiment E2-V3-S2 with the dynamic detection probability. 95
6.12 The parameter settings for Experiment E2-V3-S3 with the dynamic detection probability. 96
6.13 The parameter settings for Experiment E2-V2a-S1 with the dynamic detection probability. 99
6.14 The parameter settings for Experiment E2-V2b-S1 with the dynamic detection probability. 101
6.15 The parameter settings for Experiment E3-V2-S3 with the dynamic detection probability. 104
6.16 The evolution of detection probabilities and weights of targets �! and �'. 107

vi

In the form of this thesis, I would like to express my heartfelt
thanks and gratitude to many people who supportedme during
my studies at Faculty of Information Technology.
First of all let me say thank you to doc. Ing. Dedecius
Kamil, Ph.D. not only for his expert guidance during writ-
ing this work, but also for introducing me to the topic of
multi-target tracking, which has been a refreshing and excep-
tionally pleasing new problem to me, and for his immense
support throughout my masters studies.
Furthermore, I would like to express my gratitude to my fab-
ulous family, who supported me the most during my whole
study and has always encouraged me in rough periods.
Last, but not least, my greatest thanks belongs to my lovely
and supporting girlfriend, who has bravely withstood with
me throughout my studies and always aided me to overcome
challenging moments.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information
in accordance with the Guideline for adhering to ethical principles when elaborating an academic final
thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No. 121/2000
Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical University in Prague
has the right to conclude a licence agreement on the utilization of this thesis as a school work pursuant of
Section 60 (1) of the Act.

In Prague on April 29, 2024

viii

Abstract

This thesis focuses on the problem of multi-target tracking with noisy measurements in a cluttered
environment. Algorithms for tracking multiple targets with the uncertainty in the number of targets and
their survival are often sensitive to the correct setting of parameters relative to the environment. One
of the key parameters is the detection probability, which is often constant. In this work, a method to
estimate this probability for each target at any time step is demonstrated through tracking objects in
video footages. Advanced deep-learning algorithms for image processing are utilized to provide targets’
measurements. Outputs of these methods are then exploited to calculate the detection probability. To
analyse the capability of the proposed method, the Gaussian mixture probability hypothesis density
(GM-PHD) filter is used. This filter falls among fundamental random finite sets statistics-based multi-
target algorithms. The appropriateness of the proposed method is then discussed with regards to its
limitations and possible future improvements.

Keywords Gaussian mixture probability hypothesis density filter, multi-target tracking, image process-
ing, detection probability, random finite sets, Markov process

Abstrakt

Tato práce se zaměřuje na problém sledování cílů se zašuměnými měřeními v prostředí s obsahem
falešných cílů. Algoritmy pro sledování více cílů s nejistotou v počtu cílů a nejistotou v jejich přežití
jsou mnohdy citlivé na správné nastavení parametrů vzhledem k prostředí. Jedním z klíčových parametrů
je pravděpodobnost detekce, která se mnohdy uvažuje konstantní. V této práci je představena metoda
pro odhad této pravděpodobnosti pro každý cíl v každém časovém okamžiku při sledování cílů na video
záznamech. K získání měření od cílů je použito pokročilých metod umělé inteligence pro zpracování
obrazu, jejichž výstupy jsou využity k vypočtení pravěpodobnosti detekce. K analýze funkčnosti použitého
řešení je využito Gaussian mixture probability hypothesis density (GM-PHD) filtru, který patří mezi
základní algoritmy pro sledování více cílů, založené na statistice konečných náhodnýchmnožin. Vhodnost
použitého řešení je poté diskutována spolu s omezeními a potenciálními budoucími možnostmi dalšího
vylepšení.

Klíčová slova Gaussian mixture probability hypothesis density filter, sledovávání více cílů, zpracování
obrazu, pravděpodobnost detekce, konečné náhodné množiny, Markovský proces

ix

List of abbreviations

STT Single target tracking
MTT Multi-target tracking
KF Kalman filter

EKF Extended Kalman filter
UKF Unscented Kalman filter
PF Particle filter

PDA Probabilistic data association
IPDA Joint probabilistic data association
JPDA Joint probabilistic data association

MMSE Minimum mean square error
RFS Random finite set

FISST Finite set statistics
MHT Multiple hypothesis tracker
PHD Probability hypothesis density

GM-PHD Gaussian mixture probability hypothesis density
CPHD Cardinalized probability hypothesis density
PMBM Poisson multi-Bernoulli mixture
YOLO You only look once
GMM Gaussian mixture model
MD Mahalanobis distance

CVM Constant velocity model
CAM Constant acceleration model
HMM Hidden Markov model
CNN Convolutional neural network
SAM Segment anything model

x

Chapter 1

Introduction

Multi-target tracking (MTT), a fundamental aspect of surveillance and monitoring sys-
tems, has undergone significant advancements in recent years, transforming it into a
critical field with diverse applications across various domains. The scope of MTT ex-
tends beyond mere tracking, encompassing tasks such as object detection, identification,
and trajectory prediction. The primary goal is to maintain a comprehensive situational
awareness, providing invaluable information for decision-making processes in various
applications, ranging from defense and surveillance to autonomous systems and robotics.
This section provides an overview of the evolution, applications, significance, and current
research focus of multi-target tracking.

1.1 Evolution and development of multi-target tracking
Multi-target tracking has undergone a significant evolution since its inception in the
early 20th century, driven by the need to track multiple objects in increasingly complex
scenarios. Initially rooted in the radar technology developed during World War II [1] for
single-target detection, MTT algorithms have since evolved to address a diverse range
of tracking challenges.

The historical development of MTT can be traced throughout several key milestones.
In the 1970s and 1980s, basic tracking algorithms emerged, laying the foundation for
subsequent advancements. The integration of probabilistic techniques, notably the
Kalman filter [2], in the 1970s marked a significant improvement in tracking accuracy.
However, as tracking scenarios became more non-linear and non-Gaussian, traditional
methods revealed limitations, prompting a transition to data-driven approaches.

By the early 2000s, MTT entered an era of a data-driven innovation. Particle filters
[3] gained popularity for their ability to handle nonlinear and non-Gaussian scenarios,
albeit with increased computational complexity. Concurrently, the attention was directed
towards an efficient data association, leading to the development of filters such as the
Joint Probabilistic Data Association (JPDA) [4] and Random Finite Set (RFS) [5] based
methods.

Today, the landscape ofMTTalgorithms is characterized by diversity, with approaches
tailored to specific tracking challenges. Two main categories dominate: association-

1

1.2. Applications of multi-target tracking 2

based methods and RFS-based methods.
Association-based methods focus on linking measurements to existing tracks or crea-

ting new tracks. This category includes well-established algorithms such as the Kalman
filter and its variants (Extended Kalman Filter [6], Unscented Kalman Filter [7]), as
well as more advanced methods like the Joint Probabilistic Association (JPDA) filter
and the Multiple Hypothesis Tracker (MHT) [8], which address clutter and uncertainty
in tracking scenarios.

In contrast, RFS-based methods offer a probabilistic framework to simultaneously
model multiple target states. Operating on sets of possible target states, these me-
thods provide a comprehensive representation of uncertainty and variability in tracking
scenarios. Examples include the Probability Hypothesis Density (PHD) filter [9], Cardi-
nalized Probability Hypothesis Density (CPHD) filter [10], and Poisson multi-Bernoulli
mixture (PMBM) filter [11], which offer scalability and flexibility in complex tracking
environments.

The future of MTT lies in the synergistic integration of association-based and RFS-
based methods to overcome current challenges and address emerging needs in real-world
tracking applications. By leveraging the strengths of both paradigms, researchers aim to
achieve breakthroughs in tracking accuracy, efficiency, and scalability, paving the way
for transformative advancements in multi-target tracking technology.

1.2 Applications of multi-target tracking
The versatility of MTT is reflected in its diverse applications across various domains.
In defense, MTT plays a pivotal role in monitoring and tracking multiple targets simul-
taneously, aiding in threat assessment, target prioritization, and distinguishing between
different targets.

The advent of autonomous systems, particularly in vehicles, has heightened the
importance of MTT in predicting and tracking the movements of pedestrians, vehicles,
and other obstacles. This application enhances the safety and efficiency of autonomous
vehicles by providing a real-time awareness of the surrounding environment [12].

Surveillance systems rely onmulti-target tracking formonitoring activities in crowded
environments and identifying suspicious behavior.

Moreover, in fields such as robotics, defense, healthcare monitoring, and wildlife
preservation, multi-target tracking systems contribute significantly to the enhancement
of situational awareness, enabling a real-time decision-making, which improves resource
allocation efficiency and supports various mission-critical tasks.

1.3 Research interests
Contemporary research in multi-target tracking is characterized by a strong emphasis on
addressing key challenges to further enhance the performance and robustness of tracking
systems. Current research focus is on problems such as:

Data Association in complex environment: Handling scenarios with high target
density, occlusions, and clutter remains a complex issue. Robust methods for accurate

1.3. Research interests 3

and efficient data association in crowded and dynamic environments are still actively
researched.

Handling non-linear and non-Gaussian dynamics: Real-world scenarios often ex-
hibit non-linear and non-Gaussian characteristics. Improving the tracking algorithms
to effectively handle these complexities, possibly through the integration of advanced
probabilistic models, is an ongoing area of research.

Real-time processing and computational efficiency: Many MTT algorithms, espe-
cially those with high computational demands, face challenges in meeting real-time
processing requirements. Efficient algorithms that strike a balance between compu-
tational complexity and tracking accuracy are continuously sought.

Sensor fusion and heterogeneous data integration: Integrating information from
various sensors, each with its own characteristics and limitations, remains a persistent
challenge. Developing robust methods for sensor fusion to improve tracking accuracy
and reliability is an active research area.

Handling variability in target behavior: Targets in real-world scenariosmay exhibit
diverse and unpredictable behaviors. Adapting tracking algorithms to handle varying
target speeds, accelerations, and maneuvers remains an unsolved problem.

Online learning and adaptive algorithms: Designing algorithms that can adapt and
learn online as they encounter new scenarios or dynamic changes in the environment
is a topical issue. Adaptive tracking systems that can continuously improve their
performance without extensive retraining are sought after.

As wewill see later in this work, all Gaussian filters that take clutter into consideration
rely on an accurate setting of a motion model or a measurement model. Moreover,
recursion requires an estimation of parameters such as the survival probability and the
detection probability. This thesis focuses on tracking targets in video data and takes
advantage of image processing model YOLO (You Only Look Once) [13]. Due to this
combination, we are able to estimate the detection probability in time and enhance the
tracking capability of the filter.

The probabilistic formulation of the RFS-based filters and the inherent Bayesian
processing of available information allow to accommodate the uncertainty arising from
the presence of false detections, missed detections, and data association ambiguities.
Nevertheless, a fundamental challenge persists: The performance of the filters is highly
sensitive to the accurate setting of the target detection probability. This quantity, repre-
senting the likelihood of correctly identifying and associating observations with actual
targets, is a critical parameter. It has a substantial impact on the Bayesian updating
of the prior information. However, in real-world scenarios, the sensor performance is
susceptible to various environmental conditions. Adverse weather, occlusions, or just
the nature of the current scenario can lead to variations in detection probabilities. A
mismatch between assumed and actual detection probabilities can result in a suboptimal
tracking performance, leading to missed detections, false alarms, or inaccurate target
state estimates [14].

1.4. Structure 4

The RFS-based formulation of the PHD or (P)MBM filters naturally takes the uncer-
tainty about the detection probability into account [14]. The update formulas involve
it as a function of the target state. In the figurative sense, this allows to model it as
a function of the spatial and temporal properties of the environment. Still, two diffi-
culties arise. First, the (Gaussian) filters are analytically tractable only if the detection
probabilities are scalar numbers. Second, the nature of the detection probabilities differs
from scenario to scenario.

In general, several methods have been proposed to deal with unknown detection
probabilities. A Gaussian-beta modeling of a slowly-varying detection profile in the
Cardinalized PHD filter is reported in [10]; its alternative for MBM filters follows in
[15], and for PMBM filter in [16]. In [17], the authors propose to overcome some
deficiencies in the CPHD filter [10] by different clutter/detection probability mod-
els. Another variant was recently proposed in [18]. A track-state augmentation with
an amplitude offset-based prediction of the detection probability appeared in [19], how-
ever, this method suffers difficulties in multistatic fields. An automatic identification
system-based sensor performance assessment for clutter-free environments is developed
in [20]. A recent paper [21] deals with the unknown detection profile in the trajectory
PHD/CPHD filters. There, the algorithm learns from the history of the unknown target
detection probability.

As we track objects in video data, it allows us to avoid the generic solutions and focus
on the peculiarities associated with this specific data type. In particular, an advantage
of YOLO is taken, offering a high-performance real-time object detection with high
accuracy and efficiency [13]. Its ability to simultaneously predict multiple bounding
boxes and class probabilities within an image is used, providing a streamlined and effi-
cient approach to object detection. However, YOLO-based multi-target tracking systems
can still be compromised under conditions such as adverse weather, low lighting, or in
scenarios with occlusions. Sensors may encounter difficulties in accurately detecting
and localizing targets, leading to gaps or errors in the tracking process.

1.4 Structure
The structure of this thesis is as follows:
Chapter 2 provides the theoretical background necessary for understanding the multi-

target problem. This chapter follows up Bayesian inference, multivariate Gaus-
sian distributions, mixtures, and state-space models. Next follows the intersection
of discussed concepts and linking them in the possibilities of use in the form of
a Kalman filter.

Chapter 3 is dedicated to the target tracking problem itself. In this part, we explain terms
as clutter or validation region and baseline formulations for single target tracking
are presented. Next comes the overview of RFS-based methods and, especially,
an explanation of the PHD filter and its recursion for linear Gaussian models.

Chapter 4 discusses the topic of object detection and segmentation techniques algo-
rithms with additional details dedicated to image processing models used in this
work.

1.4. Structure 5

Chapter 5 explains the problem of the dynamic detection probability in multi-target
tracking. In this chapter, we propose a method to estimate the detection probability
using deep-learning image processing models.

Chapter 6 includes experiments that analyze the capability of the proposed method to
estimate the detection probability.

Chapter 2

Theoretical Background

Multi-target tracking relies heavily onmathematical concepts from the probability theory,
statistics, and linear algebra to model and infer the state of multiple objects over time.
The key mathematical concepts involved in MTT include Bayesian inference, which
provides a framework for updating estimates based on observed evidence, and the use
of probabilistic models such as the Gaussian distribution and its extensions, such as
Gaussian mixture models. In addition, MTT commonly employs state space models to
represent the dynamics of object motion, with popular models including the constant
velocity and constant acceleration models. These models are integrated into Bayesian
filters, such as the Kalman filter, which recursively estimate the state of a target given by
noisy measurements.

2.1 Bayesian inference
Bayesian inference stands as a foundational pillar within the realm of a probabilistic
reasoning, offering a fundamental methodology for systematically updating beliefs in
response to observed evidence. A fundamental theorem in probability theory, the Bayes’
rule, is rooted in the Bayesian inference. It formalizes the process of revising prior
beliefs in light of new data. The essence of Bayesian inference transcends mere statis-
tical calculations; it embodies a philosophical stance towards uncertainty, emphasizing
the incorporation of prior knowledge and the iterative refinement of beliefs through
the assimilation of empirical observations. Within the context of multi-target tracking,
Bayesian inference plays a paramount role, providing a principled framework for joining
information from disparate sources, such as sensor measurements, historical data, and
domain expertise. By embracing Bayesian principles, MTT algorithms gain the capacity
to model and quantify uncertainty inherent in tracking scenarios, thereby fostering ro-
bustness and adaptability in the face of dynamic and complex environments. Moreover,
Bayesian inference empowers MTT systems to exploit contextual cues and domain-
specific knowledge, enhancing their ability to discern meaningful patterns among noise
and uncertainty. Due to the Bayesian inference, MTT researchers and practitioners are
equipped with a powerful tool to help encounter the intricacies of multi-target track-
ing, facilitating informed decision-making, and advancing the frontier of robust sys-

6

2.2. Bayes’ rule 7

tems. Thus, Bayesian inference emerges not merely as a mathematical construct, but as
a guiding philosophy underpinning the quest for understanding and reasoning in the face
of uncertainty.

2.2 Bayes’ rule
Bayes’ rule, a cornerstone of Bayesian inference, embodies a fundamental principle in
probability theory that underpins the systematic revision of beliefs in the face of new
evidence. Mathematically expressed as a simple formula, Bayes’ rule encapsulates the
process of updating prior probabilities based on observed data, thereby yielding posterior
probabilities that reflect the incorporation of new information. At its basis, the Bayes’
rule provides a formal mechanism for quantifying the impact of new evidence on the
likelihood of various hypotheses or states of nature. The rule states that the posterior
probability of a hypothesis given observed data is proportional to the product of the
likelihood of the data given the hypothesis and the prior probability of the hypothesis,
divided by the marginal likelihood of the data. In essence, Bayes’ rule facilitates
a principled approach to inference, allowing practitioners to integrate prior knowledge
with empirical observations to arrive to more informed and reliable conclusions. In the
context of multi-target tracking, Bayes’ rule serves as the base upon which the tracking
algorithms are built, enabling the continuous refinement of estimates about the state of
multiple targets based on sensor measurements and historical data. By adhering to the
principles of Bayes’ rule, MTT systems can effectively navigate the inherent uncertainty
and complexity of tracking scenarios, thereby enhancing their robustness and accuracy.

I Definition 2.1 (Conditional distribution). Let - and . be jointly continuous random
variables, 5. continuous at H and 5. (H) > 0. Then, the conditional distribution function
of - , given condition . = H is defined by

�- |. (G |H) := lim
n→0

%{- ≤ G |. ∈ (H, H + n)} = m� (G, H)/mH
5. (H)

. (2.1)

Differentiating this, the conditional density function of - , given the condition . = H, is

5- |. (G |H) :=
m2� (G,H)
mGmH

5. (H)
=
5 (G, H)
5. (H)

. (2.2)

Naturally, fixing H, �- |. (·|H) and 5- |. (·|H) are proper distribution and density functions,
respectively. It is also clear that - and. are independent if and only if �- |. (G |H) = �- (G)
and 5- |. (G |H) = 5- (G) for all G and H for which these quantities are defined.

I Definition 2.2 (Bayes’ theorem). Let G and H be random variables with densities 5 (G)
and 5 (H), respectively. Then Bayes’ theorem is defined as

5 (G |H) = 5 (H |G) 5 (G)
5 (H) , 5 (H) > 0, (2.3)

where

2.3. Multivariate Gaussian distribution 8

5 (G |H) is the conditional posterior density of G,

5 (G) is the prior density,

5 (H |G) is the likelihood and 5 (G) is the marginal density of - , also called 4E834=24,
and is given by

5 (H) =
∫

5 (G, H)mG. (2.4)

Combining Equations (2.1), (2.2) and (2.4) to Formula (2.3) we get complete formula
for Bayes’ theorem

5 (G |H) = 5 (H |G) 5 (G)
5 (H) =

5 (H |G) 5 (G)∫
5 (H |G) 5 (G)mG

. (2.5)

Since the denominator is the normalizing constant independent of G, often only propor-
tionality is used

5 (G |H) ∝ 5 (H |G) 5 (G). (2.6)

2.3 Multivariate Gaussian distribution
In the realm of multi-target tracking, various probability distributions are employed to
model the uncertainty associated with target states and measurements. However, among
these distributions, the multivariate Gaussian distribution holds a preeminent position
due to its versatility, mathematical tractability, and empirical relevance. While other
distributions may capture specific aspects of target behavior or measurement noise, the
Gaussian distribution emerges as the cornerstone ofMTT due to its ability to characterize
complex probability distributions in multi-dimensional spaces. As a result, the common
assumption among MTT filters is that the targets follow linear Gaussian dynamics and
measuremet models, as in [1], [9], or [11]. The Gaussian distribution finds ubiquitous
application across various components of tracking algorithms, including

State representation: Gaussian distributions are used to model the probability
distributions of target states, allowing for efficient representation and propagation of
uncertainty over time.

Measurement model: Gaussian distributions are employed to model the likelihood
of sensor measurements given the true target state, facilitating the incorporation of
sensor data into the tracking process.

Filtering algorithms: Gaussian-based filters leverage the Gaussian assumption to
derive recursive estimation algorithms for tracking multiple targets with optimal
efficiency and accuracy.

Data association: Gaussian mixture models (GMMs), which represent mixtures of
Gaussian distributions, are utilized for probabilistic data association inMTT, enabling
robust handling of measurement uncertainty and target ambiguity.

2.3. Multivariate Gaussian distribution 9

I Note 2.3. The multivariate Gaussian distribution is a generalization of the univariate
Gaussian distribution, but instead of a scalar mean and variance, there is a mean vector
and a covariance matrix, that describe correlations between variables. The distribution
of a :−dimensional random vector - = (-1, . . . , -:)) can be written in the notation

- ∼ N(`,Σ),

with :−dimensional mean vector ` = E[-] = (E[-1],E[-2], . . . ,E[-:])) and : × :
positive semi-definite covariance matrix Σ with elements

Σ8 9 = E[(-8 − `8) (- 9 − ` 9)] = �>E [-8, - 9] . (2.7)

The probability density function (PDF) is given by formula

N(G; `,Σ) = 1√
(2c): |Σ|

exp
(
−1

2
(G − `))Σ−1(G − `)

)
, (2.8)

where : is the length of the vector G and | · | denotes the determinant of a matrix. It
should be noted that the exponent is known as the Mahalanobis distance.

I Definition 2.4 (Mahalanobis distance). For vectors G ∈ '= and H ∈ '= and a positive
semi-definite = × = matrix (, their Mahalanobis distance is defined as

3 (G, H) =
√
(G − H))(−1(G − H). (2.9)

The Mahalanobis distance (MD) is the distance between two points in an =-dimensional
space and, unlike the Euclidean distance, it measures distances even between the corre-
lated points for multiple variables.

Target tracking filters regularly use conditional probabilities and joint distributions,
especially Gaussian.

I Theorem 2.5 (Conditional joint Gaussian distribution). Let G and H are Gaussian
random variables with distributions N(G; `G ,ΣGG) and N(H; `H,ΣH), respectively. Let
their joint probability be given by

?(G, H) = N
([
G

H

]
;
[
`G
`H

]
,

[
ΣGG ΣGH
ΣGH ΣHH

])
. (2.10)

Then, the conditional distribution of G given H is defined as

?(G |H) = N(G; `G |H,ΣG |H), (2.11)

where

`G |H = `G + ΣGHΣHH−1(H − `H), (2.12)
ΣG |H = ΣGG − ΣGHΣ−1

HHΣ
)
GH . (2.13)

Examples of amultivariateGaussian distribution are shown in Figure 2.1 andmarginal
distributions for multivariate Gaussian distribution can be found in Figure 2.2.

2.3. Multivariate Gaussian distribution 10

(a) Example of multivariate Gaussian distribution - contour
plot. (b) Example of multivariate Gaussian distribution - 3D plot.

Figure 2.1 Examples of plots of multivariate Gaussian distribution.

Figure 2.2 Gaussian distribution with corresponding marginals.

2.4. Gaussian mixture 11

2.4 Gaussian mixture
Gaussian mixture models offer a flexible and powerful framework for representing
complex probability distributions by combining multiple Gaussian components. In
the Gaussian mixture model, a vector of parameters (e.g., observations of a signal) is
modeled using a mixture distribution comprising several Gaussian components.

?(Θ) =
:∑
8=1

F8N(`8,Σ8), (2.14)

where the 8Cℎ component is characterized by Gaussian distribution with weight F8, mean
`8 and covariance matrix Σ8. These parameters are encapsulated to the parameter Θ in
?(·).

In the context of multi-target tracking, Gaussian mixture models find utility in captur-
ing the complex nature of target states and measurements. MTT often involves dealing
with linear Gaussian models, where the posterior density is represented as a mixture
of one or more Gaussian components. This representation enables MTT algorithms to
probabilistically model the uncertainties associated with target dynamics, sensor mea-
surements, and data association.

The probability density function (pdf) of aGaussianmixture distribution is aweighted
sum of each Gaussian component, expressed as

?(G) =
:∑
8=1

F8N(G; `8,Σ8), (2.15)

where : is the number of Gaussian components, F8 > 0 is the weight of 8Cℎ component
and

∑:
8=1 F8 = 1. Gaussian mixture models in multi-target algorithms are represented as

intensity functions, i.e., components’ weights do not have to sum to 1.
In MTT, Gaussian mixture models are particularly useful for tasks such as data

association, where they probabilistically assignmeasurements to existing tracks or create
new tracks based on the likelihood of observations given the target states. By modeling
complex distributions of target states and measurements, Gaussian mixture models
enable the MTT algorithms to handle uncertainties and ambiguities inherent in real-
world tracking scenarios, including occlusions, clutter, and target interactions.

Examples of multivariate Gaussian mixture distribution are shown in Figure 2.3.
Gaussian mixture distribution with marginal distribution for each dimension in Figure
2.4.

2.5 State-space model
State-space models serve as a fundamental framework for describing the evolution of
dynamic systems over time. In the context of multi-target tracking, state-space models
provide a formalism for representing motion dynamics of targets and the measurement
process, enabling an efficient and accurate inference of target states from sensor data.

2.5. State-space model 12

(a) Example of multivariate Gaussian mixture distribution
- contour plot.

(b) Example of multivariate Gaussian mixture distribution
- 3D plot.

