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Abstract

Sportsmatch recordings are essential for teams not only to stream their
matches but also to identify areas for improvement through analysis
of various events in the match. While larger clubs take the availability
of their match recordings for granted, smaller clubs often do not have
the human and financial resources to acquire them. However, given a
static wide-angle recording of the full pitch, it is nowadays possible to
emulate a human camera operator to some degree by cropping out
the important region of each frame using computer vision techniques.
These automatic virtual cameras are, however, primarily commercial
black-box solutions. This thesis aims to develop a new, open prototype
intended for soccer matches. The system uses a fine-tuned player-ball
detector, a virtual pan-tilt-zoom (PTZ) camera, and a novel algorithm
for estimating the camera PTZ based on the detections. The system is
evaluated on a match recording from the Slovak First Football League
by comparing the estimated footage with the footage from the broad-
cast camera. The results show that the systemproduces smooth camera
movements with minimal jitter while keeping the action in the frame
throughout all key moments of the match.

Keywords

virtual camera, image distortion, gnomonic projection, object detection,
object tracking, kalman filter, particle filter, PID controller
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Glossary

CNN Convolutional Neural Network

DL Deep Learning

field of view Is the extent of the scene covered by the camera lens.
While it is often used interchangeably with the term angle of
view (as is the case also for this thesis), they are not the same.
The field of view refers to the distance (in meters) covered by the
projection at a certain distance [1], and the angle of view refers to
the angle (in degrees) of coverage

FOV field of view
FPS frames per second

IoU Intersection over Union

KF Kalman filter

LSTM Long Short-Term Memory

mAP Mean Average Precision
MOT Multi-Object Tracking

PF Particle filter
PTZ pan-tilt-zoom

rectilinear image Is an image produced using rectilinear lenses, i.e.,
straight lines in reality are straight also in the image.

rectilinear lens Is a lens preserving the straightness of lines.
ROI region of interest

SOTA state-of-the-art
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1 Introduction

Sportsmatch recordings are indispensable for teams not only for broad-
casting their matches but also for coaches to analyze the match events
and, with the aid of visualizations and drawings, to communicate
their insights to the players. While large sports clubs take these tools
for granted, smaller clubs often do not have the human and financial
resources to acquire video recordings of their matches. This compli-
cates not only the post-match analysis but also the scouting of young
talents, who are often emerging from youth and semi-professional
leagues.

With the increasing availability of high-resolution cameras and the
advances in computer vision in recent years, it is nowadays possible
to record the whole match on one wide-angle camera and crop out the
important area of the play. Even though a handful of commercial solu-
tions already exist, they are mostly black-box. The assignment for this
thesis has been given by Goal Sport Technology, a company providing
technology for sports stadiums, aiming to expand its portfolio with
this kind of solution. Using a self-acquired dataset, this thesis applies
techniques from various domains, such as projective geometry, control
theory, probability theory, or computer vision, to develop a prototype
for an automatic virtual soccer camera. The developed system is then
evaluated by comparing the estimated footage to the broadcast footage
of the same match.

1.1 Problem Description

Given a static video stream of a soccer match covering the full pitch,
estimate a region of interest (ROI) for each frame, such that a video
composed of these ROIs resembles a video recorded by a human
camera operator.

The ROI should capture the action of the game in a pleasing framing.
The action of the game includes the ball and the nearby players. For
a pleasing framing, the ROI should imitate the movement of a real
camera by changing its pan-tilt-zoom (PTZ) smoothly (avoiding jitter)
and by correcting for the perspective distortion caused by the wide
field of view of the frame. Since the input video is a video stream,

2



1. Introduction
only the current and the past frames are available for processing. The
system should also provide a top-down view of the pitch with marked
locations of players and the ball. While real-time performance is not
required, the system should be kept as lightweight as possible.

1.2 Contributions

The contributions of this thesis include:

• A survey of related work on automatic virtual cameras.

• A player-ball detector trained on the SoccerNet-Tracking dataset.

• The Virtual Camera module with smooth movement across a
rectilinear image, simulating the PTZ of a real camera.

• The Cameraman module for estimating the PTZ of the virtual
camera based on the current situation on the soccer pitch.

• An evaluation algorithm for comparing the estimated and broad-
cast footage of the same match.

The Detector, the Virtual Camera, and the Cameraman modules are
integrated into one standalone application attached to this thesis. The
evaluation algorithm is also attached as a separate application.

1.3 Thesis outline

The thesis is structured as follows. Chapter 2 presents related work
on automatic virtual cameras in industry and academia. Chapter 3
first gives a high-level overview of the developed system pipeline and
its implementation. Next, it discusses the applicable datasets for this
kind of application. Last, it briefly describes the Top Down module.
The following chapters then give more details about the three main
applicationmodules: theDetector (Chapter 4), the Cameraman (Chap-
ter 5), and the Virtual Camera (Chapter 6). In Chapter 7, the system is
evaluated using a self-acquired dataset on a full-match recording and
on highlight clips. Finally, in Chapter 8, the results are summarized
and ideas for future work are presented.
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2 Related work

Due to the large commercial interest in automatic sports cameras,
many advanced solutions have been developed in the sports industry.
Therefore, in this chapter, we first summarize the currently available
commercial solutions and afterward give an overview of related aca-
demic work.

2.1 Commercial Solutions

Plenty of companies are already making this kind of product1. Under
the motto democratize the recording of soccer, they primarily target ama-
teur soccer clubs to allow them to stream their matches and training
sessions without needing a camera operator. Some companies pro-
vide only software; others have also developed their hardware setups,
which, as Chapter 6 shows, may be a great advantage when correcting
image distortions. While there exists a large number of solutions, the
following paragraphs focus on a small selection of them to give a
picture about their most common features.

