
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

GENERATIVEMODELS FOR3DSHAPECOMPLETION
GENERATIVNÍ MODELY PRO DOPLNĚNÍ 3D TVARU

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. PETER ZDRAVECKÝ
AUTOR PRÁCE

SUPERVISOR Ing. TIBOR KUBÍK
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Computer Graphics and Multimedia (DCGM)

Student: Zdravecký Peter, Bc.

Programme: Information Technology and Artificial Intelligence

Specialization: Computer Vision

Category: Computer vision

Academic year: 2023/24

Assignment:

1. Explore current methods for analyzing 3D shapes using neural networks (multi-view networks, graph
networks, point cloud processing networks, etc.).

2. Study generative models to fill missing parts of images and 3D shapes.
3. Prepare a dataset for your experiments.
4. Design a suitable method to automatically fill in the missing parts of a 3D shape.
5. Implement the method using existing libraries for designing and training neural networks.
6. Evaluate the solution qualitatively and quantitatively. Discuss possible extensions.
7. Present your work (its objectives, proposed method and achieved results) in the form of a poster or

video.

Literature:
• Chu et al., DiffComplete: Diffusion-based Generative 3D Shape Completion, 2023,

https://arxiv.org/abs/2306.16329.
• Lyu et al., A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion, 2022,

https://arxiv.org/abs/2112.03530.

Requirements for the semestral defence:
• First 3 points of the assignment, and partially point 4.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Kubík Tibor, Ing.

Head of Department: Černocký Jan, prof. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 17.5.2024

Approval date: 9.11.2023

Master's Thesis Assignment
154507

Generative Models for 3D Shape CompletionTitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
In many real-world scenarios, scanned 3D models contain missing parts due to occlusion,
scanning errors, or the incomplete nature of the data itself. The goal of this work is to cre-
ate an automated process for 3D shape completion using a supervised deep learning-based
method. The proposed solution is based on the prior work of DiffComplete, which uses
a diffusion-based model operating over distance field representation and handles the task
as a generative problem. The results showed a high capability of this model with an 81.6
IoU metric on the custom-prepared test set of furniture objects. The model also demon-
strates strong generalization capabilities on shapes that are out of the training distribution
(average 70.9 IoU metric). Apart from more detailed data-centric experiments, this work
further extends current state-of-the-art in two ways. Firstly, it addresses the most crucial
shortcoming, expensive computation, by processing the input in a low-resolution domain.
Secondly, it utilizes user input (Region of Interest), which gives the user more control over
generation in ambiguous scenarios.

Abstrakt
Naskenované 3D modely často trpia chybami kvôli oklúzii, skenovacím nedostatkom alebo
neúplnosti samotného modelu. Cieľom tejto práce je vyvinúť automatizovaný proces na do-
plnenie chýbajúcich častí 3D tvarov prostredníctvom hlbokého učenia. Navrhované riešenie
vychádza z predchádzajúcej práce DiffComplete, ktorá využíva generatívny difúzny proces
na vyplnenie chýbajúcich časti 3D tvarov. Úloha sa takto vníma ako generatívny prob-
lém. Výsledky preukazujú vysokú účinnosť tohto modelu s IoU skóre dosahujúcim 81,6
na konkrétnej testovacej sade pozostávajúcej z tvarov nábytku. Model navyše úspešne gen-
eralizuje aj na tvary, ktoré nie sú zahrnuté v trénovacej sade, dosahujúc priemerné IoU
skóre 70,9. Práca okrem popisu dátovo orientovaných experimentov obohacuje súčasnú
problematiku vypĺňania 3D útvarov dvoma spôsobmi. Po prvé rieši najväčšiu limitáciu,
výpočetnú náročnosť, spracovaním vstupu v priestore s nízkym rozlíšením. Po druhé
využíva užívateľský vstup (vo forme oblasti záujmu), čo umožňuje užívateľovi lepšie ovládať
proces generácie v nejednoznačných situáciách.

Keywords
shape completion, geometric deep learning, generative models, 3D shapes, diffusion models,
DiffComplete, region of interest

Kľúčové slová
doplnenie 3D tvaru, hlboké neuronové siete, generatívne modely, 3D tvary, difúzne modely,
DiffComplete, oblasť záujmu

Reference
ZDRAVECKÝ, Peter. Generative Models for 3D Shape Completion. Brno, 2024. Master’s
thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Tibor Kubík

Rozšírený abstrakt

Úvod a cieľ práce

S narastajúcou dostupnosťou nástrojov, ktoré dokážu generovať 3D dáta z fyzických tvarov
rastie aj potreba riešiť limitácie sprevádzajúce tieto nástroje. Naskenovanému 3D objektu
môžu chýbať niektoré podstatné časti (respektíve obsahuje diery), ktoré nutno doplniť, čo
predstavuje jeden z kritických problémov 3D skenovania. Táto problematika sa nazýva
“vypĺňanie utvárov”. Existujúce metódy fungujú celkom dobre pri vypĺňaní malých oblastí
alebo rovných plôch s málo detailami. Ideálna metóda na vypĺňanie útvarov by mala byť
schopná zvládnuť aj väčšie chýbajúce oblasti a komplexnú geometriu, čo je bežný prípad
v reálnych situáciach.

V posledných rokoch dosahujú techniky hlbokého učenia výnimočné úspechy v rôznych
úlohách, ktoré sa týkajú analýzy 2D obrazových dát. To ukazuje, že ich schopnosť efektívne
extrahovať dôležité informácie z vstupných dát by mohla efektívne slúžiť na vývoj auto-
matických systémov, ktoré by spracovávali 3D polygonálne modely. Avšak aplikácia týchto
metód na 3D neeuklidovské dáta nie je jednoduchá, pretože vlastnosti polygonálnych mod-
elov sa výrazne líšia od vlastností pravidelne vzorkovaných obrázkov. Preto je nevyhnutné
prispôsobiť typické operácie, ako je konvolúcia, na nepravidelné povrchy týchto modelov.

Cieľom tejto práce je preskúmať techniky hlbokého učenia na analýzu 3D dát geo-
metricky reprezentovaných, ako polygonálne modely. Praktickým cieľom je ďalej návrh
a aplikovanie týchto metód na úlohu automatického doplnenia 3D tvarov (viz obr. 1).

(a) Vstup (b) Výstup (c) Originálny model

Obrázok 1: Príklad vstupu v podobe neúplného tvaru (a), vygenerovaného
výstupu z navrhovaného riešenia (b) a originálenho tvaru (c). Cieľom tejto metódy
je doplniť chýbajúce časti neuplného 3D tvaru.

Návrh riešenia

Navrhované riešenie využíva difúzny model s použitím reprezentácie uloženej v pravidel-
nej mriežke (truncated signed distance field). Úloha sa vníma, ako generatívny problém,
teda vytvorenie úplného tvaru z neúplného vstupu. Riešenie je založené na metóde Diff-
Complete [10]. Cieľom je vylepšiť nedostatky a preskúmať potenciál metódy DiffComplete.
Metóda navrhovaná v tejto práci je rozšírená o nový prístup, ktorý spočíva v spracovávaní
v priestore s nízkym rozlíšením. Výstupu sa potom zvýši rozlíšenie, aby sa dosiahla jem-
nejšia geometria s krajšími detailami. Spracovávanie v nízkom rozlíšení by zároveň malo

šetriť výpočetnými prostriedkami a znížiť čas inferencie. Dodatočné rozšírenia prezento-
vanej metódy umožňujú využiť užívateľský vstup vo forme Oblasti záujmu pre efektívnejšie
riadenie procesu vypĺňania. Takto možno napraviť veľkú časť zlyhaní základného riešenia
pri dopĺňaní chýbajúcich častí modelov.

Experimenty a dosiahnuté výsledky

V rámci výsledkov sa v oboch experimentálnych osiach potvrdil dobrý výkon predstavo-
vaného riešenia. Proces vypĺňania tvarov vykazuje pôsobivé výsledky. V rámci dátovej
sady (datasetu) s modelmi nábytku Objaverse dosahuje v priemere skóre prieniku nad zjed-
notením (IoU) s hodnotou 81,62, Chamferovu vzdialenosť (CD) 3,53, a priemerná absolútna
chyba (L1) 0,026.

Model navyše ukazuje robustnú schopnosť generalizovania. Na tvaroch mimo tréno-
vacej sady dosahuje priemerne 70,90 IoU skóre, 5,28 CD a 0,047 L1 skóre. Integráciou
užívateľského vstupu sa podstatne zjednodušil proces vypĺňania tvarov, čo viedlo k 84,7
IoU, zníženým hodnotám CD (2,86) a L1 (0,018) na testovacom datasete. Výsledky týka-
júce sa tvarov mimo trénovacieho rozloženia, priemerné skóre sú 76,81 IoU, 4,13 CD, 0,033
L1.

Ďalšie experimenty sa sústredili na vypĺňanie tvarov vo vysokom rozlíšení. V tejto
oblasti sa výrazne preukázali výpočetné nároky, obzvlášť pri veľkosti mriežky 64 × 64 × 64.
Napriek týmto prekážkam, základné riešenie stále dokázalo vypĺňať tvary, aj keď sa niekedy
dosiahli zašumené výsledky, kvôli neúplnej konvergencii počas trénovania modelu. L1
metrika v rámci Objaverse datasetu bola 0,058, čo indikuje dvojnásobnú chybovosť oproti
základnému modelu, ktorý spracovával nízke rozlíšenia.

Aby sa tieto nedostatky zmiernili, v experimentoch sa skúmali aj techniky založené
na super-rozlíšení a stratégia zahŕňajúca efektívne spracovávanie v nízkom rozlíšení. Ex-
periment so super-rozlíšením bol založený na prístupe využívajúcom dve neurónové siete, čo
malo za cieľ zjednodušiť konvergenciu a zvýšiť presnosť, avšak niekedy sa tu narazilo na šum
a nepresnosti. L1 chyba sa trochu znížila na 0,053, čo je ale stále dosť oproti výsledkom
v nízkom rozlíšení.

Efektívne spracovávanie v nízkom rozlíšení predstavuje nový prístup, ktorý znižuje ro-
zlíšenie vstupu pre spracovávanie a potom mu spätne zvyšuje rozlíšenie. Týmto sa dosiahli
hladšie a viac vizuálne pôsobivé výsledky, s L1 skóre o hodnote 0,032. Táto metóda však
má problém so zachovávaním jemných detailov a s generalizáciou do nových kategórií, čo
zdôrazňuje kritickosť diverzifikácie trénovacieho datasetu.

Z akademického hľadiska táto práca rozširuje základné princípy ustanovené v predošlom
výskume na DiffComplete modeli. Hlavne skúma detaily v rámci vypĺňania tvarov naprieč
rôznymi dátovými sadami a rozlíšeniami. Taktiež analyzuje vplyv užívateľského vstupu
vo forme špecifikovania oblasti záujmu, v rámci ktorej má model priorizovať, kde bude
dopĺňať. Ďalej popisuje výpočetnú náročnosť spojenú s vypĺňaním tvarov vo vysokom
rozlíšení. Práca aj navrhuje inovatívne prístupy, akými možno zmierňovať problémy spo-
jené s tvarmi s vysokým rozlíšením, ako napríklad techniky super-rozlíšenia a efektívne
spracovávanie v nízkom rozlíšení. Schopnosť vypĺňať 3D tvary má priame využitie v počí-
tačovej grafike, 3D modelovaní, rozšírenej realite (AR), a podobne. Zo zlepšenia v metó-
dach vypĺňania 3D tvarov môžu výrazne profitovať odvetvia, ktorým závisí na presných 3D
rekonštrukciách, ako sú zábavný priemysel, architektúra, medicína a ďalšie.

Generative Models for 3D Shape Completion

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Ing. Tibor Kubík. I have listed all the literary sources, publications
and other sources, which were used during the preparation of this thesis.

. .
Peter Zdravecký

May 3, 2024

Acknowledgements
I would like to thank my supervisor for his essential support in completing this work.
Computational resources were provided by the e-INFRA CZ project (ID:90254), supported
by the Ministry of Education, Youth and Sports of the Czech Republic.

Contents

1 Introduction 3

2 3D Data Representations and Deep Learning Connection 4
2.1 Polygonal Mesh . 5
2.2 Point Cloud . 5
2.3 Voxel Grid . 7
2.4 Truncated Signed Distance Field . 7
2.5 Multi-View Representation . 9
2.6 Neural Implicit Representation . 10

3 Operations on 3D Data and Processing 13
3.1 Spatial Transformations . 13
3.2 Boolean Operations . 14
3.3 Advanced Operations . 14

4 Neural 3D Shape Analysis Methods 18
4.1 3D Shapes Generation and Completion . 18
4.2 State-of-the-Art in 3D Shape Completion Methods 22

5 Proposed Solution for 3D Shape Completion using Deep Neural Networks 30
5.1 Problem Definition . 30
5.2 Dataset Preparation Pipeline: Smashing the Objects 31
5.3 Shape Completion Pipeline: Filling Holes via Diffusion Process 33

6 Implementation Details 39
6.1 Technologies . 39
6.2 Dataset Specifications . 39
6.3 Specification of Training Configurations . 44

7 Conducted Experiments and Achieved Results 46
7.1 Evaluation Metrics . 46
7.2 Evaluation Axis 1: Completion Ability of the Proposed Solution 47
7.3 Evaluation Axis 2: Focus on Higher Resolution Results 55
7.4 Post-Processing Enhancements . 59
7.5 Summary of Results . 60
7.6 Future Work . 62

8 Conclusion 64

1

Bibliography 65

A Contents of the Included Storage Media 73

B Poster 74

2

Chapter 1

Introduction

With the increasing accessibility of tools that generate 3D data from physical shapes, there
is a need for solutions to address the potential drawbacks these tools may present. One
of the critical issues is that the scanned 3D model may have missing sections that need
repair. The problem of filling the holes is called shape completion. The existing method
performs well for filling small areas or flat surfaces without extra details. The ideal shape
completion method should be able to handle larger missing areas and complex geometry,
which is usually the case for real-world shapes.

This work examines the application of deep learning techniques for the shape comple-
tion task. The proposed solution uses a diffusion-based model and handles the task as
a generative problem to create a complete shape from an incomplete one, using a TSDF
representation. The solution is based on the DiffComplete [10] method. The aim is to im-
prove the shortcomings and explore the potential capabilities of the DiffComplete method.
The method is further extended with a novel approach of processing in low-resolution space
followed by an upscaling process to obtain high-resolution results. Processing in a low-
resolution space should save computational resources and speed up inference time. The
additional enhancement incorporates user input in the form of a Region of Interest to more
effectively guide the completion process and rectify failure cases from the baseline solution.

The method was extensively evaluated on multiple datasets, including out of distribu-
tion sets. The effectiveness of the proposed solution was evaluated using three metrics:
intersection over union, Chamfer distance, and mean absolute error. The baseline solution
showed high shape completion capability, with an 81.6 IoU, CD 3.53, and L1 0.026 metric
score in the test dataset. The model also demonstrates strong generalization capabilities
on shapes that are not part of the training distribution (average 70.9 IoU, CD 5.28, and L1
0.047 metric score). Those scores are further improved by incorporating a Region of Inter-
est. Lastly, the strength of the proposed approach lies in its processing in a low-resolution
domain, which enhances the inference speed and reduces the computational demands, given
that diffusion models are challenging in this respect.

The text of this thesis is structured as follows. Chapter 2 presents the key aspects
of various 3D representations. Chapter 3 deals with operations used in a work with 3D
data. Then, Chapter 4 provides an overview of the literature addressing the analysis of 3D
shapes, followed by shape generation and completion, with a review of current approaches
for shape completion. The proposed methods are then presented in Chapter 5. Chapter 6
focuses on details related to implementation and datasets used, to facilitate the replication
of the work. The experiments and results are summarized in Chapter 7.

3

Chapter 2

3D Data Representations and
Deep Learning Connection

Today, 3D data are considered crucial across various domains, such as computer-aided
design (CAD), medical imaging, and industries emphasizing visualization, like the gaming
industry, animation, or cinema. 3D data can be derived from various sources, for instance,
through the digitization of real-world objects or by modeling using specialized software,
such as Blender. The discretization of the real-world shapes utilizing sensors is another
approach to obtain 3D shapes in digital form. However, this method may introduce noise
into the result data. Another approach that is used in medical imaging is to capture 3D
shapes of patients’ bodies (e.g., teeth) as multiple 2D images (slices).

Figure 2.1: Taxonomy of 3D representations. Visual illustration of organizing 3D
data representations into Euclidean and non-Euclidean structures.

There is no flawless 3D representation of the data without any constraints, indicat-
ing that every representation comes with its own set of uses, benefits, and drawbacks.
The representations can be categorized into Euclidean and non-Euclidean. Data points
in Euclidean representations are arranged following the principles of Euclidean geometry,
typically in a regular grid-like pattern. In contrast, non-Euclidean representations do not
adhere to regular grid structures, requiring more complex methods for processing. Ahmed
et al. [2] conducted a detailed review of the various 3D data representations. Figure 2.1 illus-
trates a classification of the 3D representation, highlighting the specified categories. Point
clouds and polygonal meshes are characterized by non-Euclidean traits. Conversely, voxel
grids, truncated signed distance fields, and multi-view representations fall under Euclidean
representations because of their regular data structure.