Figure 2.3 Examples of plots of multivariate Gaussian mixture distribution. There are three components in figures
with means {[0, 0], [3, 3], [−3,−1]}. Note that the density of peaks is very low, because the sum has to be equal 1.

Figure 2.4 Gaussian mixture distribution with means {[0, 0], [2, 2]}, weights {[0.6, 0.4]} and corresponding
marginals.

2.5. State-space model 13

At the core of a state-space model lies a set of latent variables, known as the state
vector, which encapsulates the unobservable quantities of interest, such as the position,
velocity, and acceleration of targets in MTT. The dynamics governing the evolution of
the state vector are typically described by a transition model, which specifies how the
state evolves over time according to a probabilistic process. This transition model can
take various forms depending on the nature of the system dynamics, ranging from simple
linear or non-linear models to more complex stochastic processes.

In addition to the transition model, state-space models incorporate an observation
model that describes the relationship between the observed measurements and the un-
derlying state variables. This observation model accounts for the uncertainties and noise
inherent in the measurement process, allowing for the probabilistic mapping of observed
data to the latent state space.

State-space model can be represented as a pair of stochastic equations.

1. State transition equation:

G: = 5 (G:−1, D: , F:), (2.16)

where G: represents the state vector at time :, 5 denotes the transition function
describing the evolution of the state, D: represents optional control inputs, and F:
denotes process noise.

2. Observation equation:

I: = ℎ(G: , E:), (2.17)

where I: represents the observed measurements at time :, ℎ denotes the observation
function mapping the state to measurements, and E: represents the measurement
noise.

In MTT, state-space models provide a natural framework for representing the motion
dynamics of multiple targets and the sensor measurements associated with each target.
Each target is typically associated with its own state vector, enabling simultaneous
tracking of multiple objects within the same probabilistic framework.

State-space models enable MTT algorithms to perform a range of tasks, including
target prediction, data association, and state estimation by propagating the state forward
in time using the transitionmodel and updating the state based on observedmeasurements
using the observation model. By incorporating uncertainty explicitly into the tracking
process, state-space models facilitate robust inference of target states in complex and
dynamic tracking scenarios.

While state-space models offer a powerful framework for multi-target tracking, they
also present several challenges.

Model complexity: Designing an appropriate state-space model requires careful
consideration of the underlying dynamics and measurement process, which can be
challenging in complex tracking scenarios with non-linearities and uncertainties.

Parameter estimation: Estimating the parameters of a state-space model from data,
such as the transition and observation matrices, can be computationally demanding
and prone to issues such as overfitting or underfitting.

2.5. State-space model 14

Computational Complexity: Performing inference in state-space models often in-
volves recursive algorithms such as the Kalman filter or the particle filter, which can
be computationally intensive, especially in high-dimensional or real-time tracking
applications.

Despite these challenges, state-space models remain a foundation of multi-target
tracking, offering a principled and flexible framework for representing and reasoning
about dynamic systems in the presence of uncertainty. There aremany state spacemodels
used in MTT. Before we define the two of the most common ones in the forthcoming
sections, it should be noted, that the definitions in (2.16) and (2.17) are too general,
because 5: and ℎ: could be any functions.

To get a closed-form solution in the Bayesian inference framework, we need to choose
conjugate distributions for the likelihood and the prior. The Kalman filter (see Section
2.8 for more) works for the Gaussian-linear case, where the functions 5C and ℎC represent
linear and noisy variables and are distributed asGaussianswith zeromean. TheGaussian
linear state-space model has the formulation:

?(G: |G:−1) = �G:−1 + �D: + F: F: ∼ N(0, &), (2.18)
?(I: |G:) = �G: + E: E: ∼ N(0, '), (2.19)
?(G0) ∼ N (Ĝ0, %0), (2.20)

where

F is the transition matrix of appropriate dimension,

B is the input matrix of appropriate dimension,

H is the measurement matrix of appropriate dimension,

Q is the symmetric positive semi-definite covariance matrix of motion noise F: ,

R is the symmetric positive semi-definite covariance matrix of measurement noise
E: ,

Ĝ0 and %0 are the mean and the covariance matrix of the prior state.

The control variable D: , in general, represents some input signal from the environment,
and � specifies how the input signal affects the dynamic system. This variable is usually
not considered in MTT scenarios. In multi-target tracking, Gaussian linear models are
most often worked with, thus following formulation is used instead:

?(G: |G:−1) = N(G: ; �G:−1, &), (2.21)
?(I: |G:) = N(I: ;�G: , '), (2.22)
?(G0) ∼ N (G0; Ĝ>, %0). (2.23)

2.5.1 Constant velocity model
The constant velocity model (CVM) is a fundamental component of multi-target tracking
systems, providing a simplified yet effective representation of target motion dynamics

2.5. State-space model 15

over time. This model assumes that the target’s velocity remains constant between
consecutive time steps, making it particularly suitable for tracking objects with relatively
smooth and predictable motion patterns. In this section, we explore the conceptual basis,
mathematical formulation, and practical implications of the constant velocity model in
the context of MTT.

At its core, the constant velocity model embodies the notion of inertia, where a target
maintains a constant velocity unless acted upon by external forces. This conceptual sim-
plicity allows for a straightforward representation of target motion, making the constant
velocity model a popular choice for MTT applications where targets exhibit relatively
uniform and predictable movement behaviors.

Mathematically, the constant velocity model describes the evolution of a target’s state
vector over time in terms of its position and velocity. At each time step : , the state
vector G: comprised from the position [G1,: , G2,:]) and the velocity B of the target, is
decomposed as follows,

G: = [G1,: , G2,: , B1,: , B2,:]) . (2.24)

The dynamics of the constant velocitymodel can be represented using a state transition
matrix � and a process noise vector F: , where the state transition matrix captures the
relationship between the target’s state at consecutive time steps

G:+1 = �G: + F: . (2.25)

All together, vector G: , matrices � and &, might, for example, be represented as

G: =

G1,:
G2,:
B1,:
B2,:

 , � =

1 0 Δ 0
0 1 0 Δ

0 0 1 0
0 0 0 1

 , & = @2

Δ3

3 0 Δ2

2 0
0 Δ3

3 0 Δ2

2
Δ2

2 0 Δ 0
0 Δ2

2 0 Δ

, (2.26)

where Δ stands for delta time, i.e., elapsed time between the last estimation and the
current one. @ is the motion noise parameter, which represents the uncertainty in the
state transition. The measurement model transforms a state vector from the state-space
into the measurement space. Since the filters derived from the Kalman filter assume
only linear models, the measurement model for CVM assumes the same space as in the
state vectors. As a result, the observation matrix � and the noise matrix ' can be, with
respect to (2.26), formulated

� =

[
1 0 0 0
0 1 0 0

]
, ' = A2

[
1 0
0 1

]
, (2.27)

where A determines the variance of the measurement noise.
To obtain optimal results given by filters, it is essential to set parameters A and @

appropriately. There are three main possible procedures. The first one requires the
knowledge of motion noise given by tracked object and the knowledge of sensor’s error
when detecting targets, i.e. the noisy measurement. This method is often used in
simulations and experiments. The second one is a simple trial and error method with
reasonable choices. The last one is using automated methods, like in [22].

2.5. State-space model 16

By assuming the constant velocity, MTT algorithms can predict the future positions
of targets based on their current state and velocity, facilitating trajectory estimation and
target prediction.

One common application of the constant velocity model in MTT is in the design
of prediction algorithms, where future positions of targets are estimated based on their
current state and velocity information. These predictions are essential for anticipating
target movements and facilitating data association, enabling the MTT algorithms to
maintain track continuity and adapt to changes in the target behavior over time.

Moreover, the constant velocity model can be seamlessly integrated into recursive
Bayesian filters, such as the Kalman filter, for state estimation in MTT. By incorpo-
rating the constant velocity model into the state-space representation of the tracking
problem, Kalman filter-based algorithms can effectively fuse measurement information
with dynamic predictions to estimate the most likely trajectories of targets over time.

2.5.2 Constant acceleration model
The constant acceleration model (CAM) stands as a sophisticated extension of the state-
space model in multi-target tracking, offering a more detailed representation of target
motion dynamics. Unlike simpler models such as the constant velocity model, which
assumes a constant velocity for targets over time, the CAM acknowledges the potential
for changes in target acceleration, allowing for more accurate and flexible trajectory
estimation. This section delves into the conceptual basis, mathematical formulation, and
practical implications of the constant acceleration model in the context of MTT.

In MTT scenarios, targets often exhibit varying degrees of acceleration due to fac-
tors such as changes in speed, direction, or environmental influences. Ignoring these
accelerative effects can lead to biased trajectory estimates and diminished tracking
accuracy. The CAM addresses this limitation by incorporating an additional acceler-
ation component into the state-space model, enabling more faithful representation of
target motion dynamics. By accounting for changes in acceleration, the CAM pro-
vides MTT algorithms with a greater flexibility and adaptability in tracking targets with
non-uniform motion profiles.

Mathematically, the constant acceleration model extends the state transition function
of the state-space model to accommodate changes in acceleration over time. At each
time step : , the evolution of the target’s state vector G: is governed by a set of dynamic
equations that describe the position, velocity, and acceleration of the target

G: = [G1,: , G2,: , B1,: , B2,: , 01,: , 02,:]) , (2.28)

where, as in CVM, G1,: , G2,: is the position of an target in two-dimensional space,
B1,: , B2,: is the velocity and 01,: , 02,: are the accelerations in both directions. Matrices

2.6. Hidden Markov Model 17

� and & can then be expressed

G: =

G1,:
G2,:
B1,:
B2,:
01,:
02,:

, � =

1 0 Δ 0 1
2Δ

2 0
0 1 0 Δ 0 1

2Δ
2

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, & = @2

Δ4

4 0 Δ3

3 0 Δ2

2 0
0 Δ4

4 0 Δ3

3 0 Δ2

2
Δ3

3 0 Δ2

2 0 Δ2

2 0
0 Δ3

3 0 Δ2

2 0 Δ2

2
Δ2

2 0 Δ2

2 0 Δ 0
0 Δ2

2 0 Δ2

2 0 Δ

.

(2.29)

The measurement model remains unchanged from the standard state-space model, relat-
ing the observed measurements I: to the target’s true state G: through a measurement
function ℎ(·) corrupted by measurement noise EC

� =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
, ' = A2

[
1 0
0 1

]
, (2.30)

The constant accelerationmodel offers several practical advantages inMTT applications:

Improved trajectory estimation: By accounting for changes in acceleration, the
CAM enables a more accurate and realistic trajectory estimation, particularly for
targets exhibiting non-uniform motion patterns or sudden changes in velocity.

Enhanced predictive capability: The inclusion of acceleration dynamics allows
MTT algorithms to make more informed predictions about future target states, im-
proving the tracking performance and reducing prediction errors.

Robustness to dynamic environments: In dynamic environments with varying
levels of congestion, obstacles, or traffic patterns, the CAM provides MTT algo-
rithms with greater robustness and adaptability, enabling an effective tracking even
in challenging scenarios.

Applications in autonomous systems: In autonomous systems such as self-driving
cars, drones, or robotics, the CAM plays a crucial role in motion planning, ob-
stacle avoidance, and trajectory prediction, enhancing the safety and efficiency of
an autonomous navigation.

In summary, the constant acceleration model represents a significant advancement in
multi-target tracking, offering a more nuanced and comprehensive approach to modeling
target motion dynamics. By incorporating acceleration effects into the tracking process,
the CAM enablesMTT algorithms to achieve higher accuracy, robustness, and predictive
capability, making it an indispensable tool for a wide range of applications.

2.6 Hidden Markov Model
In the domain of multi-target tracking, the hidden Markov model (HMM) serves as
a framework for capturing the temporal dynamics of target behavior in complex envi-
ronments. Building upon the principles of Markov processes, the HMM extends the

2.7. Bayes’ filter 18

state-space model by introducing hidden states that govern the evolution of observable
measurements over time. Markov process of the first order is a model, in which current
state depends only on the previous state

?(G: |G1, . . . , G:−2, G:−1, I1, . . . , I:−2, I:−1) = ?(G: |G:−1) (transition probability),
(2.31)

?(I: |G1, . . . , G:−2, G:−1, G: , I1, . . . , I:−2, I:−1) = ?(I: |G:) (observation likelihood),
(2.32)

?(G0) (initial state). (2.33)

In models of higher order, the transition probability is

?(G: |G:−1, . . . , G:−=), (2.34)

where = is the number of the order. Details of this model are not described in this work
and can be found, e.g., in [23].

In cases where the process is not directly observable, but can be perceived through
another observable variable I: , we often talk about hidden Markov process.

Figure 2.5 Demonstration of the course of the hidden Markov process.

At its base, the hidden Markov process represents a stochastic process characterized
by a set of hidden states that transition probabilistically over time. While these hidden
states are unobservable, they influence the generation of observable measurements,
which are assumed to be conditionally independent given the hidden states. In the
context of MTT, the hidden states may represent latent attributes of targets, such as their
locations, velocities, or motion patterns, while the observable measurements correspond
to sensor readings or detections obtained from surveillance systems.

2.7 Bayes’ filter
The Bayes’ filter leverages both the motion and the measurement model, operating under
the assumption that these models accurately describe the system’s behavior. Functioning
within a recursive framework, the Bayes’ filter continually estimates the internal state of
the system over time using available measurements. Each iteration of the filter entails
two fundamental steps: a prediction and an update. During the prediction step, the filter
anticipates the internal state G: based on the preceding state G:−1 and the motion model

2.8. Kalman filter 19

?(G: |G:−1). This prediction step is commonly referred to as the Chapman-Kolmogorov
equation [24].

I Theorem 2.6 (The Chapman-Kolmogorov equation-prediction step). Given the set of
measurements I0::−1 = I0, . . . , I:−1, set of control variables D0::−1 = D0, . . . , D:−1, D: ,
the current state G:−1 and the motion model ?(G: |G:−1), the prediction step is as follows:

?(G: |I0:C−1, D0::) =
∫

?(G: |G:−1, D:)?(G:−1 |I0::−1, D0::−1)3G:−1, (2.35)

where the integral is taken over the entire state space of G:−1, and ?(G:−1 |I0::−1, D0::−1)
is the posterior density of the state at time : − 1.

During the update step, the Bayes’ filter corrects (updates) the prediction step with
measurements I: using the measurement model ?(I: |G:). This step employs common
Bayes’ rule.

I Theorem 2.7 (The update step of Bayes’ filter). Given the output of Bayes’ filter
prediction step, the measurements I: observed at time : and the measurement model
?(I: |G:), the update step of the Bayes’ filter is formulated as follows:

?(G: |I0:C , D0:C) =
?(I: |G:)?(G: |I0::−1, D0::)

?(I: |I0::−1)
∝ ?(I: |G:)?(G: |I0::−1, D0::) (2.36)

These two steps work in an iterative manner, where, in each iteration, the prediction step
is used to predict the state G: and then the update step is used to correct this prediction
with the provided measurement I: .

2.8 Kalman filter
The Kalman filter, named after its developer Rudolf E. Kalman, has a rich history
dating back to the early 1960s when Kalman first introduced the algorithm in a series
of landmark papers. Initially developed for aerospace applications, the Kalman filter
gained prominence for its ability to provide an optimal state estimation in the presence
of noisy measurements and uncertain dynamics.

Over the years, the Kalman filter has found widespread usage across diverse fields
and industries, including aerospace, robotics, finance, and telecommunications. Its
applications range from tracking spacecraft trajectories and guiding missiles to monitor-
ing financial markets and controlling autonomous vehicles. The filter’s versatility and
efficiency have made it a cornerstone of modern estimation and control systems.

TheKalmanfilter operates on the principles of recursiveBayesian estimation, utilizing
a system dynamics model and noisy measurements to predict and update the state of
a dynamic system over time. Its mathematical elegance and simplicity make it well-
suited for real-time applications, enabling an accurate and efficient state estimation even
in complex and uncertain environments.

Despite its success, the Kalman filter continues to evolve, with extensions and varia-
tions such as the extendedKalman filter (EKF) [6] and unscentedKalman filter (UKF) [7]
addressing more challenging scenarios involving non-linear dynamics and non-Gaussian
noise.

2.8. Kalman filter 20

In summary, the Kalman filter stands as a seminal contribution to the field of estima-
tion and control, with a rich history of development and widespread usage across diverse
domains. Its continued relevance and versatility underscore its status as a foundational
tool for state estimation and tracking in modern technological applications.

2.8.1 Kalman filter inference
In Section 2.5 we talked about state-space model, which is used by the Kalman filter.
Thus we work with equations

G: = �G:−1 + FC (2.37)
IC = �G: + E: , (2.38)

where both noise variables are independent and with zero mean

F: ∼ N(0, &), (2.39)
E: ∼ N(0, '). (2.40)

Then the state and measurement distributions follows

G: ∼ N(�G:−1, &) with density ?(G: |G:−1), (2.41)
I: ∼ N(�G: , ') with density ?(I: |G:). (2.42)

Since the Kalman filter is Bayesian, we need a prior distribution for G: . Model I: is also
Gaussian, thus the conjugate prior is then also a Gaussian with mean G+

:−1 and covariance
matrix %+

:−1,

?(G: |I0::−1) = N(G+:−1, %
+
:−1). (2.43)

The prediction step is derived from Formula (2.35). Note, that by multiplying two
Gaussian distributions we again get the Gaussian distribution N(G−

:
, %−

:
) with hyperpa-

rameters

G−: = �G
+
:−1, (2.44)

%−: = �%
+
:−1�

) +&. (2.45)

By multiplying two Gaussian distributions followed by marginalization, we enumerate
the state equation. The estimation of state G−

:
is achieved by a substitution of model

variables into appropriate equations. The estimated covariance %−
:
expresses the degree

of uncertainty of the estimation. By applying this step, the uncertainty grows.
The update step corrects the prediction step by incorporating new observed measure-

ments I: . For that, formula (2.36) is used. The model is transformed into an exponential

2.8. Kalman filter 21

form

?(I: |G:) ∝ exp
{
−1

2
(I: − �G:))'−1(I: − �G:)

}

= exp

)A

©«
−1

2

[
−1
G:

] [
−1
G:

])
︸ ︷︷ ︸

[

[
I)
:

�)

]
'−1

[
I)
:

�)

])
︸ ︷︷ ︸

) (I:)

ª®®®®®¬

. (2.46)

The conjugate prior can be rewritten into a compatible form as follows:

?(G: |I0::−1) ∝ exp
{
−1

2
(G: − G−:)

) (%−:)
−1(G: − G−:)

}

= exp

)A

©«
−1

2

[
−1
G:

] [
−1
G:

])
︸ ︷︷ ︸

[

[
(G−
:
))
�

]
(%−:)

−1
[
(G−
:
))
�

])
︸ ︷︷ ︸

b:

ª®®®®®¬

, (2.47)

where � is an identity matrix of appropriate shape.
The Bayesian update is a sum of the hyperparameter and sufficient statistic,

b: = b:−1 +) (I:)

=

[
(G−
:
)) (%−

:
)−1G−

:
+ I)

:
'−1I: , (G−:)

) (%−
:
)−1 + I)

:
'−1�

(%−
:
)−1(G−

:
)) + �)'−1I: , (%−

:
)−1 + �)'−1�.

]
(2.48)

The posterior parameters are then derived

%+: = (b:;[2,2])−1

=
[
(%−:)

−1 + �)'−1�
]−1

= (� − :�)%−: (2.49)
G+: = (b:;[2,2])−1b:;[2,1]

= %+:
[
(%−:)

−1(G−:)
) + �)'−1I:

]
= G−: + %

+
:�

)'−1(I: − �G−:), (2.50)

where

 : = %
−
:�

) (' + �%−:�
))−1 (2.51)

is the Kalman gain. This form is the optimal Kalman gain, as it minimizes the root
mean squared error. In general, the greater the gain, the greater the emphasis of the new
measurements. The filter then becomes more sensitive.

There are several possible formulas that express the optimal Kalman filter. One of

2.8. Kalman filter 22

the most popular formulations is as follows:

Î−: = �Ĝ
−
: , (measurement prediction) (2.52)

aC = IC − Î−: , (innovation or prediction error IC) (2.53)
(C = �%

−
:�

) + ', (covariance of innovation aC) (2.54)
 C = %

−
:�

)(−1
C , (Kalman gain) (2.55)

G+: = Ĝ
−
: + CaC , (posterior state estimation GC) (2.56)

%+: = (� − C�)%
−
: . (posterior covariance) (2.57)

The pseudo-algorithm of the Kalman filter is shown in Algorithm 1.

Algorithm 1 Kalman Filter Algorithm
1: Inputs: Initial state estimate Ĝ0, initial covariance matrix %0, system dynamics matrix �, process

noise covariance matrix &, measurement matrix �, measurement noise covariance matrix ', and
measurements / .

2: Outputs: Updated state estimate Ĝ: and updated covariance matrix %: .
3:
4: procedure Initialization(G0, %)
5: Ĝ0 = G0 ⊲ Initialize state estimate
6: %0 = % ⊲ Initialize error covariance matrix
7: end procedure
8:
9: procedure Prediction step
10: Ĝ: |:−1 = �Ĝ:−1 ⊲ Predict state estimate
11: %: |:−1 = �%:−1�

) +& ⊲ Predict covariance:
12: end procedure
13:
14: procedure Update step(I:)
15: : = %: |:−1�

) (�%: |:−1�
) + ')−1 ⊲ Kalman gain

16: Ĝ: = Ĝ: |:−1 + : (I: − �Ĝ: |:−1) ⊲ Update state estimate
17: %: = (� − :�)%: |:−1 ⊲ Update covariance
18: end procedure
19:
20: procedure Kalman filter recursion
21: Initialization
22: for all z: ∈ Z do
23: Perform Prediction Step
24: Perform Update Step with I:
25: end for
26: end procedure

Chapter 3

Target tracking

Target tracking plays a pivotal role in surveillance systems, such as radars, where the
primary objective is to estimate the trajectory, position, and other characteristics of
moving objects within a surveillance area. Derived from the foundational principles
of the Kalman filter, target tracking algorithms are tailored to the specific requirements
and challenges inherent in radar applications.

Radar-based target tracking encounters various complexities, including survivability
and the presence of multiple targets in the same area. Survivability concerns the
algorithm’s ability to maintain accurate estimates despite target maneuvers, occlusions,
or potential target loss. Furthermore, the phenomenon of multiple targets in the same
neighbourhood introduces significant ambiguities and challenges in trajectory estimation
and association.

In the realm of single-target tracking, algorithms such as the Probabilistic Data
Association (PDA) filter [25] and its derivatives, such as the Integrated Probabilistic
Data Association (IPDA) filter [4] or multi-target tracking variation Joint Probabilistic
Data Association (JPDA) filter [4], are commonly employed. These algorithms provide
robust solutions for associating measurements with existing tracks and updating target
state estimates in dynamic scenarios.

Beyond single-target tracking, radar systems often necessitate multi-target tracking
approaches. These approaches, particularly those based on Random Finite Sets (RFS)
[5], offer advanced capabilities for tracking multiple targets simultaneously. RFS-based
filters, including the Probability Hypothesis Density (PHD) filter [9], and the Multi
-Bernoulli Mixture (MBM) filter [11], excel in scenarios where the number of targets is
uncertain or dynamic.

In this chapter, we delve into the intricacies of advanced target tracking algorithms
and explore their theoretical foundations, practical implementations, and performance
characteristics. By understanding the diverse range of available algorithms and their
respective strengths, we can design and deploy effective systems to meet the demands
of modern surveillance and applications.

23

3.1. Data association 24

3.1 Data association
Data association uncertainty arises in remote sensing systems, such as radar, sonar, or
electro-optical devices, when measurements are obtained from sources that may not nec-
essarily be the target of interest [25]. This uncertainty occurs particularly in situations
where the target signal is weak, necessitating a lower detection threshold, which may
result in the detection of background signals, sensor noise, or clutter. Additionally, data
association uncertainty can occur when multiple targets are present in close proxim-
ity. Utilizing spurious measurements in a tracking filter can lead to divergence of the
estimation error and, consequently, track loss.

Addressing this challenge involves two primary problems. The first is the selection
of appropriate measurements to update the state of the target of interest in the tracking
filter, which can be, e.g., a Kalman filter or an extended Kalman filter. The second
problem involves determining whether the filter needs modifications to account for data
association uncertainty. The objective is to obtain the minimum mean square error
(MMSE) estimate of the target state and associated uncertainty.

The optimal estimator involves the recursive computation of the conditional proba-
bility density function of the state, with detailed conditions provided under which this
pdf serves as a sufficient statistic in the presence of data association uncertainty.

3.2 Clutter
When it comes to clutter, two scenarios may occur. The first one is a single target
in clutter. This problem of tracking a single target in clutter appears when several
measurements appear in the validation region. The validatedmeasurements comprise the
accurate measurement, if detected within this region, along with spurious measurements
originating from clutter or false alarms. For instance, in air traffic control systems,
where cooperative targets are involved, each true target includes an identifier known as
the squawk number. If this identifier is entirely reliable, data association uncertainty is
eliminated. However, in cases where a potentially hostile target is non-cooperative, data
association uncertainty becomes a significant challenge.