Once Once, the product of the Croatian company Once Sport, is a
software-only solution. It accepts a video covering the full pitch as
input and does the processing offline on the computer. Apart from
automatically estimating the ideal crop-out, its software focuses on

1. Examples of companies: Once, Veo, Pixellot, Spiideo, Provispo, Playsight.

Figure 2.1: Examples of industrial sports cameras: Veo Cam 2 (left)
and Pixellot (right).
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2. Related work
tracking players and provides various tools for drawing and visual-
izations. Although it supports live streaming, e.g., on YouTube, it is
only available if there is enough computing performance to process
the video live. Once recommends using a single wide-angle camera,
such as a CCTV camera or sports cameras like DJI Osmo Action 3, SJ8
PRO, or INSTA 360 RS. The advised placement is at least 6 meters
above the ground, mounted on a tall tripod or light stand. However,
since Once accepts only a single video stream, it does not provide
stitching multiple videos of cameras placed next to each other. In
such case, it recommends first stitching the videos using a tool like
Actionstitch2 and then processing the stitched video. The pricing is
subscription-based at the cost of 32 EUR per month.

Veo The Copenhagen-based company Veo Technologies has devel-
oped a two 4K camera setup encased in a 3D-printed weatherproof
box, called Veo Cam 2 [2] (see Figure 2.1). After mounting it on a
tripod just outside the halfway line of the pitch and raising it above 4
meters (Figure 2.2), it can reach a 180-degree panoramic field of view
of the entire pitch. Using the mobile app, Veo Cam 2 can be connected
to the internet and live-stream a match (with a latency of 45 seconds).

However, in contrast to Once, the actual video processing and
cropping are realized in the cloud, so an internet connection is neces-
sary to preview the final video. After uploading the footage to their
cloud platform and waiting for it to be processed, tools for cropping
videos, drawing annotations, or tagging game highlights become avail-
able. Some highlights are already AI-suggested; the user can delete
or modify them if desired. These highlights can then be saved into a
player’s profile, which can be easily shared by a link, e.g., for recruiting
purposes.

Apart from video editing, the cloud platform offers a number of
analytics, such as ball possession, shot map, pass strings, shots on goal,
or game momentum. When multiple matches are already recorded,
these statistics can be shown aggregated, giving the team valuable
insights about their progress in a given area of their play. Being one
of the most popular solutions in this field, they also have an extensive
blog section on their website and even an educational platform called

2. https://actionstitch.com
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2. Related work

Figure 2.2: Veo Cam 2 [2] Mounted on a Tall Tripod at the Center Line
of a Soccer Pitch

Veo Academy, with how-to guides to their products. Their business
model is subscription-based, starting at 39 EUR per month, with a
one-time expense for the camera of 999 EUR.

Pixellot A similar product comes from the company Pixellot. In May
2023, they released a new generation of their camera, the Pixellot
Show S3 [3]. In contrast to their last generation and other solutions
on the market, it uses three 4K cameras instead of two, producing a
12K video. Since all the processing is again realized in the cloud and
not in real-time, such a large resolution is not an issue, and the video
quality can only benefit from it. Pixellot is also being marketed as a
solution suitable not only for soccer, but also for other sports, such
as basketball, ice-hockey, baseball, softball, American football, rugby,
volleyball, cricket, or handball.

To conclude, this is a competitive business segment with companies
trying to set themselves apart by introducing new features and by

6



2. Related work
increasing the resolution and quality of their videos. Nevertheless,
we can find a few areas that they share. First, they provide their own
video editors with tools for video trimming, annotation drawing, or
highlight tagging. Second, they often provide two viewing modes: a
broadcast view for a more detailed, zoomed-in view for spectators,
and a tactical view, giving a broader overview of the happening on the
pitch for coaches. Third, they extensively use AI for object detection,
object tracking, and action-spotting for tagging and suggesting game
highlights. While many of the solutions claim to succeed at separating
the two teams from each other, tracking each individual player remains
still a challenge.

The prices of these solutions vary widely; it was challenging in our
research to conclude whether the price tag is directly proportional to
the quality of the footage. This was mainly due to a lack of footage
published by the companies, and we could not discard the bias of a
companies showing only a showcase of the selected best footage on
their websites. Also, while the more expensive solutions were pub-
lishing footage recorded at more semi-professional soccer stadiums,
the cheaper ones were primarily recorded at amateur soccer pitches.
However, what the footage across all solutions had in common was a
relatively slow and stable camera movement.

2.2 Academic Research

In academic literature, little research has been conducted on devel-
oping automated camera systems. Here, we list the methods that are
most related to our system. Not all of them, however, target sports
applications. For example, Konstantinos et al. developed a web service
for cropping (general) videos into a target aspect ratio [4]. To deter-
mine the target center of view, they use saliency maps of video frames.
Another indicator of a region’s importance might be the viewer’s gaze,
as proposed by Rachavarapu et al. [5]. Daigo et al. use gaze tracking
in the context of sports broadcasting [6]. With the aim of creating an
automatic pan control system, they move the camera by following
the audience’s face direction. The resulting images are obtained by
sampling from a cylindrical panorama stitched from three cameras.
While the system is evaluated on basketball footage, the authors claim

7



2. Related work
that it is also applicable to other ball games. However, given the scale
of a soccer pitch and that this thesis is using only a single camera
(often placed behind the coaches), it would be hardly applicable in
our context.

Another work demonstrated on a basketball game has been pub-
lished by Chen et al. in a solution for controlling a real robotic cam-
era [7]. The PTZ camera coordinates are estimated based on features
derived from player tracking without the need to track the ball. A
linear regressor is trained on feature representations of professional
broadcast footage. In contrast, instead of using linear regressors and
player positions only, Pidaparthy et al. detect also the optical flow
and use it in a deep network regressor to determine the optimal cam-
era PTZ in hockey scenes [8]. In his master’s thesis, Bayrak presents
anotherDeep Learning (DL) approach, using a Long Short-TermMem-
ory (LSTM) as a regressor [9]. First, footage from two 4K cameras is
stitched with the aid of ArUco markers. Next, a Convolutional Neural
Network (CNN) extracts spatial features, which are then fed to the
LSTM. Finally, a fully connected layer outputs the ROI center coor-
dinates. However, approaches using regressors for PTZ estimation
need quality training data obtained by experienced camera operators,
which is often difficult to get.