4

2.1 Polygonal Mesh

A polygonal mesh, denoted as M, is composed of vertices, edges, and faces that together
define the surface of a 3D object:

M = (V,E, F), (2.1)

where V denotes the set of vertices, E the set of edges, and F the set of faces. The set of
vertices V includes points within a 3D space, each distinguished by a specific coordinate,
represented as:

V = {vi ∈ R
3 | vi = (xi, yi, zi)}. (2.2)

Edges E are defined by pairs of vertices that connect to form the linear boundaries of the
faces of the mesh. An edge between the vertices vi and vj is denoted as:

E = {eij | eij = (vi, vj), vi, vj ∈ V }. (2.3)

The face set F is formed of sequences of edges that enclose parts of the surface of the mesh.
Each face fk is defined as:

F = {fk | fk = ei1i2 , ei2i3 , . . . , eimi1 , eij ∈ E}. (2.4)

For every face fk, there is a closed loop of edges eij , with each eij being a member of the
edge set E.

The connectivity of the mesh is demonstrated by the relationships among its vertices,
edges, and faces. These relationships are often represented through a connection list or
an adjacency matrix. At a local level, the geometry of the mesh reflects a segment of
Euclidean space. It adheres to traditional measures such as distance, angles, and flatness.
However, meshes exhibit non-Euclidean characteristics on a larger scale.

Mesh processing and analysis are often not ideal, mainly due to the non-uniform nature
of the mesh, which differs from the standardized grid layouts designed for traditional deep
learning frameworks. One of the most used approaches involves transforming 3D meshes
into a graph-based format. Mapping mesh vertices to graph vertices and their connec-
tions to edges allow one to use graph neural networks (GNNs) [73]. These networks enable
exploration of the structures and characteristics presented in the 3D data.

One significant advantage of this representation is its ability to provide precise control
over the geometry of shapes. This precision is crucial for creating detailed and precise
3D models, which are essential in medical imaging, architectural design, and video game
development. However, the complex structure of polygonal meshes poses significant compu-
tational challenges, especially for models with intricate details. Storage and manipulation
of such models require considerable resources. Furthermore, the irregular nature of the
meshes complicates the application of conventional machine learning techniques, as men-
tioned before.

2.2 Point Cloud

Mathematically, a point cloud P is defined as a set of points pi, where each point is a vector
in a 3D space, potentially enhanced with additional attributes:

P = {pi | pi ∈ R
3+}. (2.5)

5

Each point pi is represented by its coordinates (xi, yi, zi), indicating its position in the 3D
space, along with optional attributes such as normals (nxi, nyi, nzi) and colors (ri, gi, bi):

pi = (xi, yi, zi, nxi, nyi, nzi, ri, gi, bi, . . .). (2.6)

Point clouds lack connectivity or adjacency information between points, making them
less suitable for global analyses in Euclidean space. However, on a local scale, subsets
of point clouds can exhibit Euclidean characteristics. These subsets, known as neighbor-
hoods, are identified through various approaches, such as fixed-radius searches and k-nearest
neighbors (k-NN), among others (see Figure 2.2). In a fixed-radius search, the neighbor-
hood of a point encompasses all points within a certain distance. This approach establishes
a Euclidean space where distance metrics are consistent, even with transformations like
translations and rotations. In contrast, the k-NN method determines the neighborhood of
a point by the k closest points, regardless of their absolute distances. This provides the
flexibility to adjust to various point densities.

(a) K-nearest neighbor (b) Ball query search (c) Octant search

Figure 2.2: Illustration of various point cloud neighborhoods. The resulting points
that form the neighborhood are determined by the algorithm employed. The ball query
searching algorithm selects points randomly from a spherical area. Recreated from [4].

Point clouds are often produced by scanning physical objects with a sampling density
sufficient to preserve the object’s geometry. However, scanning equipment can introduce
inaccuracies and noise into the collected data. As a result, additional processing of the point
clouds is required to derive valuable information appropriate for further machine learning
tasks. Operations such as outlier removal, smoothing, and normal vector calculation require
significant computational effort and may not consistently produce accurate results.

This 3D data representation has become a viable choice for modern machine learning
solutions. Algorithms tailored for point clouds often aim to capture intricate geometric
features within a broader context, maintaining robustness against inherent irregularities.
Techniques such as PointNet [51] and its subsequent improvement, PointNet++ [52], illus-
trate this strategy by directly processing point cloud data. Those techniques are used to
identify essential features of both local groupings and the overall configuration.

6

2.3 Voxel Grid

The voxel grid representation divides the 3D space into a three-dimensional array of voxels,
where each voxel is the smallest box-shaped unit that can distinguish parts of a 3D object.
Mathematically, a voxel grid is a 3D scalar field G defined on a discrete domain. Here, each
voxel vijk corresponds to a value at the discrete coordinates (i, j, k) within the grid:

G = {vijk | vijk ∈ R, (i, j, k) ∈ Z
3+, 0 ≤ i < I, 0 ≤ j < J, 0 ≤ k < K}. (2.7)

Every voxel vijk is linked to a specific 3D space position, usually defined by the center point
of the voxel. It can contain various types of information, color, density, or occupancy in
binary voxel grid (d ∈ {0, 1}), for example. I, J and K represent the resolution of the
volume grid and vijk can be denoted as:

vijk = (xi, yj , zk, αijk, . . .), (2.8)

where (xi, yj , zk) denotes the 3D position of the voxel and αijk includes additional attributes
such as density or color.

The structured nature of voxel grids makes them compatible with conventional convo-
lution operations, extended from 2D to 3D, for processing volumetric data. In this context,
convolution involves moving a 3D kernel across the input grid to create feature maps that
reflect spatial hierarchies, for 3D tasks such as object detection, segmentation, and classi-
fication. The 3D convolution operation for a voxel vijk is mathematically given by:

f(vijk) =
A
∑

a=−A

B
∑

b=−B

C
∑

c=−C

wabc · vi+a,j+b,k+c, (2.9)

where wabc are the weights of the 3D kernel, with A, B, and C indicating the size of the
kernel.

The strength of voxel-based representation lies in the ability to encapsulate a 3D object
within a spatial grid. Certain operations, such as calculating the volume or determining the
intersection with other objects, are much simpler. Nevertheless, voxel-based representations
are limited by high memory demands and computational costs as a result of the three-
dimensional nature of the data. This highlights the importance of efficient data structures
such as octree or methods like sparse convolutions. Such approaches can help mitigate
computational and memory costs and manage volumetric data on a large scale in practical
applications.

2.4 Truncated Signed Distance Field

Curless et al. [11] introduced the Signed Distance Function (SDF) to reconstruct 3D shapes
from range images, leading to the Truncated Signed Distance Field (TSDF) concept. SDF
is defined as a continuous function. The signed distance reflects how far a point is from
the nearest object’s surface; it is positive in front of an object (free space) and negative
behind it (inside the object). TSDF is presented as a discretization of the signed distances
to a volumetric grid. As an example, the following text describes the method of obtaining
TSDF from range images [68].

The method uses a grid of voxels, each with a center x and two main attributes: the
signed distance sdfi(x) and the weight wi(x). This signed distance is calculated as follows:

7

sdfi(x) = depthi(pic(x))− camz(x), (2.10)

where depthi(pic(x)) measures the depth from the camera to the object surface along the
viewing ray intersecting x, while camz(x) is the distance from the voxel to the camera along
the optical axis, see Figure 2.3. To optimize computational efficiency and focus resources on
areas crucial for representation, the SDF values are then truncated to a limit ±t prioritizing
regions near the object’s surface and disregarding distant areas, leading to tsdfi(x):

tsdfi(x) = max

(

−1,min

(

1,
sdfi(x)

t

))

. (2.11)

Figure 2.3: Example of a 2D Truncated Signed Distance Field. Figure shows
a solid object depicted as a green grid, a camera with its field of view, an optical axis, and
a ray, all highlighted in blue. The TSDF grid is shown, where unseen voxels appear white,
and other voxels are distinguished by the color bar. The signed distance value of a voxel x
is established based on the depth of the corresponding surface point p and the distance of
the voxel to the camera, denoted as camz(x). Recreated from [68].

The TSDF is constructed by integrating multiple observations into one model to enhance
accuracy, combining data from various points of view through a weighted average, iteratively
updated for each voxel:

TSDFi(x) =
Wi−1(x)TSDFi−1(x) + wi(x)tsdfi(x)

Wi−1(x) + wi(x)
,

Wi(x) = Wi−1(x) + wi(x).

(2.12)

where TSDFi(x) is the updated TSDF value in voxel x after considering the i-th obser-
vation, combining the previous TSDF value TSDFi−1(x) weighted by Wi−1(x), with the
new observation tsdfi(x) weighted by wi(x). Wi(x) updates the total weight by adding the
weight of the new observation, ensuring that each measurement contributes according to

8

its reliability. This iterative process allows for a dynamic and accurate representation of
the 3D shape, continuously refining the model as new data are acquired.

Truncated Signed Distance Field is distinguished by the precision in capturing the con-
tours and features of objects within a volumetric space. This precision is particularly
advantageous for deep learning tasks that require high spatial accuracy. However, similar
to the challenges encountered with voxel-based representation, TSDF has problems with
too much memory consumption and the computational effort needed to process a three-
dimensional grid. For further processing or visualization, volumetric representations are
reconstructed into mesh representations using isosurface extraction at the zero-level set.
Methods such as Marching Cubes (MC) are traditionally employed for this purpose, but
nowadays, techniques that utilize machine learning have been developed to perform this
reconstruction, such as Neural Dual Contouring (NDC) [8]. An example of a reconstructed
3D shape, using the Marching Cubes [40] algorithm, can be found in Figure 2.4.

Figure 2.4: Example of a sofa 3D model represented as TSDF in three-
dimensional space, utilizing the 64 × 64 × 64 grid. The signed distance field value is
indicated by the color of each voxel, with transparent cells representing empty spaces and
solid cells indicating the object’s inside for clarity. On the right is a 3D mesh reconstructed
using Marching cubes.

2.5 Multi-View Representation

Multi-view representation enhances the capture of three-dimensional shape data by merging
multiple 2D images or views from various viewpoints, as illustrated in Figure 2.5. Multi-
view representation offers a comprehensive understanding of the object’s structure. This
is particularly beneficial for tasks that require fine-grained details and textures, such as
object recognition, 3D reconstruction, and photogrammetry.

Mathematically, multi-view representation MV is defined as a set of 2D images denoted
as I1, I2, . . . , Im, with each image Ii representing a unique perspective of the 3D object:

MV = {Ii | Ii ∈ R
2; i = 1, 2, . . . ,m}. (2.13)

Each image Ii in MV is associated with a specific camera position and orientation, defined
by extrinsic parameters that position the camera in the 3D space and intrinsic parameters
that describe the camera’s internal characteristics, such as focal length or lens distortion:

Ii = CaptureImage(O,Ci, Pi), (2.14)

9

where O represents the 3D object, Ci denotes the camera’s extrinsic parameters for view
at the index i, and Pi describes the camera’s intrinsic parameters.

Multi-view representation is suitable for the application of powerful 2D image processing
techniques, such as Convolutional Neural Networks (CNNs), to analyze 3D objects. Stan-
dard CNN architectures can extract features from each view, which are then aggregated to
form a cohesive representation of the 3D object:

Figure 2.5: Multi-view representation of a 3D model. Notably, the top and bottom
views of the model are missing, highlighting a potential limitation of Multi-view represen-
tation that requires addressing.

F3D = Aggregate(F (I1), F (I2), . . . , F (Im)), (2.15)

where F (Ii) denotes the features extracted from view with index i and Aggregate(·) repre-
sents a function that combines these features into a unified 3D representation.

Despite its advantages, Multi-view representation faces challenges related to occlusion,
where parts of the object might be hidden in some (or in the worst case, all) views. To
address this, many views are required for accurate representation of complex objects. The
computational cost can increase significantly with the number of views, which requires
efficient processing techniques to manage the resources effectively.

2.6 Neural Implicit Representation

Neural Implicit Representation offers a novel approach to 3D data representation, leveraging
deep learning methods to encode 3D shapes in the weights of neural networks, instead of

10

explicitly storing geometric details, such as vertices or voxel values. These representations
implicitly define the 3D surface or volume through a continuous function learned by a neural
network. Mathematically, a neural implicit function F for a 3D shape can be described as:

F : R3 × θ → R, F(x, y, z; θ) = s, (2.16)

where (x, y, z) are the coordinates in a 3D space, θ represent the parameters of the neural
network, and a value s is the output of the network. This value typically indicates the
presence of the surface at that point. The most used approach within neural implicit
representations is the use of Signed Distance Functions or Occupancy Fields, where the
network outputs either the signed distance (see Figure 2.6) to the nearest surface or a binary
occupancy value indicating whether a point is inside or outside the object:

SDF(x, y, z; θ) = d, Occupancy(x, y, z; θ) = o, (2.17)

where d is the signed distance and o ∈ {0, 1} is the occupancy value.

Figure 2.6: Example of neural implicit representation. Figure shows a neural
network that takes a position input x, y, z ∈ R

3 and produces a scalar output in the form
of a Signed Distance Function (SDF). Figure recreated from [3].

Training neural networks to serve as implicit representations involves optimizing the
network parameters θ so that the neural function F accurately reflects the approximation
of the 3D shape, represented as a mathematically defined implicit function. This is typically
achieved by minimizing a loss function that measures the difference between the predicted
and actual values (e.g., distance or occupancy) at various points in space.

The flexibility of neural implicit representations allows for high-resolution details with-
out being bound to a fixed grid or topology, enabling smooth and continuous surfaces to
be modeled with arbitrary complexity. Complex shapes, high-detail textures, and seamless
transitions between features can take advantage of this approach.

In practical applications, Neural Implicit Representations are frequently integrated with
coordinate-based neural networks and multilevel feature encoding. These techniques help
with the management of large-scale data and intricate geometries. As illustrated in Fig-
ure 2.7, an object can be captured in various representations and then encoded as a neural

11

Figure 2.7: Neural implicit representation in latent space. The representation
unify the basic representations by trying to encode them into one latent vector that can be
used as input to the deep neural network. Figure recreated from [13].

implicit representation. Subsequently, a decoder transforms this into a latent vector suitable
for downstream tasks such as classification, segmentation, and more.

Despite their advantages, implicit neural representations can be computationally inten-
sive during training and require careful hyperparameter tuning. Moreover, the black-box
nature of neural networks can sometimes lead to unpredictable behaviors or artifacts in
captured shapes.

12

Chapter 3

Operations on 3D Data and
Processing

Choosing the right format for various 3D data types and specific application needs is crucial.
To efficiently manage these data, effective tools and methods are necessary. These methods
include basic operations such as translation, rotation, and scaling. Additional advanced
methods can rectify any shortcomings that may have arisen during the data generation
process. For example, the scanning method can introduce noise into the model. The
following sections present a selection of essential techniques necessary for understanding
this thesis.

3.1 Spatial Transformations

The three primary transformations used to manipulate 3D data – translation, rotation, and
scaling – are illustrated in Figure 3.1. Transformations are applied through matrices and
matrix multiplication enables combining multiple transformations into a single matrix op-
eration.

Translation moves a mesh model within the 3D space R
3, using the translation matrix

T. Rotation rotates the model around an axis, performed with the rotation matrix Rz(θ).
Scaling changes the size of the mesh model using the scaling matrix S. All matrices are
presented in Equation 3.1.

T =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

,Rz(θ) =

cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

,S =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

. (3.1)

Basic 3D transformations are also used outside of geometric manipulation. In data
augmentation, they can be utilized to create various orientations and sizes, which in turn
help improve the generalization capability of learning frameworks. Another use case of 3D
transformations is data normalization. Models can be aligned to their origin point and
models’ size can be normalized by scaling to a unit sphere. This normalization unifies the
coordinate system for all shapes in datasets and enables algorithms to focus on the object’s
shape rather than its position or size, improving feature detection and model precision.

13

Translate Rotate Scale

Figure 3.1: Visualization of standard affine 3D transformations. Figure shows
an example of three spatial transformations on a 3D cube model: translation, rotation, and
scale.

3.2 Boolean Operations

Boolean operations on 3D shapes are important in computational geometry and Construc-
tive Solid Geometry (CSG) for creating and modifying 3D shapes using set-theory princi-
ples. Landier et al. [36] developed robust solutions for polygonal meshes to maintain the
integrity of the mesh structure during these operations. To visually understand Boolean
operations on 3D shapes, see Figure 3.2.

The task of performing Boolean operations on polygons is complex due to the need
to preserve the manifold characteristics of the mesh [55]. These operations may often
fail to execute due to an inconsistent or inadequate mesh topology. However, another
representation offers an easier solution for Boolean operations, such as converting a mesh
to a volumetric representation and applying per-voxel boolean operations. The following
math definitions are formulated on binary voxel grids.

The union of two meshes combines their geometries into a single mesh. When used on
polygonal meshes, union algorithms carefully combine vertices, edges, and faces to maintain
the integrity of the initial shapes in the resulting mesh. This process aims to avoid creating
non-manifold edges or faces that overlap. Union operation is described mathematically as
follows:

A ∪ B = {x | x ∈ A ∨ x ∈ B}. (3.2)

The intersection creates a mesh from the shared volume between two or more meshes.
Algorithms for this type of operation carefully calculate the intersecting region and con-
struct a mesh that accurately represents the overlap, while maintaining the topological
consistency. Here is a mathematical definition of an intersection:

A ∩ B = {x | x ∈ A ∧ x ∈ B}. (3.3)

The difference subtracts one mesh from another, removing the subtracted volume.
Algorithms for polygonal meshes carry out this process by removing the intersecting areas
and correcting any irregularities in the final mesh, such as holes or isolated vertices, to
ensure a coherent and functional mesh.