3.2.1 Validation region
In target tracking scenarios, the process of signal detection provides measurements from
which the appropriate ones for inclusion in the target state estimator are chosen. In radar
systems, for instance, the signal reflected from the target of interest is sought within
a specific time interval, determined by the expected range of the target when it reflects
the transmitted energy. A range gate is established and detections falling within this
gate can be associated with the target of interest. These measurements could include
informations such as range, azimuth, elevation, or direction cosines. For a radar or
an active sonar, we might also measure how fast something is moving towards or away
from us. For a passive sonar, we might look at the direction somethings coming from,
when it arrives, and the difference in sounds it makes. And for optical sensors, we might
measure the angle it is seen from. By setting up a multidimensional gate, the signal

3.2. Clutter 25

from the target is detected efficiently, avoiding the need to search for it across the entire
measurement space.

However, while a measurement within the gate is a candidate for an association
with the target, it is not guaranteed to have originated from the target itself. Thus,
the establishment of a validation region becomes necessary. The validation region is
designed to ensure that the target measurement falls within it with a high probability,
known as the gate probability, based on the statistical characterization of the predicted
measurement. In the event where more than one detection appears within the gate,
association uncertainty arises. With this uncertainty, it is important to figure out which
measurement really comes from the target and should be used to update our tracking
information. This includes factors like the target’s estimated position and its variability,
or, more broadly, the key information we need about the target. Measurements outside
the validation region can be disregarded, as they are too distant from the predicted
measurement and are unlikely to have originated from the target of interest. This
scenario typically arises when the gate probability is close to unity, and the statistical
model used to define the gate is accurate.

Figure 3.1 illustrates a scenario that involves multiple validated measurements. The
validation region depicted in the figure is two-dimensional and takes the form of
an ellipse centered at the predicted measurement Î. The elliptical shape of the validation
region arises from the assumption that the error in the target’s predicted measurement,
known as the innovation, follows a Gaussian distribution. The parameters defining the
ellipse are determined by the covariance matrix (of the innovation.

All measurements within the validation region have the potential to originate from
the target of interest. The key assumption here is that the true target generates at most
one measurement per scan. As a result, the possible association events include: I1
originating from the target, with I2 and I3 being from clutter; I2 originating from the
target, with I1 and I3 being from clutter; I3 originating from the target, with I2 and I1
being from clutter; or all measurements being from clutter. These association events
are mutually exclusive and exhaustive, enabling the application of the total probability
theorem to obtain the state estimate in the presence of data association uncertainty.

Under the assumption of a single target, the spurious measurements are considered
random interference. A common model for such false measurements assumes that
they are uniformly spatially distributed and independent across time, corresponding to
residual clutter. Any constant clutter is assumed to have already been removed. Their
number follows the Poisson distribution.

When several targets, as well as clutter or false alarms, appear in the same neigh-
bourhood, the data association becomes even more challenging. Figure 3.2 shows this
scenario, where predicted measurement for the targets are close to each other. These
predicted points are labeled as Î1 and Î2. In this figure, many association combinations
are possible; I1 from target Î1 or clutter; I2 from target Î1 or clutter; I4 from target Î2 or
clutter; I3 from target Î1 or target Î2 or clutter. However, if I3 originated from target Î1,
then it is probable, that I4 originated from target Î2.

This scenario demonstrates the intricate relationships among associations when per-
sistent interference from neighboring targets coexists with random interference or clutter.
In such cases, joint association events become necessary to properly account for these

3.2. Clutter 26

dependencies.
A more complex scenario may arise due to the inherent finite resolution capability of

signal processing systems. While each measurement is typically assumed to originate
from either a target or clutter, an additional possibility must be considered: the merging
of detections from multiple targets. Specifically, measurement I3 could potentially
result from such merging, representing an unresolved measurement. This introduces the
fourth origin hypothesis for ameasurement lyingwithin the intersection of two validation
regions.

The discussion highlights the challenges associated with associating measurements
to tracks. The complete problem involves associating measurements at each time step,
updating the track’s sufficient statistic, and propagating it to the subsequent time step.

Figure 3.1 Several measurements I8 appeared in the validation region of a single target. Î is a predicted measure-
ment and none or any of the measurement I1 − I3 may have originated from the target.

3.3. Single target tracking 27

Figure 3.2 Several measurements I8 appeared in the validation region of one of targets Î1 or Î2. Î1 and Î2 are
predicted measurements and none or any of the measurement I1 − I3 may have originated from the target Î1 and none
or any of the measurement I3 − I4 may have originated from the target Î2.

3.3 Single target tracking
Unlike conventional Kalman filter, which is not inherently equipped to handle clutter,
single target tracking (STT) algorithms are specifically designed to track a single target
in presence of clutter and other sources of interference. STT algorithms incorporate
mechanisms to enhance target survivability in cluttered environments.

One prominent algorithm in the data association category of target tracking is the
Probabilistic Data Association filter (PDA). This filter addresses the challenge of as-
sociating measurements with the correct target while accounting for data association
uncertainty. This uncertainty arises from the presence of clutter and the possibility of
spurious measurements.

3.3.1 PDA filter
The Probabilistic Data Association filter computes the association probabilities for each
validated measurement at the current time with respect to the target being tracked [25].
This probabilistic or Bayesian information serves as a foundation for the filter, which
effectively addresses the uncertainty regarding the origin of measurements. In scenarios
where the state and measurement equations are linear, the resulting PDA algorithm
operates based on the Kalman Filter. However, if the state or measurement equations

3.3. Single target tracking 28

are non-linear, the PDA algorithm is instead based on the Extended Kalman Filter.
This adaptation allows the PDA algorithm to accommodate non-linearity in the system
dynamics or measurement processes, ensuring a robust performance in diverse tracking
scenarios.

The PDA algorithm comes with many assumptions:
1. Only one target of interest is present, whose state G ∈ '=G is assumed to evolve in

time according to the equation

G: = �:−1G:−1 + F:−1, (3.1)

with the true measurement I: ∈ '=I given by
I: = �:G: + E: , (3.2)

where F:−1 and E: are zero mean mutually independent, white Gaussian noise
variables with covariances &:−1 and ': , respectively.

2. The track has been initialized.

3. The past information through time :−1 about the target is summarized approximately
by a sufficient statistic in the form of the Gaussian posterior

?(G:−1 |I:−1) = N(G:−1; G:−1|:−1, %:−1|:−1). (3.3)

4. Every time a measurement validation region is set up around the predicted measure-
ment to select the candidate measurements for association to the target of interest.

5. If the target was detected and the corresponding measurement fell into the validation
region, then, according to (3.2), at most one of the validated measurements can be
target-originated.

6. The remaining measurements are assumed to be false alarms or clutter and are
modeled as independent and identically distributed with uniform spatial distribu-
tion. Additionally, the number of false alarms or clutter points obeys either a Pois-
son distribution, that is, a spatial Poisson process with known spatial density _, or
a diffuse prior.

7. The target detections occur independently over time with known probability ?� .
All these assumptions make a filter for state estimation, that is almost as simple as the
Kalman filter, but more effective in the presence of clutter.

As well as the Kalman Filter, the PDAF consists of a prediction and an update step.
Before the update step, two additional steps occur – measurement validation and data
association.

3.3.1.1 PDAF predict step

The prediction step of PDA filter from time : − 1 to : is as in the standard KF,

G: |:−1 = �:−1G:−1|:−1, (3.4)
[: |:−1 = �:G: |:−1, (3.5)
%: |:−1 = �:−1%:−1|:−1�

)
:−1 +&:−1, (3.6)

3.3. Single target tracking 29

where %:−1|:−1 is from the Equation (3.3). The innovation covariance matrix (: is
computed as

(: = �:%: |:−1�
)
: + ': . (3.7)

3.3.1.2 PDAF measurement validation step

As discussed in Section 3.2.1, measurements considered to have originated from a given
target should fall into the validation region. This elliptical region is formulated as

a(:, W) =
⋃
I∈/:
[(I − Î: |:−1))(−1

: (I − Î: |:−1)) ≤ W], (3.8)

where /: are all measurements at time : , W > 0 is the gate threshold corresponding
to the gate probability ?� , which is the probability, that the region contains the correct
measurement if detected and (: given in (3.7) is the covariance of the innovation.

3.3.1.3 PDAF data association step

Clutter in target tracking is assumed to be a Poisson model with a spatial density _. In
PDAF it yields to the association probability for I8,: being the correct measurement as

V8,: =

L8,:

1 − ?� ?� +
<:∑
9=1
L 9 ,:

, 8 = 1, . . . , <: ,

1 − ?� ?�

1 − ?� ?� +
<:∑
9=1
L 9 ,:

, 8 = 0,
(3.9)

where 8 = 0 stands for case, where none of the measurements are correct, i.e. there is
no measurement in the validation region or none of them originate from the target, ?�
is the detection probability, ?� is the gate probability analogous to (3.8), and

L8,: =
N(I8,: ; Î: |:−1, (:)?�

_
(3.10)

is the likelihood ratio of themeasurement I8,: from the validation region. The parameter_
(the density of the spatial Poisson clutter process) in the denominator of (3.10)models the
clutter density of the uniform pdf of the location of false measurement. The Probabilistic
Data Association algorithm estimates association probabilities that are influenced by the
position of the respective innovation on the Gaussian exponential of the likelihood ratio
(3.10), in comparison to other innovations.

3.3.1.4 PDAF update step

The update step equation of the update step is formulated as

Ĝ: |: = Ĝ: |:−1 + :a: , (3.11)

3.4. Multi-target tracking 30

where the combined innovation is

a: =

<:∑
8=1

V8,:a8,: , (3.12)

and the Kalman gain is the same as in (2.51)

 : = %: |:−1�
)
: (
−1
: . (3.13)

The covariance matrix associated with the update state (3.11) is expressed as

%: |: = V0,:%: |:−1 + (1 − V0,:)%2: |: + %̃: , (3.14)

where the covariance of the updated state with the corrected measurement is

%2
: |: = %: |:−1 − :(:): , (3.15)

and of the innovation term spreads according to

%̃: = : (
<:∑
8=1

V8.:a8,:a
)
8,: − a:a

)
:)

)
: . (3.16)

With probability V0,: none of the measurements are correct. In such case, there is
no update step of the state estimation. The prediction covariance %: |:−1 in (3.14) has
weight V0,: . There is a probability 1 − V0,: that correct measurement appears and the
update covariance %2

: |: has weight 1 − V0,: . However, there is no certainty, which of
the validated measurement I: is correct, so the positive semidefinite covariance matrix
increases. This matrix is the result of the measurement origin uncertainty. Note, that in
(3.16) the dependence of the estimation is non-linear. ThePDAF is a non-linear estimator,
while the estimate update in (3.11) appears linear, but the association probabilities V8,:
depend on the innovation in (3.9).

3.4 Multi-target tracking
In the field of multi-target tracking, there are many different algorithms and approaches.
One of the classes is the particle filters approach ([3], [26]–[28]). These filters are able
to handle non-linear motion, but the computational demands are really high. The second
class is data association filters and random finite sets filters, which are usually more
effective when it comes to computational demands. The example of data association,
which we mentioned in Section 3.1, is the PDA filter (Section 3.3.1) or the integrated
probabilistic data association filter [4]. The joint probabilistic data association filter [25]
and the joint integrated probabilistic data association filter [4] are advanced versions
of these filters. They can handle more targets, especially when two or more targets’
validation regions overlap. The other family are filters based on random finite sets.
Random finite sets statistics are explained in the following section.

3.4. Multi-target tracking 31

3.4.1 RFS statistics
Multi-target tracking presents challenges in estimating the states of multiple dynamic
objects over time, complicated by varying target counts, cluttered sensor measure-
ments, and data association ambiguity. Traditional tracking frameworks rely on explicit
associations between measurements and targets, leading to computational complexities,
particularly in scenarios with high target densities and clutter rates.

Recent advancements introduce Random Finite Set (RFS) theory as an alternative
approach to multi-target tracking. RFS theory represents sets with random cardinalities
and values, offering a flexible framework for modeling uncertain multi-target scenarios.
By treating both the multitarget state and sensor measurements as a RFS, tracking
algorithms can effectively capture uncertainties.

In a scenario with more targets, i.e., a multi-target scenario, let " (:) be the number
of targets at time : . At time : − 1, the target states G:−1,1, . . . , G:−1," (:−1) ∈ X are
assumed to follow Markov process on the state-space X ⊆ '=G . At the following
time step : , some of these targets may disappear, some may evolve to their new states
and, what is more, some new targets may be born. The result are " (:) targets with
states G:,1, . . . , G:," (:) ∈ X. The RFS model formulation ensures, that the order in
which the states are listed has no significance. Also, at time : , # (:) measurements
I:,1, . . . , I:,# (:) ∈ Z, observed in the observation-space Z ⊆ '=I , are received by the
sensors, but the origins of these measurements are not known. The RFS model again
ensures, that the order in which the measurements came, has no significance. Some
of these measurements are generated by the targets, some are false measurements, i.e.,
clutter.

The goal of multi-target tracking is to collectively estimate both the quantity of targets
and their respective states using measurements of uncertain origin. Even under ideal
circumstances where the sensor detects all targets without clutter, single-target filtering
techniques are inadequate due to the absence of information regarding the origin of each
observation.

Given the absence of inherent ordering within the sets of target states and measure-
ments at a specific time, they can be naturally depicted as finite sets, denoted as

-: = {G:,1, . . . , G:," (:)} ∈ F (X) (3.17)
/: = {I:,1, . . . , I:,# (:)} ∈ F (Z), (3.18)

where F (X) and F (Z) are collections of all finite subsets of X andZ, respectively. In
the random finite set framework, we consider the sets of targets and measurements, de-
noted as -: and /: , respectively, as the state and the observation. This approach defines
multi-target tracking as a filtering task with a state-space F (X) and an observation-space
F (Z). For single target scenarios, uncertainty is represented using random vectors for
state G: and measurement I: . Similarly, in multi-target scenarios, the uncertainty is
modeled using random finite sets for the multi-target state -: and the measurement /: .
An RFS - is essentially a random variable that takes on finite sets of values, described by
a discrete probability distribution and a set of joint probability densities. The distribution
specifies the number of elements in - , while the densities describe the distribution of
these elements.

3.4. Multi-target tracking 32

We now delve into an RFS-based model for the evolution of the multi-target state,
taking into account the target motion, birth and death. Given a multi-target state -:−1
at time : − 1, each individual target G:−1 ∈ -:−1 either remains present at time : with
a probability ?(,: (G:−1) or disappears with a probability 1 − ?(,: (G:−1). If the target
continues to exist, the probability density of transitioning from state G:−1 to G: is denoted
by 5: |:−1(G: |G:−1). Consequently, for each state G:−1 ∈ -:−1 at time : − 1, its behavior
in the subsequent time step is modeled as the RFS

(: |:−1(G:−1), (3.19)

that can represent two scenarios: either the survival of a target, indicated by the set {G: },
or the absence of a target, denoted by ∅, implying the target’s demise.

The occurrence of a new target at time : can originate from two possibilities: sponta-
neous births, which are independent of any existing target, or the spawning from a target
present at time : − 1.

Given a multi-target state -:−1 at time : − 1, the state -: at time : is formulated as
a union of surviving targets, newly spawned targets, and spontaneously born targets,

-: =

[⋃
Z∈-:−1

(: |:−1(Z)
]
∪

[⋃
Z∈-:−1

�: |:−1(Z)
]
∪ Γ: , (3.20)

where

Γ: is a RFS of spontaneous births at time : ,

�: |:−1(Z) is a RFS of targets spawned at time : from a target with previous state Z .

It is also assumed that RFSs in (3.20) are independent of each other, but the forms of Γ:
and �: |:−1(·) are problem dependent.

The measurement sets /: are also random finite sets including detection uncertainty
and clutter. A target G: ∈ -: can be either detected with probability ?�,: (G:) or
misdetected with probability 1 − ?�,: (G:). At time : , each state G: produces an RFS

Θ: (G:) (3.21)

that is I: in a case when the target is detected or ∅ otherwise. Furthermore, the sensor not
only receives measurements originated from targets, but also a set K: , which are false
measurements (clutter). Thus, at time : , the multi-target measurement set /: observed
by the sensor is also formulated as a union of measurements originated from targets and
clutter

/: =

[⋃
G∈-:

Θ: (G)
]
∪ K: . (3.22)

The RFSs are assumed to be independent of each other and the actual form of K: is
problem dependent.

Finite Set Statistics (FISST) is fundamental within the RFS framework, providing
a systematic way to apply the RFS theory to multi-target tracking. FISST extends

3.4. Multi-target tracking 33

Bayesian filtering techniques to multi-target scenarios, enabling rigorous estimation of
multi-target states in the presence of clutter and data association uncertainties. Detailed
information, descriptions, and equations can be found in [29]. In this book, for the sake
of interest, it can be found that for a function 5 = m�(·) ()) the set integral over a subset
(⊂ � is defined as∫

(

5 (-)m- ≡
∞∑
8=0

1
8!

∫
(8
5 (G1, . . . , G8)_8 (3G1 . . . 3G8), (3.23)

where _ (() denote the hyper-volume of S in units of K, which is usually in MTT
modeled as RFS Poisson process with uniform rate of −1 with intensity _ = _ / , i.e.,

`(T) =
∞∑
8=0

_8 (T ∩ � 8)
8!

, (3.24)

where � and T are closed and bounded subsets of '= [30].

3.4.2 PHD filter
The PHD filter serves as an approximation devised to tackle the computational com-
plexity inherent in the multi-target Bayes’ filter. Instead of tracking the complete poste-
rior density of multi-target states over time, the PHD filter focuses on propagating the
posterior intensity, which represents the first-order statistical moment of the posterior
multi-target state [5]. This operational strategy draws parallels with the constant gain
Kalman filter, which tracks the first moment (mean) of the single-target state [9].

For a Random Finite Set - on X with a probability distribution %, its first-order
moment is a non-negative function a on X, known as the intensity. This function
satisfies the property that for each region (⊆ X [31]∫

|- ∩ (|%(3-) =
∫
(

a(G)3G. (3.25)

In essence, the integral of a over any region (yields the expected number of elements
of - within (. Consequently, the total mass #̂ =

∫
a(G)3G represents the expected

number of elements of - . The local maxima of the intensity a correspond to the points
inX with the highest local concentration of expected number of elements, which can then
be utilized to generate estimates for the elements of - . The simplest approach involves
rounding #̂ and selecting the resulting number of highest peaks from the intensity. In the
tracking domain, this intensity is also referred to as the probability hypothesis density.

An important subclass of RFSs, namely the Poisson RFSs, is characterized entirely by
its intensities. An RFS - is considered Poisson if its cardinality distribution %A (|- | = =)
follows a Poisson distribution with mean #̂ , and for any finite cardinality, the elements
G ∈ - are independently and identically distributed according to the probability density
a(·)/# . In the context of the multi-target tracking problem, it is a common practice to
model the clutter RFS [denoted asK: in (3.22)] and the birth RFSs [Γ: and �: |:−1(G:−1)
in (3.20)] as Poisson RFSs.

3.4. Multi-target tracking 34

To formulate the PHD filter, let us first denote the multi-target state and measurement
models with

W: (·) intensity of the births RFS Γ: at time k; (3.26)
V: |:−1(·|Z) intensity of the RFS �: |:−1(Z) spawned at time : by a target

with previous state Z ; (3.27)
?(,: (Z) probability that a target still exists at time : given that its

previous state is Z ; (3.28)
?�,: (G) probability of detection given a state G at time :; (3.29)
^: (·) intensity of clutter RFS K: at time :. (3.30)

PHD filter naturally comes with certain assumptions.
1. Each target evolves and generates observations independently of each other.

2. Clutter is Poisson and independent of target-originated measurements.

3. The predicted multi-target RFS governed by ?: |:−1 is Poisson.
Assumptions 1 and 2 are very common in several tracking applications. The assump-

tion 3 is acceptable approximation in situations with small correlation between targets
and is satisfied when there is no spawning and RFSs -:−1 and Γ: are Poisson.

3.4.2.1 PHD filter recursion

Assume a target state G described by an intensity function a(G). At time : , the prediction
of the prior intensity a:−1(G) is given by

a: |:−1(G) =
∫

?(,: (Z)q: |:−1(G |Z)a:−1(Z)3Z

+
∫

V: |:−1(G |Z)a:−1(Z)3Z + aW,: (G), (3.31)

where ?(,: (·) is the probability of target survival, q: |:−1(·|·) is the target state transition
density, and aW,: (·) denotes the prior PHD of the target’s birth at time : . The predicted
intensity a: |:−1 is then updated by the measurement set /: given by sensors at time :
according to the Bayesian update

a: (G) = [1 − ?�,: (G)]a: |:−1(G)

+
∑
I∈/:

?�,: (G)6: (I |G)a: |:−1(G)
^: (I) +

∫
?�,: (Z)6: (I |Z)a: |:−1(Z)3Z

, (3.32)

where 6: (·|·) is the likelihood function, ?�,: (·) is the probability of detection, and ^: (·)
is the clutter density.

Equations (3.31) and (3.32) show that the PHD filter avoids the combinatorial ineffec-
tiveness resulting from the unknown association of measurements with correct targets.
The posterior intensity is a function of a single-target state spaceX, thus the recursion is
more computationally effective than (2.35) and (2.36) that in the case of the PHD filter
operates on F (X). Although, in general, it is not possible to come up with a closed-form
solution for the PHD recursion.

3.4. Multi-target tracking 35

3.4.2.2 GM-PHD for linear models

In this section we delve into details of multi-target linear PHD Gaussian models. With
PHD recursions (3.31) and (3.32) it is achievable to get an efficient multi-target closed-
form solution for multi-target algorithms. This solution proposed by Vo and Ma in
[9] requires additional assumptions to the already proposed ones. A standard linear
Gaussian model for each of the targets is assumed and the linear Gausssian multi-target
model includes assumptions on the death, birth, and detections.
4. Each target follows a linear Gaussian dynamical model and the sensor has a linear

Gaussian measurement model, i.e.,
5: |:−1(G |Z) = N(G; �:−1Z, &:−1), (3.33)

6: (I |G) = N(I;�:G, ':), (3.34)
where N(·;<, %) is a Gaussian density with mean < and covariance %, �:−1 is the
state transition matrix, &:−1 is the process noise covariance, �: is the observation
matrix and ': is the observation noise covariance.

5. The survival and detection probabilities are state independent, i.e.,
?(,: (G) = ?(,: , (3.35)
?�,: (G) = ?�,: . (3.36)

6. The intensities of the birth and spawn RFSs are Gaussian mixtures of the form

W: (G) =
�W,:∑
8=1

F
(8)
W,:
N(G;< (8)

W.:
, %
(8)
W,:
), (3.37)

V: |:−1(G |Z) =
�V,:∑
9=1
F
(9)
V,:
N(G; � (9)

V,:−1Z + 3
(9)
V,:−1, &

(9)
V,:−1), (3.38)

where �W,: , F (8)W,: , <
(8)
W,:
, %
(8)
W,:
, 8 = 1, . . . , �W,: are given model parameters that actuate the

shape of the birth intensity and �V,: , F
(9)
V,:
, �
(9)
V,:−1, 3

(9)
V,:−1 and & (9)

V,:−1, 9 = 1, . . . , �V,:
determine the shape of the spawning intensity of a target with previous state Z .

Assumptions 4 and 5 are very common and used in various tracking algorithms [32],
but the closed-form solution allows for state- and time-dependent ?(,: and ?�,: . This
convenience is used in the practical part of this thesis.

The means < (8)
W,:

in assumption 6 are the peaks of the spontaneous birth intensity
in (3.37). These are the points with highest concentrations of the expected number
of spontaneous births, meaning they represent places like airports or other places with
highest probability target appearance. %(8)

W,:
is the covariance matrix that regulates the

spread of the birth intensity. The weight F (8)
W,:

gives the expected number of new targets
originating from <

(8)
W,:

. Similary in (3.38) with addition, that the peak � (9)
V,:−1Z + 3

(9)
V,:−1

is an affine function of Z . This spawned target can be pictured as a new target spawned
in the neighborhood of another target with previous state Z . This can be, for example,
a smaller ship detached from its mother ship.