During our research, we found the work of Gaddam et al. to be
the most related to ours. In [10], they develop a distributed system
of 5 cameras stitched together into a cylindrical panorama. Similar
to [6], they created a virtual camera for sampling from the panorama
to correct for perspective distortion. While in this paper, the camera
is controlled by the user, in their later work, they attempt to fully au-
tomate the camera movement [11]. In contrast to [7] and [8], they
focus less on determining the best ROI center and more on ensuring
natural camera movement. Different camera control algorithms are
evaluated in a user study. Since this thesis achieves perspective correc-
tion by sampling from a sphere instead of a cylinder, we find relevant
also the work by Yu et al. [12]. They designed so-called Perspective
Crop Layers (PCLs), which compensate for perspective distortion for
improving DL model accuracy, as demonstrated on pose estimation.
These PCLs can be inserted into existing CNN and MLP (Multilayer
Perceptron) architectures without changing the number of parameters
or the training process.

8



3 System Overview

As the main contribution of this thesis, an automatic virtual cam-
era system was developed. This chapter first presents a high-level
overview of the system pipeline that each input frame undergoes.
Next, it provides information about the developed application and the
datasets used during development. Last, it briefly explains the idea
behind the application’s Top Down module. The explanation of the
remaining modules is left for the following chapters.

3.1 Pipeline

The input to the system is a static wide-angle video stream of a soccer
match covering the full pitch. Each frame goes through a series of
stages shown in Figure 3.1.

First, the Detector module detects the players and the ball. In the
next stage, the Cameraman module uses the detections to estimate the
appropriate PTZ of the virtual camera for the current situation on the
field. Then, the Virtual Camera module calculates the ROI corrected
for perspective distortion and crops out that region from the input
frame. Based on the detections and the virtual camera viewing cone,
the Top Down module renders a top-down (bird-eye) view that can
be later used for analysis purposes. Finally, the virtual camera output
frame is written to the output video, and the next frame is retrieved.
This process is repeated until the end of the video stream.

3.2 Application

The application is written in Python1, a popular language for pro-
totyping in the computer vision community. Various libraries are
used: OpenCV2 for image preprocessing, drawing, and IO operations;

1. https://www.python.org/
2. https://opencv.org/
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3. System Overview

Input Frame Detector Virtual Camera

TopDown

Cameraman

Figure 3.1: The application pipeline.

Numpy3 for data structures and mathematical operations; SciPy4 for
statistics; and PyTorch5 and Ultralytics6 for DL training and inference.

The application accepts a soccer recording as input, automatically
finds each frame’s ROI, and outputs a new video consisting of these
ROIs. There are two configuration files: the system and the dataset
configuration file. The system configuration file provides options for
debug visualizations or camera preferences, such as camera sensitivity.
The dataset configuration file specifies the coordinates of the pitch
corners, a necessary information for the Top Down module (see Sec-
tion 3.4), and virtual camera options for the main camera default PTZ
or the PTZ of the three cameras for the frame splitting in the detector
pipeline (see Section 4.3).

The code is attached in the attachments of this thesis, along with
sample videos from the evaluation dataset (presented in Section 7.1).
For installation and usage instructions, refer to the README file and the
rich code documentation.

3. https://numpy.org/
4. https://scipy.org/
5. https://pytorch.org/
6. https://www.ultralytics.com/
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3. System Overview

Figure 3.2: SoccerTrack dataset sample.

3.3 Applicable Datasets

During the development of this system, it was essential to have a
soccer dataset with static footage covering the full pitch. However, we
managed to find only a single suitable open dataset: the SoccerTrack
dataset [13].

It is a Multi-Object Tracking (MOT) dataset, i.e., it contains bound-
ing box annotations of players and the ball. However, the annotations
were obtained in an unconventional way: the authors replaced the
laborious manual annotation task with a semi-automatic annotation
procedure using Global Navigation Satelite System (GNSS) player
trackers and a bird-eye view. The 8K wide-angle main camera record-
ing is thus complemented by GNSS coordinates from player trackers
and a 4K drone video. The GNSS coordinates allow precise automatic
drone video annotation of bounding boxes, which are then easily con-
verted into the main camera view using homography (similar to our
Top Down module in Section 3.4).

Even though the annotations are not used in this thesis, since our
detector is trained on a different dataset (see Chapter 4), this dataset
was used in the early stages of the application development. However,
due to the low camera placement (see Figure 3.2) and no reference
footage for evaluation, there was still a need for a different dataset.
Since thiswas the only applicable open dataset of this kind,we decided
to acquire our own as shown in Section 7.1.

11



3. System Overview

3.4 Top DownModule

The Top Down module uses data from the Detector and the Virtual
Camera modules to render a schematic view of the soccer pitch with
marked locations of players, the ball, and the viewing cone of the vir-
tual camera. It is the least complex module in our application. There-
fore, instead of devoting a whole chapter for the module description
(as is done for the rest of themodules), this section briefly summarizes
the method used for creating a top-down view.

The task is to find a mapping between two images (main and
top-down) of the same 3D object (the pitch). If we simplify this task
by assuming that the captured object is planar7, we are then search-
ing for a projective mapping between two images of a plane, i.e., a
homography [14]. It is a 3x3 matrix with 8 degrees of freedom. The
OpenCV library function findHomography is used, where the input
points are the pitch corner coordinates of both images. The function
computes the homography matrix by minimizing the reprojection
error, using methods such as least squares, RANSAC, or Least-Median
robust method8. The returned homography then transforms points
from the original to the top-down frame space.

For the bounding boxes of detections, the point to be transformed
is the center point of the bottom edge of the bounding box. For the
viewing cone, we take the four corners of the virtual camera ROI in
the original frame space, clip them to the pitch edges (for numerical
stability), and transform these clipped ROI corners to the top-down
view. This creates a characteristic trapezoid of the horizontal field of
view of the camera, as seen in Figure 3.3.