A \ B = {x | x ∈ A ∧ x /∈ B}. (3.4)

3.3 Advanced Operations

In addition to the fundamental transformations employed for spatial manipulation of 3D
data and Boolean operations used for combining or differentiating shapes, there are also

14

Mc Ms

Mc ∩Ms Mc ∪Ms Mc \Ms Ms \Mc

Figure 3.2: Visual examples of Boolean operations. From left to right, operations
are: intersection, union, and two differences. Figure recreated from PyMesh documentation
https://pymesh.readthedocs.io/en/latest/mesh_boolean.html.

more complex algorithms. This section will highlight and explain some algorithms partic-
ularly relevant to this work.

3.3.1 Surface Smoothing

Surface smoothing is a procedure in 3D modeling that seeks to improve models’ visual and
physical characteristics by reducing their surface noise and imperfections. This process has
applications in producing attractive graphics in digital media, generating accurate models
for scientific simulations, preparing models for 3D printing, etc.

Laplacian Smoothing

One of the most basic techniques for surface smoothing is Laplacian smoothing [18]. It
iteratively modifies the position of each vertex based on the average positions of its neigh-
boring vertices (see Figure 3.3), effectively distributing the vertices more uniformly across
the surface. The operation follows the following equation:

v
q+1
i =

1

N

N
∑

j=1

v
q
j , (3.5)

where v
q+1
i denotes the new position of vertex i after the smoothing iteration q+1, N rep-

resents the number of neighboring vertices, and v
q
j is the position of neighboring vertex j in

the current iteration q. Figure 3.4 demonstrates Laplacian smoothing on a 3D model of the
Stanford bunny. Despite its simplicity and computational efficiency, Laplacian smoothing
can lead to volume reduction and loss of detail. Enhanced methods such as the improved
Laplacian smoothing proposed by Vollmer et al. [63] aim to preserve volume and features
by repositioning vertices towards their original locations post-smoothing.

To address the limitations of Laplacian smoothing and meet specific requirements, var-
ious advanced techniques have been developed:

15

https://pymesh.readthedocs.io/en/latest/mesh_boolean.html

Figure 3.3: Example of mesh smoothing using Laplacian smoothing. Figure
shows the vertex that is adjusted based on the centers of the neighbors. Figure recreated
from [74].

.

Noisy Smoothed

Figure 3.4: Example of Laplacian smoothing on noisy mesh. The smoothed version
of the Stanford Bunny was obtained by 3 iterations of the smoothing algorithm.

• Bilateral Smoothing: Considers both the spatial separation and the difference in
intensity, aiming to maintain edges while decreasing noise.

• Taubin Smoothing: Involves a series of iterations that switch between smooth-
ing and shrinking steps to address the volume reduction that occurs with Laplacian
smoothing.

• Humphrey’s Classes Smoothing: Combines Laplacian smoothing with curvature-
based optimization to better retain geometric characteristics.

16

3.3.2 Hole Filling

Hole filling is used in 3D processing to repair and reconstruct incompletely formed regions,
commonly called ”holes“ in mesh structures [26] (see Figure 3.5).

It is vital to maintain the completeness of 3D models, especially those created from
real-world data collection methods that might have gaps due to occlusion or scanning
constraints. Various algorithms [16, 86] exist to address the challenge of hole filling, with
strategies ranging from simple triangulation to more sophisticated methods that consider
the curvature and topology of the surrounding mesh:

• Triangulation Based: Fills holes by creating new faces within the gap, typically
employing methods such as Delaunay triangulation to minimize the creation of skinny
or poorly shaped triangles.

• Geometry Based: Analyze the geometric features surrounding the hole to produce
a fill that smoothly continues the existing curvature and surface normals, leading to
a more visually coherent result.

• Patch Based: Use patches from other parts of the mesh or from a library of shapes to
cover the hole in a way that matches the surrounding geometry as closely as possible.

These methods are effective for filling small holes, however, they are ineffective when
dealing with larger missing parts of a model. As a result, this thesis seeks to create a ma-
chine learning approach that surpasses traditional methods and is suitable for larger-scale
scenarios, while adequately maintaining the mesh features.

Reference Hole Filled

Figure 3.5: Example of mesh hole filling. Given mesh M with missing geometry
(middle image), the goal of the algorithms is to propose a patch (blue surface in rightmost
image) that fills the surface in an accurate way.

17

Chapter 4

Neural 3D Shape Analysis
Methods

Within the context of deep learning for 3D shapes, various methodologies align with the
different types of 3D data representations. These are grouped into Euclidean methods,
involving volumetric and multi-view representations, and non-Euclidean methods, which
include point-based, edge-based, face-based, and graph approaches. An illustration of the
taxonomy and the reference methods can be found in Figure 4.1. To dive deeper into
the deep learning approach, refer to a study on deep geometry learning conducted by
Yun et al. [75].

ShapeNet [71]
O-CNN [65]
OctNet [56]

Volumetric

MV-CNN [60]
MV-RNN [37]
MLVCNN [32]

Multi-view

Euclidean methods

PCT [25]
PointNet [51]

PointNet++ [52]

Point rep.

GCNN [41]
MeshCNN [27]
MeshNet [17]

Mesh rep.

Non-Euclidean methods

Figure 4.1: Euclidean/non-Euclidean taxonomy of deep learning 3D shape anal-
ysis. It is important to note that this is not an exhaustive listing of all papers in the field,
but rather a curated collection of the most notable ones in each category.

4.1 3D Shapes Generation and Completion

This section explores the state-of-the-art complex approaches and advanced frameworks,
providing information on their capabilities and possible uses. The main focus is on advanced
methods that played a key role in expanding the capabilities of 3D shape generation and
completion. For example, point embeddings [45] and conditional generative adversarial
networks [82] allowed a more detailed generation of 3D point cloud shapes. On top of im-
proving the visual quality, these techniques also contribute to the overall geometric accuracy
of the generated models.

Another notable area of development is the hierarchical and part-based modeling ap-
proach. This method, as seen in studies such as the one by Li et al. [39], focuses on under-
standing and generating 3D shapes considering their constituent parts. This approach not

18

only aids in generating more realistic models, but also provides a deeper understanding of
the structural composition of complex shapes.

Research in the field of integration of implicit and explicit representations of shapes,
such as the work of Poursaeed et al. [50] demonstrates the potential of combining different
shape representations to achieve more comprehensive and detailed models.

Shape completion methods have also made significant progress. One notable advance-
ment is the use of deep neural networks, specifically transformer-based networks such
as the approach proposed by Yan et al. [79] or diffusion-based approaches proposed by
Chu et al. [10]. These methods have demonstrated improved efficiency and precision in
addressing the difficulties posed by incomplete data.

As the field advances, there is a growing emphasis on the development of not only
visually accurate but also functionally realistic models. Recent studies [42, 28] have explored
the integration of physical properties and realistic texture. These advances are crucial in
closing the gap between virtual 3D models and their real-world counterparts, enabling more
immersive and practical applications.

In the 3D shape generation and completion field, two main model types are commonly
employed: encoder-decoder models and generative models. These models offer distinct
advantages for each representation type, including mesh, point cloud, voxel, or implicit
representation, as indicated by numerous studies and papers used as references for the
models utilized. The taxonomy is illustrated in Figure 4.2.

Encoder-Decoder Based

Generative Based

Pixel2Mesh [64]
AtlasNet [24]

GGA – P2M [57]

Image2Mesh [49]
TM – Net [20]

Leverage2D [28]

Mesh Rep.

PSGN [15]
MRTNet [19]

FoldingNet [83]
ShapeFormer [79]

Latent – GAN [1]
PointFlow [80]
Pointgow [61]

WarpingGAN [62]

Point Cloud

PatchComplete [54]
MarrNet [69]
Pix2Vox [76]
Mem3D [81]

3D – GAN [70]
Text2Shape [7]
VoxelNet [77]
AutoSDF [44]

Voxels Rep.

DeepSDF [48]
LIG [31]

D2IM – Net [38]

DiffComplete [10]
Hier 3D GAN [30]

IM-NET [9]

Implicit Rep.

Figure 4.2: Encoder – Decoder/Generative based taxonomy of deep learning 3D
shape generation and completion. It is important to note that this is not an exhaustive
listing of all papers in the field, but rather a collection of the most notable ones in each
category.

To better understand the progress and techniques of 3D shape completion and gener-
ation using deep learning, refer to Xu et al. [78]. The following sections are focused on
explaining the fundamental principles of diffusion-based generative models and Generative
Adversarial Networks (GANs).

19

4.1.1 Diffusion Models

Diffusion models have gained significant attention because of their ability to produce high-
quality and diverse samples. These models operate by gradually transforming a data distri-
bution by adding and then removing noise, effectively learning the data distribution during
this denoising process [6].

At their core, diffusion models consist of two main phases: the forward process and the
backward process. In the forward process, noise is incrementally added to the data until it
is transformed into a Gaussian distribution. The backward process, which is the generative
phase, involves learning to reverse this noise addition to recover the original data from the
noise. Section 4.2.1 describes the process in detail based on a specific paper working with
3D models.

Training and Objective Function

Training of diffusion models involves optimizing the parameters of the backward process.
Typically, this is done using a variant of the variational lower bound or other objectives
that measure the difference between the generated and the original data.

Variants of Diffusion Models

Several variations of Diffusion Models have been developed to enhance performance, address
specific challenges, or adapt the model to different types of data:

• Conditional Diffusion Models [84]: Incorporate conditioning information, allowing the
generation of data that adheres to specific conditions or attributes.

• Discrete Diffusion Models [59]: Adapted for data inherently discrete by nature, such
as text or categorical data.

• Continuous Diffusion Models [34]: Utilize continuous-time dynamics for a more flex-
ible and potentially more efficient diffusion process.

• Hybrid Models [35]: Combine elements of diffusion models with other generative ap-
proaches, such as variational autoencoders or generative adversarial networks, to lever-
age the strengths of each approach.

Despite their promising results, Diffusion Models face several challenges, including com-
putational efficiency while needing to balance the trade-off between sample quality and
diversity.

4.1.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [22] have revo-
lutionized the field of generative models, with their ability to generate realistic and high-
quality data. GANs consist of two competing neural network models: a generator G that
creates data samples and a discriminator D that evaluates them [21].

The foundation of GANs is a minimax game between the generator and the discrimina-
tor. The generator network G creates samples from the same distribution as the training
data. The discriminator network D tries to distinguish between the real and the fake data
produced by G. Through this adversarial process, G learns to produce more realistic data
and D becomes better at detecting fakes.

20

Training and Objective Function

The minimax game that forms the basis of GANs has the value function f(D,G) defined
as:

min
G

max
D

f(D,G) = Ex∼pdata(x)[logDθD(x)] + Ez∼pz(z)[log(1−DθD(GθG(z)))], (4.1)

where pdata represents the data distribution, pz denotes the noise distribution, x is a sam-
ple from the real data, z is a noise sample, θD and θG are the parameters for D and G
respectively. The discriminator D, parameterized by θD, aims to maximize the probability
of correctly classifying both real and fake data. The generator G, parameterized by θG,
aims to minimize the probability that D correctly classifies fake data as fake. Ideally, D
should output high probabilities for real data and low probabilities for data generated by
G. G tries to generate data that D will classify as real.

Training continues until a Nash equilibrium is reached, where D and G cannot improve
their strategies, given the other player’s strategy. This point is known as the saddle point
in the context of GANs.

Variants of GANs

GANs have been extended into various architectures to improve the basic GAN structure
or address specific issues. Even in the generative process or to improve certain aspects of
the generation, like image resolution, diversity, or conditional generation. Some noteworthy
variants include:

• Deep Convolutional GANs (DCGANs) [53]: Particularly useful for image data, DC-
GANs introduce convolutional layers to the generator and the discriminator, providing
more robust feature learning and generation capabilities.

• Conditional GANs (CGANs) [43]: Incorporate additional inputs that condition the
generation process, allowing for the generation of targeted data. Additional inputs
can include class labels or types of images, allowing the creation of specific categories
of images.

• Cycle GANs [87]: Designed for image-to-image translation tasks without paired ex-
amples, using a cycle consistency loss to learn the translation.

• StackGANs (SGAN) [29]: Use a multistage generation process for high-resolution
image synthesis. A rough image sketch is created first, then refined in the following
stages to produce high-resolution details.

• Progressive Growing GANs (PGGANs) [33]: Start by generating low-resolution im-
ages and progressively increase resolution by adding layers to the networks. Allow for
better training stability and higher-quality results.

Despite their achievements, GAN training is frequently difficult due to problems such
as mode collapse, vanishing gradients, and lack of convergence. One of the recent innova-
tions in GANs is auxiliary classifier GANs (AC-GANs) [47]. AC-GANs enhance the quality
and diversity of the samples produced by integrating an additional classifier into the dis-
criminator. Similarly, self-attention GANs employ attention mechanisms to capture global
dependencies within the data.

21

4.2 State-of-the-Art in 3D Shape Completion Methods

The following section outlines the state-of-the-art approaches used for the task of shape
completion.

4.2.1 DiffComplete

Chu et al. [10] introduced DiffComplete, a diffusion-based approach to 3D shape com-
pletion on range scans represented by implicit shape representation. It balances realism,
multi-modality, and high accuracy, distinguishing itself from previous deterministic and
probabilistic approaches. Important advances include a hierarchical feature aggregation
mechanism for injecting spatially consistent conditional features and an occupancy-aware
fusion strategy for handling multiple incomplete shapes. This approach achieves state-of-
the-art performance on extensive benchmarks, substantially improving completion accuracy
and quality. DiffComplete exhibits strong adaptability to objects from unseen classes, elim-
inating the need to retrain the model for different applications. This method will be further
discussed later, as it is the main building block of this thesis.

Dataset and Problem Formulation

This study focused on generating training data by creating incomplete 3D scans from depth
frames. A truncated signed distance field was utilized in a volumetric grid to represent
incomplete scans. To represent ground-truth shapes, a truncated unsigned distance field
(TUDF) was used because of the high number of open meshes in the dataset.

Two volume representations are presented: an incomplete scan denoted c, and a com-
plete 3D shape denoted as x0, both utilized in the learning phase. During inference, only c
is provided along with xT , which is generated from the standard Gaussian distribution. The
objective is to generate the complete shape x0 approaching the shape completion problem
as a generation problem, using the information from the incomplete scan. The task uses
the probabilistic diffusion model, which includes a forward and backward process.

• In the forward process q (x0:T), Gaussian noise is gradually added to obscure the
ground-truth shape x0, into a random noise volume xT where T is the total number
of time stamps.

• The backward process pθ (x0:T , c) utilizes a shape completion network, with learned
parameters θ, to iteratively remove noise from the noise volume xT .

Since forward and backward processes are controlled by a discrete-time Markov chain
across time steps {0, . . . T}, the Gaussian transition probabilities they follow can be ex-
pressed as shown in Equation 4.2 and Equation 4.3:

q (x0:T) = q (x0)
T
∏

t=1

q (xt | xt−1) , q (xt | xt−1) := N
(

√

1− βtxt−1, βtI
)

, (4.2)

pθ (x0:T , c) = p (xT)
T
∏

t=1

pθ (xt−1 | xt, c) , pθ (xt−1 | xt) := N
(

µθ (xt, t, c) , σ
2
t I
)

. (4.3)

22

In Equation 4.2, βt represents a scalar value within the range [0, 1] that determines the
variance schedule, effectively controlling the level of noise introduced at each step t of the
process. For Equation 4.3, p (xT) denotes a Gaussian prior at a specific time stamp t, where
µθ represents the mean predicted by the network. Furthermore, σ2

t in this equation refers
to the variance. The N (0, I) denotes a unit Gaussian distribution.

There is a simplification in which the prediction µθ(xt, t, c) is altered to predict εθ(xt, t, c).
This new prediction aims to approximate the noise introduced to corrupt xt−1 in the forward
process, and the variable σt is substituted by the pre-defined βt. The training objective
for this simplified approach is shown in Equation 4.4. To maximize the probability of
generation pθ (x0) (to obtain the original shape), the mean square error loss function is
used:

argmin
θ

Et,x0,ε,c

[

‖ε− εθ (xt, t, c)‖
2
]

, ε ∈ N (0, I), (4.4)

where ε is the noise applied to corrupt xt into xt+1, and εθ is the noise predicted by the
shape completion network.

Shape Completion Network Overview

To condition the generation process, the technique proposed by ControlNet [85] was used.
This involves encoding using separate branches with identical network structures, but with-
out sharing parameters. Complete and incomplete shapes are represented in multiresolu-
tion 3D volume space, preserving spatial structures. Adding the feature volumes from both
branches achieves a cost-effective and spatially consistent feature aggregation. This method
avoids the computational expenses of more complex techniques, like cross-attention.

Network Architecture Details

The network architecture (see Figure 4.3) used employs a dual branch strategy, consisting
of one branch to handle complete shapes and another branch to handle incomplete shapes.

• The primary branch, derived from the 3D U-Net [46], is used for improved diffusion.
It takes as input a corrupted complete shape xt. This branch consists of five phases:

1. projection into a higher-dimensional space,

2. encoding and downsampling,

3. integration of non-local information using a middle block with a self-attention
layer,

4. upsampling to restore the feature volume to the original size,

5. and finally, projection to the original dimensional space.

• The secondary branch processes the incomplete shapes c and mirrors the structure of
the primary branch. This branch focuses on efficient feature extraction and utilizes
a projection layer after each encoder/middle block to forward multiscale features to
the primary branch’s decoder blocks.