3.4. Multi-target tracking 36

3.4.2.3 GM-PHD recursion for linear models

In this section we delve into Gaussian mixture probability hypothesis density filter
recursion for the linear Gaussian multi-target model and its closed-form solution to the
(3.31) and (3.32). Suppose, that with assumptions 4-6 the posterior intensity at time
: − 1 is a Gaussian mixture of the form

a:−1(G) =
�:−1∑
8=1

F
(8)
:−1N(G; , <

(8)
:−1, %

(8)
:−1). (3.39)

Then, the predicted intensity for time : is also a Gaussian mixture and is given by

a: |:−1(G) = a(,: |:−1(G) + aV,: |:−1(G) + W: (G), (3.40)

where W: (G) is given in (3.37). This yields

a(,: |:−1(G) = ?(,:
�:−1∑
9=1

F
(9)
:−1N(G;<

(9)
(,: |:−1, %

(9)
(,: |:−1), (3.41)

<
(9)
(,: |:−1 = �:−1<

(9)
:−1, (3.42)

%
(9)
(,: |:−1 = &:−1 + �:−1%

(9)
:−1�

)
:−1, (3.43)

aV,: |:−1(G) =
�:−1∑
9=1

�V,:∑
;=1

F
(9)
:−1F

(;)
V,:
N(G;< (9 ,;)

V,: |:−1, %
(9 ,;)
V,: |:−1), (3.44)

<
(9 ,;)
V,: |:−1 = �

(;)
V,:−1<

(9)
:−1 + 3

(;)
V,:−1, (3.45)

%
(9 ,;)
V,: |:−1 = &

(;)
V,:−1 + �

(;)
V,:−1%

(;)
V,:−1(�

(;)
V,:−1)

) . (3.46)

Thus the predicted intensity at the time : is a Gaussian mixture

a: |:−1(G) =
�: |:−1∑
8=1

F
(8)
: |:−1N(G;<

(8)
: |:−1, %

(8)
: |:−1), (3.47)

and the posterior intensity at time : is also a Gaussian mixture

a: (G) = (1 − ?�,:)a: |:−1(G) +
∑
I∈/:

a�,: (G; I), (3.48)

3.4. Multi-target tracking 37

where

a�,: (G; I) =
�: |:−1∑
9=1

F
(9)
:
(I)N (G;< (9)

: |: (I), %
(9)
: |:), (3.49)

F
(9)
:
(I) =

?
(9)
�,:
(G; I)F (9)

: |:−1@
(9)
:
(I)

^: (I) + ? (9)�,: (G; I)
∑�: |:−1
;=1 F

(;)
: |:−1@

(;)
:
(I)
, (3.50)

<
(9)
: |: (I) = <

(9)
: |:−1 +

(9)
:
(I − �:< (9): |:−1), (3.51)

%
(9)
: |: (I) = [� −

(9)
:
�:]%(9): |:−1, (3.52)

(9)
:
(I) = %(9)

:
�): (�:%

(9)
: |:−1�

)
: + ':)

−1. (3.53)

Formulas (3.39), (3.40) and (3.47), (3.48) are the result of applying standard Gaussian
properties, i.e., given �, 3, &, < and % of appropriate dimensions and &, % are positive
definite matrices, this yields∫

N(G; �Z + 3, &)N (Z ;<, %)3Z = N(G; �< + 3, & + �%�)) (3.54)

and given �, ', < and % of appropriate dimensions assuming ' and % are positive
definite matrices

N(I;�G, ')N (G;<, %) = @(I)N (G; <̃, %̃), (3.55)

where

@(I) = N(I;�<, ' + �%�)), (3.56)
<̃ = < + (I − �<), (3.57)
%̃ = (� − �)%, (3.58)
 = %�) (�%�) + ')−1. (3.59)

Equations (3.33), (3.35), and (3.37) - (3.39) are inserted into the PHDpredictionEqua-
tion (3.31), and then substituting integrals of the type (3.54) by appropriate Gaussian
functions. Similarly, Formulas (3.47), (3.48) are established by substituting Equations
(3.34), (3.36), and (3.47) into the PHD update Equation (3.32), and subsequently replac-
ing integrals resembling form (3.54) and products of Gaussians resembling Form (3.55)
with appropriate Gaussian functions.

If the initial prior intensity a0 is a Gaussian mixture, then all following predicted
intensities a: |:−1 and posterior intensities a: are alsoGaussianmixtures and the recursion
holds. Formulas (3.39) and (3.40) give a closed-form guidance for computing the means,
covariances and weights of a: from a: |:−1 after a new set of measurements is available.

The intensity a: |:−1 in (3.40) includes three intensities a(,: |:−1, a,: |:−1 and W: . These
intensities represent existing targets, spawned targets and spontaneous births. The
updated intensity a: consists of a misdetection case (1 − ?�,:)a: |:−1 and |/: | detection
cases a�,: (; I) for every I ∈ /: . The GM-PHD recursion prediction step thus follows

3.4. Multi-target tracking 38

the Kalman prediction step and the GM-PHD update step follows the Kalman update
step.

By summing the weights of a: |:−1 and a: we can get the expected number of targets
#̃: |:−1 and #̃: , respectively,

#̃: |:−1 = #̃:−1
©«?(,: +

�V,:∑
9=1
F
(9)
V,:

ª®¬ +
�W,:∑
9=1
F
(9)
W,:

(3.60)

#̃: = #̃: |:−1(1 − ?�,:) +
∑
I∈/:

�: |:−1∑
9=1

F
(9)
:
(I), (3.61)

where #̃: |:−1 is the expected number of targets after the prediction step, which is the
sum of surviving, spawning and born targets. Similary, #̃: is the expected number of
targets after the update step, which is the sum of the updated number of targets plus the
mean number of targets that are not detected.

The GM-PHD filter pseudo-algorithm is provided in Algorithm 2.

3.4.2.4 Pruning and merging in GM-PHD filter

Due to the propagation of the Gaussian mixture in time, the PHD filter suffers from
computation issues resulting from exponential increase of Gaussian components

(�:−1(1 + �V,:) + �W,:) (1 + |/: |) = O(�:−1 |/: |), (3.62)

where �:−1 is the number of Gaussian components of the intensity a:−1.
To resolve this issue, many techniques can be applied. The simplest one is to remove

components with a low weight to the next timestep. This can be done by predefining
a threshold. Only targets with a higher weight than this threshold continue to survive.

The next possibility is keeping a certain number of targets and removing the ones
with the lowest weight. However, some of the Gausssian components can appear so
close together, that they can be merged into a single component. Such procedure is
a good approximation with appropriate merging threshold. Pseudo-algorithm for this
procedure is shown in Algorithm 3.

After computing the posterior intensity a: , the subsequent objective is to derive
estimates for multi-target states. In the context of the Gaussian mixture representation
of a: , extracting estimates for the multi-target states becomes relatively straightforward,
as the means of the individual Gaussian components typically correspond to the local
maxima of a: , given that they are adequately separated. However, it is essential to note
that closely spaced Gaussian components may have been merged.

Since the magnitude of each peak is influenced by both its weight and covariance,
merely selecting the #̃: highest peaks of a: may yield state estimates associated with
Gaussians with weak weights. This scenario is suboptimal, as the expected number of
targets attributed to these peaks might be small despite their peak magnitudes being
substantial. A more effective approach involves choosing the means of the Gaussians
with weights exceeding a certain threshold, such as 0.5. This method ensures a more
robust selection of state estimates.

3.4. Multi-target tracking 39

The outlined procedure for the state estimation in the Gaussian mixture PHD filter is
summarized in Algorithm 4.

3.4. Multi-target tracking 40

Algorithm 2 Pseudo-algorithm for the GM-PHD filter

Require: {F (8)
:−1, <

(8)
:−1, %

(8)
:−1}

�:−1
8=1 , and the measurement set /: .

1:
2: procedure Prediction step for birth targets:
3: for 9 = 1, . . . , �W,: do
4: 8 := 8 + 1,
5: F

(8)
: |:−1 = F

(8)
W,:
, <

(8)
: |:−1 = <

(8)
W,:
, %

(8)
: |:−1 = %

(8)
W,:
,

6: end for
7: for 9 = 1, . . . , �V,: do
8: for ; = 1, . . . , �:−1 do
9: 8 := 8 + 1,
10: F

(8)
: |:−1 = F

(;)
:−1F

(9)
V,:
,

11: <
(8)
: |:−1 = 3

(9)
V,:−1 + �

(9)
V,:−1<

(;)
:−1,

12: %
(8)
: |:−1 = &

(9)
V |:−1 + �

(9)
V,:−1%

(;)
:−1 (�

(9)
V,:−1)

) .

13: end for
14: end for
15: end procedure
16:
17: procedure Prediction step for existing targets:
18: for 9 = 1, . . . , �:−1 do
19: 8 := 8 + 1,
20: F

(8)
: |:−1 = ?(,:F

(9)
:−1,

21: <
(8)
: |:−1 = �:−1<

(9)
:−1,

22: %
(8)
: |:−1 = &:−1 + �:−1%

(9)
:−1�

)
:−1,

23: end for
24: �: |:−1 = 8

25: end procedure
26:
27: procedure Computation of PHD update components:
28: for 9 = 1, . . . , �: |:−1 do
29: [

(9)
: |:−1 = �:<

(9)
: |:−1, (

(9)
:
= ': + �:% (9): |:−1�

)
:
,

30:
(9)
:
= %

(9)
: |:−1�

)
:
[((9)
:
]−1, %

(9)
: |: = [� −

(9)
:
�:]% (9): |:−1.

31: end for
32: end procedure
33:
34: procedure PHD update step:(/:)
35: for 9 = 1, . . . , �: |:−1 do ⊲Misdetection
36: F

(9)
:
= (1 − ?�,:)F (9): |:−1, <

(9)
:
= <

(9)
: |:−1, %

(9)
:
= %

(9)
: |:−1

37: end for
38: ; := 0
39: for all I ∈ /: do ⊲ Detection
40: ; := ; + 1,
41: for 9 = 1, . . . , �: |:−1 do
42: F

(;�: |:−1+ 9)
:

= ?�,:F
(9)
: |:−1N(I; [

(9)
: |:−1, (

(9)
:
),

43: <
(;�: |:−1+ 9)
:

= <
(9)
: |:−1 +

(9)
:
(I − [(9)

: |:−1),
44: %

(;�: |:−1+ 9)
:

= %
(9)
: |: ,

45: end for

46: F
(;�: |:−1+ 9)
:

:= F
(;�: |:−1+ 9)
:

^: (I)+
∑�: |:−1
8=1 F

(;�: |:−1+8)
:

, for 9 = 1, . . . , �: |:−1,

47: end for
48: �: = ;�: |:−1 + �: |:−1.

49: end procedure
50: Output: {F (8)

:
, <
(8)
:
, %
(8)
:
}�:
8=1.

3.4. Multi-target tracking 41

Algorithm 3 Pseudo-algorithm for pruning in the GM-PHD filter

Require: {F (8)
:
, <
(8)
:
, %
(8)
:
}�:
8=1, a truncation threshold T, a merging threshold U and a maximum number

of allowed Gaussian terms �<0G . Set ; = 0, and � = {8 = 1, . . . , �: |F (8): >)}.
1: procedure Merging of targets
2: while � ≠ ∅ do
3: ; := ; + 1
4: 9 := argmax8∈�F: (8),
5: ! :=

{
8 ∈ � | (< (8)

:
− < (9)

:
)) (%: (8))−1 (< (8)

:
− < (9)

:
) ≤ *

}
,

6: F̃
(;)
:
=

∑
8∈! F

(8)
:
,

7: <̃
(;)
:
= 1
F̃
(;)
:

∑
8∈! F: (8)G

(8)
:
,

8: %̃
(;)
:
= 1
F̃
(;)
:

∑
8∈! F

(8)
:
(% (8)
:
+ (< (;)

:
− < (8)

:
) (< (;)

:
− < (8)

:
)) ,

9: � := �/!.
10: end while
11: end procedure
12:
13: If ; > �<0G then replace {F̃ (8): , <̃

(8)
:
, %̃
(8)
:
};
8=1 by those of the �<0G Gaussians with largest weights.

14:
15: Output: {F̃ (8)

:
, <̃
(8)
:
, %̃
(8)
:
};
8=1 as pruned Gaussian components.

Algorithm 4 Pseudo-algorithm for state extraction in the GM-PHD filter

Require: {F (8)
:
, <
(8)
:
, %
(8)
:
}�:
8=1.

1: Set -̂: = ∅
2: for 8 = 1, . . . , 9: do
3: if F (8)

:
> 0.5, then

4: for 9 = 1, . . . , A>D=3 (F (8)
:
) do

5: update -̂: := [-̂: , < (8):]
6: end for
7: end if
8: end for
9: Output: -̂: as the multi-target state estimate.

Chapter 4

Object detection and segmentation

In this thesis we focus on tracking objects in video data using target tracking algorithms
with the dynamic detection probability due to the existence of obstacles that cause the
sensors misdetect objects in certain situations. The image object detector serves as
a sensor for obtaining measurements.

4.1 Object detection
Object detection is a fundamental task in computer vision that involves identifying
and localizing objects within images or video frames, respectively. Unlike the image
classification, which assigns a single label to an entire image, object detection algorithms
aim to detect multiple objects of various classes and localize them with bounding boxes.
Alongside the image classification and object detections, there are other tasks, such as
semantic segmentation and instance segmentation. Figure 4.1 shows the differences
between these types of image processing tasks.

The development of the object detection algorithms has progressed significantly over
the years, driven by advances in deep learning, dataset availability, and computational
power. Traditional object detection methods relied on handcrafted features and machine
learning algorithms, such as sliding window-based classifiers, histogram of oriented
gradients (HOG) [33], and Haar cascades [34]. While proving effective in certain
scenarios, these methods often lacked robustness and scalability, particularly in complex
and cluttered scenes.

With the advent of deep learning, convolutional neural networks (CNNs) improved
the field of object detection. These networks are capable of automatically learning
hierarchical representations of data, making them well suited for image analysis tasks.
The rise of CNN-based approaches has led to significant improvements in object detec-
tion accuracy and efficiency. At its core, a convolutional neural network is comprised of
multiple layers, each designed to perform specific operations on input data, typically im-
ages. The fundamental layers in an architecture of these networks include convolutional
layers, pooling layers, and fully connected layers.
1. Convolutional layers: These layers are responsible for extracting features from the

input data. They consist of filters (also called kernels) that slide across the input

42

4.1. Object detection 43

Figure 4.1 Image detection and segmentation task types. (Source: techvidvan.com.)

image, performing a mathematical operation known as convolution. Each filter
detects certain patterns or features, such as edges, textures, or shapes. By convolving
the filters with the input image, the CNN can capture hierarchical representations of
features, starting from simple edges and gradients to more complex structures.

2. Pooling layers: Pooling layers are interspersed between convolutional layers to re-
duce the spatial dimensions of the featuremapswhile retaining important information.
Common pooling operations include max pooling and average pooling, which down-
sample the feature maps by taking the maximum or average value within each pooling
region. This downsampling helps in reducing the computational complexity and in
controlling the overfitting by enforcing the spatial invariance.

3. Fully connected layers: These layers are typically placed at the end of the CNN and
serve to classify the features extracted by the convolutional layers. Each neuron in
a fully connected layer is connected to every activation in the previous layer, forming
a dense network. These layers use techniques like softmax activation to produce
probability distributions over the classes in a classification task or regression outputs
in a regression task.

It is important to note, that it is common to combine more convolutional, pooling and
fully connected layers with differently sized kernels in the architecture to improve the
performance. Example of such architecture is shown in Figure 4.2

During training, CNNs use a process called backpropagation to adjust the parameters
(weights and biases) of the network based on the disparity between the predicted outputs
and the ground truth labels. This optimization process aims to minimize a predefined
loss function, such as cross-entropy loss for classification tasks or mean squared error for
regression tasks. By iteratively updating the parameters using optimization algorithms
like stochastic gradient descent (SGD) or its variants, CNNs gradually learn to recognize
and classify patterns within the input data, ultimately improving their performance on
various visual tasks such as object detection and segmentation.

Object detection poses several challenges, including variations in object appearance,

https://techvidvan.com/tutorials/image-segmentation-machine-learning/

4.1. Object detection 44

Figure 4.2 CNN architecture example. (Source learnopencv.com)

scale, orientation, occlusion, and cluttered backgrounds. Additionally, real-world images
often contain multiple objects of different classes, making it essential for detection
algorithms to handle overlapping and partially visible objects.

Furthermore, object detection systems often have to balance accuracy and speed to
meet the demands of real-time applications. Achieving high detection accuracy while
maintaining fast inference times is an immense challenge, especially for devices with
low hardware resources and applications requiring low-latency processing.

Object detection algorithms typically consist of several components:

Input processing: Images or video frames are preprocessed to standardize their
format and size, often involving resizing, normalization, and data augmentation to
enhance model generalization.

Feature extraction: Feature extraction is performed to capture relevant informa-
tion from the input data. In deep learning-based approaches, convolutional neural
networks are commonly used to extract hierarchical features that encode object ap-
pearance and spatial relationships.

Localization: Localization involves predicting the spatial extent of objects within
the image using bounding boxes. This step requires regression or classification to
estimate bounding box coordinates and confidence scores for object presence.

Classification: Object classification assigns class labels to detected objects based
on their visual appearance. Classification models are trained to distinguish between
different object categories, enabling an accurate identification of objects within the
scene.

https://learnopencv.com/understanding-convolutional-neural-networks-cnn/

4.1. Object detection 45

Post-processing: Post-processing techniques, such as the non-maximum suppression
(NMS), are applied to refine detection results, suppress duplicate detections, and
improve localization accuracy.

4.1.1 YOLO
In the realm of object detection, the emergence of You Only Look Once (YOLO) repre-
sents a paradigm shift, propelled by the fusion of deep learning and innovative architec-
tural design. YOLO stands as a testament to the transformative power of convolutional
neural networks (CNNs) in redefining the landscape of computer vision applications,
particularly in real-time object detection scenarios. This object detector was proposed
by Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi in [35].

At its core, YOLO introduces an innovative concept: the ability to predict bounding
boxes and class probabilities for objects within an image in a single pass through the
neural network. This departure from the traditional object detection methods, which
often involve multi-stage processes and post-processing steps, marks a significant leap
forward in efficiency and speed. By consolidating object localization and classification
into a unified framework, YOLO streamlines the detection pipeline, enabling seamless
integration into various applications requiring rapid decision-making based on visual
data.

A distinguishing feature of YOLO lies in its holistic approach to image analysis.
Unlike the conventional methods that segment images into regions of interest for further
processing, YOLO takes a global perspective by dividing the input image into a grid and
processing it as awhole. This global context consideration not only enhances themodel’s
understanding of spatial relationships, but also reduces the risk of misclassification,
particularly in complex scenes with multiple objects. Each bounding box prediction
includes coordinates (G, H) for the center of the box, width, height, and confidence score
indicating the likelihood of containing an object. Additionally, class probabilities are
estimated for each bounding box to determine the object category. YOLO employs a loss
function that penalizes localization errors, confidence errors, and classification errors.
This loss function is optimized during training using labeled datasets to learn accurate
object representations. Moreover, YOLO adopts anchor boxes to improve localization
accuracy and handle scale variations of objects within the image.

The evolution of YOLO over successive versions underscores its adaptability to di-
verse use cases and computational environments. While early iterations prioritized
speed, subsequent iterations like YOLOv4 and YOLOv5 aim to enhance accuracy with-
out compromising real-time performance [36]. This flexibility in the model selection
empowers users to tailor YOLO to their specific requirements, whether it be for surveil-
lance systems demanding rapid detection or autonomous vehicles requiring a precise
object localization.

Compared to the traditional object detection methodologies such as region-based
convolutional neural networks (R-CNN) [37] and single-shot detectors (SSD), YOLO
stands out for its simplicity and efficiency. By eliminating the need for complex post-
processing steps and leveraging a unified architecture for object detection (see Figure
4.3 for YOLO architecture), YOLO achieves a fine balance between speed and accuracy.

4.2. Image segmentation 46

Figure 4.3 Yolo architecture proposed in [35] has 24 convolutinal layers followed by 2 fully connected layers.
Convolutional layers were pretrained on the ImageNet classificator at half resolution (224 x 224 input image) and the
doubled the resolution for detection. (Source [35].)

This versatility extends YOLO’s applicability across a myriad of domains including,
but not limited to, autonomous driving, industrial automation, healthcare imaging, and
augmented reality.

4.2 Image segmentation
Image segmentation, a fundamental technique in computer vision, involves dividing
a digital image into distinct pixel groups called segments. By breaking down the visual
data into manageable segments, the image segmentation facilitates more efficient and
sophisticated image processing.

The methods employed for the image segmentation vary from straightforward heuris-
tic approaches to cutting-edge deep learning techniques. Traditional algorithms typically
analyze basic visual attributes such as color and brightness to delineate object bound-
aries and background regions. Machine learning plays a pivotal role in this domain by
training models on labeled datasets, allowing them to accurately classify objects and
regions within images.

With its versatility and practical applications, image segmentation finds widespread
use across artificial intelligence scenarios. Its applications span from assisting medical
diagnoses through imaging to enabling automation in robotics and self-driving vehicles.
Furthermore, it plays a crucial role in tasks such as identifying objects within satellite
imagery.

There are three main task types in image segmentation [38]: semantic segmentation
[39], instance segmentation [13] and panoptic segmentation [40]. The distinction be-
tween various types of image segmentation tasks hinges on how they handle semantic
classes, which are specific categories assigned to individual pixels within an image.

In the realm of computer vision, semantic classes are broadly categorized into two
types, each requiring distinct segmentation techniques for accurate results.

Items represent classes of objects characterized by identifiable shapes, such as a car,

4.2. Image segmentation 47

a tree, or a person. These classes typically consist of discrete instances with consistent
sizes and distinguishable constituent parts. For instance, all cars have wheels, which
are distinct from the car itself.

Background refers to semantic classes with amorphous shapes and variable sizes,
like sky, water, or grass. Unlike items, background lacks clearly defined, countable
individual instances and does not possess distinct parts. For example, both a single
blade of grass and an entire field of grass fall under the category of grass.

In certain image contexts, some classes can straddle the line between being considered
items or background. For instance, a large gathering of people might be interpreted
either as multiple people – each being a clearly shaped, countable object, or as a singular,
indistinct person.

While much of the focus in object detection typically centers on items classes, it is
crucial to recognize that background, such as sky, walls, floors, and ground constitutes the
bulk of our visual environment. Background serves as a crucial contextual information
for identifying items. For instance, a metallic object on the road is likely a car, while
a blue background behind an object is indicative of water, if it is a boat, or sky, if it is
a plane. This interplay between background and items holds a particular significance for
deep learning models.

4.2.1 Semantic segmentation
Semantic segmentation represents the most straightforward form of the image segmenta-
tion. In this approach, a semantic segmentation model assigns a semantic class to every
pixel in an image, without providing an additional context or information, such as the
identification of specific objects.

Unlike more nuanced segmentation techniques, semantic segmentation treats all pix-
els uniformly as backgroundwithout distinguishing between background and items. This
means that it does not differentiate between different types of objects within the same
class.

For instance, imagine a semantic segmentationmodel trained to analyze urban scenes.
It would generate segmentationmasks outlining the boundaries of various classes of items
and background. However, it would not differentiate between the individual instances of
the same class. For example, if there are multiple trees in a forest, the model would likely
treat them as a one continuous tree segment rather than recognizing each individual tree
separately.

4.2.2 Instance segmentation
Instance segmentation represents a departure from the approach of semantic segmenta-
tion. While semantic segmentation focuses solely on assigning semantic classes to each
pixel without distinguishing between individual instances, the instance segmentation
precisely outlines the shape of each separate object instance within an image.

In essence, instance segmentation segregates items from background, disregarding the
latter, and can be viewed as a more sophisticated version of object detection. Instead of

4.2. Image segmentation 48

providing rough bounding boxes, instance segmentation furnishes precise segmentation
masks for each object instance.

This task possesses greater challenges compared to semantic segmentation. Even
when the instances of the same class overlap or touch each other, instance segmentation
models must accurately separate and delineate the shape of each instance. In contrast,
semantic segmentation models may simply group them together.

Instance segmentation algorithms typically adopt either a two-stage or a one-shot
methodology to address the task.

Two-stage models, exemplified by Region-Based Convolutional Neural Networks
[41], initially conduct conventional object detection to produce bounding boxes for each
potential instance. Subsequently, they refine segmentation and classificationwithin these
bounding boxes to precisely delineate each object instance.

Conversely, one-shot models, such as YOLO, streamline the process by simulta-
neously performing object detection, classification, and segmentation. This approach
enables a real-time instance segmentation.

While one-shot methods boast faster processing speeds, they often sacrifice some
accuracy. On the other hand, two -stage approaches prioritize accuracy, but may be
slower due to the additional refinement steps.

4.2.3 Panoptic segmentation
Panoptic segmentation represents a synthesis of semantic and instance segmentation
methodologies, offering a comprehensive understanding of an image.

In panoptic segmentation, each pixel receives both a semantic label and an instance
ID. Pixels with the same label and ID are assigned to the same object instance. For
background pixels, the instance ID is disregarded.

This approach provides computer vision systems with a complete and cohesive in-
terpretation of an image, combining the benefits of both semantic and instance segmen-
tation. However, achieving panoptic segmentation consistently and efficiently presents
significant computational challenges. Despite its evident appeal, realizing panoptic
segmentation in a manner that balances accuracy and computational efficiency remains
a formidable task.

The challenge in achieving panoptic segmentation lies in reconciling the conflicting
approaches of semantic and instance segmentation models. Semantic segmentation
treats all pixels uniformly as background, disregarding individual instances of objects,
while instance segmentation focuses solely on isolating individual objects, ignoring the
background. Integrating these methodologies can pose a challenge as neither of the
models can effectively take on the responsibilities of the other.

Early attempts at panoptic segmentation involved combining separate semantic and
instance segmentation models, followed by a post-processing phase to merge their out-
puts. However, these attempts encountered two significant drawbacks: It demanded
substantial computational resources and struggled with inconsistencies between the data
produced by the semantic segmentation network and those produced by the instance
segmentation network.

Recent advancements in panoptic segmentation architectures aim to overcome these

4.2. Image segmentation 49

limitations through a more unified deep learning approach. Many of these architectures
utilize a common backbone network, such as a feature pyramid network (FPN) [42], to
extract features from the input image. These features are then fed into parallel branches,
such as a foreground branch and a background branch, or a semantic head and an instance
head. The outputs from each branch are merged using a weighted system to produce
the final segmentation. Notable proposed architectures include EfficientPS [40], OANet
[43], PanopticFPN [44], UPSNet [45], SOGNet [46], BGRNet [47], AUNet [48], and
others.

4.2.4 Traditional image segmentation
Traditional image segmentation techniques leverage pixel color values and related charac-
teristics, such as brightness, contrast, or intensity, for feature extraction. These methods
are often trained with simple machine learning algorithms and are particularly useful
for tasks like semantic classification. Despite their limitations in precision compared to
deep learning-based approaches, traditional methods offer advantages in terms of lower
cost and computational demands, allowing them to efficiently solve certain problems.