7. In reality, however, depending on the stadium, the center of the pitch is usually
located higher than the corner points, making the pitch rather conic than planar.
Nevertheless, these elevation differences are small relative to the pitch size and the
camera distance to the pitch, allowing us to treat the surface as planar in this thesis.
8. https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html
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3. System Overview

The top-down view (bottom) shows the viewing cone of the virtual camera
ROI (violet), the players (teal), the referees (yellow), and the ball (white).
Note that the misdetections of players with yellow jerseys marked as
referees is because the referees in detector training data were mostly yellow
(see Section 7.1).

Figure 3.3: Top-down view of the pitch (bottom) with its correspond-
ing ROI (top).

13



4 Detector Module

The Detector module aims to detect the players and the ball, which
is essential information for the following stages in the application
pipeline. This chapter first discusses relevant player-ball detection
approaches. After fine-tuning a state-of-the-art (SOTA) object detector,
it discusses the training results and trained model deficiencies. The
last section of this chapter presents the detection pipeline that uses
frame-splitting for converting input frames into a suitable detector
format.

4.1 Player-Ball Detection In Literature

In literature, player and ball detection have been studied extensively.
The methods can be divided into classical and deep learning methods.

The classical methods commonly use a combination of background
subtraction using the Gaussian Mixture Model, feature extraction us-
ing the Histogram of Oriented Gradients, and classification using
Support Vector Machine [15, 16]. For ball detection in particular, cir-
cular object detectors, such as the circular Hough Transform, can be
utilized [17]. However, due to the large variability of grass textures
and patterns in soccer, DL methods often outperform the classical
ones.

DL-based object detection has been traditionally done by 2-stage
detectors, such as R-CNN,where the first stage is responsible for region
proposal and the second stage for classification [18, 19]. However,
single-stage detectors, such as YOLO [20] or SSD [21], have shown
that both stages can be unified and achieve better performance and
high accuracy at the same time. While there are some specialized
methods for detecting small objects at high speed in soccer [22] or in
tennis [23], there has been rapid progress in object detection in recent
years [24]. Thus, we decided to use a SOTA general-purpose object
detector developed by Ultralytics—YOLOv81—in a transfer learning
setting2.

1. https://github.com/ultralytics/ultralytics
2. Transfer learning and domain adaptation refer to the situation where what has been
learned in one setting . . . is exploited to improve generalization in another setting. [25]
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4.2 Detector Model

YOLOv8 provides a high inference speed in a user-friendly interface
with models for object detection and tracking, instance segmentation,
image classification, and pose estimation. This subsection shows how
we adjusted the general object detector model to soccer scenarios.

The object detection model is pre-trained on the COCO dataset3
on 80 object categories, such as person, car, bicycle, or sports ball. If a
broadcast soccer video is run on this model, all detected players in the
image are assigned the label person, and the network may also detect
other potentially unwanted objects in the image, such as spectators or
staff. Our goal is to train the network to differentiate between players,
goalkeepers, referees, and the ball and, if possible, to minimize the
detection of other objects. Thus, we fine-tuned this object detection
model by training it on an open MOT dataset as follows.

4.2.1 Training

YOLOv8 is available in different model sizes. Considering this thesis’s
emphasis on inference speed and time constraints, we decided to work
only with the smallest, nano model, further denoted as YOLOv8n. In
this section, we describe the setup and results of the training.

Dataset We used the SoccerNet-Tracking4 dataset provided by Soc-
cerNet5. It is aMOTdataset of broadcast soccer footage, i.e., the camera
is following the action by panning, tilting, and zooming by a camera
operator. The dataset comprises 30-second annotated clips, which are
split into 57 train and 49 validation clips, making a total duration of
28.5 minutes for the training set and 24.5 minutes for the validation
set6.

3. https://cocodataset.org/
4. https://github.com/SoccerNet/sn-tracking
5. SoccerNet is a group organizing open challenges for soccer video understanding,
see https://www.soccer-net.org/
6. There are 94 more clips that the organizers keep for challenge purposes.
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4. Detector Module

Table 4.1: Universal detector training results.

Model mAP@50 mAP@50-95 Precision Recall
YOLOv8n_640 0.65318 0.37711 0.78737 0.60251
YOLOv8n_960 0.68649 0.40958 0.81395 0.64109

Table 4.2: Ball detector training results.

Model mAP@50 mAP@50-95 Precision Recall
YOLOv8n_640_ball 0.29939 0.09803 0.5098 0.30877
YOLOv8n_960_ball 0.41768 0.14373 0.58763 0.42506
YOLOv8n_1280_ball 0.4542 0.15999 0.61717 0.47156

Technical setup The training was run on a remote computing server
equipped with AMD EPYC 7702P 64-Core CPU, 512GB RAM, and
NVIDIA A100 80GB GPU.

Parameters The model was trained with a batch size of 32 with the
SGD (Stochastic Gradient Descent) optimizer with momentum and
variable learning rate. The rest of the parameters were left default as
listed on the Ultralytics website7 and attached to this thesis.

4.2.2 Training Results

First, we trained two universal detectors for all object classes (i.e., ball,
player, goalkeeper, and referee) with varying input image sizes: one
with 640 pixels and one with 960 pixels on the longer edge. From the
resulting matric values listed in Table 4.1, it is visible that the larger
image size increases the overall quality of detections. However, the
model struggles most with detecting the ball, as the confusion matrix
shows in Figure 4.1. This is inevitable, given the small ball size and its
fast movement speeds with motion blur; however, it is still important
for our application to have the best ball detector possible. Therefore,
we also trained a specialized ball detector with the intention to be
used alongside the universal detector.

7. https://docs.ultralytics.com/usage/cfg/#train
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4. Detector Module

Figure 4.1: YOLOv8n_640 confusion matrix.