Furthermore, incorporating time-conditioned diffusion models enhances the network’s
capabilities by converting the time step into an embedding using two MLPs. To effectively
merge features of complete and incomplete shapes, the network implements hierarchical

23

feature aggregation across multiple levels. Before feature aggregation, projection layers
align the shape distributions, before combining them with the control branch. Adjusting
the level of the network at which the features are aggregated can influence the balance
between the precision of the completion and the multi-modality of the results.

…

Incomplete scan(s)

!!"#"$ %$ &'

Encoder

block (
… Middle

block

Decoder

block (

)#"#"'

*#
$"#"'

… …

… Encoder

block (
… Middle

block

Projection

layer (
)%"%'

…

*%
$"+'

Complete shape "#& , #"'

-$*%
$"+'

Occupancy-aware fusion

! . /"0$ 1'

2!

Control branch

Main branch

…

!!

Binarization

Pool & Norm

MLP

!!""
!#$#% !!""

!#$$%

!"

Binarization

Pool & Norm

&# &$

&#
! &$

!

Figure 4.3: Illustration of the network architecture designed for 3D shape pro-
cessing, featuring a main and a control branch. The main branch, a 3D U-Net struc-
ture, handles corrupted complete shapes by initially projecting them into a high-dimensional
space, followed by progressive encoding, non-local information integration through self-
attention, and subsequent upsampling. At the end, the output is projected back to match
the input dimension. The control branch processes incomplete scans by extracting multi-
scale features without the upsampling part typically required, instead using a projection
layer to pass these features to the main branch. Adapted from [10].

Multiple Incomplete Scans as Inputs

The network has the option to handle multiple incomplete scans simultaneously, enhancing
the geometric data for more precise shape completion and making it more suitable for cases
where a single scan may not capture the object completely. A new proposed method is used
to effectively merge the features from these scans, giving priority to the accuracy of the
feature fusion process by aligning the partial shapes initially and using an occupancy-aware
technique in the feature space. For a more detailed explanation of this method, refer to the
comprehensive explanations provided in the DiffComplete paper.

Training and Inference

The DiffComplete network training process starts with a single incomplete scan as a condi-
tional input. In this initial phase, all network parameters, except the MLP layer responsible
for occupancy-based fusion, are trained to achieve the objective described in Equation 4.4.
Once the network reaches convergence, the parameters are kept fixed and the MLP layer
is fine-tuned by using multiple incomplete scans to improve its performance. To perform
inference, an initial point xT is created by generating a 3D noise volume from a standard
Gaussian distribution. The network then reconstructs the complete shape x0 from xT in
iterative steps T , taking into account partial scans c as conditions.

24

4.2.2 PatchComplete

Rao et al. [54] introduced PatchComplete, a novel approach to 3D shape completion.
The method leverages multiresolution patch priors for reconstructing complete shapes from
partial shapes, even for unseen categories. Unlike traditional methods that rely on category-
specific learning, PatchComplete focuses on learning generalized shape priors at the patch
level, exploiting the commonalities among different object parts across categories. Learning
generalized shapes is motivated by the observation that local geometric structures, such
as chair legs or table surfaces, are often shared between different categories of objects.
An illustration of the PatchComplete process can be seen in Figure 4.4.

Figure 4.4: Illustration of the multi-resolution learning strategy employed by
PatchComplete. The process begins with an input SDF being encoded, which is then used
as an input into to attention mechanism together with patch prior encodings to generate
a weighted encoding that best matches the input. This is followed by a multi-resolution
decoding phase that fuses information across different scales to produce a completed SDF.
Finally, the completed SDF is converted into a mesh. Adapted from [54].

Learning Local Patch-Based Shape Priors

Recognizing that local structures can vary in size, PatchComplete learns patch priors at
different resolutions (see Figure 4.5). This multi-resolution approach allows for the effective
reconstruction of complete shapes by fusing priors across scales, thereby capturing both
global shapes and finer details. The fusion process is guided by attention scores that
determine the relevance of each prior patch to the input, enabling a coherent assembly of
the final shape.

Training

The model is based on 3D convolutional encoders for input scans and patch priors and
is trained using a reconstruction loss `1. The training process involves two main phases:
learning the patch priors and then learning to fuse multi-resolution priors for shape com-
pletion. The model is trained on a mixture of synthetic and real-world data to enhance
robustness and generalizability.

25

Figure 4.5: Visualization of PatchComplete levering the concept of transfer-
able knowledge across different categories for 3D shape completion. During the
training phase, on the left, a variety of objects from seen categories are used to establish
learnable multi-resolution shape priors. These priors consist of different resolutions: 83

patch priors and 43 patch priors, to capture the geometry at varying scales. On the right,
PatchComplete is tested on novel categories that are not included in the training set. The
sequence demonstrates the original incomplete input, the reconstruction made by Patch-
Complete, and the ground truth for direct comparison. Adapted from [54].

4.2.3 3D-EPN

Dai et al. [12] introduce a novel approach to 3D shape completion, named 3D-Encoder-
Predictor Network (3D-EPN). The approach innovatively integrates volumetric deep neural
networks with 3D shape synthesis techniques. This method advances by inferring not only
complete shapes from partial 3D scans at a low resolution but also by enhancing the inferred
shapes with high-resolution details. Through a multi-resolution 3D shape synthesis process,
leveraging a comprehensive shape database. The illustration of the process overview is
shown in Figure 4.6.

Method Overview

The 3D-EPN framework distinguishes itself through its two-phase strategic process. Ini-
tially, it employs a 3D encoder-predictor architecture that effectively processes partial scans
to generate a coarse, yet complete, volumetric representation. The volumetric representa-
tion is then refined using a patch-based 3D shape synthesis method, which introduces
fine-scale details. Details are based on geometric constraints from similar shapes within
a dedicated database. This method ensures the preservation of the global structure while
incorporating local details. The network is trained on a mixture of synthetic and real-world
data to improve its robustness and generalizability.

26

Figure 4.6: Overview of the shape completion process for 3D-EPN. The process
begins with a partial 3D scan input, represented as a truncated signed distance field within
a 32 × 32 × 32 voxel grid. The scan is processed by a 3D shape classification network
before entering the 3D-EPN. The predicted distance field, which retains the resolution of
the 32 × 32 × 32 grid, serves as the basis for further refinement. The database priors
are then utilized in a multi-resolution 3D shape synthesis step, where the low-resolution
prediction is correlated with higher-resolution database models to enhance detail. The final
result is a completed shape represented as a distance field within a 128 × 128 × 128 voxel
grid, which has improved resolution and detail, reflecting the step of 3D-EPN prediction
and database-informed synthesis. Adapted from [12].

3D Encoder-Predictor Network Architecture

Central to the 3D-EPN framework is its network architecture (see Figure 4.7). The first
component is the 3D encoder, which compresses the input partial scan into a latent space.
This is achieved by processing the input through a series of 3D convolutional layers. The
transformation is followed by two fully connected layers, resulting in a condensed represen-
tation that includes both geometric data from the scan and semantic classifications from
a 3D-CNN shape classifier. The second component is the predictor network, which em-
ploys 3D up-convolutions to expand the latent representation into a full-sized output of the
estimated distance field values. Skip connections connect the corresponding layers of the
encoder and predictor. This allows for the transfer and integration of the local structure
from the input to the output, ensuring detailed and accurate shape predictions.

Figure 4.7: Visualization of the dual-component architecture of the 3D-EPN.
The combination of the 3D convolutions, fully connected layers, shape classifier network
and predictor network. Adapted from [12].

27

Shape Synthesis

The novelty of the 3D-EPN approach lies in its shape synthesis step, which significantly
increases the resolution and detail of the initial predicted shape. Correlating low-resolution
output with high-resolution models from a shape database. The method adeptly synthesizes
fine-scale details, ensuring that the resultant mesh accurately reflects the intended global
structure and local geometries. This process effectively leverages the amount of geometric
information available in the database to enrich the reconstructed shapes.

4.2.4 ShapeFormer

ShapeFormer, introduced by Yan et al. [79], is at the forefront of transformer-based net-
works, used for shape completion. Designed to compute the distribution of completions of
objects from partially and potentially noisy point clouds. Unlike previous methods, Shape-
Former takes advantage of a compact 3D representation known as a Vector Quantized Deep
Implicit Function (VQDIF). Representation effectively uses spatial sparsity to encapsulate
a 3D shape through a succinct sequence of discrete variables. The illustration of the process
overview is shown in Figure 4.8.

...

294 332 ... 1204

43 270 ... 822

VQDIF

Encoder
ShapeFormer

Sampling

294 332 ... ?

43 270 ... ?
0 1 V-2 V-1

...

Dictionary

VQDIF

Decoder...

Flatten

Quantized Features

Figure 4.8: Overview of the shape completion process for ShapeFormer. The
initial input, potentially a depth image represented as a point cloud P , is transformed by
the VQDIF Encoder into a sparse sequence of features. This sequence is then compactly
expressed as a series of 2-tuples, each tuple containing a spatial coordinate and a corre-
sponding feature index from a pre-defined dictionary. These tuples are denoted as SP and
visually differentiated by dashed lines. ShapeFormer operates on SP , predicting the likely
complete sequence SC by modeling the conditional probability distribution. Subsequent
autoregressive sampling facilitates the generation of a predicted complete sequence. The
VQDIF decoder then translates SC back into a dense form, generating the surface recon-
struction M . Adapted from [79].

Method overview

ShapeFormer addresses the challenge of 3D shape completion by harnessing the autore-
gressive capabilities of transformers to learn distributions over possible completions. The
method incorporates local codes within a sequence of discrete, vector-quantized features.
Thereby considerably reducing the size of the representation while retaining essential struc-
tural details.

28

Compact Sequence Encoding for 3D Shapes

VQDIF supports ShapeFormer by allowing the encoding of complex 3D shapes into compact
sequences. Each sequence element comprises a 2-tuple representing the position and content
of non-empty local features. Subsequently, transformers are applied to capture the global
structure and dependencies within these sequences. This compact representation drastically
reduces the sequence length from cubic to quadratic in terms of feature resolution, which
is a significant breakthrough for the application of generative models in the 3D domain.

29

Chapter 5

Proposed Solution for 3D Shape
Completion using Deep Neural
Networks

To address the problem of automatic shape completion, a deep learning-based supervised
solution is proposed. The first section of this chapter formally defines the problem to be
solved. Subsequently, the process of generating the dataset for the shape completion task
is introduced as a key element of supervised methods. After an in-depth explanation of the
process of obtaining the dataset, the proposed method is described in detail.

(a) Input (b) Output (c) Ground Truth

Figure 5.1: Example of an input in the form of an incomplete shape (a), gener-
ated output from the proposed solution (b), and a ground truth mesh (c). The
goal of this method is to complete the missing parts of the given shape.

5.1 Problem Definition

Given the 3D shape represented as a triangular mesh M = (V,E, F), which represents the
partial shape of a real-world object with one or more holes caused by incomplete scanning
or object breakage, the shape completion problem is formulated as follows:

F(MP) =MC , (5.1)

30

where the function F maps a partial (incomplete) shape denoted byMP to a complete shape
MC . The mapping process is designed to extend the sets V , E, F of the partial mesh with
elements that represent missing patches introduced by the function F . Mathematically,
this is formulated as:

VC = VP + Vfill,

EC = EP + Efill,

FC = FP + Ffill,

(5.2)

where fill represents the elements newly introduced to the partial shape by the completion
process.

The proposed solution operates with a TSDF representation within a voxel grid, utilizing
a conversion function from M to TSDF and vice versa.

5.2 Dataset Preparation Pipeline: Smashing the Objects

For the shape completion problem, the dataset should consist of partial (incomplete) shapes
P and their corresponding complete shapes C. Complete shapes, in the form of polygonal
mesh, were obtained from datasets such as Objaverse [14], ShapeNet [5], or ModelNet [72].
Although the datasets only contain labels, based on self-supervised learning principles, the
corresponding inputs can be generated.

5.2.1 Process of Acquiring Incomplete Shapes

The objective is to generate a dataset D comprising pairs (x, y), where y are obtained from
mesh samples sourced from the datasets mentioned above. The corresponding incomplete
input x is acquired in the form of a distance field, along with a ground truth distance field
y, using Algorithm 1.

Algorithm 1 Creating Complete and Incomplete TSDF counterpart for a given mesh M

1: MC ← LoadMesh(ModelPath)
2: MC ← NormalizeMesh(MC) . Scale to unit cube and center
3: TSDFC ← MeshToTSDF(MC)
4: Save(TSDFC , ”complete_shape“)
5: MP ←MC .copy()
6: for i ∈ {1, . . . ,NumHoles} do
7: Mo ← RandomPrimitive()
8: Mo ← TransformPrimitive(Mo) . Scale, position, rotate
9: MP ← MP \Mo . Boolean Difference

10: end for
11: TSDFP ← MeshToTSDF(MP)
12: Save(TSDFP , ”incomplete_shape“)

The incomplete shapes are generated from complete 3D models through a series of steps,
which simulate scenarios in which occlusions during scanning might lead to the absence of
certain parts of the model. This absence could also be caused by the inability to capture
specific sections of the model or from intrinsic attributes of the model itself, such as a missing

31

Figure 5.2: Visualization of generating an incomplete shape from a complete
one: Beginning with the complete model MC , the initial step involves storing the ground
truth as a TSDF (TSDFC). Following this, a randomized process is employed to select and
transform geometric primitives, which are then introduced into the scene such that they
intersect with MC . Subsequently, a boolean difference of the mesh with each geometric
primitive gives an incomplete model MP . Finally, partial mesh MP is converted into
a TSDF representation TSDFP and stored.

tooth in a dental scan. The pipeline to transform a given input MC into an incomplete
shape MP is illustrated in Figure 5.2.

The methodology to create incomplete shapes from complete 3D models, as interpreted
in Algorithm 1, involves a series of steps designed to replicate real-world scenarios of occlu-
sion or inherent missing parts in the models. Initially, the model represented as a polygonal
mesh is loaded and subsequently normalized by centering at the origin and scaling to a unit
cube, a prerequisite for converting the mesh to a TSDF representation. After preparation,
the model undergoes processing to generate its incomplete counterpart through Boolean
difference operations. Since not all meshes are suitable for these operations (e.g. may
contain self-intersecting triangles), an initial evaluation is carried out to determine if using
Boolean differences is feasible. Following the validation of the suitability of the mesh, the
TSDF representation of the complete shape (denoted TSDFC) is stored. Then, the original
mesh is duplicated for subsequent modification. The selection and application of geometric

32

primitives to create holes within the mesh are controlled by randomized processes, including
the choice of primitive type and the number of holes to introduce. These primitives are
randomly positioned and rotated to ensure that they intersect with the original meshMC .
The scale of primitives (in other words, holes) can be adjusted as needed. The Boolean
difference operation is then applied, producing the incomplete mesh MP , which is subse-
quently converted to its TSDF representation, TSDFP . Volumes of TSDFC and TSDFP

are calculated to quantify the volume missing from the incomplete shape.

5.3 Shape Completion Pipeline: Filling Holes via Diffusion
Process

The proposed solution for the shape completion task uses a diffusion-based model. The
detailed description of the diffusion process and other details, such as the objective function,
are provided in Section 4.2.1. This section will therefore concentrate on the architecture
modeling the backward process, which builds on the Diffcomplete network proposed by
Chu et al. [10]. The absence of code for the original architecture and some ambiguities
in the paper required adaptations, resulting in a structure that might diverge from the
original Diffcomplete. In particular, the adapted architecture incorporates enhancements
aimed at addressing computational challenges associated with high-resolution output. The
foundational concept for this architecture was inspired by the 3D U-Net architecture1 [46].
The specifics of the input and output channels for each architectural block are shown in
Table 5.1.

Pipeline Overview

The process of obtaining the complete shape from an incomplete one begins with the trans-
formation of the given mesh MP into a TSDF representation. Once the partial shape has
been acquired, it serves as a condition for the diffusion process. Subsequently, an iterative
backward diffusion process is used, denoted as pθ

(

TSDF t
C , TSDFP

)

, which is modeled
by the proposed network. Upon completion of the iterative process, the results TSDF 0

C

(TSDFC) are reconstructed into the mesh representation MC using marching cubes. The
visualization of this process is shown in Figure 5.3.

Diffusion Process

In the training phase, two types of input are introduced: TSDFP , which denotes an incom-
plete scan, and TSDF 0

C , which signifies a complete 3D shape. During the training phase,
a forward process is used to add noise to TSDF 0

C , obtaining TSDF t
C , where t is chosen

from a uniform distribution, and the noise is added by a linear noise scheduler.
During the inference phase, a randomized 3D noise volume of the standard Gaussian

distribution is used as input TSDF t
C . The trained completion network is then used for T

iterations to produce TSDFC from TSDF t
C , conditioned on the partial shape TSDFP .

To accelerate the inference process, the technique of subsampling a set of timestamps
[1, . . . , T/10] is employed, as discussed in [58]. This sampling technique is applied dur-
ing each inference instance, such as during the validation or testing phase. The EMA is
not used for inference due to unsatisfactory results.

1https://github.com/openai/improved-diffusion

33

https://github.com/openai/improved-diffusion

Figure 5.3: Overview of the shape completion process for the proposed method.
Given an input MP the process starts with conversion to TSDF representation. Follow-
ing this, a conditioned diffusion process is used to obtain the complete shape. Then the
marching cubes algorithm is used to derive a mesh from the TSDF, with an optional final
smoothing step.

Proposed Architecture

The proposed architecture contains the following high-level components:

• Main Branch and Control Branch: Central components of the architecture that
process the input and condition in high-dimensional space.

• Pre-processing Blocks: Transform input into a higher-dimensional space before it
undergoes processing by the main or control branch.