Some common traditional image segmentation techniques include:

1. Thresholding: Thresholding methods create binary images by classifying pixels
based on whether their intensity exceeds or falls below a predetermined threshold
value. Otsu’s method is frequently used to identify the threshold value that minimizes
intra-class variation [49].

2. Histograms: Histograms plot the frequency of specific pixel values in an image
and are often employed to define thresholds. For instance, histograms can infer
background pixel values, aiding in the isolation of object pixels.

3. Edge detection: Edge detection techniques identify object boundaries or classes by
detecting abrupt changes in brightness or contrast [50].

4. Watersheds: Watershed algorithms [51] convert images to grayscale and generate
a topographic map where each pixel’s elevation is determined by its brightness.
Regions, boundaries, and objects can be inferred from the formation of valleys,
ridges, and catchment basins.

5. Region-based segmentation: Region-growing algorithms [52] initiate segmentation
with one or more seed pixels, progressively grouping neighboring pixels with similar
characteristics. These algorithms can be either agglomerative or divisive.

6. Clustering-based segmentation: Clustering algorithms [53], an unsupervised learn-
ing technique, split visual data into clusters of pixels with similar values. One popular
variant is the k-means clustering, where : represents the number of clusters. In this
method, pixel values are treated as data points, and : random points are selected as
the centroids of clusters. Each pixel is then assigned to the nearest centroid based
on similarity. Centroids are iteratively relocated to the mean of each cluster until
convergence, resulting in stabilized clusters.

4.2. Image segmentation 50

4.2.5 Deep learning image segmentation
Trained on meticulously annotated datasets, deep learning image segmentation models
harness the power of neural networks to uncover underlying patterns within visual data.
These models discern salient features crucial for tasks such as classification, detection,
and segmentation.

Despite their higher computational requirements and longer training times, deep
learning models consistently outperform traditional approaches, serving as the corner-
stone for ongoing advancements in computer vision.

Some prominent deep learning models utilized in image segmentation include:

1. Fully Convolutional Networks: FCNs [54], commonly employed for semantic seg-
mentation, are a variant of convolutional neural networks characterized by flexible
layers. In FCNs, an encoder network processes a visual input through convolutional
layers to extract pertinent features for segmentation or classification. The compressed
feature data are then passed through decoder layers to upsample and reconstruct the
input image along with segmentation masks.

2. U-Nets: U-Nets [55] adapt the FCN architecture to mitigate data loss during down-
sampling by incorporating skip connections. These connections enable the preser-
vation of finer details by selectively bypassing certain convolutional layers as infor-
mation propagates through the network. The name U-Net derives from the shape of
diagrams illustrating its layered arrangement (see Figure 4.4).

3. Deeplab: Similar to U-Nets, Deeplabmodifies the FCN architecture [56]. In addition
to utilizing skip connections, Deeplab employs dilated convolution to produce larger
output maps without requiring additional computational resources.

4. Mask R-CNNs: Mask R-CNNs stand out as a leading model for instance segmenta-
tion [37]. These models integrate a region proposal network (RPN), responsible for
generating bounding boxes for potential instances, with an FCN-based "mask head"
that produces segmentation masks within each confirmed bounding box.

5. Transformers: Inspired by the success of transformer models [57] in natural lan-
guage processing, newer models like the Vision Transformer (ViT) employ attention
mechanisms in lieu of convolutional layers. These models have demonstrated com-
parable or superior performance to CNNs for various computer vision tasks.

4.2.5.1 Transformers

As we use the Transformer model in this work, we briefly demonstrate theirs architec-
ture and how they work. Transformers consist of a stack of identical layers, typically
comprising an encoder and a decoder (Figure 4.5). The encoder processes the input
sequence, while the decoder generates the output sequence.

Encoder: The encoder is composed of a stack of # = 6 identical layers. Each layer
has two sub-layers. The first is a multi-head self-attention mechanism (Figure 4.6),
and the second is a position-wise fully connected feed-forward network. There is

4.2. Image segmentation 51

Figure 4.4 U-net architecture (example for 32x32 pixels in the lowest resolution). (Source [55])

Figure 4.5 Transformer architecture. (Source [57])

4.2. Image segmentation 52

Figure 4.6 Multi-head attention. (Source [57])

a residual connection [58] around each of two sub-layers, followed by normaliza-
tion [59]: the output of each sub-layer is !0H4A#>A<(G + (D1;0H4A (G)), where
(D1;0H4A (G) is the function implemented by the sub-layer itself.

Decoder: The decoder is also composed of a stack of # = 6 identical layers. In
addition to the two sub-layers in each encoder layer, the decoder inserts a third
sub-layer, which performs multi-head attention over the output of the encoder stack.
Similar to the encoder, there are residual connections around each of the sub-layers,
followed by layer normalization.

The core of the Transformer architecture lies in its self-attention mechanism [57].
This mechanism enables each token in the input sequence to attend to every other
token, learning contextual relationships and dependencies. By computing attention
scores between all pairs of tokens and taking weighted sums of their embeddings, the
Transformer can effectively capture long-range dependencies and dependencies between
distant tokens.

To enhance the expressiveness of self-attention, Transformers employ multi-head
attention mechanisms. Instead of computing attention once, the multi-head attention
computes it multiple times in parallel, each with its set of learnable parameters. This
allows the model to attend to different aspects of the input sequence simultaneously,
facilitating richer representations and improved performance.

Unlike sequential models, Transformers do not inherently encode the positional in-
formation of tokens. To address this limitation, positional encoding is added to the
input embeddings to convey the position of each token in the sequence. This positional
information is crucial for the Transformer to distinguish between tokens with the same
content, but different positions within the sequence.

4.2. Image segmentation 53

In addition to self-attention layers, Transformers incorporate feedforward neural net-
works within each layer. These FNNs consist of multiple fully connected layers with
non-linear activation functions, enabling the model to capture complex interactions and
transformations within the input data

��# (G) = <0G(0, G,1 + 11),2 + 12, (4.1)

where, are weights and 1 stands for bias.
To stabilize training and facilitate the gradient flow, Transformers employ a layer nor-

malization and residual connections within each layer. Layer normalization normalizes
the activations across feature dimensions, while residual connections enable the direct
flow of gradients through the network, mitigating the vanishing gradient problem.

During training, Transformers are optimized using backpropagation and gradient-
based optimization algorithms, such as Adam [60] or SGD [61], tominimize a predefined
loss function. By iteratively updating the parameters of the model based on the disparity
between the predicted outputs and the ground truth labels, Transformers learn to encode
and generate meaningful representations of input sequences. That enables them to excel
in various NLP tasks and, more recently, in image processing tasks.

4.2.6 Segment Anything
To get the state-of-the-art results in the practical part of this thesis, it is necessary to use
a powerful, yet fast image segmentation model. The Segment Anything (SAM) model
represents a significant advancement in image segmentation, introducing an innovative
approach to tackle the challenges in this field [62]. SAM is designed to address the need
for efficient and effective segmentation models that can generalize to diverse tasks and
data distributions, even in zero-shot scenarios.

The SAM project introduces a new task, model, and dataset for image segmentation.
It leverages a promptable model architecture to achieve an almost flawless zero-shot
performance on diverse segmentation tasks. This task involves generating valid segmen-
tation masks given any segmentation prompt. A prompt can include spatial or textual
information indicating what to segment in an image. SAM ensures that the output
mask is reasonable for at least one interpretation of the prompt, handling the ambiguity
effectively.

SAM’s architecture comprises three main components: an image encoder, a prompt
encoder, and a mask decoder (Figure 4.7). The image encoder processes input images
using a Vision Transformer, while the prompt encoder handles various types of prompts,
including points, boxes, and text. The mask decoder efficiently generates segmentation
masks based on the input image and prompt embeddings. SAM is designed for a real-time
performance, enabling an interactive use with low latency.

SAM addresses ambiguity by predicting multiple output masks for a single prompt. It
efficiently ranks these masks based on confidence scores, allowing it to produce accurate
segmentations even in complex scenarios.

Efficiency is a core consideration in SAM’s design. The model’s components are
optimized for a fast execution, enabling it to run in a web browser on CPUwith a runtime

4.2. Image segmentation 54

Figure 4.7 SAM architecture (Source [62])

of approximately 50ms. This real-time performance facilitates a seamless interaction
with the model for prompt-based segmentation tasks.

SAM is trained using the linear combination of the focal loss [63] and the dice loss
[64], tailored for the promptable segmentation task. It simulates an interactive setup
during training, sampling prompts to ensure robustness and adaptability.

SAM’s contributions include the development of a promptable segmentation task,
a novel model architecture optimized for a real-time performance, and a large-scale
dataset (SA-1B) comprising over 1 billion masks and 11 million images. The model’s
zero-shot capabilities and an efficient design make it a valuable tool for various seg-
mentation tasks, with potential applications across diverse domains. The example of
segmented images are shown in Figure 4.8.

Figure 4.8 The demonstration of SAM’s performance. These masks were annotated fully automatically by SAM
and are part of the SA-1B dataset. (Source [62])

4.2.7 Grounded Segment Anything
Even though the SAMmodel with text prompt was not released yet, many other projects
have recently occurred, combining other models with SAM. One of such projects is
Grounded Segment Anything [65]. This project connects image processing models,

4.2. Image segmentation 55

Grounding DINO [66] as an open-set object detector, and SAM [62] as an object
segmentation model. Moreover, to enhance to performance and usability of Grounded
SAM, other deep-learning models are used.

BLIP: BLIP is a Vision-Language Pre-training (VLP) framework which transfers
flexibly to both vision -language understanding and generation tasks [67]. VLP
frameworks aim to improve the performance of downstream vision and language
tasks by pretraining the model on large-scale image-text pairs.

Recognize Anything: Recognize Anything Model (RAM) is a string foundation
model for image tagging [68]. RAM makes a substantial step for large models
in computer vision, demonstrating the zero-shot ability to recognize any common
category with high accuracy.

Stable-Diffusion: Stable-Diffusion is a latent text-to-image diffusion model (LDMs)
[69]. LDMs enhance the efficiency and flexibility of diffusion models (DMs) by
training them in the latent space of pretrained autoencoders. By leveraging powerful
denoising autoencoders, LDMs achieve state-of-the-art results in tasks such as image
inpainting, class-conditional image synthesis, or super-resolution, while significantly
reducing computational requirements.

OSX: OSX is a one-stage pipeline for an expressive whole-body mesh recovery
from single images [70]. OSX employs a Component Aware Transformer (CAT)
consisting of a global body encoder and a local face/hand decoder. By leveraging the
feature-level upsample-crop scheme and the keypoint-guided deformable attention,
OSX achieves a precise estimation of face and hand parameters while maintaining
connection coherence.

Grounded SAM also offers cooperation of SAM and other models: Visual ChatGPT
[71], RAM++ [72], VoxelNeXt [73], and more.

Chapter 5

Dynamic time and state varying
detection probability

As stated in the Introduction, this work focuses on tracking objects in frame sequence
using target tracking methods and object detection and segmentation algorithms. Ob-
ject detectors, which were discussed in the previous section, are essential for getting
measurements from an image.

Note, that in all target tracking algorithms for cluttered environments and targets birth
and dead possibilities, there is a parameter called the detection probability (?�). As
its name suggests, this parameter expresses a probability that the target is detected in
a particular time. It is also commonly used as a time- and state-independent scalar. The
desired outcome is to enhance the performance of multi-target algorithms in scenarios
where the targets may be hidden by an obstacle and reduce impacts of a misdetection of
a sensor. Therefore, it is appropriate to have a dynamic time- and state-varying detection
probability.

5.1 Problem definition
In the practical part of this thesis, three different settings of object detection and segmen-
tation can be found. We choose Probability Hypothesis Density filter as a multi-target
tracking algorithm, as it is a simpler RFS-based method. PHD filter is computationally
very effective in comparison with filters such as the CPHD or the PMBM filter, which
may seem as a more appropriate option for this task. However, these more complicated
filters have high computational demands, which are not adequate when used in video
streams. Provided settings are:

1. S1: YOLO+ PHD – Yolo itself can produce an object segmentation mask with lower
accuracy, but with greater speed. This setting is suitable when using CPU only.

2. S2: YOLO + SAM + PHD – As SAM cannot annotate labels to objects, it requires
another object detector before segmentation. In this setting, we use YOLO as an
object detector and SAM for mask segmentation of detected objects. This procedure
requires GPU for faster computation.

56

5.1. Problem definition 57

3. S3: Grounded SAM + PHD – Grounded SAM is the most universal approach, as it
can detect objects based on a text input and uses SAM for segmentation. This setting
also requires GPU for faster computation.

5.1.1 The modified GM-PHD filter
To modify the GM-PHD filter for our use case, a few assumptions have to be introduced.
These assumptions are very similar to those of the PHD filter and the GM-PHD filter in
Section 3.4.2 and 3.4.2.2.

1. Each target evolves and generates observations independently of each other.

2. Clutter is Poisson and independent of target-originated measurements.

3. The predicted multi-target RFS governed by ?: |:−1 is Poisson.

4. Each target follows a linear Gaussian dynamical model and the sensor has a linear
Gaussian measurement model, i.e.,

5: |:−1(G |b) = N(G; �:−1b, &:−1), (5.1)
6: (I |G) = N(I;�:G, ':), (5.2)

whereN(·; ·, ·) is a Gaussian density, &:−1 is the process noise covariance, �: is the
observation matrix and ': is the observation noise covariance.

5. The survival probability is state-independent, i.e.,

?(,: (G) = ?(,: . (5.3)

6. The detection probability is state-dependent, i.e.,

?�,: (G) =
{
?�,: if detected for the first time,
?�,: (G) otherwise.

(5.4)

7. The intensity of the birth RFS is a Gaussian mixture of the form

W: (G) =
�W,:∑
8=1

F
(8)
W,:
N

(
G;< (8)

W.:
, %
(8)
W,:

)
. (5.5)

Note, that the assumption 1 may be questionable, as the states of each of the targets are
often dependently evolving. Imagine, for example, a common traffic scenario. If one of
the cars immediatelly stops, the following vehicles have to stop as well. Meaning, they
are affected by another target. The assumption 2 is reasonable, especially if we consider
that the clutter rate should be very low in our scenarios. The survival probability is
state-independent as in the GM-PHD filter and should be set high, as the targets are

5.1. Problem definition 58

expected to survive to the next time step. The detection probability is state-dependent
and equal to ?�,: , i.e., a predefined threshold, in situation when the target is detected for
the first time. Otherwise, if the target has evolved from the previous state b, the detection
probability is calculated according to Section 5.2. Assumption 7 contains only intensity
of the birth RFS, the spawn intensity RFS is left out. Nevertheless, it still can be easily
added to the assumption and equations afterwards.

5.1.1.1 The modified PHD recursions

Let us assume a target state G described by an intensity function a(G). At time : , the
prediction of the prior intensity a:−1(G) is given by

a: |:−1(G) =
∫

?(,: (b)q: |:−1(G |b)a:−1(b)3b + aW,: (G), (5.6)

where ?(,: (·) is the probability of target survival, q: |:−1(·|·) is the target state transition
density, and aW,: (·) denotes the prior PHD of the targets birth at time k. The predicted
intensity a: |:−1 is then updated by the measurement set /: given by sensors at time :
according to the Bayesian update

a: (G) = [1 − ?�,: (G)]a: |:−1(G)

+
∑
I∈/:

?�,: (G)6: (I |G)a: |:−1(G)
^: (I) +

∫
?�,: (b)6: (I |b)a: |:−1(b)3b

,
(5.7)

where 6: (·|·) is the likelihood function, ?�,: (·) is the probability of detection, and ^: (·)
is the clutter density.

5.1.1.2 The modified GM-PHD recursion

In the context of the linear Gaussian multiple-target model, the PHD recursion equations
(5.6) and (5.7) attain analytical solution [9]. Suppose that the posterior intensity at time
: − 1 is a Gaussian mixture of the form

a(G) =
�W,:∑
8=1

F
(8)
W,:
N(G;< (8)

W,:
, %
(8)
W,:
). (5.8)

The predicted intensity for time : is also a Gaussian mixture of the form

a: |:−1(G) = a(,: |:−1(G) + W: (G), (5.9)

where W: (G) is given in Formula (5.5). This yields

a(,: |:−1(G) = ?(,:
�:−1∑
9=1

F
(9)
:−1N(G;<

(9)
(,: |:−1, %

(9)
(,: |:−1), (5.10)

<
(9)
(,: |:−1 = �:−1<

(9)
:−1, (5.11)

%
(9)
(,: |:−1 = &:−1 + �:−1%

(9)
:−1�

)
:−1. (5.12)

5.1. Problem definition 59

Thus the predicted intensity at the time : is a Gaussian mixture

a: |:−1(G) =
�: |:−1∑
8=1

F
(8)
: |:−1N(G;<

(8)
: |:−1, %

(8)
: |:−1), (5.13)

and the posterior intensity at time : is also Gaussian mixture,

a: (G) =
�: |:−1∑
8=1
[1 − ? (8)

�,:
(G)]F (8)

: |:−1N(G;<
(8)
: |:−1, %

(8)
: |:−1)

+
∑
I∈/:

a�,: (G; I), (5.14)

where

a�,: (G; I) =
�: |:−1∑
9=1

F
(9)
:
(I)N (G;< (9)

: |: (I), %
(9)
: |:), (5.15)

F
(9)
:
(I) =

?
(9)
�,:
(G; I)F (9)

: |:−1@
(9)
:
(I)

^: (I) + ? (9)�,: (G; I)
∑�: |:−1
;=1 F

(;)
: |:−1@

(;)
:
(I)
, (5.16)

<
(9)
: |: (I) = <

(9)
: |:−1 +

(9)
:
(I − �:< (9): |:−1), (5.17)

%
(9)
: |: (I) = [� −

(9)
:
�:]%(9): |:−1, (5.18)

^
(9)
:
(I) = %(9)

:
�): (�:%

(9)
: |:−1�

)
: + ':)

−1. (5.19)

The dynamically estimated detection probability in (5.14) follows from one of two
possible scenarios described in Section 5.2.

5.1.2 S1: YOLO + PHD
It is possible to fine-tune YOLO model on personalised datasets to either improve the
performance in the detection of pretrained classes, or to train the model for detecting
other classes. With over 70 pretrained class instances, it is not necessary to fine tune
our YOLO model for the experiments in this work. The model also detects all class
instances it is trained for, that appear in a scene. For testing purposes, we filter only
objects we want to detect and get measurements from. The YOLO itself is able to
produce a segmentation mask in real-time, but with less accuracy and precision. This is
caused by a reduced image resolution which is 640G640 pixels. To fit the YOLO output
to our frame, this output needs to be resized back to our desired frame size. This resizing
causes some imperfections. However, the precision to pixel level is not always necessary
in our scenarios, thus this setting is, in most cases, sufficient enough. The advantage
of this approach is that it runs quickly enough with CPU only. The example of object
segmentation YOLO model is shown in the Figure 5.1.

5.1. Problem definition 60

Figure 5.1 YOLO segmentation example. This picture shows all detected objects the YOLO model is trained for
and also the segmented objects’ masks. These masks are imperfect, but often sufficient enough. (Kartouzská street,
Prague)

5.1.3 S2: YOLO + SAM + PHD
The SAM model architecture in [62] is prepared to first process a text input and then
segment objects based on the input. However, this feature is not available yet in the
original implementation, and, for our purposes, we need an object detector before the
segmentation process can be performed. The SAM model is able to segment a desired
object based on one of two provided inputs with high precision and accuracy. The first
possible input is a bounding box around the required object, which can be provided by
an output of the YOLO model. The second option is to provide a rough center point of
an object, which can also be the center of a bounding box provided by the YOLOmodel.

However, for our purposes, it is not recommended to use the combination of both
inputs, as SAM is able to produce multiple masks for an object. For example, if we
denote that we want to segment a whole person by a bounding box, one of the output
masks can be just his jacket, as it makes a valid segmentation mask. Combining these
two inputs can, therefore, produce this undesirable output. Another example of such
behavior is shown in the Figure 5.2

The combination of the SAM model with an object detector can segment an object
with high precision and accuracy. The cooperation of these two models is demonstrated
in Figure 5.3.

5.1. Problem definition 61

(a) By defining an object by a bounding box, SAM is able to
make a segmented masks of this object and choose the most
probable one.

(b) If we use a bounding box together with a point, we receive a
different result. Here, just the trucks’s tire, instead of the entire
wheel, is selected.

Figure 5.2 Comparison of using only a bounding box vs combination of a bounding box and a point as an input
for SAM.

Figure 5.3 The cooperation of YOLO and SAM models. The YOLO provides bounding boxes of objects, which
are inputs to SAM. The SAM model then makes segmented masks of these objects. (Kartouzská street, Prague)

5.1.4 S3: Grounded SAM + PHD
Grounding DINO is an object detector that denotes objects in an image, based on a given
text prompt. This feature allows us to potentially track all the required objects without
the need to fine tune every class instance to a model. Moreover, this model is able to
mark objects based on an ambiguous text input. Despite this universality, in cases where
the model is not confident enough that the desired object appears in a scene, different
results can be received with the same input every time the model is executed. This

5.2. Dynamic detection probability in video data 62

brings uncertainty in situations with ambiguous text inputs and we should be aware of it
in practical scenarios.

For a segmentation task, Grounding DINO’s output serves as an input to the SAM
model, as it produces bounding boxes of the detected objects. SAM uses these bounding
boxes to segment objects and creates segmentation binary masks. The cooperation of
these models is demonstrated in Figure 5.4.

Figure 5.4 The result of the Grounded SAM model. Grounding DINO marks objects with bounding boxes and
SAM segments objects inside these bboxes. Marked objects are founded by Grounding DINO with text input person,
car. (Kartouzská street, Prague)

5.2 Dynamic detection probability in video data
To model the dynamic state- and time-dependent detection probability ?�,: (G), we
propose to base the current point estimate of ?� (G) at time : on the similarity of the
subsequent frame properties,

?�,: (G) =
∑
f9∈(B8<

∑|� |
8=1 f9 [ℎ8 (" (G; : |: − 1)◦�:) , ℎ8 (" (G; : − 1)◦�:)]

‖(2‖ · ‖�‖
, (5.20)

where �: is the frame in the given color spectrum, ℎ8 (·) is a color histogram made from
given color spectrum, � ◦ � is the Hadamard product, " (·, ·) is the object binary mask,
and f9 [·, ·] is the given similarity of two vectors. ‖ · ‖ denotes the set size. The whole
fraction is, in fact, the mean value across all color spectra and similarity functions.

There are many color spectra to consider, each providing certain benefits and down-
sides. The list of color spectra used in this work is as follows.

5.2. Dynamic detection probability in video data 63

RGB – The RGB (Red, Green, Blue) color model is ubiquitous in electronic displays,
digital cameras, and computer graphics. It defines colors by their intensities of red,
green, and blue components. One of its primary advantages lies in its widespread use
and an intuitive representation for additive color mixing. However, RGB lacks direct
perceptual relevance to human vision, as it does not inherently represent attributes
like brightness or hue.

XYZ – In contrast, the XYZ color space, established by the International Commission
on Illumination (CIE), serves as a standard for quantifying colors in scientific and
industrial applications. Even though it offers a device-independent color representa-
tion and facilitates color matching and conversion, it is not as perceptually intuitive
and can be complex to work with practically.

HSV – HSV (Hue, Saturation, Value) is favored in graphics software and image
editing for its intuitive representation of color. It aligns better with human perception
compared to RGB, allowing independent adjustment of hue, saturation, and bright-
ness. It lacks the widespread hardware and software support enjoyed by RGB and
may not be as straightforward for certain color manipulation tasks.

LAB – LAB (CIELAB color space), another CIE-definedmodel. UnlikeXYZ, it aims
for perceptual uniformity. Widely used in color correction, image editing, and color
management, LAB offers uniform changes in perceived color with uniform changes
in LAB values. Despite its perceptual accuracy, it can be complex to comprehend
and lacks universal software and hardware support compared to simpler models like
RGB or HSV.

HLS – HLS (Hue, Lightness, Saturation) finds its place in computer graphics and
image editing applications. Similar to HSV but with lightness instead of value, HLS
provides an intuitive representation for color adjustment tasks. Unfortunatelly, its
support may not be as widespread as RGB or HSV, and it may lack the perceptual
accuracy of LAB in certain color correction scenarios.

We apply a range of similarity functions, each with its unique advantages and limita-
tions. These functions include cosine similarity, intersection, and correlation.

Cosine similarity – Cosine similarity, a widely used metric, determines the cosine
of the angle between two vectors in a multi-dimensional space. It is insensitive to
vector magnitudes, focusing more on their orientation, which proves valuable when
the absolute magnitude of vectors is less crucial than their relative orientations.
However, cosine similarity does not take into account the distribution of data points.
Cosine similarity is defined as

(2>B [�, �] =
� · �
‖�‖‖�‖ =

∑=
8=1 �8�8√∑=

8=1 �
2
8
·
√∑=

8=1 �
2
8

, (5.21)

where the sums run over all elements of the arguments.