For the ball detector, we trained three models with different image
sizes, ranging from640 to 1280 pixels. ThemAP@50 column in Table 4.2
shows that while increasing the image size from 640 to 960 pixels is a
significant improvement (39.7%), increasing it further to 1280 means
only a slight improvement (8.7%).

Discussion From the results and our observations during the model
inference on sample videos, we can conclude that the trained models
provide overall satisfactory player detections with rare false positives
outside the pitch, given the small model size and small training set.
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One source of problems for the universal models is the label as-
signment. It is expected, since players in one match might wear the
same color as a referee wears in another match. Even the ball is not
always white but can be orange in winter conditions. Therefore, the
next parts of the application pipeline should account with this detector
deficiency and not rely on the label assignment, e.g., by treating all de-
tections (except for the ball) as players, as done in Chapter 7. Another
solution might be using a player clustering technique as presented in
[26] and [27].

We can also conclude that it is worth using a larger input image
size than 640 pixels. However, increasing the image size comes for
the cost of worse model generalizability (leading to overfitting) and
increased computational complexity. Thus, as the results also indicate,
the a size of 960 pixels might be the optimal image size for our detector.

4.3 Detection Pipeline

Despite having a trained object detector, it is not yet ready for use with
the original full-pitch frame as input. Thus, we introduce the detection
pipeline, as shown in Figure 4.2 and described in this subsection.

First, it is critical for our application to avoid the non-relevant
detections of objects outside of the pitch. Even though the trained
detectors can achieve this to some degree, we ensure it by masking out
everything except for the pitch. Moreover, some user-defined margins
are added to exclude the pitch areas near the borders where managers
and referees usually stand. These margins can be also used to add
some area outside the pitch to detect players near the pitch borders.

Second, we want to adjust the detector input frames to resemble
the training data as closely as possible. Since we use a detector trained
on regular broadcast footage, our original wide-angle frame cannot be
considered a suitable input image, mainly because the player and the
ball sizes between the training and the inference data differ widely
(see Figure 4.3).

Therefore, the frame gets split into three other frames, which, com-
bined, cover the full pitch. These frames represent the frames of three
virtual cameras with predefined PTZ coordinates, dependent on the
used dataset.

18



4. Detector Module

Input frame

Masked frame

Split

Detect

Join

Output frame

Figure 4.2: The detection pipeline.
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Figure 4.3: Comparison of SoccerNet-Tracking (left) and TrnavaZilina
(right) dataset image samples.

The three frames are fed to the detector in a batch, which allows
the detection of these three frames to be run in parallel on a GPU.
The resulting bounding boxes of players, referees, and balls are finally
joined into one final array of detections represented in the original
frame pixel coordinates.

The system allows the user to define areas in the frame that should
be excluded from the detection either by using the pitch mask mar-
gins mentioned above or by defining such rectangular regions in the
configuration file. This filtering is done right after the join step.
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5 Cameraman Module

The creative part of the developed system lies in this module. It aims
to estimate an ideal framing, such that it not only contains all the
necessary objects (the ball and the nearby players) but is also pleasing
to watch. This is a challenging task that requires to exploit as much
information from the input frame as possible.

This chapter starts by listing our requirements for this module.
Next, the tracking problem is formulated as a Bayesian filtering prob-
lem. Last, the full algorithm is presented with a detailed description
of each step.

5.1 Requirements

A naive approach would be to keep the ball in the center of the frame
constantly. While this would be sufficient for interplay in the middle
of the pitch, as we analyze the different scenarios of a soccer game, we
quickly find cases where it would not provide satisfactory results. For
example, we do not want the ball to be framed in the center during
a corner kick, when one team fully occupies the opponent’s half, or
during a counterattack, where it is desired to pan the camera in the
direction of the attack proactively. Consequently, our goal is to tar-
get the camera center somewhere between the ball position and the
players’ centroid1.

This is, however, only under the assumption that the ball is detected.
Nevertheless, as shown in Chapter 4, it is often not the case since ball
detections are unreliable, missing or containing false positives due to
occlusions, high speed, bad lighting, or other factors [29]. In such cases,
we want to at least estimate the ball position in a way that considers
past measurements by utilizing the ball’s direction and velocity. The
same applies to the players’ centroid. In other words, we expect the
solution to be robust to noisy or missing ball and player detections.

1. An even more suitable information would be to know the movement vector of
each player, as in [28]. This would, however, require tracking each player’s move-
ment, which is a complex problem on its own, given the visual similarities of team-
mates [29]. During our development, we tried using two state-of-the-art trackers
([30], [31]), but they did not produce satisfactory results on our dataset.
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Apart from the camera orientation, another essential factor of pleas-
ing framing is the zoom level, where it is a trade-off between a more
zoomed-in (immersive) view or a zoomed-out (tactical) view. The
zoomed-in view is usually preferred for broadcasts because it provides
a more detailed view for the fans. The zoomed-out view captures the
majority of the players most of the time, giving valuable insights to
coaches. It is also sometimes preferred among the fans, giving them
more room for game analysis than the immersive view. Because both
views have their advantages and disadvantages, many commercial
solutions provide both views for the user to select (as shown in Sec-
tion 2.1). Nevertheless, even in the tactical view, having a too-wide
field of view (FOV) is not desired because it would mean capturing
empty parts of the field. In our case, since the zooming is done dig-
itally, the input footage resolution limits the maximum zoom level,
and thus, we aim to implement a more tactical view.

The final product of this kind should be able to do a live match
broadcast. Thus, the input footage is considered a video stream, i.e.,
only the past frames are available when processing a given frame.

5.2 Object Tracking using Kalman and Particle Filters

The requirements mentioned above indicate that there are two es-
sential features to track: the ball position and the players’ centroid.
Since we are concerned with the problem of tracking, we employ well-
established tracking approaches: the Kalman filter (KF) for tracking
the players’ centroid, and the Particle filter (PF) for estimating the
camera target by fusing multiple measurements, including the ball
position and the players’ centroid.