• Downsampling and Upsampling Phases: Essential when the condition (incom-
plete shape) possesses a lower resolution than the input/output, to synchronize the
resolutions.

• Post-processing Block: Reverts the output to the same dimensional space as the
input.

The architecture is illustrated in Figure 5.4. The process begins with the input TSDF t
C ,

which signifies the complete shape at a specific timestamp t during the training forward
phase. The condition, represented as TSDFP , corresponds to the partial shape.

Preprocess and Downscale Phase

The initial stage for both inputs involves a preprocessing phase, where two 3D con-
volutions with a kernel size of 3 are applied. Convolution aligns the distribution of the
given input. The preprocessing phase can provide additional information necessary for the
generation process. By projecting the 3D values into a multidimensional space, potentially
more informative values are obtained. Subsequent convolutions will also use a kernel size
3 unless otherwise stated. The first convolution transforms the input channels to 32, and
the subsequent one increases them to 64. An optional downscale phase may be used
for the input TSDF t

C to align its spatial resolution, to match the condition TSDFP , if
necessary. This alignment is achieved through a down-sample operation. The operation
uses a 3D convolution with a stride of 2. Once both the input and the condition are pre-
pared in a higher-dimensional space, they are ready for processing by the main and control

34

Figure 5.4: Visualization of the proposed architecture for shape completion
task. The input, denoted as TSDF t

C , represents the complete shape, with added noise
at time t, while the condition input is marked as TSDFP . Both the input and the con-
dition undergo initial processing by a preprocessing block. If necessary, the input is then
downsampled to align the spatial resolution of the condition. Subsequently, the input and
condition are merged through tensor addition and directed to the conditional network. The
main branch processes the input, whereas the control branch handles the condition. The
features of the control branch are integrated into the main branch, helping the network
shape the output based on the condition. If required, the output of the main branch is
upsampled to the spatial resolution of TSDF t

C . A post-processing block is then applied
to revert the output to a lower-dimensional space. This architectural framework aims to
reconstruct the noise εθ(TSDF t

C , TSDFP , t) introduced during the forward process.

branches. As illustrated in Figure 5.4, the condition is combined with the input in this
higher-dimensional space through a tensor addition. It is important to note that, while
the main and control branches share a similar architectural structure, they do not share
parameters.

Main and Control Branch

Both the main and control branches are composed of multiple encoder blocks, succeeded
by a middle block, with decoder blocks following in the main branch only, as the control
branch does not necessitate decoder blocks. A detailed illustration of these branches is
provided in Figure 5.5.

The architecture incorporates four encoder blocks, a single middle block, and four de-
coder blocks:

35

Figure 5.5: Detailed view of main/control branch architecture. The architecture is
composed of encoder blocks, a middle block, and decoder blocks, with the ResBlock serving
as the core element for processing features and time embeddings. The structure includes
precisely four encoder blocks, one middle block, and four decoder blocks. Skip connections,
represented as dotted arrows, transfer features from encoder blocks to decoder blocks. The
aggregation of features occurs by concatenating the output of a previous decoder block with
the corresponding encoder block. In particular, the final two encoder blocks and the initial
two decoder blocks are enhanced with attention layers after each ResBlock, prioritizing the
model’s focus on relevant features.

• Encoder blocks are comprised of three ResBlocks and a Downsample block, except
for the final encoder block, which omits the downsample block. The purpose of the en-
coder block is to gradually reduce the spatial dimensions of the input while increasing
the depth of features, facilitating the extraction of hierarchical representations.

• Middle block contains a ResBlock, an Attention block, and another ResBlock. The
middle block is strategically designed to enhance the representation of features by
incorporating attention mechanisms, which enable the model to focus on relevant
parts of the input.

• Decoder blocks consist of four ResBlocks, followed by an Upsample block. Up-
sampling is achieved through 3D interpolation using the nearest-neighbor approach,
followed by a 3D convolution. The last two encoder blocks and the initial two de-
coder blocks are augmented with an Attention layer after each ResBlock. The decoder
blocks are responsible for reconstructing the original input from the representations
generated by the encoder.

36

In alignment with the conventions of U-Net-type architectures, skip connections are
employed. The visualizations of those connections are shown in Figure 5.5 for each block.
The inputs for the decoder block, along with the skip connections, are combined through
the concatenation along the channel dimension.

Condition Feature Aggregation

The control branch consists of encoder blocks and a middle block. The features extracted
from these components are integrated into the main branch through a two-step aggrega-
tion process. Initially, a projection layer is applied to each block’s output, utilizing a 3D
convolution with a kernel size of 1 for this transformation. Subsequently, these projected
features are merged with the main branch’s skip connections through a tensor addition.
The selection and number of control branch connections incorporated can influence the
architecture’s ability of multimodality.

This aggregation and skip connection mechanism within the control and main branches
can be mathematically represented as follows:

di =
[

Di−1

x (xt) , F
i
x

(

TSDF t
C

)

+ φi
(

F i
c(TSDFP)

)]

, (5.3)

where di signifies the input to the current decoder block, with [·, ·] denoting the concatena-
tion operation and φi representing the projection layer. Di−1

x refers to the output from the
preceding decoder block, while F i

x / F i
c indicates the skip connection from the main/control

branch corresponding to the decoder block.

Upsample and Postprocess Phase

The output of the main branch undergoes the upsampling phase through the upsample
blocks, to align with the spatial resolution of the condition, effectively mirroring the ear-
lier downsampling process. Following this, the postprocessing phase comes into play,
incorporating a normalization layer, a SiLU layer, and a pair of 3D convolution layers, to
project shape from high-dimensional space back to the 3D space.

37

Block Input Channels Output Channels

Preprocess C 32
32 64

Encoder 1 64 128
Encoder 2 128 128
Encoder 3 128 128
Encoder 4 128 128
Middle Block 128 128
Decoder 1 256 128
Decoder 2 256 128
Decoder 3 256 128
Decoder 4 192 64
Postprocess 64 32

32 C

Table 5.1: Channel specifications for architectural blocks. The specified input and
output channels are exclusively related to the entry point of each block and do not detail
the internal dynamics where skip connections are utilized, as illustrated in Figure 5.5. For
detailed information on the input and output parameters of each layer, refer to the provided
implementation on GitHub.

38

Chapter 6

Implementation Details

This chapter offers an overview of the parts implemented and obtained in this thesis, cover-
ing the technologies and datasets utilized, as well as a description of the training and evalua-
tion parameters. The goal is to ensure adherence to the principles of reproducible research,
offering readers all the necessary details and resources to replicate the results presented
here accurately. The code containing the implementation and documentation is
publicly available on GitHub https://github.com/Monnte/shape-completion/.

6.1 Technologies

The proposed solution was implemented using the Python programming language. The
PyTorch1 framework was used to construct and train neural networks. Data loading and
processing were facilitated by the Numpy2 package, enabling CPU vectorization. Trimesh3

was used to handle 3D shapes. A critical tool was the mesh2sdf package4, used in the study
by Wang et al. [67] to generate data in the TSDF format. Additionally, the objaverse5

package provided a framework for downloading models from this dataset. The codebase was
derived from Improved Diffusion, an open-source repository on GitHub6. For the evaluation
of the results, part of the code was adapted from the publicly accessible PatchComplete
repository on GitHub7.

6.2 Dataset Specifications

Three datasets of 3D models were chosen for training and evaluation. The Objaverse [14]
dataset served as the primary source of training, while ShapeNet [5] and ModelNet [72]
were used to evaluate performance on known and unknown out of distribution categories.
The training dataset, designed to mirror the findings of the DiffComplete paper, consisted
mainly of 3D furniture models. To examine out of distribution scenarios involving un-
known categories, animals and vehicles from the Objaverse dataset were also explored.

1https://pytorch.org/
2https://numpy.org/
3https://trimesh.org/
4https://github.com/wang-ps/mesh2sdf
5https://objaverse.allenai.org/
6https://github.com/openai/improved-diffusion
7https://github.com/yuchenrao/PatchComplete

39

https://github.com/Monnte/shape-completion/
https://pytorch.org/
https://numpy.org/
https://trimesh.org/
https://github.com/wang-ps/mesh2sdf
https://objaverse.allenai.org/
https://github.com/openai/improved-diffusion
https://github.com/yuchenrao/PatchComplete

The datasets were divided into training, validation, and testing sets using a split ratio of
70/10/20.

The generation of incomplete counterparts of the original shapes was carried out as
described in Section 5.2. The numbers of complete shapes, and the number determining
how many incomplete shapes should be generated for one complete shape, will be provided
in subsequent sections. Up to 3 geometric primitives with sizes ranging from (0.5, 0.9) were
allowed to be subtracted from each original mesh. Due to computational constraints, further
experiments and evaluations primarily used 32 × 32 × 32 grid resolution. Figure 6.1 offers
a visual comparison of 3D shapes reconstructed from TSDF representations at different
resolutions.

Original M 323 643 1283

Figure 6.1: Visual comparison of a stanford dragon 3D model captured in TSDF
representation at different grid resolutions. The models are visualized using mesh
reconstruction from distance field via Marching Cubes.

The resolution of the grid 32 × 32 × 32 might not adequately capture all the intricacies
of a model. Higher resolutions are necessary for more detailed representations, though they
come with significant computational costs. Generated incomplete models miss 10% to 90%
of their original volumes. A visual comparison of a single model and its various incomplete
counterparts, each with different degrees of missing volume, is shown in Figure 6.2.

0% 30% 50% 70%

Figure 6.2: Visualization of a 3D shape with missing volume. Varying degrees of
missing volume emphasize how much information is provided for shape completion.

6.2.1 Objaverse

The Objaverse 1.0 dataset was selected as the primary dataset for this thesis. Compared
to other 3D datasets, Objaverse has exceptional scale (more than 800 000 high-quality 3D

40

models created by a community of more than 100 000 artists), diversity (covers a broad
array of categories) and detailed annotations.

Figure 6.3: Selection of models from the Objaverse dataset, highlighting ex-
amples from various categories. From left to right: the first two models represent the
furniture category, the third model is from the vehicles category, and the fourth illustrate
the animals-pets category. The top row displays complete models, while the bottom row
shows their respective incomplete versions. Each model is reconstructed from the TSDF
representation on a 32 × 32 × 32 grid.

For training purposes, the category named furniture was utilized, with the tags: chair,
lamp, bathtub, chandelier, bench, bed, table, sofa, and toilet. The number of com-
plete shapes corresponding to each tag is in Table 6.1. For out of distribution testing, two
additional categories were employed: cars-vehicles and animals-pets. Within the category
of vehicles, the tags car, truck, bus, and airplane were used, and within the category of
animals, the tags cat and dog were utilized. Selected shapes from the datasets are visual-
ized in Figure 6.3. The parameter specifying the number of incomplete counterparts to be
created was set to 5 for furniture, 10 for animals-pets, and 5 for vehicles. The distribution
of the furniture dataset, in terms of missing volume, is illustrated in Figure 6.4. The other
datasets follow a very similar distribution.

As illustrated in Figure 6.4, the missing volume in the training, validation, and test-
ing dataset splits were expected to exhibit a consistent distribution pattern. However, the
representation of the 40% and 50% bars for the training and testing splits, respectively, con-
tradicts this expectation, revealing an inconsistency in the distribution. This inconsistency
arises from the failure in generating the predefined number of incomplete counterparts,
where the process exceeds the maximum allowed attempts.

6.2.2 ShapeNet

For out of distribution testing of known or unknown categories, ShapeNet was used, offering
a diverse and extensive collection of 3D models organized under the WordNet taxonomy.

An overview of the categories within ShapeNet, together with the complete shape count
for each category, is presented in Table 6.2. A selection of models from the datasets is shown

41

10 20 30 40 50 60 70 80 90

Missing Volume [%]

0

200

400

600

800

1000

1200

1400

1600

S
h
ap

e
C
ou

n
t

1620

1254

909

723

602

685
655

584

218

475

317

270
239

189 175
198

155

47

244

177
141

82 86 86 100 93

21

Distribution of Missing Volume in Objaverse (Furniture)

Dataset Type

Train

Test

Validation

Figure 6.4: Distribution of missing volume for training shapes across Objaverse
furniture dataset. The bar chart shows the count of incomplete shapes based on the
missing volume.

Table 6.1: Enumeration of complete shape counts within the Objaverse datasets.
Table shows the counts of complete shapes for the given tags in the datasets.

Furniture Animals-Pets Vehicles

Tag Count Tag Count Tag Count Tag Count

Sofa 193 Table 645 Cat 272 Car 414
Chair 513 Bed 109 Dog 201 Truck 69
Lamp 452 Bench 110 Airplane 32
Chandelier 27 Toilet 37 Bus 24
Bathtub 4

Total 2090 473 539

in Figure 6.5. The parameter specifying the number of incomplete counterparts generated
for each complete shape from the dataset was set to 5.

42

Figure 6.5: Ground truth models from the ShapeNet dataset (top row) along-
side their incomplete counterparts (bottom row). Each model is reconstructed from
the TSDF representation on a 32 × 32 × 32 grid.

Table 6.2: Enumeration of complete shape counts within the ShapeNet dataset.
Table shows the counts of complete shapes for the given tags in the dataset.

Tag Count Tag Count Tag Count Tag Count

Bag 83 Dishwasher 93 Cabinet 551 Laptop 429
Stove 218 Chair 585 Pot 471 Table 591
Lamp 557 Bathtub 501 Microwave 152 Piano 239
Bench 557 Faucet 503 Washer 169 Trash Bin 343
Keyboard 64 Display 531 Bookshelf 421 Basket 113
Guitar 495 Bed 233 File Cabinet 297 Printer 166
Sofa 567 Bowl 184

Total 9113

6.2.3 ModelNet

Another dataset used for out of distribution testing of known or unknown categories was
ModelNet. ModelNet provides a comprehensive collection and structured categorization of
3D CAD models, making it an ideal benchmark to evaluate the performance of a shape
completion task. ModelNet covers a wide range of common objects found in everyday
environments.

Shape categories in ModelNet with their respective counts are in Table 6.3. Some
selected model examples from the ModelNet dataset are shown in Figure 6.6. The parameter
specifying the number of incomplete counterparts generated for each complete shape from
the dataset was set to 5.

43

Figure 6.6: Ground truth models from the ModelNet dataset (top row) along-
side their incomplete counterparts (bottom row). Each model is reconstructed from
the TSDF representation on a 32 × 32 × 32 grid.

Table 6.3: Enumeration of complete shape counts within the ModelNet dataset.
Table shows the counts of complete shapes for the given tags in the dataset.

Tag Count Tag Count Tag Count Tag Count

Airplane 17 Bookshelf 234 Cup 26 Mantel 332
Bathtub 39 Bottle 165 Curtain 66 Monitor 52
Bed 117 Bowl 42 Desk 52 Night Stand 94
Bench 44 Car 9 Door 12 Person 13
Chair 301 Cone 77 Dresser 59 Piano 27
Flower Pot 53 Glass Box 10 Guitar 5 Plant 107
Keyboard 29 Lamp 29 Laptop 14 Radio 9
Range Hood 168 Sink 38 Sofa 244 Stairs 19
Stool 17 Table 148 Tent 24 Toilet 207
TV Stand 90 Vase 237 Wardrobe 12 Xbox 8

Total 3246

6.3 Specification of Training Configurations

Instead of employing training paradigms such as pretraining by class, or pretraining on
all classes through a generative task without any conditional input and then introducing
conditions, an alternative approach is adopted. The network is trained from scratch, as
mentioned in the DiffComplete [10] paper, the most effective approach for accurate shape
completion.

To facilitate the reproducibility of this study, this section outlines the configurations of
the training parameters for the most effective setup of each proposed approach. The ap-
proaches used include CompleteBase, CompleteBase enhanced with Attention layers, and
CompleteBase enhanced with downsample and upsample phases. Each approach is de-

44

scribed in Chapter 7, where the experiments were performed. All important parameters
are summarized in Table 6.4.

Table 6.4: Summary of training configurations for proposed approaches. Table
shows hyperparameters for the best-performing configurations.

Hyperparameter Completion Super Resolution Completion LR Conditon

architecture design CompleteBase CompleteBase + Attention CompleteBase + DOWN/UP
iteration count 200 000 2 000 000 2 000 000
learning rate 1e−4 1e−4 1e−4

diffusion steps 1 000 1 000 1 000
ema rate 0.9999 0.9999 0.9999
noise scheduler Linear Linear Linear
sampler scheduler Uniform Uniform Uniform
optimizer AdamW AdamW AdamW
betas for optimizer (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
weight decay 0.0 0.0 0.0
dropout 0.0 0.0 0.0
loss function Rescaled MSE Rescaled MSE Rescaled MSE
expected input resolution 32 × 32 × 32 64 × 64 × 64 64 × 64 × 64
expected condition resolution 32 × 32 × 32 64 × 64 × 64 32 × 32 × 32
batch size 32 8 32
evaluation timestep respacing DDIM 100 DDIM 100 DDIM 100
FiLM-like conditioning ✓ ✓ ✓

45

Chapter 7

Conducted Experiments and
Achieved Results

The experiments first focused on the shape completion ability of the proposed method.
Subsequently, the network’s interpretation of various conditions is explored by attempting
to complete the same model using diverse inputs with different missing parts. Another
experiment evaluates the network’s ability to complete shapes beyond the training distri-
bution. To address the identified failure cases in the baseline approach, an additional input
in the form of a Region of Interest (RoI) is introduced. All of these components constitute
the first axis of experimentation, presented in Section 7.2.