Intersection – Intersection similarity, on the other hand, calculates the overlap be-
tween two sets. This metric is commonly employed in applications like document

5.2. Dynamic detection probability in video data 64

retrieval and collaborative filtering. Its simplicity and intuitiveness make it ideal for
comparing binary data or sets, where the presence or absence of elements is more
significant than their values. Additionally, it treats all elements equally, disregarding
their magnitudes, which can be a limitation in certain contexts. The intersection is
formulated

(8=C4A [�, �] =
∑‖�‖
8=1 min(�8, �8)∑‖�‖

8=1 �8
, (5.22)

where ‖ · ‖ denotes the set size.

Pearson correlation coefficient – Correlation measures the linear relationship be-
tween two variables and is frequently used in statistics, finance, and signal process-
ing. It captures both the strength and direction of the relationship between variables,
making it valuable for identifying patterns and dependencies in data. Moreover, cor-
relation assumes a linear relationship between variables, which may not always hold
true, and it is susceptible to outliers and non-linear relationships, potentially affecting
its reliability in certain scenarios. In this work, we calculate the correlation between
corresponding elements in sets �, � as

(2>AA [�, �] =
cov(�, �)
f�f�

, (5.23)

where cov is the covariance and f(·) is the standard deviation,

For simplicity, let us denote the fraction in (5.20) as (2. This value represents the
"average" similarity across all used color spectra and similarity functions.

As mentioned in Section 5.1.1.2, the dynamically estimated detection probability in
(5.14) follows from one of two possible scenarios. First, there is no current measurement
at time : , hence the current mask results from its predicted position,

?
(8)
�,:
(G) =

{
(
(8)
2

[
ℎ(" (8)

: |:−1(G) ◦ �:), ℎ(8)0,:

]
if ℎ(8)0,: exists,

?
(8)
�,:

otherwise,
(5.24)

and where the histogram from the last detection ℎ(8)0,: ≡ ℎ
(8)
0,:−1 is used in the first scenario.

A user-preset value ? (8)
�,:

is used for targets undetected so far. The mask is obtained via

"
(8)
: |:−1(G) =

{
"
(8)
:−1(G) [< − EG , = − EH] if < ≥ EG , = ≥ EH,

0 otherwise,
(5.25)

where <, = are indices of the binary mask " and EG , EH are x- and y-direction velocities
of the target. 0 is a zero vector of the same size as the mask. The second scenario takes
the current measurement I into account. The detection probability is modified according
to

?
(9)
�,:
(G; I) = (2

[
ℎ(" (9)

:
(I) ◦ �:), ℎ(9)0,:

]
, (5.26)

5.3. Modified pruning for GM-PHD filter 65

where ℎ(9)0,: is the histogram resulting from the last detection,

ℎ
(9)
0,: =

{
ℎ(" (9)

:−1(I) ◦ �:−1) if ℎ(" (9)
:−1(I)) exists,

ℎ0,:−1 otherwise.
(5.27)

The histogram ℎ(" (9)
:−1(I) ◦ �:−1) stands for the previously detected target, and ℎ0,:−1

is the histogram from the time step when the target was detected the last time.

5.3 Modified pruning for GM-PHD filter
As the PHD filter propagates the posterior intensity, the number of potential hypotheses
exponentially increases. This leads to an enormous increase in memory and computa-
tional demands. Pruning techniques become indispensable in mitigating this computa-
tional load by selectively discarding less likely hypotheses, allowing for a more focused
and efficient tracking process. These pruning mechanisms, guided by predefined thresh-
olds or heuristics, ensure that the computational resources are allocated judiciously,
striking a balance between accuracy and computational efficiency in multi-target track-
ing applications.

Recall that sensors in our work are represented by cameras. Naturally, the detecting
algorithms are unable to recognize an object hidden by an obstacle. These obstacles
may differ not only in size but also in color. In situations where the color of an obstacle
closely matches the surrounding scene, the likelihood of detection remains sufficiently
high, increasing the risk that the target may not survive even though it is only hidden. In
order to suppress this phenomenon, we introduce a method for modified pruning along
with the standard pruning and merging techniques [9].

The most deployed generic method for pruning consists of removing targets with
weights below some predefined threshold. Nonetheless, as mentioned before, targets
with some history may only be hidden, and it is not desired to remove these targets from
the scene. To overcome this issue, we assign each target a tag that represents the state in
which the target is likely to occur,

(= {detected, hidden, dead}.

This tag is modeled by a discrete-time Markov chain with the transition matrix

% =

?�,: 1 − ?�,: 0
?�,: (1 − ?)��,:) · (1 − ?�,:) ?

)�
�,:
· (1 − ?�,:)

?�,: (1 − ?)��,:) · (1 − ?�,:) ?
)�
�,:
· (1 − ?�,:)

 , (5.28)

where ?�,: is a generic detection probability, and)� is an exponent for controlling
probabilities that is set higher in scenarios, where the target color mask is similar to the
color mask of the obstacle, or may be set lower otherwise. ?�,: is the probability that
the target is removed. This probability is the result of (5.31), where the bounding boxes
of the object detector are used. If we denote by �(9)

%,:
the bounding box predicted)2 steps

5.3. Modified pruning for GM-PHD filter 66

ahead and by �(9)
(,:

the bounding box of the last step : when the object was detected, then

�
(9)
%,:

= �
(9)
%,:−1 + =

(9)
:
· [E (9)

G,:
, E
(9)
H,:
,
(9)
G,:
, E
(9)
H,:
], (5.29)

�
(9)
(,:
= �

(9)
(,:−1, (5.30)

?�,: = (2

[
�: (�(9)%,:), �: (�(9)(,:)

]
, (5.31)

where

=
(9)
:
=

{
)2 if : <>3)2 = 0,
0 otherwise.

(5.32)

�: (·) is a part of a frame within the bounding box given by �(·). With this approach,
when a target is most likely in the hidden state, the pruning threshold is heuristically
lowered to prevent the target removal.

In summary, first we define a birth place in a scene. We call this birth place a spawn
point (SP). It is possible to define more spawn points in a scene, depending on the
situation. If a target appears at this spawn point, it is initialized, and since it is the
first time the target has been seen, the detection probability is a predefined constant.
In the next time step, suppose that the target is detected and there is one measurement
(originating from this target) in the validation region. Due to the GM-PHD recursion,
two new targets arise from the previous target with the state b. One originates from the
misdetection possibility and one from the measurement. As we first predict the target’s
position and covariance matrix, we move the target’s mask detected at time : − 1 to :
by its velocity (in case of the CVM model). Then the predicted mask color properties
are compared to the mask made from the new measurement from time : . If nothing
unpredictable happens, both masks should occur on a very similar position, thus the
color masks’ properties should be very similar. In such case, the detection probability
is very likely to be high, lowering the weight of the misdetection-born target. As the
weight is small, the target is likely to be removed during the pruning step.

If the previously detected target is hidden behind an obstacle and the object detector
does not provide any measurement, only misdetection-born target arises. In such case,
the mask from the time when the target was lastly detected is compared to the predicted
mask that now also contains the obstacle’s color properties. Due to using a camera
as a sensor, frames at high frame rate are produced. To prevent the loss of significant
information, lowering the fps to a minimal rate is not desirable. We lower the fps to
10-30 fps to enhance the dynamics of the scene. However, in a such short time period,
the target, e.g. a car, does not move enough. The predicted mask then intersects with
the lastly detected target’s mask by a considerably huge amount. That is why we define
a probability of the target to be hidden (hidden probability, ?�,:) and modify the pruning
of components. As the masks are likely to intersect, the detection probability is likely
to be high in the first couple of frames, where the target is hidden. It is essential for the
target to survive through this time period. The hidden probability is based on the color
properties of bounding boxes from the time the target was lastly detected and from the
bounding box that is moved)2 time steps ahead in the direction of the target’s velocity.

5.4. Merging in GM-PHD filter with dynamic detection probability 67

The moved bounding box reveals the color properties of the obstacle, that are likely to
be different from those assigned to the target when it was lastly detected. Then, the
hidden probability should be low and the target’s state should be in a hidden state, based
on (5.28), therefore the pruning threshold is lowered. After the target overtakes the
obstacle, it should appear in a scene and be detected again. If it does not and the color
properties of a scene given by the moving bounding box differ from the ones captured
when the target was lastly detected, the hidden probability is high and the target is in
a dead state. The pruning threshold is not lowered and the detection probability is low,
so the target is removed during the pruning step.

5.4 Merging in GM-PHD filter with dynamic detection probability
Another way to lower the computational demands and to potentially increase the robust-
ness of a filter is through merging of the targets that appear in the same neighbourhood.
This procedure is especially useful in situations when many measurements occur in
a validation region of a target. If at least some of these measurements originate from
clutter, the target count increases rapidly due to the GM-PHD recursion, increasing
the computational requirements. To prevent this issue, the target merging technique is
necessary. In the GM-PHD filter, each target carries three variables: the target’s weight
F, mean < and a covariance matrix %. Merging these values of multiple filters is
straightforward and is described in [9] and Section 3.4.2.4. However, in our modified
GM-PHD filter, each target also holds these information:

Current bounding box position: The bbox in GHGH format determines current
position of an object. This bbox is determined by a bbox given by a measurement I in
the current time step : in an update step. The target’s bbox is shifted in the prediction
step in (5.29), thus the target must have been initialized in the past in order to have
the current bbox.

Current mask: The current binary mask is given by a measurement I in the current
time step : in the update step. In order to inialize current mask, it must have been
initialized by a measurement in the past. The mask is shifted according to (5.25).

Object Stats: Every new target born in the update step of the GM-PHD filter by
a measurement I from a target with a previous state b, contains a data structure
Object Stats. This structure is composed of many variables determining the target’s
history. These variable arise in the update step from a measurement and are useful
for calculating the dynamic detection probability in Equations (5.24) - (5.31).

Bounding box position: This variable in Object stats represents a bounding box
from the time the target was lastly detected. To calculate ?�,: in (5.31), this and
the current bbox are compared.
Mask: This variable represents the target’s mask from the time the target was
lastly detected. In (5.24) and (5.26) this mask is compared to the current mask
resulting from the prediction step of a target with the previous state b.
Frame: To compare the color histograms in (5.24) and (5.26), each target contains
a frame from the time : in which it was born.

5.4. Merging in GM-PHD filter with dynamic detection probability 68

Time stamp: This is a variable to save the time : the target was born.

Data structure Markov Chain: This data structure determines the target’s state. As
the distribution determined by a transition matrix in (5.28) is not stationary, it is
necessary to calculate the resulting distribution in every time step.

Initial distribution: To get the target’s state, an initial distribution needs to be
defined first.
Result matrix: The result matrix is an ongoing outcome of a previous result
matrix and a transition matrix, i.e, the result matrix ': = ':−1%

:−:0 , where :0
is the time the target was born, '0 = �3 and �= is the identity matrix of the shape
= × =.

The merging procedure of the previous information is inspired by the original GM-
PHD merging procedure in [9].

The current bounding box merging is straightforward as (G1, H1) and (G2, H2) coor-
dinates defining the bbox are averaged using the targets’ weight. Let us define a set
!, which represents a subset of targets to merge into a single target. Then a resulting
target’s bbox

�̃
(;)
:
=

∑
8∈! �

(8)
:
· F (8)

:∑
8∈! F

(8)
:

, (5.33)

where F (8)
:
, is the weight of a target 8 is the weighted mean of targets in subset !. The

same procedure is applied to the bounding box in Object Stats, i.e., the previous bbox.
The merging of masks is slightly complicated, as we merge targets’ masks into

a single "average" mask. First, binary masks of targets in the subset ! are converted
into float data type, then multiplied with targets’ weight and divided by the sum of these
weights. To get the resulting binary mask, each element of mask

"̃
(;)
:
=

∑
8∈! "

(8)
:
· F (8)

:∑
8∈! F

(8)
:

(5.34)

is rounded either to zero or one and the mask is converted to the binary data type.
We have not experimented with complicated merging of frames and time stamps,

only argument maxima is used for both values, i.e,

C̃
(;)
:
= max

8∈!
C
(8)
:
, (5.35)

�̃
(;)
:
= �

(C̃ (;)
:
)

:
. (5.36)

As the initial distribution is the same for every target, the resulting merged target’s
initial distribution is only a copy of any target in !.

The result matrix merging procedure is similar to the bounding box distribution. The
resulting matrix

#̃
(;)
:
=

∑
8∈! #

(8)
:
· F (8)

:∑
8∈! F

(8)
:

(5.37)

5.4. Merging in GM-PHD filter with dynamic detection probability 69

is the "average" result matrix of targets in subset !.
The pseudo-code algorithm of modified pruning in GM-PHD filter is shown in

Algorithm 5.

Algorithm 5 Pseudo-algorithm for pruning in the GM-PHD filter

Require: {F (8)
:
, <
(8)
:
, %
(8)
:
, �
(8)
:
, "
(8)
:
, �
(8)
$(,:

, "
(8)
$(,:

, C
(8)
$(,:

, �
(8)
:
, �
(8)
$(,:

, #
(8)
$(,:
}�:
8=1, a truncation thresh-

old T, a merging threshold U and a maximum number of allowed Gaussian terms �<0G . Set ; = 0,
and � = {8 = 1, . . . , �: |F (8): >)}.

1: procedure Merging of targets
2: while � ≠ ∅ do
3: ; := ; + 1
4: 9 := argmax8∈�F: (8),
5: ! :=

{
8 ∈ � | (< (8)

:
− < (9)

:
)) (%: (8))−1 (< (8)

:
− < (9)

:
) ≤ *

}
,

6: F̃
(;)
:
=

∑
8∈! F

(8)
:
,

7: <̃
(;)
:
= 1
F̃
(;)
:

∑
8∈! F: (8)G

(8)
:
,

8: %̃
(;)
:
= 1
F̃
(;)
:

∑
8∈! F

(8)
:
(% (8)
:
+ (< (;)

:
− < (8)

:
) (< (;)

:
− < (8)

:
)) ,

9: �̃
(;)
:
= 1
F̃
(;)
:

∑
8∈! �

(8)
:
∗ F (8)

:

10: "̃
(;)
:
= A>D=3 (1

F̃
(;)
:

∑
8∈! "

(8)
:
∗ F (8)

:
)

11: �̃
(;)
$(,:

= 1
F̃
(;)
:

∑
8∈! �

(8)
$(,:

∗ F (8)
:

⊲ OS stands for Object Stats

12: "̃
(;)
$(,:

= A>D=3 (1
F̃
(;)
:

∑
8∈! "

(8)
$(,:

∗ F (8)
:
)

13: C̃
(;)
$(,:

= <0G8∈!C
(8)
$(,:

14: �̃
(;)
$(,:

= �
(C̃ (;)
$(,:

)
:

15: �̃
(;)
$(,:

= �
(9)
$(,:

⊲ Initial distribution of Markov process
16: #̃

(;)
$(,:

= 1
F̃
(;)
:

∑
8∈! #

(8)
$(,:

∗ F (8)
:

17: � := �/!.
18: end while
19: end procedure
20:
21: If ; > �<0G then replace {F̃ (8)

:
, <̃
(8)
:
, %̃
(8)
:
, �̃
(8)
:
, "̃
(8)
:
, �̃
(8)
$(,:

, "̃
(8)
$(,:

, C̃
(8)
$(,:

, �̃
(8)
$(,:

, �̃
(8)
$(,:

, #̃
(8)
$(,:
};
8=1

by those of the �<0G Gaussians with largest weights.
22:
23: Output: {F̃ (8)

:
, <̃
(8)
:
, %̃
(8)
:
, �̃
(8)
:
, "̃
(8)
:
, �̃
(8)
$(,:

, "̃
(8)
$(,:

, C̃
(8)
$(,:

, �̃
(8)
$(,:

, �̃
(8)
$(,:

, #̃
(8)
$(,:
};
8=1 as pruned Gaus-

sian components.

Chapter 6

Experiments

In order to demonstrate the efficacy of the proposed method for estimating the detection
probability, numerous experiments were conducted. This section meticulously exa-
mines each of these experiments, delineating the selected parameters and conducting
a comparative analysis against the GM-PHD filter with constant detection probability.
Experiments were performed using three video footages.

V1: This video shot by a camera from a highway was downloaded from YouTube.
The link of this video: youtube.com

V2: The source of the next video is YouTube as well. It captures a common traffic.
The link of this video: youtube.com

V3: To get a video of a traffic with an obstacle in the view of the camera, we recorded
our own video. This video has been taken in Kartouzská street, Prague.

The CVM model is used as a state-space model in all experiments, i.e., the state G: =
[?G,: , ?H,: , EG,: , EH,:]) of each target consists of two-dimensional position (?G,: , ?H,:)
and velocity (EG,: , EH,:). The measurement is the center of the mask of the detected
object, which is typically noisy. The survival probability of the targets ?(,: = 0.99. The
state evolution model (3.33) is employed with

�: =

[
�2 Δ�2
02 �2

]
, &: = f

2
h

[
Δ�4

]
, (6.1)

where �= and 0= denote the = × = identity and zero matrices respectively and Δ = 1 is
the sampling period. For every experiment, different parameters for the model have to
be applied. Parameters like %, fh are displayed in the corresponding tables.

The measurement follows the observation model (3.34) with �: = [�2, 02], ': =
f2
n �2, where fn is the standard deviation of the measurement noise. �2 and 02 stand for

the 2× 2 identity and zero matrices, respectively. The standard deviation fn is displayed
in the tables as well.

Since the experiments compare the proposed method for estimating the dynamic de-
tection probability with the constant detection probability, each table contains additional

70

https://www.youtube.com/watch?v=KBsqQez-O4w&t=30s&ab_channel=NickMartinez
https://www.youtube.com/watch?v=7WFYiZersNc&ab_channel=AbdulMunaim

6.1. E1: Traffic without any obstacle 71

information about the necessary parameters. For experiments that use the constant detec-
tion probability, the tables carry the value of the probability. For the dynamic detection
probability, the values of)� ,)� from Equation (5.24), and initial ?�,: (G) are provided.

The pruning thresholds are the same for both GM-PHD filters, however, in the
experiments that apply a filter with the dynamic detection probability, the tables include
the second pruning threshold for pruning targets with a detected or a hidden state. The
basic pruning threshold is covered in the tables as)?, the lowered pruning threshold as
); .

In addition, the object detectors’ results are dependent on the thresholds as well.
The YOLO model requires the confidence threshold).$!$ for objects visualization.
The Grounding DINOmodel requires two thresholds as it detects objects based on a text
input. The text input threshold)C4GC and the bounding box (bbox) threshold)11>G for the
given experiment are included in corresponding parameter settings tables.

The labels above the targets in the figures are the numerical representations of the
state targets: 0 = detected, 1 = hidden, 2 = dead. The means of the birth places are
roughly in the middle of the traffic lines and its confidence ellipses of the size of three
standard deviations are bounded by the blue ellipses. The red bounding boxes in the
figures represent the bounding boxes given by an object detectionmodel. The red ellipses
are the covariance matrices of the targets.

6.1 E1: Traffic without any obstacle
The first experiment focuses on the comparison of the GM-PHD filter with the constant
detection probability and the GM-PHDfilter with the dynamic detection probability with
different settings explained in Section 5.1. To analyze if our proposed method works in
common scenarios, videos do not include any obstacle, thus the targets are constantly
visible.

6.1.1 V1
The video V1 is recorded at 29 fps. For simplicity, only the detections of the right side
of the traffic lanes are taken into the account. Figures in Experiments E1-V1 – E1-V3
show frames 36-79 of the video V1, as they include some interesting situations.

6.1.2 V1 – GM-PHD with the constant detection probability
The measurements for the GM-PHD filter with the constant detection probability are
obtained by the YOLO object detection model. The parameters’ values are displayed in
Table 6.1.

%� % fh fn)?).$!$

0.9 diag(600, 600, 600, 600) 0.1 150 0.1 0.3
Table 6.1 The parameter settings for Experiment E1-V1 with the constant detection probability.

Figure 6.2 shows some highlights of the GM-PHD filter with the constant detection
probability.

6.1. E1: Traffic without any obstacle 72

6.2a: This frame marks the initial state, where four cars have been previously iden-
tified, thus representing our observed targets. In the distance, YOLO detects another
car which, however, has not yet crossed any spawning point, so it is not included in
the observed targets set.

6.2b: A new car approaches the scene and is expected to be initialized soon. The
YOLO model, although overall reliable, occasionally misses certain objects, as
demonstrated here with the car on the left. With a detection probability of 0.9,
this target is pruned from the set and considered lost.

6.2c: The previously lost car is, once again, detected. However, it no longer falls
within the set of observed targets.

6.2d: Even though the newly arrived car has crossed the spawning point, the YOLO
model consistently fails to detect it over several frames, resulting in its complete
absence from tracking.

6.2e: The two cars on the right evade the detection. On this occasion, one of the
targets manages to persist, allowing for continued tracking of at least one car.

6.2f: The previously undetected cars reappear in the frame. Both cars are successfully
tracked once again.

6.2g: Another car enters the scene and is promptly detected and initialized.

6.2h: Despite YOLO detecting all the six cars, only three targets are visible in the
scene. One of the targets encompasses two cars simultaneously, indicating that the
GM-PHD filter effectively covers four out of the six targets.

In Figure 6.1 it is clearly seen that even though the number of targets is increasing,
the misdetection of the YOLO model causes the targets’ loss. The "All targets in set"
line is fully covered by the blue line, thus the targets are permanently lost and can not be
reborn by a measurement.

This experiment shows that the GM-PHD filter is able to accurately track the position
of objects. With the detection probability ?� = 0.9 and without the modified pruning
technique, the filter is very sensitive to the capability of the object detector and if YOLO
is not able to detect all the desired objects, targets can be easily lost.

6.1. E1: Traffic without any obstacle 73

Figure 6.1 Development chart of number of detected targets, targets in the filter’s queue, displayed targets and the
true targets’ count.

6.1. E1: Traffic without any obstacle 74

(a) Frame number: 36. (b) Frame number: 48.

(c) Frame number: 49. (d) Frame number: 56.

(e) Frame number: 67. (f) Frame number: 69.

(g) Frame number: 73. (h) Frame number: 79.

Figure 6.2 Image sequence of tracked objects using the GM-PHD filter with the constant detection probability.

6.1.3 V1 – GM-PHD with the dynamic detection probability
The following experiments test theGM-PHDfilterwith the dynamic detection probability
and the modified pruning in the video V1.

6.1. E1: Traffic without any obstacle 75

6.1.3.1 S1 – YOLO + YOLO

This experiment enhances settings S1, i.e, the YOLO model provides both object de-
tection bboxes and segmentation masks. The parameter settings are shown in Table
6.2.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(600, 600, 600, 600) 0.1 150 1 3 0.1 0.01 0.3
Table 6.2 The parameter settings for Experiment E1-V1-S1 with the dynamic detection probability.

Figure 6.4 illustrates the performance of the GM-PHD filter under the dynamic
detection probability and settings S1.

6.4a: Similarly as in the previous experiment, the initial frame presents four previ-
ously detected cars. Although a distant car is detected, it remains uninitialized since
it has not crossed any spawning point.

6.4b: By frame 48, the car on the left, which was undetected in the previous exper-
iment, remains so. However, due to the elevated detection probability and adjusted
pruning, the target manages to persist.

6.4c: Despite the previous misdetections, the previously undetected car is once again
identified, and the target successfully survives.

6.4d: A new car crosses the spawning point, yet the YOLO model consistently fails
to detect it over numerous consecutive frames, resulting in its non-initialization.

6.4e: Two cars on the right evade the detection, yet their respective targets remain.

6.4f: The previously undetected cars are once again identified, and both targets
receive measurements, augmenting their weights.

6.4g: Another car enters the scene and is successfully initialized.

6.4h: The previously undetected car on the left merges with other targets. Con-
sequently, this target is initialized despite the previous frequent misdetections. As
a result, six true targets and six tracked targets are present.

The graph presented in Figure 6.3 shows the enhanced performance of the GM-PHD
filter. While all targets do not immediately appear in the scene upon detection, they often
still exist in the queue of targets whose weights have not reached a threshold for display.
However, upon receiving measurements, these targets’ weights increase, leading to their
reappearance in the scene.

This improvement is notable not only in the alignment of displayed targets with the
true target count, but also in the queue of potential targets exceeding the true count.
Consequently, we gain awareness of potential targets that may manifest in the scene.

6.1. E1: Traffic without any obstacle 76

Figure 6.3 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets and
the true targets’ count.

6.1. E1: Traffic without any obstacle 77

(a) Frame number: 36. (b) Frame number: 48.

(c) Frame number: 50. (d) Frame number: 56.

(e) Frame number: 67. (f) Frame number: 69.

(g) Frame number: 73. (h) Frame number: 79.

Figure 6.4 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability
and YOLO only.

6.1.3.2 S2 – YOLO + SAM

This experiment employs configuration S2, wherein the YOLO model furnishes objects’
bounding boxes and the SAM model furnishes segmentation masks. The parameter
configurations can be found in Table 6.3.

6.1. E1: Traffic without any obstacle 78

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(600, 600, 600, 600) 0.1 150 1 3 0.1 0.01 0.3
Table 6.3 The parameter settings for Experiment E1-V1-S2 with the dynamic detection probability.

Figure 6.6 illustrates the GM-PHD filter’s performance with the dynamic detection
probability, employing settings S2. This sequence is very similar to the previous experi-
ment. There are four targets at the beginning and they are tracked successfully the whole
time. In the frame 6.6f two of the targets are not detected, but both survive. The YOLO
model is not able to detect the fifth car, but it is initialized later due to the other target.