This section first formulates the problem of tracking as a Sequential
Bayesian filtering problem, introducing the KF and the PF. Next, it
summarizes their usage for object tracking in literature. Finally, it
explains their properties and our reasoning behind choosing them for
tracking the players’ centroid and the camera target.
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5.2.1 Object Tracking as Sequential Bayesian Filtering

The problem of tracking can be defined as the task of recursively
estimating the state x from measurements z [32, 33]. This task can be
transferred into the Bayesian context, which aims to construct the state
probability density function at time t given all past measurements as

p(xt|z1:t) ∝ p(zt|xt)
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1, (5.1)

where p(zt|xt) is the last observation likelihood and p(xt|xt−1) is the
state transition probability.

The algorithmproceeds in two steps: predict and update. The predict
step uses a systemmotion model for predicting the next state, account-
ing for some random noise due to unknown disturbances affecting the
system. The update step uses the gathered measurements to correct
these predictions. If no measurement is available at the current step,
only predict is called. Due to its recursive nature, only the last state
and measurement must be stored, making it a lightweight algorithm.

There are several techniques for solving Equation (5.1) using vari-
ous assumptions. The two most common algorithms are the KF [34]
and the PF [35]. The KF assumes that the system motion model is lin-
ear and the noise is multivariate Gaussian distributed. The PF, on the
other hand, does not use such assumptions and is therefore suitable
for non-linear systems with unknown noise distribution. Also known
as the Sequential Monte Carlo method, bootstrap filtering, or survival
of the fittest, the PF approximates the true distribution using a set of
particles as weighted samples of the distribution.

5.2.2 Using Kalman and Particle Filters for Object Tracking in
Literature

In literature, the KF and the PF are used extensively for tracking. Chen
et al. [36] used two KF trackers for a single object (table tennis ball) in
horizontal and vertical directions separately. Hamuda et al. [37] used
one Kalman filter per detection in a Multi-object tracking scenario,
where the Hungarian algorithm is used for associating detections
with their trackers. Even some DL-based object trackers use the KF
internally, achieving SOTA results for pedestrian tracking [31, 30].
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Pérez et al. [38] used the PF in combination with histogrammatch-
ing, which provided more robust detections. Due to its robustness
to fast-moving objects and occlusions, it has also been used multiple
times for ball tracking [39, 40].

5.2.3 Tracking the Players’ Centroid and Estimating the Camera
Target using Kalman and Particle Filters

In our application,we employ theKalman filter for tracking the players’
centroid and the Particle filter for tracking the camera target by fusing
multiple measurements, including the ball position and the players’
centroid.

Players’ Centroid Tracking Using the KF As shown in the camera
update algorithm below (Section 5.3), we calculate the players’ cen-
troid in each frame. This centroid is used not only in assigning weights
to the particles in the PF but also in calculating the PF control input by
providing information about the players’ mean direction and velocity.
Obviously, for estimating the players’ mean velocity, it is important
to reduce the noise from the player detections caused by, e.g., bad
lighting conditions. Since the player detections are relatively stable
compared to ball detections (i.e., the centroid does not move as quickly
as the ball), we assume the measurement noise for the centroid to be
Gaussian distributed. Therefore, we track the players’ centroid state
(i.e., its position and velocity) using the KF with the constant velocity
model (for a detailed explanation of the KF constant velocity model,
refer to [41]).

Camera Target Tracking Using the PF In contrast to the players’
centroid, the ball is a small, fast-moving object, often occluded by
players, resulting in very noisy detections and frequent false positives.
Consequently, we not only cannot assume Gaussian distributed error,
but due to false positives, we also want to support multimodal distri-
bution for the system state. Thus, the PF is a more suitable approach
for ball tracking than the KF [40].

While we could use the PF for ball tracking by weighting the parti-
cles based on their distance to the ball detection and then use another
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tracker for estimating the camera center target as the weighted mean
of the players’ centroid and the ball position (considering the camera
target requirements stated above), we decided to use a single PF for
both as follows.

The tracked state of the PF is the camera center target; the PF
update step is called whenever a ball measurement comes; and the
error measure for the particles is based on their distance to the ball
dball and to the players’ centroid dcentroid as

Error = αdball + (1 − α)dcentroid, (5.2)

where α is a user-defined constant deciding whether we want the
camera to be aimed more at the ball or the centroid. The larger the
error, the lower the weight assigned to the particles. The particles
are always normalized to yield a sum of 1. To prevent the weight
degeneracy problem of the PF [42], we use systematic resampling (for a
detailed description, refer to [43]).

One of the reasons for choosing the PF for camera center estimation
is the dynamically changing variance of the particles, reflecting the
confidence of the filter. The more frequently we update the filter with
the detection matching the predicted state, the lower the variance of
the particles will be (i.e., the more confident the filter will be in its
estimates); consequently, the less it will be influenced by sporadic
outliers (i.e., false positive detections).

5.3 Camera Update Algorithm

The input to the algorithm are bounding boxes of player and ball
detections. Both the PF and KF are initialized by the players’ centroid
at the start of the application.

1. Discard Goalkeeper Detections
First, wewant to discard the goalkeepers from further processing.
We achieve this simply by discarding the left-most and the right-
most players2.

2. A more sophisticated approach would be to use a detector that differentiates
between players and goalkeepers.
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2. Calculate the Players’ Centroid
Second, we calculate the players’ centroid in the original frame
space, which is valuable information in the succeeding steps.
For example, we use it directly in the third step for calculating
the control input to the particle filter.

3. Calculate the Particle Filter Control Input
The control input is a vector along which the particles are moved
during the predict step. This control vector is formed as a sum
of two vectors: the players’ movement vector (1) and the players’
center vector (2).
(1) The players’ movement vector represents the direction and
the speed of players’ movement, created by subtracting the pre-
vious players’ centroid from the current centroid. Its purpose is
to proactively move the camera during a counterattack when all
players are moving in a similar direction.
(2) The players’ center vector prevents the PF from drifting away
when no ball detection is available for some time. It achieves this
by slowly moving the particles toward the players’ centroid after
the PF variance exceeds a threshold. We assume that this is our
best estimate in such a situation.