The second axis of experiments, detailed in Section 7.3, focuses on experiments involving
the spatial resolution of the input and output. This set of experiments tests the baseline
approach in a higher spatial dimension. Subsequent experiments aim to improve results
by separating the shape completion task from the super-resolution task, employing another
network for super-resolution. The final experiment focuses on processing the input and
condition in a lower resolution space, followed by an upscaling phase for the input to
obtain results in a high-resolution space. The goal of these experiments is to identify
a computationally sustainable and sufficiently accurate method for completing the shapes.

For the experiments conducted in this work, an NVIDIA A100 graphics card with 80GB
of memory was utilized to ensure enough memory and computing power. The time to train
each setup is provided in further sections. The inference times for the proposed method
range from 3 to 10 seconds.

7.1 Evaluation Metrics

To ensure a comprehensive and unbiased quantitative evaluation, three metrics are utilized:
Intersection over Union (IoU), Chamfer Distance (CD), and Mean Absolute
Error (L1 Loss). Each metric works with distinct data representations. A detailed
explanation of each metric is presented in the following sections.

Intersection over Union (IoU)

IoU measures the overlap between two binary volumes, presented in a voxel grid: the
predicted volume Vp and the ground truth volume Vgt. Volume is obtained by thresholding
the representation TSDF , where all negative values are set to 1 and the others are set to 0.

46

IoU is defined as the size of the intersection divided by the size of the union of the two
volumes:

IoU(Vp,Vgt) =
|Vp ∩ Vgt|

|Vp ∪ Vgt|
, (7.1)

where |Vp∩Vgt| represents the number of voxels common to both Vp and Vgt, and |Vp∪Vgt|
is the total number of unique voxels present in either Vp or Vgt.

Chamfer Distance (CD)

The Chamfer Distance is a measure of similarity between two point clouds, defined as the
average distance between each point in one cloud and its nearest neighbor in the other
cloud. For point clouds P1 = {xi ∈ R

3}ni=1
and P2 = {xj ∈ R

3}mj=1
, the Chamfer Distance

is calculated as follows:

CD(P1,P2) =
1

2n

n∑

i=1

‖xi −NN(xi,P2)‖+
1

2m

m∑

j=1

‖xj −NN(xj ,P1)‖, (7.2)

where NN(x,P) = argminx′∈P ‖x−x′‖ represents the nearest neighbor function that finds
the point x′ in the point cloud P that is closest to the point x. This metric emphasizes the
average error across the surface of the shapes.

Mean Absolute Error (L1 Loss)

Mean Absolute Error, also known as L1 loss, quantifies the average magnitude of errors
in a set of predictions without considering their direction. It is a measure of how close
the predictions are to the ground truth data, where all individual differences are weighted
equally in the average:

L1(P, T) =
1

N

N∑

i=1

|Pi −GTi|, (7.3)

where Pi is the predicted value, GTi is the true value of the voxel, and N is the total number
of voxels. The result is the average of the absolute differences between the predicted and
actual values. This metric is applied to the raw output of the process (TSDF) rather than
being converted to another representation.

7.2 Evaluation Axis 1: Completion Ability of the Proposed
Solution

The outcomes of the proposed solution for shape completion are discussed in this section,
with an emphasis on its completion capability. The focus was primarily on basic shape
completion scenarios, as well as out of distribution cases involving both known and unknown
categories. An examination of the influence of imbalances within the training dataset was
performed. Particularly the missing volume’s influence and its effects on shape completion
were analyzed. Failures in shape completion were identified, and strategies were outlined
to address them. The section concludes with the proposal of a solution to a common failure
in shape completion, which involves integrating user input through a specified region of
interest to improve the completion process.

47

7.2.1 Baseline Evaluation

Initially, the efficacy of the proposed method was examined in an attempt to replicate
the results of DiffComplete using a specific setup. This involved the use of the default
architecture described in Section 5.3, omitting the upscaling and downscaling phases and
the incorporation of attention layers in the decoder and encoder blocks. This configuration
was named CompletionBase, with its hyperparameters detailed in Table 6.4. The duration
of the training was approximately 3 days. The progression of loss over the training iterations
is visualized in Figure 7.1.

0 25000 50000 75000 100000 125000 150000 175000 200000

Iteration

10−5

10−4

10−3

10−2

10−1

100

L
o
ss

Loss during training

Total Loss

Q0 Loss

Q1 Loss

Q2 Loss

Q3 Loss

Figure 7.1: Training loss across diffusion timestamps. The Figure shows training
loss over numerous iterations. Losses are categorized into quartiles. These quartiles corre-
spond to timestamps of noise addition within the 0−1000 range of diffusion steps. Quartiles
help visualize how the model’s loss varies at different points in the diffusion timeline.

A qualitative evaluation demonstrated the effectiveness of the technique in producing
smooth mesh results after reconstruction. In most cases, the predictions were ac-
curate and aligned with the ground truth data. However, when a shape lacked
substantial volume, the network had to reconstruct the shape using minimal available fea-
tures of the shape; therefore, in some cases, the output did not match the ground truth
shape. Here, the multi-modality of the network proved advantageous, enabling
the generation of multiple predictions from which the most suitable could be
selected. The qualitative results are illustrated in Figure 7.2. Regarding quantitative
metrics, the proposed solution demonstrated robust performance in both the quality of
the results and the precision of the shape completions, as shown in Table 7.1. To fur-
ther evaluate the baseline solution’s capabilities, a subsequent experiment was conducted
to empirically assess how the network would manage the same object with varying miss-
ing sections and to determine whether the network could generalize or complete unknown
categories.

48

Ground Truth Incomplete Predicted

Figure 7.2: Visualization of qualitative results for shape completion baseline
method. The figure illustrates the completed versions of incomplete shapes, alongside
their corresponding ground truth. The initial three shapes were selected from the Objaverse
furniture dataset. The next two shapes, a plant from ModelNet and a cat from the Objaverse
animals datasets, represent out of distribution examples.

49

Table 7.1: Quantitative results for the shape completion baseline method. The
shapes from Objaverse – Furniture belong to the same distribution as the training set,
and the hold-out set is used for evaluation purposes. The results for all test datasets are
presented, with the Intersection over Union (IoU) and Chamfer Distance (CD) metrics
scaled by (×102).

Baseline Method | 32 × 32 × 32

Dataset Metrics
IoU ↑ (×102) CD ↓ (×102) L1 ↓

Objaverse – Furniture 81.62 3.53 0.026
Objaverse – Vehicles 76.05 4.21 0.035
Objaverse – Animals 70.46 5.48 0.052
ModelNet 63.34 5.93 0.055
ShapeNet 73.93 5.52 0.048

7.2.2 Network Perception of the Condition

To demonstrate the baseline solution’s capacity for shape completion, emphasis was placed
on whether the network could identify objects even when their most distinctive features
were absent. A chair model served as the basis for generating various incomplete shapes.

1. The initial test involved removing all legs of the chair to determine if the network
could reconstruct the shape solely based on the remaining features of the chair. In
this scenario, the network failed to accurately complete the chair, as the input shape
did not provide any indication of missing parts.

2. Consequently, the next input was modified to include a larger missing section in the
seat area, which suggested to the network the presence of a missing component. The
results of this test were partially successful; the network performed the completion,
but incorrectly, failing to identify the intended output as a chair.

3. To facilitate the task, the following input was adjusted to omit three legs, with a hint
provided for the absent fourth leg. In this instance, the network completed the shape,
though the result does not precisely match the ground truth. A subsequent attempt
resulted in a shape that aligned with the ground truth, leveraging the network’s
multi-modality.

4. The final test involved three absent legs and one intact leg, where the network correctly
matched the ground truth shape within two attempts.

Each scenario was visually represented in Figure 7.3, with two predicted outputs for each
input, using different noise volumes as input. These observations suggest that the network
struggles with shape completion in the absence of clear indications of missing parts,
and relies heavily on the symmetry and repetitive elements of the provided shapes.
Moreover, for accurate completion, the shape should not be missing a significant part of the
volume. Given the network’s reliance on shape symmetry, it may also have the potential
to complete unknown categories. Therefore, the subsequent experiment focused on the
completion of out of distribution shapes.

50

Ground Truth Incomplete Predicted 1 Predicted 2

Figure 7.3: Visualization of the network’s perception in the input condition
experiment Four cases are displayed: initially, the input condition lacks any legs. In the
second case, a larger hole is introduced to signify a missing element. The third case features
indications of missing legs. Finally, the presence of an intact leg is demonstrated, leading
to a successful and accurate shape completion. For each incomplete shape, two predictions
are generated using different noise volumes as input.

7.2.3 Out of Distribution Testing

The proposed solution demonstrates its effectiveness by utilizing the symmetry and repeti-
tive elements of objects, suggesting that it could also complete shapes outside the training
distribution. Observations from the last two rows of Figure 7.2 indicate that the network is
capable of partially completing even categories that were not previously known
to it. Quantitative results from additional datasets confirm the strong capacity of the net-
work to generalize to out of distribution data, although within certain constraints, as shown

51

in Table 7.1. In interpreting the results, there is a decrease in the IoU when compared to
known categories, but it is not too drastic, which might seem positive. However, the CD
and L1 metrics indicate that while some missing volume is generated, it does not align
well with the geometry of the desired outcomes. This problem is related to the
low variability of the shape categories in the training dataset. Enhancing the dataset by
incorporating a wider range of categories could improve the network’s ability to generalize
more effectively.

7.2.4 Ability of Filling Smaller Holes

The diversity of the dataset significantly influences the network’s ability to generalize and
complete unknown categories. A subsequent experiment aimed to investigate the effect
of dataset imbalance, particularly in terms of missing volume in shapes, on the network’s
shape completion performance. In this experiment, the network was trained exclusively on
shapes with 60% to 90% missing volume and then evaluated on cases with only 10% to
50% missing volume. The primary findings indicated that the imbalances in the
training dataset markedly affect the completion results. Specifically, the network
tended to overestimate missing parts, reconstructing more than what was actually
absent in the model. This tendency would presumably be mirrored in the reverse scenario.
Table 7.2 shows the quantitative results for each dataset, accompanied by a comparison
with the results obtained when the network was trained on a complete dataset.

Table 7.2: Quantitative analysis of shape completion with varied missing vol-
umes vs. whole dataset. This table presents the outcomes of an experiment using the
baseline method for shape completion, evaluated on shapes with 10% to 50% missing vol-
ume, compared to results achieved when the network was trained on the whole dataset.

Baseline Method | 60%− 90% Missing Volume vs. Whole Dataset

Dataset Metrics (Missing Volume / Whole Dataset)
IoU ↑ (×102) CD ↓ (×102) L1 ↓

Objaverse – Furniture 75.65 / 85.30 4.41 / 3.25 0.038 / 0.022
Objaverse – Vehicles 73.51 / 79.93 4.61 / 3.64 0.038 / 0.026
Objaverse – Animals 71.76 / 78.46 5.51 / 4.39 0.054 / 0.040
ModelNet 65.22 / 75.20 5.70 / 4.11 0.051 / 0.030
ShapeNet 73.82 / 81.79 5.51 / 4.67 0.053 / 0.038

7.2.5 Analysis of Incorrect Completions

The problem of overfilling holes or not adequately filling the entire missing area does not
arise solely from the imbalance of the training dataset. As illustrated in Figure 7.4, several
types of failure scenarios have been identified for the proposed solution:

1. The first type of failure occurs when the network partially fills the missing area
of the shape, leaving the rest untouched. This can also happen in instances
where there is no indication of a missing part, as discussed above.

2. The second type of failure is observed in unknown categories, where the network
overcompensates for a small missing section, leading to excessive comple-
tion.

52

3. The third scenario involves the network’s failure to accurately reconstruct the shape,
despite the potential to leverage repetitive elements and symmetry.

4. The final type of failure is largely attributed to the training dataset’s nature and the
rotation of objects within it. For example, a bench might be incorrectly completed
as a chair shape due to the network’s reliance on the orientation of the presented
incomplete shape. This particular failure could be mitigated by rotating the input
object or incorporating such variations into the training dataset.

To address the other types of failure, a method was employed that involved user input,
specifically providing a region of interest.

Ground Truth Incomplete Predicted

Figure 7.4: Visualization of fail cases in test scenarios. The figure highlights typical
failure scenarios in shape completion, such as (from top-down) partial filling, overcompensa-
tion in unknown categories, inaccuracies despite symmetrical cues, and orientation-related
errors stemming from the dataset’s nature.

53

7.2.6 Enhancement via Region of Interest

To address the network’s shortcomings in achieving accurate shape completion, a novel
approach was introduced, leveraging user input to utilize the Region of Interest (RoI).
This technique aims to direct the network towards the precise area that requires comple-
tion, thus facilitating more accurate reconstructions. Although this method diverges from
the automatic shape completion technique, it is still valuable to explore the potential for
improved results, given the minimal user input required to draw the RoI into the 3D scene.

In addition to standard input, the RoI was incorporated as a second channel, providing
explicit information on the location of missing parts. The RoI for training purposes was
constructed by identifying each voxel within the incomplete shape that differed from the
corresponding ground truth shape, thus indicating missing volume. Then a bounding box
was generated around these voxels to define the RoI.

More detailed technical information is available in code implementation. Figure 7.5
illustrates how the RoI method has successfully corrected previously unsuccessful cases
from Figure 7.4. Furthermore, qualitative evaluations, as shown in Table 7.3, confirm that
integrating RoI significantly improves the performance of the shape completion
process.

Ground Truth Incomplete Predicted Predicted with ROI

Figure 7.5: Shape sompletion results using region of interest. The figure demon-
strates the impact of employing a region of interest (RoI) strategy to address the challenges
of failure cases. The RoI is depicted as transparent blue boxes on incomplete shapes, pro-
viding visual cues for the areas that are targeted for completion.

54

Table 7.3: Quantitative results for the shape completion baseline method en-
hanced with region of interest. The results for all test datasets are presented, with the
Intersection over Union (IoU) and Chamfer Distance (CD) metrics scaled by (×102).

Basline method enhanced with RoI

Dataset Metrics
IoU ↑ (×102) CD ↓ (×102) L1 ↓

Objaverse – Furniture 84.77 2.86 0.018
Objaverse – Vehicles 81.73 3.24 0.023
Objaverse – Animals 76.48 4.32 0.037
ModelNet 69.11 5.11 0.043
ShapeNet 79.93 3.87 0.029

7.3 Evaluation Axis 2: Focus on Higher Resolution Results

This section describes experiments aimed at achieving higher-resolution output. Initially,
the experiment involved uniform scaling of both the condition and the input to a higher
resolution of 64 × 64 × 64, up from 32 × 32 × 32. Following this, the strategy of engaging
an additional network to split the task to shape completion and super-resolution was tested.
The concluding experiment explored the processing of the condition in a lower resolution
space. This involved downscaling the input to the size of the condition and, once processed,
upscaling it back to its original resolution.

7.3.1 High-Resolution Challenges

Due to the effectiveness of the suggested solution in completing shapes in low-resolution
scenarios, it is expected to exhibit similar performance in higher-resolution settings. The
primary challenge in executing shape completion lies in significant computational and mem-
ory demands. Consequently, when using a grid size 64× 64× 64, the memory of an NVIDIA
A100 graphics card could only accommodate a batch size of 8. During 2 000 000 iterations,
the evaluation datasets exhibited considerable noisy progression without a clear trend
towards improvement. Training the network configuration that processed the in-
puts in 64 × 64 × 64 resolution, along with other similar configurations, took
approximately 30 days for each, which is considerably long given the computational
resources allocated for the training.

Although the networks did not achieve complete convergence, the results were reason-
ably acceptable. Figure 7.6 illustrates the visual results, showing the network’s ability to
complete the shape, although significant noise is present. In certain instances, the net-
work generated extremely noisy results. The quantitative results, documented in Table 7.4,
corroborate the visual findings. To tackle the issue of network convergence, a subsequent
experiment was designed to divide the tasks of completion and upscaling (super-resolution)
between two networks.

7.3.2 Shape Completion utilizing Super Resolution

In deep learning, a common approach is to divide the task among several networks, which
is frequently more successful than attempting to handle all aspects within a single network.
To address incomplete convergence and to improve results, two separate networks were

55

Ground Truth Incomplete Predicted

Figure 7.6: Visualization of qualitative results for baseline method in higher
resolution space. The Figure illustrates the results obtained using the baseline method
in a higher resolution space, highlighting the noisy outcomes.

Table 7.4: Quantitative results for the shape completion baseline method for
64 × 64 × 64 voxel grid size. The results for all test datasets are presented, with the
Intersection over Union (IoU) and Chamfer Distance (CD) metrics scaled by (×102).

Baseline Method | 64 × 64 × 64

Dataset Metrics
IoU ↑ (×102) CD ↓ (×102) L1 ↓

Objaverse – Furniture 60.50 5.04 0.058

56

utilized: one for completing shapes and another for super-resolution. The expectation
was that, by splitting the task, each network would achieve convergence more easily.

The architecture selected for shape completion was CompleteBase, which has shown
promising results. For the super-resolution component, an improved architecture was
adopted that incorporates CompleteBase and Attention Layers in the final two encoder
and decoder blocks, as illustrated in Figure 5.5. The training began with pretraining the
shape completion network, followed by freezing its weights, and then proceeding to train
the super-resolution network. The output from the shape completion process was upscaled
to a higher resolution and then inputted into the super-resolution network.

The qualitative results of this iterative two-step procedure are shown in Figure 7.7.
Similarly to the basic completion task at higher resolutions, this method also struggled
with full convergence. Consequently, the results were sometimes noisy, or the final shape
completely failed to replicate. The quantitative data presented in Table 7.5 show that
this method produced better outcomes than the baseline approach to complete the task at
higher resolutions. However, the results were still unsatisfactory and could not reliably be
applied in practical scenarios.