Figure 6.5 shows a better stability in keeping the number of tracked targets. This
might be caused by the fact, that the object detection YOLO model gives slightly
different results than the object detection YOLO model with segmentation capabilities.
Furthermore, the "All targets in set" orange line, representing the number of targets in
the filter’s queue, is more accurate to the true count, deflecting only by one target at
maximum.

Settings S2 perform manage a slightly better performance than settings S1. The
number of tracked objects is closer to the true count.

Figure 6.5 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets and
the true targets’ count.

6.1. E1: Traffic without any obstacle 79

(a) Frame number: 36. (b) Frame number: 48.

(c) Frame number: 53. (d) Frame number: 57.

(e) Frame number: 62. (f) Frame number: 69.

(g) Frame number: 70. (h) Frame number: 78.

Figure 6.6 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
the YOLO object detector and the SAM image segmentation model.

6.1.3.3 S3 – Grounded SAM

The experiment with settings S3 uses Grounding DINO object detector and the SAM
image segmentation model. All used parameters are included in Table 6.4.

6.1. E1: Traffic without any obstacle 80

%�,: (G) % fh fn)�)3)?);)C4GC)11>G

0.3 diag(600, 600, 600, 600) 0.1 150 1 3 0.1 0.01 0.3 0.3
Table 6.4 The parameter settings for Experiment E1-V1-S3 with the dynamic detection probability.

Figure 6.8 shows the performance of the GM-PHD filter with the dynamic detection
probability with settings S3.

6.8a: The utilization of a distinct object detection model results in an increased
number of cars detected within the scene. However, only the four cars in the front
have driven through the spawn points thus are considered within the true count.

6.8b: All targets are effectively tracked without any issues.

6.8c: Unlike YOLO, Grounding DINO successfully detects the arrival of a new car.

In 6.8d, 6.8e, 6.8f no events of greater importance occur.

6.8g: Subsequently, the following arriving car is promptly detected and initialized.

6.8h: This frame presents new challenges. Given the decreased distance between the
cars and their proximity to each other, coupled with the model’s ability to detect all
of the cars, an excess of new targets emerges. To address this issue, adjustments to
the motion noise are necessary. Additionally, for such scenarios, the implementation
of the dynamic motion noise and the observation noise could offer a viable solution.

Figure 6.7 shows, that the number of detected objects is far beyond the true count.
Nevertheless, the number of displayed targets is almost on spot till the frame 66. As the
targets get closer to each other, the number of targets grows rapidly, causing errors to the
number of tracked objects.

This setting outperforms the other settings. The performance of Grounding DINO
brings another problems arising from characteristics of the video. The video is taken
from an angle, which makes the cars smaller as they carry on. These dynamics align
poorly with the static motion and the observation noise.

Figure 6.7 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets and
the true targets’ count.

6.1. E1: Traffic without any obstacle 81

(a) Frame number: 36. (b) Frame number: 48.

(c) Frame number: 54. (d) Frame number: 58.

(e) Frame number: 67. (f) Frame number: 69.

(g) Frame number: 73. (h) Frame number: 79.

Figure 6.8 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability
and the Grounded SAM model.

6.1.4 V2
Video V2 is recorded at 29 fps. Only the cars driving from the left to the right are
detected and tracked. In the following experiments frames 83-109 of the video V2 are
analyzed.

6.1. E1: Traffic without any obstacle 82

6.1.5 V2 – GM-PHD with the constant detection probability
The measurements for the GM-PHD filter with the constant detection probability are
obtained by the YOLO object detection model. The parameters’ values are displayed in
Table 6.5.

%� % fh fn)?).$!$

0.9 diag(100, 100, 100, 100) 0.1 30 0.1 0.3
Table 6.5 The parameter settings for Experiment E1-V2 with the constant detection probability.

Figure 6.10 displays the performance of theGM-PHDfilterwith the constant detection
probability.

6.10a: The sequence begins with the frame number 83, wherein four targets have
already been initialized and successfully detected.

6.10b: Notably, the objects appear relatively small in comparison to the overall frame
size. This size discrepancy contributes to a phenomenon where targets in a close
proximity share measurements, resulting in the appearance of additional targets in
the scene.

6.10c: Despite the YOLO model failing to detect the fourth car, the target persists
within the tracking system.

6.10d: The previously undetected car is successfully identified once more, and the
tracking of the target continues. Additionally, another car approaches the spawning
point.

6.10e: Regrettably, the car within the spawning area remains undetected and has not
survived, probably due to its weight being insufficient to ensure survival. Concur-
rently, the first car exits the scene.

6.10f: Subsequently, the car at the spawning point is detected once again and remains
sufficiently close to be initialized as a target. The scene concludes with four true
objects and four accurately tracked targets.

The GM-PHD filter with the constant detection probability is accurate in scenarios,
where the object detector does not miss detections regularly. Figure 6.9 shows that the
number of displayed targets is close enough to the true count. Even false detections
created by YOLO did not mislead the filter.

6.1. E1: Traffic without any obstacle 83

Figure 6.9 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets and
the true targets’ count.

(a) Frame number: 83. (b) Frame number: 90.

(c) Frame number: 95. (d) Frame number: 102.

(e) Frame number: 105. (f) Frame number: 110.

Figure 6.10 Image sequence of tracked objects using the GM-PHD filter with the constant detection probability.

6.1. E1: Traffic without any obstacle 84

6.1.6 V2 – GM-PHD with the dynamic detection probability
Experiments carried out on the video V2 using the GM-PHD filter with the dynamic
detection probability and different settings are demonstrated in following sections.

6.1.6.1 S1 – YOLO + YOLO

This experiment uses settings S1, where the YOLOmodel provides both object detection
bboxes and segmentation masks. The parameter settings are shown in Table 6.6.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(600, 600, 600, 600) 0.1 30 1 3 0.1 0.01 0.3
Table 6.6 The parameter settings for Experiment E1-V2-S1 with the dynamic detection probability.

Figure 6.12 shows the performance of the GM-PHD filter with the dynamic detection
probability with settings S1.

6.12a: Analogously to the previous analysis, four targets have surpassed the spawning
point and are tracked by the GM-PHD filter. The targets’ presence in the close
proximity results in an additional false targets’ existence.

6.12b: The problem of targets’ neighboring persists.

6.12c: Moreover, the YOLO model classifies the targets’ shadows as another cars,
causing the initialization of extra targets.

6.12d: A new car crosses the spawning point, yet the YOLO model fails to detect it.

6.12e: The new car has been previously detected and initialized. The two neighbour-
ing cars still generate additional false targets.

6.12f: Finally, there appear only two targets representing the two cars. The other two
cars are tracked properly.

Figure 6.11 depicts a similar performance of the GM-PHD filter with the dynamic
detection probability as the GM-PHD filter with the constant detection probability. The
number of displayed targets exceeds the true number of targets due to already presented
reasons.

The improved ability of the target’s survival resulted in a slightly decreased the
overall tracking performance. The YOLO model has been able to detect tracked objects
flawlessly, which leads to needlessness of the dynamic detection probability andmodified
pruning method enabling enhanced targets’ ability to survive.

However, the goal of this experiment is to examine the tracking capability of the
GM-PHD filter with the proposed dynamic detection probability in common flawless
scenarios. This experiment verifies the method to be sufficient.

6.1. E1: Traffic without any obstacle 85

Figure 6.11 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and the true targets’ count.

6.1. E1: Traffic without any obstacle 86

(a) Frame number: 83. (b) Frame number: 89.

(c) Frame number: 94. (d) Frame number: 98.

(e) Frame number: 103. (f) Frame number: 109.

Figure 6.12 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability
and YOLO only.

6.1.6.2 S2 – YOLO + SAM

As in experiment E1, the next settings employs S2 with the YOLO object detector and
the SAM segmentation model. All parameters are included in Table 6.7.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(100, 100, 100, 100) 0.1 30 1 3 0.1 0.01 0.3
Table 6.7 The parameter settings for Experiment E1-V2-S2 with the dynamic detection probability.

The situation resembles the situation with settings S1. Four targets occur in Figure
6.14a. They continue in their path while all targets are tracked successfully with one
exception. No additional targets appear in the subsequent frames. The YOLO model
detects a car’s shadow and clasifies it as an another car, which makes the added target in
Figure 6.14c. Due to the merging step, this false target does not survive to the subsequent

6.1. E1: Traffic without any obstacle 87

frames. A new car is initialized in Figure 6.14d. All targets are tracked in the last frames.
The number of displayed targets is close to the true number of targets in Figure 6.13.

The number of detected targets exceeds the number of true targets for majority of the
time, due to the presence of false detections.

Settings S2 exhibit a slight improvement over settings S1, which is reflected in the
reduced error between the number of displayed targets and the true count.

Figure 6.13 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and true targets’ count.

6.1. E1: Traffic without any obstacle 88

(a) Frame number: 83. (b) Frame number: 89.

(c) Frame number: 94. (d) Frame number: 98.

(e) Frame number: 103. (f) Frame number: 109.

Figure 6.14 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
the YOLO object detector and the SAM image segmentation model.

6.1.6.3 S3 – Grounded SAM

The combination of Grounding DINO and SAM is tested using the video V2 as well.
Used parameteres are given in Table 6.8.

%�,: (G) % fh fn)�)3)?);)C4GC)11>G

0.3 diag(100, 100, 100, 100) 0.1 30 1 3 0.1 0.01 0.3 0.3
Table 6.8 The parameter settings for Experiment E1-V2-S3 with the dynamic detection probability.

Figure 6.16 reveals a better object detection. As a result, the tracking of objects is
more precise than in the other settings.

6.16a: Starting with four tracked targets in frame no. 83.

6.16b: As in Experiment E1-V1, the motion and observation noise covariances seem

6.1. E1: Traffic without any obstacle 89

to be too large for this scenario. The third and the fourth car’s measurement reaches
the validation region of each other. This situation creates new undesired targets.

6.16c: The exact same situation happens in this frame.

6.16d: Another car reaches the spawning point.

6.16e: Five targets appear in the scene, all of them correctly tracked.

6.16f: The scenario ends with four properly detected and tracked objects.

Even though the two cars driving side by side cause the filter with given parameters
a few modest problems, the merging and the pruning steps can usually deal with such
situations, as seen in Figure 6.15. The line showing the number of displayed targets
almost copies the line showing the true counts. The figure also shows the problem of
two neighbouring targets and the problem of false detections. The peaks in the red line
show these false detections, the filter remains unaffected and holds the true number of
targets.

As in Experiment E1-V1, this setting outperform the other settings variations. More-
over, due to the more precise object detection, the filter is able to deal with problems
such as two targets appearing in the same neighbourhood or false detections. However,
settings S3 is very sensitive to motion and observation noise parametrization, thus these
covariance matrices have to be set carefully.

Figure 6.15 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and true targets’ count.

6.2. E2: Traffic with an obstacle 90

(a) Frame number: 83. (b) Frame number: 89.

(c) Frame number: 94. (d) Frame number: 98.

(e) Frame number: 103. (f) Frame number: 109.

Figure 6.16 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
the DINO object detector and the SAM image segmentation model.

6.2 E2: Traffic with an obstacle
The previous experiment demonstrated the performance of our proposed GM-PHD
filter method, which incorporated the dynamic detection probability and the modified
pruning. Our method has proven superior to the standard GM-PHD filter with the
constant detection probability. Nevertheless, our method was primarily designed to
excel in situations where obstacles obscure camera views. To assess its effectiveness in
such scenarios, we propose Experiment E2.

6.2.1 V3
In the video V3 a light pole is in the camera’s view, preventing the object detector to
detect hidden objects. The frame rate of this video is set to 10 fps.

6.2. E2: Traffic with an obstacle 91

6.2.2 V3 - GM-PHD with the constant detection probability
The targets cannot persist beyond a certain number of time steps without beingmeasured,
resulting in their loss once they surpass an obstacle. To avert a permanent loss, a new
spawning point is introduced immediately after the obstacle to revive the lost target.
However, this approach comes with a drawback: the revived target starts afresh without
retaining its previous history.

Parameter settings are embodied in Table 6.9.

%� % fh fn)?).$!$

0.9 diag(500, 500, 500, 500) 0.1 100 0.1 0.3
Table 6.9 The parameter settings for Experiment E2-V3 with the constant detection probability.

Figure 6.18 shows some highlights of the GM-PHD filter with the constant detection
probability.

6.18a: The sequence starts with frame no. 7. The first car is initiaized by the
spawning point.

6.18b: The first car arrives to an obstacle. Meanwhile, the second car arrives.

6.18c: The YOLO object detector is not able to detect the hidden car. The target is
removed.

6.18d: The previously lost target is detected and initialized due to the second spawn-
ing point. Nevertheless, the history of this target is still lost. Moreover, the target has
not been tracked for five consecutive frames.

6.18e: The second car is not detected due to the obstacle. The track of the target is
lost.

6.18f: The target is once again initialized by the second spawning point. The third
car approaches the first spawning point.

6.18g: The last car is also not detected behind the obstacle, thus its track is lost.

6.18h: Even though the target is reborn, the track of this target has not been available
for 6 frames in a row. The other two cars are further away and appear to be in the
same neighbourhood. The filter merged these two targets into a single one.

According to Figure 6.17, the filter is able to successfully track the targets. However,
the figure also shows the weakness of this approach. The peaks displaying the target’s
loss are clearly present.

With the second spawn point enabling targets to reborn, the GM-PHD filter is able to
track all the targets accurately. The weakness of this approach is definite – if a target is
reborn, it is a whole new target without any history.

6.2. E2: Traffic with an obstacle 92

Figure 6.17 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and true targets’ count.

(a) Frame number: 7. (b) Frame number: 33. (c) Frame number: 38. (d) Frame number: 43.

(e) Frame number: 55. (f) Frame number: 60. (g) Frame number: 85. (h) Frame number: 92.

Figure 6.18 Image sequence of tracked objects using the GM-PHD filter with the constant detection probability.

6.2. E2: Traffic with an obstacle 93

6.2.3 V3 – GM-PHD with the dynamic detection probability
Experiments using the video V3 utilizing the GM-PHD filter with the dynamic detection
probability and settings S1, S2, S3 are demonstrated in following sections.

6.2.3.1 S1 – YOLO + YOLO

This experiment uses settings S1, where the YOLOmodel provides both object detection
bboxes and segmentation masks. The parameter settings are shown in Table 6.10.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(500, 500, 500, 500) 0.1 100 2 3 0.1 0.0001 0.3
Table 6.10 The parameter settings for Experiment E2-V3-S1 with the dynamic detection probability.

Figure 6.20 shows the performance of the GM-PHD filter with the dynamic detection
probability with settings S1.

6.20a: The tracking starts with frame no. 7. The first target approaches the spawning
point.

6.20b: The first car reaches the light pole. The second car appears in the scene.

6.20c: The first car is detected by YOLO for the last time before temporarily disap-
pearing behind the obstacle.

6.20d: Even though the first car has not been detected for 5 frames, it is able to
survive without the second spawning point.

6.20e: In this frame, an example of the hidden target’s state can be seen. The second
car is annotated with number 1, i.e., it is considered as hidden.

6.20f: The second car overcomes the obstacle and continues in its path. This target
was able to survive for 6 consecutive time steps.

6.20g: As the two cars appear close to each other, more measurements appear in the
validation region of the targets. The third car is not detected behind the light pole,
but is still tracked.

6.20h: The first two cars’ targets are merged together, due to the long distance from
the camera, static motion and observation noises. The third target also survives the
misdetection period.

The displayed targets line in Figure 6.19 is almost the same as in previous experiment.
However, the orange line shows, that the filter is still informed about all potential targets.
As seen in Figure 6.20, the hidden targets are not lost, their weights are just too small to
be displayed.

The performance of the GM-PHD filter with the dynamic detection probability might
seem to be very similar to the constant detection probability at first glance. But the
targets are not removed when hidden. Moreover, the targets’ track history is not lost.

6.2. E2: Traffic with an obstacle 94

Figure 6.19 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and true targets’ count.

(a) Frame number: 7. (b) Frame number: 33. (c) Frame number: 38. (d) Frame number: 43.

(e) Frame number: 58. (f) Frame number: 60. (g) Frame number: 85. (h) Frame number: 92.

Figure 6.20 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability
and YOLO only.

6.2. E2: Traffic with an obstacle 95

6.2.3.2 S2 – YOLO + SAM

The next settings employs settings S2 with the YOLO object detector and the SAM
segmentation model on the video V3. All parameters are included in Table 6.11.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(500, 500, 500, 500) 0.1 100 2 3 0.1 0.0001 0.3
Table 6.11 The parameter settings for Experiment E2-V3-S2 with the dynamic detection probability.

The scenario in Figure 6.22 is nearly identical as in the experiment with settings S1.
All targets are tracked properly and none of them is lost.

Figure 6.21 shows the true difference between settings S1 and S2. The blue line
deflects less from the true count. In situation where the targets are hidden, the number
of the targets in the filters’ queue (orange line) copies the true count line. Only from the
frame no. 80, the orange line shows some errors, due to the targets’ appearance in the
same neighborhood.

The settings S2 again shows a slightly improved performance over settings S1. The
overall performance can be seen in Figure 6.21.

Figure 6.21 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and true targets’ count.

6.2. E2: Traffic with an obstacle 96

(a) Frame number: 7 (b) Frame number: 33. (c) Frame number: 38. (d) Frame number: 43.

(e) Frame number: 57. (f) Frame number: 60. (g) Frame number: 85. (h) Frame number: 92.

Figure 6.22 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
the YOLO object detector and the SAM image segmentation model.

6.2.3.3 S3 – Grounded SAM

The combination of Grounding DINO and SAM is also evaluated on the video V3. The
utilized parameters are outlined in Table 6.12.

%�,: (G) % fh fn)�)3)?);)C4GC)11>G

0.3 3806(500, 500, 500, 500) 0.1 80 2 3 0.1 0.01 0.3 0.3
Table 6.12 The parameter settings for Experiment E2-V3-S3 with the dynamic detection probability.

As seen in Figures 6.24c, 6.24e and 6.24g, Grounding DINO is able to detect the hid-
den objects behind the light pole, thus the advantage of the dynamic detection probability
is not apparent. All targets are tracked precisely and no misdetection is present.

Till the frame no. 85, the number of displayed targets (blue line) and the number
of targets in filter’s queue (orange line) exactly copies the true number of target’s line
in Figure 6.23. It is, of course, influenced by the employment of the enhanced object

6.2. E2: Traffic with an obstacle 97

detector, which hasmaneged to detect semi-hidden targets. The incresing and decreasing
number of targets after the frame 85 is due to the targets being close to each other.

Figure 6.23 Development chart of the number of detected targets, targets in the filter’s queue, displayed targets
and true targets’ count.

6.2. E2: Traffic with an obstacle 98

(a) Frame number: 7. (b) Frame number: 33. (c) Frame number: 39. (d) Frame number: 43.

(e) Frame number: 57. (f) Frame number: 60. (g) Frame number: 85. (h) Frame number: 92.

Figure 6.24 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
the DINO object detector and the SAM image segmentation model.

6.2.4 V2a
In this experiment, we have a camera recording of traffic, but the view is obstructed by
a significant obstacle, disposing any object detection system of the capability to capture
targets. To simulate this situation, we artificially add a road crossing the main highway
line in the video V2. Although it is evident that the added road does not belong to
the scene, its color characteristics closely resemble those of the natural highway line.
Furthermore, the video playback frame rate is decreased to 10 fps.

6.2.5 V2a – GM-PHD with the dynamic detection probability
Based on the prior experiments, it is deemed unproductive to assess the GM-PHD filter
under the constant detection probability. If the adapted GM-PHD filter demonstrates
the capability to track objects even in areas lacking measurements, the forthcoming
experiment, designated as setting S1, is suggested.

6.2. E2: Traffic with an obstacle 99

6.2.5.1 S1 – YOLO + YOLO

This experiment employs settings S1 on the video V2, which includes an additional
obstacle. The parameter settings are shown in Table 6.13.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(40, 40, 40, 40) 0.04 120 0.5 3 0.1 0.001 0.3
Table 6.13 The parameter settings for Experiment E2-V2a-S1 with the dynamic detection probability.

In Figure 6.25we can see the tracking performance of theGM-PHDfilter with settings
S1 on the traffic situation with an added obstacle. For this experiment, two additional
bounding boxes are displayed. The blue bbox represents the place, the target has been
lastly detected in. The black bbox is the moving bbox from Equation (5.29). The color
characterics of the scene given by these two bounding boxes are compared to calculate
?�,: in (5.31).

6.25a: The tracking starts with frame no. 47. There are two cars next to each other.
At this moment, the cars are coming close to the obstacle.

6.25b: The targets are obscured and remain undetected, with their state labeled as
hidden.

6.25c: Given the characteristics of the scene, the targets’ positions lag slightly behind
their true positions.

6.25d: The cars are detected again and, due to the large covariance, the targets get
their measurements.

6.25e: Nevertheless, one false target still falls behind the true targets.

6.25f: Even though the true targets continue in their path with correct measurements,
the false target persists.

6.25g: Due to the similar characteristics of the added road with the actual highway
road, the false target is considered as hidden.

6.25h: Finally the false target is removed, not due to exceeding the lowered threshold
); , but due to the change of its state to dead.

In this experiment, we demonstrated that with the GM-PHD filter with the dynamic
detection probability it is possible to overcome an obstacle blocking the view of the
camera. However, another problemarises. If the obstacle has similar color characteristics
as the background around the target, the predicted false target survives for too long.

6.2. E2: Traffic with an obstacle 100

(a) Frame number: 47. (b) Frame number: 50.

(c) Frame number: 54. (d) Frame number: 56.

(e) Frame number: 57. (f) Frame number: 60.

(g) Frame number: 62. (h) Frame number: 63.

Figure 6.25 Image sequence of the tracked objects using the GM-PHD filter with the dynamic detection probability
and YOLO only.

6.2.6 V2b
The preceding experiment evaluates the performance of the GM-PHD filter with the
dynamic detection probability under settings S1 on a video featuring an added obstacle
with color characteristics similar to the surrounding scene. In this experiment, the

6.2. E2: Traffic with an obstacle 101

obstacle possesses slightly different color characteristics. The primary objective of this
experiment is to assess the efficacy of themodified pruning step influenced by theMarkov
process.

6.2.7 V2b – GM-PHD with the dynamic detection probability
The conditions of this experiment remain the same is in Experiment 6.2.4, i.e., the YOLO
object detector and segmentation model is used.

6.2.7.1 S1 – YOLO + YOLO

For fair comparison, the parameter settings included in Table 6.14 are left the same.

%�,: (G) % fh fn)�)3)?);).$!$

0.3 diag(40, 40, 40, 40) 0.04 120 0.5 3 0.1 0.001 0.3
Table 6.14 The parameter settings for Experiment E2-V2b-S1 with the dynamic detection probability.

In Figure 6.26we can see the tracking performance of theGM-PHDfilter with settings
S1 on traffic situation with an added obstacle.

6.26a: This sequence starts with frame no. 44. Due to the targets’ close positions,
more than 2 targets appear in the place where only two true targets are present.

6.26b: The targets move underneath the obstacle.

6.26c: This is the first frame with misdetected objects. The targets are in the hidden
state.

6.26d: The targets’ predicted positions are already behind the true targets’ positions.

6.26e: As the predicted covariance grows, the targets merge into a single one. The
cars are clearly seen, but the YOLO model does not detect them.

6.26f: The cars are detected and initialized as targets. The predicted black bounding
box of false target still interfers with the added obstacle, thus the target is considered
as hidden.

6.26g: In this frame, the predicted black bounding box of false target moves to
the area with natural traffic line. The false target is in dead state and is removed
immediately.

6.26h: The targets continue in their paths with correct positions.

In this experiment, we have demonstrated, that if an obstacle differs from the targets’
background scene, the pruning given by the Markov process works exceptionally well.
The downside of this approach lies in the additional settings of further parameters.

6.3. E3: Changing the model 102

(a) Frame number: 44. (b) Frame number: 47.

(c) Frame number: 50. (d) Frame number: 54.

(e) Frame number: 56. (f) Frame number: 57.

(g) Frame number: 58. (h) Frame number: 59.

Figure 6.26 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability
and YOLO only.

6.3 E3: Changing the model
Up to this point, all experiments have employed the observation and state-space models
outlined in the introduction of the Experiments section (see Section 6). However,

6.3. E3: Changing the model 103

using these models in scenarios presented by videos V1, V2, V3 comes with several
disadvantages. The state-space model assumes an uniform position uncertainty in all
directions for targets. Additionally, the videos are not captured from a bird’s-eye point
of view, but from an angled perspective. This camera angle causes the detected targets
to appear smaller when they are further away, and larger when they are closer to the
camera. Consequently, this effect alters the actual movement model of the targets, which
our current model does not account for.

Considering the videos utilized in this study, we can leverage prior knowledge regard-
ing the movement patterns of the potential targets. It is established that cars are inclined
to move in the direction of the road rather than backwards or sideways.

6.3.1 V2
For this experiment, the video V2 with the added crossing road as an obstacle is used.
The video is observed at the rate 14 fps.

The state space CVM model is employed with the transition matrix

�: =

1 0 2Δ 0
0 1 0 Δ

0 0 1.1 0
0 0 0 1.1

 , (6.2)

where Δ = 1, and process covariance matrix

&: =

2 0.5 0 0

0.5 1 0 0
0 0 1 0
0 0 0 1

 · 0.003. (6.3)

The observation covariance matrix is reformulated as

': =

[
2 0.5

0.5 1

]
· 20. (6.4)

The spawning point providing nearby targets with initial covariance matrix % is
established as

%: =

80 20 0 0
20 40 0 0
0 0 40 0
0 0 0 40

 . (6.5)

These model formulations ensure that the target’s covariance takes an ellipsoidal
shape rather than a circular one. These ellipses are oriented in the direction of the road,
indicating that uncertainty increases more in alignment with the road’s direction. This
implies a lower probability of a car being positioned next to the road in the subsequent
time step.