4. Update the Particle Filter
If there are no ball detections, only the PF predict step is called.
Otherwise, we update the PF with the ball detection centers and
the players’ centroid as follows.
For each ball detection, we assign a weight to each particle based
on its distance to the ball and the players’ centroid. The maxi-
mum weight will be assigned to a particle that lies on the line
connecting the ball and the players’ centroid.We use an α ∈ [0, 1]
that determines the position on the line that will be assigned the
highest weight. Using the α, we can decide whether we want the
ball to be in the frame’s center or whether to center the frame at a
point between the ball and the players’ centroid. Afterward, the
weights are normalized, and the particles are resampled using
systematic resampling [43].
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5. Update the Kalman Filter
Next, we perform the predict step of the KF for estimating the
players’ centroid, and if there are any player detections, we also
proceed to the update step.

6. Calculate the Zoom Level The zoom level is determined by
taking the maximum3 of two calculated FOVs: FOV based on
the PF variance (1) and FOV based on the players bounding box
width (2).
(1) Intuitively, when the ball has not been detected for some
time, our uncertainty of its true position increases, and we ex-
pect the camera to zoom out. In the opposite scenario, when
there are frequent ball detections (from a similar location), we
have the confidence to zoom in. This is what we attempt to do
in this step, where, similarly as in step 3, we utilize the PF vari-
ance to observe whether the ball has been detected in the past
few frames. Specifically, we define a zoom range for the virtual
camera (its minimal and maximal allowed FOV) and a variance
range for the PF (a minimal and maximal variance); we map
these values on each other so that the minimal FOV is reached at
the minimal variance, and vice-versa. The zoom level is then a
linear interpolation within this range based on the PF variance.
(2) The second contributing factor aims to correct the caseswhen
the camera is too zoomed out, i.e., when the PF variance is high
due to a lack of ball detections. The idea is that if all players
are in the frame, the camera should not zoom out further. In
other words, if no ball is detected, we want to fit all players
into the frame and not zoom out more (as would be the case
if relying only on the zoom calculated from the PF variance).
We achieve this by calculating a bounding box encapsulating all
player detections (except for the goalkeepers) with some added
margins for a more pleasing framing. The width of the bounding
box (in pixels) is then used for calculating the target FOV for
the virtual camera.

3. A more conservative approach than taking the maximum of the two zoom
estimates would be to take their average.
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7. Update the Virtual Camera
In the last step, we perform the actual update of the virtual
camera, i.e., set the target of its PI controller (see Section 6.3).
The target x and y are the coordinates of the weighted mean of
all PF particles, and the zoom level (focal length) is derived from
the estimated FOV. However, before the PI controller update,
we first verify if the ROI defined by these new PTZ coordinates
fits the original frame bounds. We update the PI controller only
if this test is passed.
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TheVirtual Cameramodule aims to define a ROI around a target center
point estimated by the Cameraman module and to transition between
the current and the next target smoothly. A naive way of defining a
ROI based on its center would be to just use a rectangle of a given
aspect ratio. However, this would give poor results because it does not
compensate for distortions caused by wide-angle lenses. This chapter
first describes the problem of image distortion and ways of correcting
them. Next, it presents the perspective distortion correction algorithm
used in our application. Finally, it introduces the PI controller for
achieving smooth camera movement.

6.1 Image Distortion

This section describes the two types of distortion that images can suffer
from: optical distortion and perspective distortion [44].

6.1.1 Optical Distortion

Optical (also referred to as curvilinear) distortion is an optical error
caused by curvilinear lenses. It makes physically straight lines ap-
pear curvy in the image. The most common types include the barrel
and the pincushion distortion, shown in Figure 6.1. In barrel distor-
tion, image magnification decreases from the optical axis towards the
corners and is commonly seen in wide-angle lenses, where a wide
FOV relative to the sensor size needs to be squeezed. In pincushion
distortion, on the other hand, the magnification increases towards the
corners and appears mainly in zoom lenses, where a small angle of
view has to be stretched to fit the sensor. Curvilinear images appear un-
natural because human vision does not bend lines. Lenses preserving
the straightness of lines, making the images look natural, are called
rectilinear lenses. Consequently, optical distortion is sometimes also
defined as the deviation from rectilinear projection.
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Figure 6.1: Example of barrel (left) and pincushion (right) distortion
with annotated grid lines.

6.1.2 Perspective Distortion

Perspective (also referred to as geometric) distortion is the deviation of
the observed image from the image captured with a normal lens1 [45].
This results in warping objects in the image so that they appear smaller
as their distance from the camera increases and appear (dispropor-
tionately) larger when placed too close to the camera. Thus, it is not
an issue of optics but rather of the position of the camera relative to
the captured subject. In other words, the wider the FOV of a lens, the
more its image deviates from the normal FOV, and the more are the
objects in the image warped [44].

6.2 Distortion Correction

To be able to simulate a realistic PTZ of a camera on a tripod, both
types of distortions must be corrected.

6.2.1 Optical Distortion Correction

Removing optical distortion from an image is sometimes referred to
as image undistortion. It essentially means turning it into a rectilinear
image, i.e., straightening the curved lines that are straight in reality.
For this, we need to know the distortion coefficients of the lens. A

1. An image produced by a normal lens resembles the FOV and magnification of
human vision, thus appearing naturally, without space compression or bending
lines [45].
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procedure for finding these coefficients is called geometric camera cali-
bration, also called camera resectioning. Apart from the lens distortion
coefficients, it also yields the intrinsic and extrinsic parameters of the
camera, used, e.g., for pose estimation in robotics or navigation sys-
tems. A well established approach has been proposed by Zhang [46],
which is a part of many computer vision libraries and toolboxes, such
as OpenCV or Matlab Camera Calibration Toolbox2.