Ground Truth Incomplete Predicted LR Predicted HR

Figure 7.7: Visualization of qualitative results for method utilizing super reso-
lution. The Figure illustrates the outcomes of the proposed two-step method, showcasing
instances of noisy outputs and shape that are not completely finalized.

57

Table 7.5: Quantitative results for shape completion followed by super resolu-
tion. The results for all test datasets are presented, with the Intersection over Union (IoU)
and Chamfer Distance (CD) metrics scaled by (×102).

Baseline → Super Resolution

Dataset Metrics
IoU ↑ (×102) CD ↓ (×102) L1 ↓

Objaverse – Furniture 63.98 4.68 0.053
ShapeNet 61.15 6.43 0.071
ModelNet 49.69 6.02 0.067

7.3.3 Efficient Lower Resolution Processing

To address the challenges of insufficient memory for larger batch sizes and incomplete net-
work convergence, an alternative approach was proposed. The fundamental idea is to receive
input at a higher resolution, downscale it to match a condition at a lower resolution, handle
it effectively at this lower resolution, and then upscale it again to a higher resolution. This
method employs the CompleteBase architecture, incorporating downscaling and upscaling
phases, as depicted in Figure 5.4.

Qualitative analysis revealed success. The network had an excellent ability to produce
smooth results and accurately complete shapes from partial input, as demonstrated in
Figure 7.8. However, as expected, the absence of fine geometric details in the condition
meant that the network’s generalization capability was not as robust. In certain
cases, the network did not consider the characteristics of the condition, resulting in the
generation of different shapes.

This approach is highly dependent on the diversity of the training dataset. Given the
limited detail in the conditional input, the network struggles to generalize to new cate-
gories. Expanding the dataset with a wider range of categories may mitigate this challenge.
Another possible solution might be to utilize the approach of splitting the task between
two networks. As illustrated in the last row of Figure 7.8, the low-resolution predictions
closely align with the ground truth, potentially serving as inputs for super-resolution rather
than generating entirely unrelated shapes. Quantitative outcomes, presented in Table 7.6,
further corroborate the challenge of poor generalization, particularly with data that deviate
from the training distribution.

Table 7.6: Quantitative results for shape completion leveraging processing the
input in lower resolution. The results for all test datasets are presented, with the
Intersection over Union (IoU) and Chamfer Distance (CD) metrics scaled by (×102).

Low resolution processing

Dataset Metrics
IoU ↑ (×102) CD ↓ (×102) L1 ↓

Objaverse – Furniture 73.09 3.84 0.032
ShapeNet 68.15 5.73 0.052
ModelNet 53.37 5.82 0.056

58

Ground Truth Incomplete Predicted LR Predicted HR

Figure 7.8: Visualization of qualitative results for method utilizing low-
resolution processing. The Figure illustrates scenarios where the method successfully
completes shapes smoothly and instances where it fails to accurately match the desired
shape based on the condition. For comparative analysis, the Figure also displays the pre-
dicted shapes at low resolution, followed by their high-resolution counterparts achieved
using this method, all derived from the same low-resolution condition.

7.4 Post-Processing Enhancements

Post-processing techniques, notably Laplacian smoothing, can mitigate the issue of noisy
outcomes. To demonstrate the potential for enhancing results, two post-processing steps are
outlined. The initial step addresses the noisy results through the application of Laplacian
smoothing, which is a widely used method to smooth the surfaces of the mesh by averaging
the positions of the mesh vertices based on their local neighborhoods (see Section 3.3.1).

59

The second step involves using a technique introduced by Chen et al. [8], which employs
a deep neural network to facilitate conversion from TSDF representations to mesh. This
technique, called Neural Dual Contouring (NDC), can provide potentially more accurate
and detailed results than traditional methods such as Marching Cubes. Explaining the
principles of NDC is, however, out of the scope of this thesis.

Figure 7.9 shows the influence of these post-processing methods, showing how Lapla-
cian smoothing can decrease noise, and compares the results of the conventional Marching
Cubes reconstruction with those obtained through NDC. This comparative visualization
underscores the potential improvements in mesh quality and detail that can be achieved
through these advanced post-processing techniques.

No Smoothing Laplacian Smoothing

Marching Cubes Neural Dual Contouring

Figure 7.9: Visualization of post-processing methods. The Figure presents a com-
parison of results for a noisy mesh before and after 3 iterations of Laplacian smoothing.
It also compares the results of reconstructing a couch using the Marching Cubes and the
Neural Dual Contouring methods.

7.5 Summary of Results

Collectively, the results presented on both evaluation axes appear consistent with the good
performance of the proposed solution.

60

The shape completion process demonstrated impressive results, notably reaching an IoU
scores of 81.62, CD 3.53, and L1 0.026 when evaluated on the Objaverse furniture dataset.
These results closely align with those reported in the Diffcomplete paper, on which this
work is based. Despite the similarities, an exact duplication of the shape completion process
was not achieved. This discrepancy is illustrated in Figure 7.10, where the diffusion process
diverges from that described in the Diffcomplete paper. In particular, at step 80, significant
noise persists, contrasting with the near-final shape clarity depicted in the Diffcomplete
study. The difference might be due to the varying characteristics of the training datasets.

Incomplete Step 0 Step 20 Step 40

Step 60 Step 80 Step 90 Step 92

Step 94 Step 96 Step 98 Step 100

Figure 7.10: Visualization of denoising process. The denoising process gradually
converts noise into the completed shape.

Furthermore, the model showed robust generalization abilities on shapes absent from
the training distribution, averaging 70.9 IoU, CD 5.28, and L1 0.047 metric scores. The
integration of user input greatly facilitated shape completion, resulting in an 84.7 IoU score
and a reduced CD 2.86 and L1 0.018 on the test dataset. Regarding the datasets not part
of the training distribution, the averaging scores were 76.81 for IoU, 4.13 for CD, and 0.033
for L1.

61

Subsequent experiments concentrated on high-resolution shape completion, where com-
putational challenges were notably pronounced, especially with a grid size of 64 × 64× 64.
Despite these obstacles, the baseline method demonstrated its ability to complete shapes,
although sometimes producing noisy results as a result of incomplete convergence. The L1
metric, registering at 0.058 on the Objaverse dataset, indicates an error rate more than
twice that observed in baseline for low-resolution.

To mitigate these issues, the experiments explored super-resolution techniques and
a strategy involving efficient processing at lower resolutions. The super-resolution ex-
periment utilized a dual-network approach, aiming to simplify convergence and improve
accuracy, yet it occasionally encountered noise and precision issues. The L1 metric slightly
lowered to 0.053, which is still a big error considered a low-resolution solution.

Efficient lower-resolution processing offered a novel approach by downscaling the input
for processing and subsequently upscaling it, which achieved smoother and visually appeal-
ing results, with an L1 score of 0.032. However, this method faced challenges in preserving
fine details and generalizing to new categories, emphasizing the critical role of training
dataset diversity.

From an academic perspective, this work extends the foundational principles established
in prior research of the DiffComplete framework by exploring the intricacies of shape com-
pletion across different resolutions and datasets, and also utilization of user interaction in
the form of region of interest input. Moreover, the exploration of computational challenges
associated with high-resolution shape completion and the innovative approaches proposed
to mitigate these issues, such as super-resolution techniques and efficient lower-resolution
processing. The ability to accurately complete 3D shapes has direct applications in com-
puter graphics, 3D modeling, augmented reality, and others. Industries that depend on
accurate 3D reconstructions, like entertainment, architecture, and medical imaging, have
the potential to gain substantial advantages from improvements in shape-completion meth-
ods.

7.6 Future Work

Although the proposed solution exhibits strong results in shape completion, there is sub-
stantial room for improvement, particularly in addressing the high computational costs.
Processing in a low-resolution space has been proposed as a way to mitigate these ex-
penses. An additional enhancement could involve utilizing a condition in higher resolution,
which could also be downscaled and processed in lower resolution. This approach has the
potential to lead to significantly better results, capturing finer details and more accurately
matching the initial condition of the incomplete shape.

Together with these strategies, the exploration of efficient 3D network modules, such
as SparseConv [23] or Octree-based [66] layers, could offer a viable way to handle high-
resolution 3D shapes without incurring prohibitive computational costs. Adopting these
modules could help overcome the limitations currently faced by dense 3D CNN architec-
tures, particularly the cubic increase in computational costs with volume size, thereby
complementing the proposed low-resolution processing improvements.

Further research could focus on the diffusion process. The current diffusion process
uses 1000 diffusion steps. Expanding this to evaluate the impact of a higher number of
diffusion steps, such as 4000, could be beneficial. This increase might allow the model to
progressively refine its understanding of shapes, potentially leading to more accurate and
detailed completions.

62

Different sampling schedulers or noise schedulers could also be introduced to assess
their impact on training efficiency and the quality of results. By experimenting with various
sampling rates and noise schedules, the model may achieve a better balance between training
time and completion accuracy.

Moreover, future work should continue to address the challenges of model generalizabil-
ity to unseen object classes. The quality and diversity of training data are crucial factors
that affect performance. Therefore, increasing the training dataset with a wider variety of
shapes and classes, especially those significantly diverging from the training set, could be
highly beneficial.

63

Chapter 8

Conclusion

This work aimed to create an automated process for the shape completion task using a su-
pervised method based on deep learning. The proposed method is based on a diffusion
process and deals with a shape completion problem as a generative task with conditional
input, using a TSDF representation. DiffComplete [10] served as the basis for the pro-
posed solution, which was enhanced by processing in a low-resolution space and integrating
additional user input to identify the region of interest where the shape misses parts.

The experimental part of the work showed high capability of the proposed solution to
complete incomplete shapes. The baseline results yielded an 81.6 IoU, CD 3.53, and L1
0.026 metric score on the test dataset. Furthermore, the model showed robust generalization
abilities on shapes absent from the training distribution, averaging 70.9 IoU, CD 5.28, and
L1 0.047 metric scores. The integration of user input greatly facilitated shape completion,
resulting in an 84.7 IoU score and a reduced CD 2.86 and L1 0.018 on the test dataset.
Regarding the datasets not part of the training distribution, the averaging scores were 76.81
for IoU, 4.13 for CD, and 0.033 for L1.

The method worked well when generating low-resolution outputs, but a more detailed
geometry required a higher-resolution grid. With a cubical increase in computational power
for an input, it was hard to obtain the resources to train such a big model. In this work,
the trained models in the higher resolution did not fully converge. Using the novel ap-
proach, processing the data in a low-resolution space with subsequent upscale to the higher
resolution showed success in obtaining smooth and precise results.

Although the proposed solution shows strong results in shape completion, there is sub-
stantial room for improvement. Exploring efficient 3D network modules, such as SparseC-
onv [23] or Octree-based [66] layers, could offer a viable way to handle high-resolution 3D
shapes without incurring prohibitive computational costs. Further research could focus
on the diffusion process by experimenting with the number of iteration steps. Different
sampling schedulers or noise schedulers could also be introduced to assess their impact
on training efficiency and the quality of results. There is also an intention to modify the
method, making it more suitable for medical data related to cranial implants. It should be
noted that no literature has yet tried a similar approach.

64

Bibliography

[1] Achlioptas, P.; Diamanti, O.; Mitliagkas, I. and Guibas, L. Learning
representations and generative models for 3d point clouds. In: PMLR. International
conference on machine learning. 2018, p. 40–49.

[2] Ahmed, E.; Saint, A.; Shabayek, A. E. R.; Cherenkova, K.; Das, R. et al. Deep
Learning Advances on Different 3D Data Representations: A Survey. CoRR, 2018,
abs/1808.01462. Available at: http://arxiv.org/abs/1808.01462.

[3] Alblas, D.; Brune, C.; Yeung, K. K. and Wolterink, J. M. Going off-grid:
continuous implicit neural representations for 3D vascular modeling. In:
Springer. International Workshop on Statistical Atlases and Computational Models of
the Heart. 2022, p. 79–90.

[4] Cai, G.; Jiang, Z.; Wang, Z.; Huang, S.; Chen, K. et al. Spatial Aggregation Net:
Point Cloud Semantic Segmentation Based on Multi-Directional Convolution.
Sensors, october 2019, vol. 19, p. 4329.

[5] Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q. et al.
ShapeNet: An Information-Rich 3D Model Repository. arXiv:1512.03012 [cs.GR].
Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

[6] Chang, Z.; Koulieris, G. A. and Shum, H. P. H. On the Design Fundamentals of
Diffusion Models: A Survey. 2023.

[7] Chen, K.; Choy, C. B.; Savva, M.; Chang, A. X.; Funkhouser, T. et al.
Text2shape: Generating shapes from natural language by learning joint embeddings.
In: Springer. Computer Vision–ACCV 2018: 14th Asian Conference on Computer
Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part III 14.
2019, p. 100–116.

[8] Chen, Z.; Tagliasacchi, A.; Funkhouser, T. and Zhang, H. Neural dual
contouring. ACM Transactions on Graphics. Association for Computing Machinery
(ACM), july 2022, vol. 41, no. 4, p. 1–13. ISSN 1557-7368. Available at:
http://dx.doi.org/10.1145/3528223.3530108.

[9] Chen, Z. and Zhang, H. Learning implicit fields for generative shape modeling.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, p. 5939–5948.

[10] Chu, R.; Xie, E.; Mo, S.; Li, Z.; Nießner, M. et al. Diffcomplete: Diffusion-based
generative 3d shape completion. ArXiv preprint arXiv:2306.16329, 2023.

65

http://arxiv.org/abs/1808.01462
http://dx.doi.org/10.1145/3528223.3530108

[11] Curless, B. and Levoy, M. A volumetric method for building complex models from
range images. In: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques. 1996, p. 303–312.

[12] Dai, A.; Qi, C. R. and Nießner, M. Shape Completion using 3D-Encoder-Predictor
CNNs and Shape Synthesis. 2017.

[13] De Luigi, L.; Cardace, A.; Spezialetti, R.; Ramirez, P. Z.; Salti, S. et al. Deep
learning on implicit neural representations of shapes. ArXiv preprint
arXiv:2302.05438, 2023.

[14] Deitke, M.; Schwenk, D.; Salvador, J.; Weihs, L.; Michel, O. et al. Objaverse:
A Universe of Annotated 3D Objects. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2023, p. 13142–13153.

[15] Fan, H.; Su, H. and Guibas, L. J. A point set generation network for 3d object
reconstruction from a single image. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, p. 605–613.

[16] Feng, C.; Liang, J.; Ren, M.; Qiao, G.; Lu, W. et al. A Fast Hole-Filling Method
for Triangular Mesh in Additive Repair. Applied Sciences, 2020, vol. 10, no. 3. ISSN
2076-3417. Available at: https://www.mdpi.com/2076-3417/10/3/969.

[17] Feng, Y.; Feng, Y.; You, H.; Zhao, X. and Gao, Y. Meshnet: Mesh neural
network for 3d shape representation. In: Proceedings of the AAAI conference on
artificial intelligence. 2019, vol. 33, no. 01, p. 8279–8286.

[18] Field, D. A. Laplacian smoothing and Delaunay triangulations. Communications in
applied numerical methods. Wiley Online Library, 1988, vol. 4, no. 6, p. 709–712.

[19] Gadelha, M.; Wang, R. and Maji, S. Multiresolution tree networks for 3d point
cloud processing. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, p. 103–118.

[20] Gao, L.; Wu, T.; Yuan, Y.-J.; Lin, M.-X.; Lai, Y.-K. et al. Tm-net: Deep
generative networks for textured meshes. ACM Transactions on Graphics (TOG).
ACM New York, NY, USA, 2021, vol. 40, no. 6, p. 1–15.

[21] GM, H.; Gourisaria, M. K.; Pandey, M. and Rautaray, S. S. A comprehensive
survey and analysis of generative models in machine learning. Computer Science
Review, 2020, vol. 38, p. 100285. ISSN 1574-0137. Available at:
https://www.sciencedirect.com/science/article/pii/S1574013720303853.

[22] Goodfellow, I. J.; Pouget Abadie, J.; Mirza, M.; Xu, B.; Warde Farley, D.
et al. Generative Adversarial Networks. 2014.

[23] Graham, B.; Engelcke, M. and Van Der Maaten, L. 3d semantic segmentation
with submanifold sparse convolutional networks. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, p. 9224–9232.

[24] Groueix, T.; Fisher, M.; Kim, V. G.; Russell, B. C. and Aubry, M. A
papier-mâché approach to learning 3d surface generation. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2018, p. 216–224.

66

https://www.mdpi.com/2076-3417/10/3/969
https://www.sciencedirect.com/science/article/pii/S1574013720303853

[25] Guo, M.-H.; Cai, J.-X.; Liu, Z.-N.; Mu, T.-J.; Martin, R. R. et al. Pct: Point
cloud transformer. Computational Visual Media. Springer, 2021, vol. 7, p. 187–199.

[26] Guo, X.; Xiao, J. and Wang, Y. A survey on algorithms of hole filling in 3D surface
reconstruction. The Visual Computer. Springer, 2018, vol. 34, p. 93–103.

[27] Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S. et al. MeshCNN: a
network with an edge. ACM Trans. Graph., 2019, vol. 38, no. 4, p. 90:1–90:12.
Available at: https://doi.org/10.1145/3306346.3322959.

[28] Henderson, P.; Tsiminaki, V. and Lampert, C. H. Leveraging 2d data to learn
textured 3d mesh generation. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2020, p. 7498–7507.