6.3. E3: Changing the model 104

6.3.2 V2b – GM-PHD with the dynamic detection probability
The GM-PHD filter with the dynamic detection probability is analysed only in this
experiment. The best performing settings are used - S3, i.e., grounded SAM.

6.3.2.1 S3 – Grounded SAM

In Table 6.15, note that the standard pruning threshold)? is the same as the lowered
pruning threshold); . Due to the better model settings and the dynamic detection
probability, it is not neccesarry to lower the pruning threshold for targets in detected and
hidden state.

%�,: (G) % fh fn)�)3)?);)C4GC)11>G

0.3 see Eq. 6.5 see Eq. 6.3 see Eq. 6.4 0.6 3 0.1 0.1 0.3 0.3
Table 6.15 The parameter settings for Experiment E3-V2-S3 with the dynamic detection probability.

The adjusted models project in Figures 6.27 and 6.28. The spawning point, as well
as the covariances given by the covariance matrix %, has an ellipsoidal shape showing
the uncertainty. Two cars are observed in the sequence. Let us call the car driving in the
right highway line in the direction of travel �' and the left car as �! .

6.27a: Two targets approach the obstacle. Both cars are successfully detected and
initialized.

6.27b: Target �' is detected for the final time before reaching the obstacle.

6.27c: The object detector still manages to detect �! , but its position is now beneath
the obstacle, resulting in both targets being classified as hidden.

6.28a: Both targets remain hidden, showcasing the effect of the altered models.
Notably, the covariances are elongated in the direction of travel and do not extend
beyond the traffic line.

6.28b: Despite minimal fine-tuning of the model parameters for this experiment,
the predicted mean positions are nearly accurate. Both cars are detected once more,
allowing the filter to obtain measurements.

6.28c: The additional false target is removed and both targets are tracked with small
ellipsoidal covariances.

6.3. E3: Changing the model 105

(a) Frame number: 44.

(b) Frame number: 48.

(c) Frame number: 50.

Figure 6.27 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
Grounded SAM and adjusted models – part 1.

6.3. E3: Changing the model 106

(a) Frame number: 53.

(b) Frame number: 54.

(c) Frame number: 58.

Figure 6.28 Image sequence of tracked objects using the GM-PHD filter with the dynamic detection probability,
Grounded SAM and adjusted models – part 2.

6.3. E3: Changing the model 107

Table 6.16 and Figure 6.29 display the values of the detection probabilities of targets
�! and �' in corresponding frames. If the targets are visible in the scene, the detection
probability is large. Once the targets are hidden behind the obstacle, the detection
probability rapidly drops. The value of the probability is about 0.1 from frame 50 to 54.
The effect of this low detection probability is projected in Table 6.16 and Figure 6.29
as well. The targets’ weights are slowly decreasing, sustaining the targets’ existence in
period without any measurement.

Detection probabilities Targets’ weights
Frame number ?�,: (�!) ?�,: (�') F: (�!) F: (�')

44 0.934 0.861 1 1
45 0.920 0.881 1 1
46 0.891 0.908 1 1
47 0.900 0.802 1 1
48 0.879 0.728 1 1
49 0.677 0.534 1 1
50 0.457 0.114 1 0.876
51 0.135 0.129 0.855 0.786
52 0.138 0.088 0.730 0.710
53 0.142 0.098 0.619 0.634
54 0.132 0.294 0.532 0.823
55 0.321 0.422 1 1
56 0.865 0.898 1 1
57 0.934 0.922 1 1
58 0.941 0.924 1 1

Table 6.16 The evolution of detection probabilities and weights of targets �! and �' .

Figure 6.29 The evolution of targets’ detection probabilities and weights.

This experiment illustrates that even in scenarios with challenging conditions, such as
angled recordings, it is possible to configure the model using prior scene knowledge in
a manner that enables the filter to effectively handle obstacles obstructing the camera
view. Moreover, these model settings are capable of addressing the necessity for dynam-
ically setting the noise covariances. Table 6.16 and Figure 6.29 demonstrate the effect
of the dynamic detection probability on targets’ weights. Note that targets in Figures

6.3. E3: Changing the model 108

6.27 and 6.28 are correctly in hidden state. Thus, if the obstacle would be larger, due to
possibility of changing the pruning threshold for targets in detected and hidden state, the
targets might survive even longer. This additional threshold possibility does not allow
the creation of other false targets that would appear if the standard pruning threshold
was lowered.

Chapter 7

Conclusion

In this thesis, we have delved into the realm of Bayesian filtering and its profound im-
pact on multi-target tracking systems. Real-world scenarios pose significant challenges,
as tracking systems must grapple with non-linear and non-Gaussian models, as well
as contend with noisy measurements and cluttered environments. Negotiating such
complexities necessitates fine-tuning of additional parameters within tracking systems
tailored to the specific environmental conditions. In order to eventually simulate target
movement patterns and treat the problems that stem from sensor measurement uncer-
tainties more accurately, researchers continually explore innovative methodologies to
ascertain or estimate these parameters.

This work introduces an innovative approach aimed at estimating one of the key
parameters crucial to tracking systems – the detection probability. This probability is
profoundly influential in the survivability of tracked objects, making its accurate estima-
tion paramount. Leveraging advanced deep-learning image processing techniques, we
propose a method to estimate the detection probability for each target at every time step
within video footage. Furthermore, we address the possibility of the target misdetec-
tion, a common occurrence when obstacles obstruct the camera’s view. To endorse the
resilience of targets during extended periods without detection, we refine the pruning
method of the GM-PHD filter.

The experiments demonstrate the effectiveness of the proposed method, particularly
in scenarios where tracked objects are undetectable. However, they also reveal certain
weaknesses that warrant further investigation in future research endeavors.

109

Bibliography

[1] Y. Bar-Shalom and X. Li, Multitarget-Multisensor Tracking: Principles and Techniques. Yaakov
Bar-Shalom, 1995, isbn: 9780964831209.

[2] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic
Engineering, 82, pp. 35–45, 1960.

[3] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal Processing, 50, no. 2,
pp. 174–188, 2002. doi: 10.1109/78.978374.

[4] E. Brekke, Fundamentals of Sensor Fusion. Norwegian University of Science and Technology,
2020.

[5] R. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” IEEE Transactions on
Aerospace and Electronic Systems, 39, no. 4, pp. 1152–1178, 2003. doi: 10.1109/TAES.2003.
1261119.

[6] A. Jazwinski, Stochastic Processes and Filtering Theory, Dover Books on Electrical Engineering
Series. Dover Publications, 2007, isbn: 9780486462745.

[7] S. Julier and J. Uhlmann, “Unscented filtering and nonlinear estimation,” Proceedings of the IEEE,
92, no. 3, pp. 401–422, 2004. doi: 10.1109/JPROC.2003.823141.

[8] D. Reid, “An algorithm for tracking multiple targets,” IEEE Transactions on Automatic Control,
24, no. 6, pp. 843–854, Dec. 1979.

[9] B.-N. Vo and W.-K. Ma, “The Gaussian mixture probability hypothesis density filter,” IEEE
Transactions on Signal Processing, 54, no. 11, pp. 4091–4104, 2006. doi: 10.1109/TSP.2006.
881190.

[10] R. P. S. Mahler, B.-T. Vo, and B.-N. Vo, “CPHD filtering with unknown clutter rate and detection
profile,” IEEE Transactions on Signal Processing, 59, no. 8, pp. 3497–3513, 2011. doi: 10.1109/
TSP.2011.2128316.

[11] Á. F. García-Fernández, J. L. Williams, K. Granström, and L. Svensson, “Poisson multi-Bernoulli
mixture filter: Direct derivation and implementation,” IEEE Transactions on Aerospace and Elec-
tronic Systems, 54, no. 4, pp. 1883–1901, 2018. doi: 10.1109/TAES.2018.2805153.

[12] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A benchmark for multi-object
tracking,” arXiv preprint arXiv:1603.00831, 2016.

[13] S. Yan, Y. Fu, W. Zhang, W. Yang, R. Yu, and F. Zhang, “Multi-target instance segmentation and
tracking using YOLOV8 and BoT-SORT for video SAR,” in 2023 5th International Conference
on Electronic Engineering and Informatics (EEI), 2023, pp. 506–510. doi: 10.1109/EEI59236.
2023.10212903.

110

https://doi.org/10.1109/78.978374
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/TAES.2003.1261119
https://doi.org/10.1109/JPROC.2003.823141
https://doi.org/10.1109/TSP.2006.881190
https://doi.org/10.1109/TSP.2006.881190
https://doi.org/10.1109/TSP.2011.2128316
https://doi.org/10.1109/TSP.2011.2128316
https://doi.org/10.1109/TAES.2018.2805153
https://doi.org/10.1109/EEI59236.2023.10212903
https://doi.org/10.1109/EEI59236.2023.10212903

Bibliography 111

[14] G. Hendeby and R. Karlsson, “Gaussian mixture PHD filtering with variable probability of detec-
tion,” in 17th International Conference on Information Fusion (FUSION), 2014, pp. 1–7.

[15] B.-T. Vo, B.-N. Vo, R. Hoseinnezhad, and R. P. S. Mahler, “Robust multi-Bernoulli filtering,”
IEEE Journal of Selected Topics in Signal Processing, 7, no. 3, pp. 399–409, 2013. doi: 10.1109/
JSTSP.2013.2252325.

[16] G. Li, L. Kong, W. Yi, and X. Li, “Robust Poisson multi-Bernoulli mixture filter with unknown
detection probability,” IEEE Transactions on Vehicular Technology, 70, no. 1, pp. 886–899, 2021.
doi: 10.1109/TVT.2020.3047107.

[17] C. Li, W. Wang, T. Kirubarajan, J. Sun, and P. Lei, “PHD and CPHD filtering with unknown
detection probability,” IEEE Transactions on Signal Processing, 66, no. 14, pp. 3784–3798, 2018.
doi: 10.1109/TSP.2018.2835398.

[18] J. Wei, F. Luo, J. Qi, and L. Ruan, “A modified BGM-PHD filter with unknown detection probabil-
ity,” in 2023 6th International Conference on Information Communication and Signal Processing
(ICICSP), 2023, pp. 492–496. doi: 10.1109/ICICSP59554.2023.10390615.

[19] E. Hanusa and D. W. Krout, “Track state augmentation for estimation of probability of detection
in multistatic sonar data,” in 2013 Asilomar Conference on Signals, Systems and Computers, 2013,
pp. 1733–1737. doi: 10.1109/ACSSC.2013.6810598.

[20] S. Horn, “Near real time estimation of surveillance gaps,” in Proceedings of the 16th International
Conference on Information Fusion, 2013, pp. 1871–1877.

[21] S. Wei, B. Zhang, and W. Yi, “Trajectory PHD and CPHD filters with unknown detection profile,”
IEEE Transactions on Vehicular Technology, 71, no. 8, pp. 8042–8058, 2022. doi: 10.1109/TVT.
2022.3174055.

[22] Y. Bulut, D. Vines-Cavanaugh, and D. Bernal, “Process and measurement noise estimation for
Kalman filtering,” Conference Proceedings of the Society for Experimental Mechanics Series, 3,
May 2011. doi: 10.1007/978-1-4419-9834-7_36.

[23] U. Hadar and H. messer, “High-order hidden markov models - estimation and implementation,” in
2009 IEEE/SP 15th Workshop on Statistical Signal Processing, 2009, pp. 249–252. doi: 10.1109/
SSP.2009.5278591.

[24] K. Dedecius and P. M. Djurić, “Sequential estimation and diffusion of information over networks:
A Bayesian approach with exponential family of distributions,” IEEE Transactions on Signal
Processing, 65, no. 7, pp. 1795–1809, 2017. doi: 10.1109/TSP.2016.2641380.

[25] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE Control
Systems Magazine, 29, no. 6, pp. 82–100, 2009.

[26] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based particle filtering for tracking a variable number
of interacting targets,” IEEE Transactions on Pattern Analysis andMachine Intelligence, 27, no. 11,
pp. 1805–1819, 2005. doi: 10.1109/TPAMI.2005.223.

[27] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P.-J. Nordlund,
“Particle filters for positioning, navigation, and tracking,” IEEE Transactions on Signal Processing,
50, no. 2, pp. 425–437, 2002. doi: 10.1109/78.978396.

[28] A. Doucet, N. Gordon, and V. Krishnamurthy, “Particle filters for state estimation of jump Markov
linear systems,” IEEE Transactions on Signal Processing, 49, no. 3, pp. 613–624, 2001. doi:
10.1109/78.905890.

[29] I. Goodman, R. Mahler, and H. Nguyen,Mathematics of Data Fusion, Theory and Decision Library
B. Springer Netherlands, 1997, isbn: 9780792346746.

[30] B.-N. Vo, S. Singh, and A. Doucet, “Random finite sets and sequential Monte Carlo methods in
multi-target tracking,” in 2003 Proceedings of the International Conference on Radar (IEEE Cat.
No.03EX695), 2003, pp. 486–491. doi: 10.1109/RADAR.2003.1278790.

https://doi.org/10.1109/JSTSP.2013.2252325
https://doi.org/10.1109/JSTSP.2013.2252325
https://doi.org/10.1109/TVT.2020.3047107
https://doi.org/10.1109/TSP.2018.2835398
https://doi.org/10.1109/ICICSP59554.2023.10390615
https://doi.org/10.1109/ACSSC.2013.6810598
https://doi.org/10.1109/TVT.2022.3174055
https://doi.org/10.1109/TVT.2022.3174055
https://doi.org/10.1007/978-1-4419-9834-7_36
https://doi.org/10.1109/SSP.2009.5278591
https://doi.org/10.1109/SSP.2009.5278591
https://doi.org/10.1109/TSP.2016.2641380
https://doi.org/10.1109/TPAMI.2005.223
https://doi.org/10.1109/78.978396
https://doi.org/10.1109/78.905890
https://doi.org/10.1109/RADAR.2003.1278790

Bibliography 112

[31] D. Daley and D. Vere-Jones, An introduction to the theory of point processes. Springer, Nov. 2003.
[32] Y. Bar-Shalom and T. Fortmann, Tracking and Data Association, Mathematics in science and

engineering. Academic Press, 1988, isbn: 9780120797608.
[33] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1,
2005, 886–893 vol. 1. doi: 10.1109/CVPR.2005.177.

[34] Y. Li, X. Xu, N. Mu, and L. Chen, “Eye-gaze tracking system by haar cascade classifier,” in 2016
IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), 2016, pp. 564–567.
doi: 10.1109/ICIEA.2016.7603648.

[35] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object
detection,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 779–788. doi: 10.1109/CVPR.2016.91.

[36] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of YOLO algorithm developments,”
Procedia Computer Science, 199, pp. 1066–1073, 2022, The 8th International Conference on
Information Technology and Quantitative Management (ITQM 2020 2021): Developing Global
Digital Economy after COVID-19, issn: 1877-0509. doi: https://doi.org/10.1016/j.
procs.2022.01.135.

[37] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 2980–2988. doi: 10.1109/ICCV.2017.322.

[38] What is image segmentation? [Online]. Available: https://www.ibm.com/topics/image-
segmentation (visited on 05/04/2024).

[39] Y. Guo and B. Yang, “A survey of semantic segmentation methods in traffic scenarios,” in 2022
International Conference on Machine Learning, Cloud Computing and Intelligent Mining (MLC-
CIM), 2022, pp. 452–457. doi: 10.1109/MLCCIM55934.2022.00083.

[40] R. Mohan and A. Valada, “Efficientps: Efficient panoptic segmentation,” International Journal of
Computer Vision (IJCV), 2021.

[41] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 580–587. doi: 10.1109/CVPR.2014.81.

[42] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks
for object detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 936–944. doi: 10.1109/CVPR.2017.106.

[43] J. Zhang, D. Sun, Z. Luo, A. Yao, L. Zhou, T. Shen, Y. Chen, L. Quan, and H. Liao, “Learning
two-view correspondences and geometry using order-aware network,” International Conference on
Computer Vision (ICCV), 2019.

[44] A. Kirillov, R. Girshick, K. He, and P. Dollár, Panoptic feature pyramid networks, 2019. arXiv:
1901.02446 [cs.CV].

[45] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and R. Urtasun, Upsnet: A unified panoptic
segmentation network, 2019. arXiv: 1901.03784 [cs.CV].

[46] Y. Yang, H. Li, X. Li, Q. Zhao, J. Wu, and Z. Lin, Sognet: Scene overlap graph network for panoptic
segmentation, 2019. arXiv: 1911.07527 [cs.CV].

[47] Y. Wu, G. Zhang, Y. Gao, X. Deng, K. Gong, X. Liang, and L. Lin, Bidirectional graph reasoning
network for panoptic segmentation, 2020. arXiv: 2004.06272 [cs.CV].

[48] H. Sun, C. Li, B. Liu, H. Zheng, D. D. Feng, and S. Wang, Aunet: Attention-guided dense-
upsampling networks for breast mass segmentation in whole mammograms, 2019. arXiv: 1810.
10151 [cs.CV].

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/ICIEA.2016.7603648
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1109/ICCV.2017.322
https://www.ibm.com/topics/image-segmentation
https://www.ibm.com/topics/image-segmentation
https://doi.org/10.1109/MLCCIM55934.2022.00083
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2017.106
https://arxiv.org/abs/1901.02446
https://arxiv.org/abs/1901.03784
https://arxiv.org/abs/1911.07527
https://arxiv.org/abs/2004.06272
https://arxiv.org/abs/1810.10151
https://arxiv.org/abs/1810.10151

Bibliography 113

[49] N. Otsu, “A threshold selectionmethod from gray-level histograms,” IEEE Transactions on Systems,
Man, and Cybernetics, 9, no. 1, pp. 62–66, 1979. doi: 10.1109/TSMC.1979.4310076.

[50] J. Canny, “A computational approach to edge detection,” IEEETransactions onPattern Analysis and
Machine Intelligence, PAMI-8, no. 6, pp. 679–698, 1986. doi: 10.1109/TPAMI.1986.4767851.

[51] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient algorithm based on immersion
simulations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, no. 6, pp. 583–
598, 1991. doi: 10.1109/34.87344.

[52] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convolutional networks for
accurate object detection and segmentation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38, no. 1, pp. 142–158, 2016. doi: 10.1109/TPAMI.2015.2437384.

[53] G. Coleman and H. Andrews, “Image segmentation by clustering,” Proceedings of the IEEE, 67,
no. 5, pp. 773–785, 1979. doi: 10.1109/PROC.1979.11327.

[54] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 3431–
3440. doi: 10.1109/CVPR.2015.7298965.

[55] O. Ronneberger, P. Fischer, and T. Brox, U-Net: Convolutional networks for biomedical image
segmentation, 2015. arXiv: 1505.04597 [cs.CV].

[56] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab: Semantic image
segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40, no. 4, pp. 834–848, 2018. doi:
10.1109/TPAMI.2017.2699184.

[57] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.
Polosukhin, Attention is all you need, 2023. arXiv: 1706.03762 [cs.CL].

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. doi:
10.1109/CVPR.2016.90.

[59] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, 2016. arXiv: 1607.06450 [stat.ML].
[60] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.6980

[cs.LG].
[61] A. Rakhlin, O. Shamir, and K. Sridharan, Making gradient descent optimal for strongly convex

stochastic optimization, 2012. arXiv: 1109.5647 [cs.LG].
[62] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.

Berg, W.-Y. Lo, P. Dollár, and R. Girshick, Segment anything, 2023. arXiv: 2304.02643 [cs.CV].
[63] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, 42, no. 2, pp. 318–327, 2020. doi:
10.1109/TPAMI.2018.2858826.

[64] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumet-
ric medical image segmentation,” in 2016 Fourth International Conference on 3D Vision (3DV),
2016, pp. 565–571. doi: 10.1109/3DV.2016.79.

[65] T. Ren, S. Liu, A. Zeng, J. Lin, K. Li, H. Cao, J. Chen, X. Huang, Y. Chen, F. Yan, Z. Zeng,
H. Zhang, F. Li, J. Yang, H. Li, Q. Jiang, and L. Zhang, Grounded SAM: Assembling open-world
models for diverse visual tasks, 2024. arXiv: 2401.14159 [cs.CV].

[66] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, and L. Zhang,
Grounding DINO: Marrying DINO with grounded pre-training for open-set object detection, 2023.
arXiv: 2303.05499 [cs.CV].

[67] J. Li, D. Li, C. Xiong, and S. Hoi, Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation, 2022. arXiv: 2201.12086 [cs.CV].

https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/34.87344
https://doi.org/10.1109/TPAMI.2015.2437384
https://doi.org/10.1109/PROC.1979.11327
https://doi.org/10.1109/CVPR.2015.7298965
https://arxiv.org/abs/1505.04597
https://doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1706.03762
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1109.5647
https://arxiv.org/abs/2304.02643
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/3DV.2016.79
https://arxiv.org/abs/2401.14159
https://arxiv.org/abs/2303.05499
https://arxiv.org/abs/2201.12086

Bibliography 114

[68] Y. Zhang, X. Huang, J. Ma, Z. Li, Z. Luo, Y. Xie, Y. Qin, T. Luo, Y. Li, S. Liu, Y. Guo, and L.
Zhang, Recognize anything: A strong image tagging model, 2023. arXiv: 2306.03514 [cs.CV].

[69] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, High-resolution image synthesis
with latent diffusion models, 2022. arXiv: 2112.10752 [cs.CV].

[70] J. Lin, A. Zeng, H. Wang, L. Zhang, and Y. Li, “One-stage 3d whole-body mesh recovery with
component aware transformer,” in 2023 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023, pp. 21 159–21 168. doi: 10.1109/CVPR52729.2023.02027.

[71] C. Wu, S. Yin, W. Qi, X. Wang, Z. Tang, and N. Duan, Visual ChatGPT: Talking, drawing and
editing with visual foundation models, 2023. arXiv: 2303.04671 [cs.CV].

[72] X. Huang, Y.-J. Huang, Y. Zhang,W. Tian, R. Feng, Y. Zhang, Y. Xie, Y. Li, and L. Zhang,Open-set
image tagging with multi-grained text supervision, 2023. arXiv: 2310.15200 [cs.CV].

[73] Y. Chen, J. Liu, X. Zhang, X. Qi, and J. Jia, Voxelnext: Fully sparse voxelnet for 3d object detection
and tracking, 2023. arXiv: 2303.11301 [cs.CV].

https://arxiv.org/abs/2306.03514
https://arxiv.org/abs/2112.10752
https://doi.org/10.1109/CVPR52729.2023.02027
https://arxiv.org/abs/2303.04671
https://arxiv.org/abs/2310.15200
https://arxiv.org/abs/2303.11301

Gitlab repository

All source codes for the practical part of this thesis and text files in LATEX form can be
found in author’s faculty gitlab repository here: gitlab.fit.cvut.cz/seibemic/dp.

README.mdBrief introduction to this thesis
src ...Source files of this thesis
experimentsFigures and graphs for experiments
implSource code of the implementation of the proposed method
PHD.ipynbJupyter notebook dedicated for trying out the method

textFolder including files for this thesis in LATEX form
seibemic-thesis.pdfThe text of this work in PDF format

115

https://gitlab.fit.cvut.cz/seibemic/dp/-/tree/master/src?ref_type=heads

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Evolution and development of multi-target tracking
	Applications of multi-target tracking
	Research interests
	Structure

	Theoretical Background
	Bayesian inference
	Bayes' rule
	Multivariate Gaussian distribution
	Gaussian mixture
	State-space model
	Constant velocity model
	Constant acceleration model

	Hidden Markov Model
	Bayes' filter
	Kalman filter
	Kalman filter inference

	Target tracking
	Data association
	Clutter
	Validation region

	Single target tracking
	PDA filter

	Multi-target tracking
	RFS statistics
	PHD filter

	Object detection and segmentation
	Object detection
	YOLO

	Image segmentation
	Semantic segmentation
	Instance segmentation
	Panoptic segmentation
	Traditional image segmentation
	Deep learning image segmentation
	Segment Anything
	Grounded Segment Anything

	Dynamic time and state varying detection probability
	Problem definition
	The modified GM-PHD filter
	S1: YOLO + PHD
	S2: YOLO + SAM + PHD
	S3: Grounded SAM + PHD

	Dynamic detection probability in video data
	Modified pruning for GM-PHD filter
	Merging in GM-PHD filter with dynamic detection probability

	Experiments
	E1: Traffic without any obstacle
	V1
	V1 – GM-PHD with the constant detection probability
	V1 – GM-PHD with the dynamic detection probability
	V2
	V2 – GM-PHD with the constant detection probability
	V2 – GM-PHD with the dynamic detection probability

	E2: Traffic with an obstacle
	V3
	V3 - GM-PHD with the constant detection probability
	V3 – GM-PHD with the dynamic detection probability
	V2a
	V2a – GM-PHD with the dynamic detection probability
	V2b
	V2b – GM-PHD with the dynamic detection probability

	E3: Changing the model
	V2
	V2b – GM-PHD with the dynamic detection probability

	Conclusion
	Gitlab repository