[29] Huang, X.; Li, Y.; Poursaeed, O.; Hopcroft, J. and Belongie, S. Stacked
Generative Adversarial Networks. 2017.

[30] Jiang, C.; Marcus, P. et al. Hierarchical detail enhancing mesh-based shape
generation with 3d generative adversarial network. ArXiv preprint arXiv:1709.07581,
2017.

[31] Jiang, C.; Sud, A.; Makadia, A.; Huang, J.; Nießner, M. et al. Local implicit
grid representations for 3d scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, p. 6001–6010.

[32] Jiang, J.; Bao, D.; Chen, Z.; Zhao, X. and Gao, Y. MLVCNN: Multi-Loop-View
Convolutional Neural Network for 3D Shape Retrieval. In: Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative
Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence. AAAI Press, 2019.
AAAI’19/IAAI’19/EAAI’19. ISBN 978-1-57735-809-1. Available at:
https://doi.org/10.1609/aaai.v33i01.33018513.

[33] Karras, T.; Aila, T.; Laine, S. and Lehtinen, J. Progressive Growing of GANs
for Improved Quality, Stability, and Variation. 2018.

[34] Karras, T.; Aittala, M.; Aila, T. and Laine, S. Elucidating the Design Space of
Diffusion-Based Generative Models. In: Koyejo, S.; Mohamed, S.; Agarwal, A.;
Belgrave, D.; Cho, K. et al., ed. Advances in Neural Information Processing
Systems. Curran Associates, Inc., 2022, vol. 35, p. 26565–26577. Available at:
https://proceedings.neurips.cc/paper_files/paper/2022/file/

a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf.

[35] Kingma, D.; Salimans, T.; Poole, B. and Ho, J. Variational Diffusion Models. In:
Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P. and Vaughan, J. W.,
ed. Advances in Neural Information Processing Systems. Curran Associates, Inc.,
2021, vol. 34, p. 21696–21707. Available at: https://proceedings.neurips.cc/

paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf.

[36] Landier, S. Boolean operations on arbitrary polygonal and polyhedral meshes.
Computer-Aided Design. Elsevier, 2017, vol. 85, p. 138–153.

67

https://doi.org/10.1145/3306346.3322959
https://doi.org/10.1609/aaai.v33i01.33018513
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a98846e9d9cc01cfb87eb694d946ce6b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/b578f2a52a0229873fefc2a4b06377fa-Paper.pdf

[37] Le, T.; Bui, G. and Duan, Y. A multi-view recurrent neural network for 3D mesh
segmentation. Computers & Graphics, 2017, vol. 66, p. 103–112. ISSN 0097-8493.
Available at: https://doi.org/10.1016/j.cag.2017.05.011. Shape Modeling
International 2017.

[38] Li, M. and Zhang, H. D2im-net: Learning detail disentangled implicit fields from
single images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2021, p. 10246–10255.

[39] Li, S.; Liu, M. and Walder, C. EditVAE: Unsupervised parts-aware controllable 3D
point cloud shape generation. In: Proceedings of the AAAI Conference on Artificial
Intelligence. 2022, vol. 36, no. 2, p. 1386–1394.

[40] Lorensen, W. E. and Cline, H. E. Marching cubes: A high resolution 3D surface
construction algorithm. In: Seminal graphics: pioneering efforts that shaped the field.
1998, p. 347–353.

[41] Masci, J.; Boscaini, D.; Bronstein, M. M. and Vandergheynst, P. Geodesic
Convolutional Neural Networks on Riemannian Manifolds. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV) Workshops. December
2015.

[42] Mezghanni, M.; Boulkenafed, M.; Lieutier, A. and Ovsjanikov, M.
Physically-aware generative network for 3d shape modeling. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,
p. 9330–9341.

[43] Mirza, M. and Osindero, S. Conditional Generative Adversarial Nets. 2014.

[44] Mittal, P.; Cheng, Y.-C.; Singh, M. and Tulsiani, S. Autosdf: Shape priors for
3d completion, reconstruction and generation. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, p. 306–315.

[45] Mo, K.; Wang, H.; Yan, X. and Guibas, L. PT2PC: Learning to generate 3D point
cloud shapes from part tree conditions. In: Springer. Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI
16. 2020, p. 683–701.

[46] Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion probabilistic models.
In: PMLR. International Conference on Machine Learning. 2021, p. 8162–8171.

[47] Odena, A.; Olah, C. and Shlens, J. Conditional Image Synthesis with Auxiliary
Classifier GANs. In: Precup, D. and Teh, Y. W., ed. Proceedings of the 34th
International Conference on Machine Learning. PMLR, 06–11 Aug 2017, vol. 70,
p. 2642–2651. Proceedings of Machine Learning Research. Available at:
https://proceedings.mlr.press/v70/odena17a.html.

[48] Park, J. J.; Florence, P.; Straub, J.; Newcombe, R. and Lovegrove, S.
Deepsdf: Learning continuous signed distance functions for shape representation.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, p. 165–174.

68

https://doi.org/10.1016/j.cag.2017.05.011
https://proceedings.mlr.press/v70/odena17a.html

[49] Pontes, J. K.; Kong, C.; Sridharan, S.; Lucey, S.; Eriksson, A. et al.
Image2mesh: A learning framework for single image 3d reconstruction. In:
Springer. Computer Vision–ACCV 2018: 14th Asian Conference on Computer
Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, Part I 14.
2019, p. 365–381.

[50] Poursaeed, O.; Fisher, M.; Aigerman, N. and Kim, V. G. Coupling explicit and
implicit surface representations for generative 3d modeling. In: Springer. Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part X 16. 2020, p. 667–683.

[51] Qi, C. R.; Su, H.; Mo, K. and Guibas, L. J. PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017.
IEEE Computer Society, 2017, p. 77–85. Available at:
https://doi.org/10.1109/CVPR.2017.16.

[52] Qi, C. R.; Yi, L.; Su, H. and Guibas, L. J. PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space. In: Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA. 2017, p. 5099–5108.
Available at: https://proceedings.neurips.cc/paper/2017/hash/

d8bf84be3800d12f74d8b05e9b89836f-Abstract.html.

[53] Radford, A.; Metz, L. and Chintala, S. Unsupervised Representation Learning
with Deep Convolutional Generative Adversarial Networks. 2016.

[54] Rao, Y.; Nie, Y. and Dai, A. Patchcomplete: Learning multi-resolution patch priors
for 3d shape completion on unseen categories. Advances in Neural Information
Processing Systems, 2022, vol. 35, p. 34436–34450.

[55] Requicha, A. A. and Voelcker, H. B. Boolean operations in solid modeling:
Boundary evaluation and merging algorithms. Proceedings of the IEEE. IEEE, 1985,
vol. 73, no. 1, p. 30–44.

[56] Riegler, G.; Osman Ulusoy, A. and Geiger, A. Octnet: Learning deep 3d
representations at high resolutions. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2017, p. 3577–3586.

[57] Shi, Y.; Ni, B.; Liu, J.; Rong, D.; Qian, Y. et al. Geometric granularity aware
pixel-to-mesh. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, p. 13097–13106.

[58] Song, J.; Meng, C. and Ermon, S. Denoising Diffusion Implicit Models. 2022.

[59] Song, Y. and Ermon, S. Generative Modeling by Estimating Gradients of the Data
Distribution. In: Wallach, H.; Larochelle, H.; Beygelzimer, A.; Alché Buc,
F. d'; Fox, E. et al., ed. Advances in Neural Information Processing Systems. Curran
Associates, Inc., 2019, vol. 32. Available at: https://proceedings.neurips.cc/

paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf.

69

https://doi.org/10.1109/CVPR.2017.16
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf

[60] Su, H.; Maji, S.; Kalogerakis, E. and Learned-Miller, E. G. Multi-view
Convolutional Neural Networks for 3D Shape Recognition. In: 2015 IEEE
International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015. 2015, p. 945–953. Available at:
https://doi.org/10.1109/ICCV.2015.114.

[61] Sun, Y.; Wang, Y.; Liu, Z.; Siegel, J. and Sarma, S. Pointgrow: Autoregressively
learned point cloud generation with self-attention. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2020, p. 61–70.

[62] Tang, Y.; Qian, Y.; Zhang, Q.; Zeng, Y.; Hou, J. et al. WarpingGAN: Warping
multiple uniform priors for adversarial 3D point cloud generation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
p. 6397–6405.

[63] Vollmer, J.; Mencl, R. and Mueller, H. Improved laplacian smoothing of noisy
surface meshes. In: Wiley Online Library. Computer graphics forum. 1999, vol. 18,
no. 3, p. 131–138.

[64] Wang, N.; Zhang, Y.; Li, Z.; Fu, Y.; Liu, W. et al. Pixel2mesh: Generating 3d
mesh models from single rgb images. In: Proceedings of the European conference on
computer vision (ECCV). 2018, p. 52–67.

[65] Wang, P.-S.; Liu, Y.; Guo, Y.-X.; Sun, C.-Y. and Tong, X. O-CNN. ACM
Transactions on Graphics. Association for Computing Machinery (ACM), jul 2017,
vol. 36, no. 4, p. 1–11. Available at: https://doi.org/10.1145%2F3072959.3073608.

[66] Wang, P.-S.; Liu, Y.; Guo, Y.-X.; Sun, C.-Y. and Tong, X. O-cnn: Octree-based
convolutional neural networks for 3d shape analysis. ACM Transactions On Graphics
(TOG). ACM New York, NY, USA, 2017, vol. 36, no. 4, p. 1–11.

[67] Wang, P.-S.; Liu, Y. and Tong, X. Dual Octree Graph Networks for Learning
Adaptive Volumetric Shape Representations. ACM Transactions on Graphics
(SIGGRAPH), 2022, vol. 41, no. 4.

[68] Werner, D.; Al Hamadi, A. and Werner, P. Truncated Signed Distance
Function: Experiments on Voxel Size. In:. October 2014, vol. 8815, p. 357–364. ISBN
978-3-319-11754-6.

[69] Wu, J.; Wang, Y.; Xue, T.; Sun, X.; Freeman, B. et al. Marrnet: 3d shape
reconstruction via 2.5 d sketches. Advances in neural information processing systems,
2017, vol. 30.

[70] Wu, J.; Zhang, C.; Xue, T.; Freeman, B. and Tenenbaum, J. Learning a
probabilistic latent space of object shapes via 3d generative-adversarial modeling.
Advances in neural information processing systems, 2016, vol. 29.

[71] Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L. et al. 3D ShapeNets: A deep
representation for volumetric shapes. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society, 2015, p. 1912–1920.
Available at: https://doi.org/10.1109/CVPR.2015.7298801.

70

https://doi.org/10.1109/ICCV.2015.114
https://doi.org/10.1145%2F3072959.3073608
https://doi.org/10.1109/CVPR.2015.7298801

[72] Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L. et al. 3d shapenets: A deep
representation for volumetric shapes. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, p. 1912–1920.

[73] Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C. et al. A comprehensive survey on
graph neural networks. IEEE transactions on neural networks and learning systems.
IEEE, 2020, vol. 32, no. 1, p. 4–24.

[74] Xiao, L.; Yang, G.; Yang, K. and Mei, G. Efficient Parallel Algorithms for 3D
Laplacian Smoothing on the GPU. Applied Sciences, december 2019.

[75] Xiao, Y.-P.; Lai, Y.-K.; Zhang, F.-L.; Li, C. and Gao, L. A Survey on Deep
Geometry Learning: From a Representation Perspective. 2020.

[76] Xie, H.; Yao, H.; Sun, X.; Zhou, S. and Zhang, S. Pix2vox: Context-aware 3d
reconstruction from single and multi-view images. In: Proceedings of the IEEE/CVF
international conference on computer vision. 2019, p. 2690–2698.

[77] Xie, J.; Zheng, Z.; Gao, R.; Wang, W.; Zhu, S.-C. et al. Generative VoxelNet:
learning energy-based models for 3D shape synthesis and analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence. IEEE, 2020, vol. 44,
no. 5, p. 2468–2484.

[78] Xu, Q.-C.; Mu, T.-J. and Yang, Y.-L. A survey of deep learning-based 3D shape
generation. Computational Visual Media. Springer, 2023, vol. 9, no. 3, p. 407–442.

[79] Yan, X.; Lin, L.; Mitra, N. J.; Lischinski, D.; Cohen Or, D. et al. Shapeformer:
Transformer-based shape completion via sparse representation. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
p. 6239–6249.

[80] Yang, G.; Huang, X.; Hao, Z.; Liu, M.-Y.; Belongie, S. et al. Pointflow: 3d point
cloud generation with continuous normalizing flows. In: Proceedings of the
IEEE/CVF international conference on computer vision. 2019, p. 4541–4550.

[81] Yang, S.; Xu, M.; Xie, H.; Perry, S. and Xia, J. Single-view 3D object
reconstruction from shape priors in memory. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021, p. 3152–3161.

[82] Yang, X.; Wu, Y.; Zhang, K. and Jin, C. CPCGAN: A controllable 3D point cloud
generative adversarial network with semantic label generating. In: Proceedings of the
AAAI Conference on Artificial Intelligence. 2021, vol. 35, no. 4, p. 3154–3162.

[83] Yang, Y.; Feng, C.; Shen, Y. and Tian, D. Foldingnet: Point cloud auto-encoder
via deep grid deformation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018, p. 206–215.

[84] Zhang, L.; Rao, A. and Agrawala, M. Adding Conditional Control to
Text-to-Image Diffusion Models. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). October 2023, p. 3836–3847.

71

[85] Zhang, L.; Rao, A. and Agrawala, M. Adding conditional control to text-to-image
diffusion models. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2023, p. 3836–3847.

[86] Zhao, W.; Gao, S. and Lin, H. A robust hole-filling algorithm for triangular mesh.
The Visual Computer. Springer, 2007, vol. 23, p. 987–997.

[87] Zhu, J.-Y.; Park, T.; Isola, P. and Efros, A. A. Unpaired Image-To-Image
Translation Using Cycle-Consistent Adversarial Networks. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV). Oct 2017.

72

Appendix A

Contents of the Included Storage
Media

• dataset_processing/ Folder containing files related to dataset generation.

• datasets/ Folder with dataset for training, validation, and testing.1

• model/ Folder containing the implementation of the model.

• evaluation/ Folder containing files related to the evaluation of the model.

• scripts/ Folder containing scripts for training, testing, and sampling.

• pretrained-models/ Folder with pretrained models.

• latex/ Folder with LATEX source files.

• figs/ Folder containing figures showing examples.

• LICENCE Project licence.

• README.md README file for the project.

• requirements.txt Python libraries dependencies.

• poster.pdf Poster.

• thesis.pdf Thesis report file.

• thesis-print.pdf Thesis report file for print.

1Due to the extensive size of the datasets, only a few samples are provided, and the README.md

provides the steps for generating the datasets from scratch.

73

Appendix B

Poster

Supervisor: Tibor Kubík
Author: Peter Zdravecký

GENERATIVE MODELS

FOR 3D SHAPE

COMPLETION Incomplete Completed

Diffusion Process

Motivation and Proposed Method

Results and Conclusion

Experimental results show high capability of this model in shape completion task with

high score of IoU for chosen datasets. The model possesses a strong ability to make use of

the repetitive shape parts to adapt to data out of the training distribution. To enhance the

generative process, the Region of Interest can be utilized to define the area of the missing

parts. Additional experiments focused on generating results in higher resolution. A method

was proposed for this purpose that uses low-resolution processing followed by upscaling
process. Quantitative results on multiple datasets.

Inference caputerd in different timestamp of backward
diffusion process.

The produced results from the automated shape completion are very promising for real

world use. However, the inference time takes approximately 3-5 seconds, therefore shape

completion in real time is currently impossible.

The goal is to automatically complete 3D shapes based on the incomplete input using

deep learning techniques. In many real world scenarios, scanned 3D models contain missing

parts due to occlusion, scanning errors or the incomplete nature of the data itself.

The proposed solution is to use a diffusion-based model and handle the task as a
generative problem to create a complete shape from the incomplete one.

Backward process is modeled using a two-branch architecture
utilizing 3D Unet, to handle the input and condition.

1. Preprocess the input to a higher-dimensional space.

2. Downsample the input to spatial resolution of condition.

3. Process input/condition using two-branch 3D UNet.

4. Upsample output back to the original resolution.

5. Cast output to a lower-dimensional space.

Completed Ground TruthInput

Forward process:

Backward process:
Equation 1.

Equation 2.

Figure 1.

Figure 2.

Figure 3.
Figure 4.

Table 1.

74

	Introduction
	3D Data Representations and Deep Learning Connection
	Polygonal Mesh
	Point Cloud
	Voxel Grid
	Truncated Signed Distance Field
	Multi-View Representation
	Neural Implicit Representation

	Operations on 3D Data and Processing
	Spatial Transformations
	Boolean Operations
	Advanced Operations

	Neural 3D Shape Analysis Methods
	3D Shapes Generation and Completion
	State-of-the-Art in 3D Shape Completion Methods

	Proposed Solution for 3D Shape Completion using Deep Neural Networks
	Problem Definition
	Dataset Preparation Pipeline: Smashing the Objects
	Shape Completion Pipeline: Filling Holes via Diffusion Process

	Implementation Details
	Technologies
	Dataset Specifications
	Specification of Training Configurations

	Conducted Experiments and Achieved Results
	Evaluation Metrics
	Evaluation Axis 1: Completion Ability of the Proposed Solution
	Evaluation Axis 2: Focus on Higher Resolution Results
	Post-Processing Enhancements
	Summary of Results
	Future Work

	Conclusion
	Bibliography
	Contents of the Included Storage Media
	Poster