Our application assumes that every input frame is a rectilinear
image. Thus, before executing the application on a dataset, the input
images must be undistorted, e.g., by camera calibration. Also, even
if the dataset is already rectilinear, camera calibration can be used
to obtain the focal length and, consequently, the FOV of the camera,
which is needed for correcting the perspective distortion (as shown in
the following section). The FOV can be derived from the focal length
as

FOV = 2 arctan
H
2 f

, (6.1)

where H is the sensor size and f is the focal length. In the case of the
virtual camera, H can be set arbitrarily. Our application uses 36 mm
to emulate the focal length values to a full-frame camera.

6.2.2 Perspective Distortion Correction

While optical lens distortion correction essentially transforms the
dataset into a correct input format for our application, in our case
rectilinear, perspective distortion correction handles the simulation
of the PTZ effect. It leverages the rectilinear property of images by
sampling from their projection scheme: the gnomonic projection, also
referred to as gnomic, rectilinear, or tangent-plane projection.

Gnomonic Projection

The gnomonic projection is a perspective projection of a sphere from
the center of the sphere onto a tangent plane [47]. This resembles the
case of capturing a scene around the camera and projecting it on a

2. https://www.mathworks.com/help/vision/camera-calibration.html
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(a) (b)

(a) When taking a picture with a camera, we are essentially projecting a
portion of a sphere (our scene) onto a plane (camera sensor). If the lens is
equirectangular and spherical, the points on the sphere are related to points
on the tangent plane by gnomonic projection.
(b) Rectilinear image with marked sphere grid lines projected using
gnomonic projection. The image now serves as a tangent plane that touches
the sphere by its center at latitude and longitude (0, 0). Notice the stretching
of grid squares towards the edges of the frame, mimicking the behavior of
rectilinear lenses.

Figure 6.2: Visualization of the gnomonic projection.

flat sensor, as shown in Figure 6.2a. Figure 6.2b shows how these grid
lines get deformed under the gnomonic projection3.

The transformation equations [48] for projecting a point on a unit
sphere (given by its longitude λ and latitude ϕ) onto a tangent plane

3. This is similar to the problem that cartographers face when creating world
maps. The large number of world map projections shows that it is impossible to
map a sphere onto a plane without introducing any distortion. For example, some
projections prefer preserving angles for the cost of distorting image size and shape,
like the Mercator projection, suitable, e.g., for navigation purposes; other projections
put emphasis on preserving area sizes for the cost of distorting shapes and angles,
like the Gall-Peters projection.
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centered at λ0, ϕ1, are given by

x =
cos θ sin (λ − λ0)

cos c
, (6.2)

y =
cos θ1 sin θ − sin θ1 cos θ cos (λ − λ0)

cos c
, (6.3)

where cos c is the angular distance of the point (x, y) from the center
of the projection, given by

cos c = sin θ1 sin θ + cos θ1 cos θ cos (λ − λ0). (6.4)
Panning and tilting the camera in this context means moving the

tangent point on the surface of the sphere in the opposite direction as
the desired camera orientation. This is key for correcting the perspec-
tive distortion. In the next section, we present the full algorithm.

Perspective Distortion Correction Algorithm

The deformed grid lines in Figure 6.2b already suggest that the ex-
pected shape of the ROI is a trapezoid. When the camera is pointing
at the center of the frame, the ROI is a rectangle, and by panning or
tilting, it turns into a trapezoid to compensate for the rectilinear image
stretching. Since the mapping between the input frame and the ROI
frame is linear, it can be expressed by a homography matrix. Simi-
larly to Section 3.4, the following algorithm uses four corner points to
calculate the homography matrix used for obtaining the final ROI.

Figure 6.3 shows a schematic overview of the algorithm. It uses two
coordinate spaces: the screen space and the spherical space. The screen
space is used for sampling from the input image. It has a normalized
variant, ranging from 0 to 1, and a non-normalized variant, ranging
from 0 to the resolution of the operated image. The spherical space
represents the points on the sphere, needed for working with the
gnomonic projection. Even though the spherical coordinates lie in
intervals [−π, π] and [−π

2 , π
2 ] for horizontal and vertical direction,

respectively, the algorithmuses only the portion of the sphere’s surface
that is covered by the FOV of the lens used for capturing the input
footage.

The algorithm starts by generating four corner points in normal-
ized screen coordinates. Next, they are transformed into the spherical
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Screen space to 
spherical space.

2.

Virtual Camera Sampling Algorithm with Perspective Distortion Correction

Input: Rectilinear image, Lens FOV, Virtual Camera PTZ coordinates.
Output: ROI crop-out of the input image, based on the Virtual Camera FOV.

1.
Generate 4 corner points in 

normalized screen coordinates.

Inverse gnomonic 
projection with center 
of projection at (0, 0).

4.

Spherical space
to screen space
+ homography.

6.

Downscale based on
Virtual Camera zoom.3.

Gnomonic projection with center of projection 
at Virtual Camera pan and tilt coordinates.5.

Figure 6.3: Algorithm for virtual camera sampling with perspective
distortion correction using only 4 points.
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space, where they now represent the corner points of the input image,
i.e., the top-left point has coordinates (− LensFOVH

2 ,− LensFOVV
2 ) and the

bottom-right point has coordinates ( LensFOVH
2 , LensFOVV

2 ). In the third
step, the points are scaled down tomatch the virtual camera FOV given
by the current zoom level. These coordinates are thenmapped onto the
sphere’s surface by the inverse gnomonic projection with the center of
projection at (0, 0). In step 5, they are mapped back onto a plane by
the gnomonic projection, but this time with the center of projection at
the pan and tilt coordinates of the virtual camera, which yields the
expected trapezoid that is stretched towards the frame corners. In the
last step, these spherical coordinates are transformed into screen coor-
dinates, ranging from 0 to the original frame resolution. What remains
is to map these four points to the corner points of the output frame
using homography. The coordinates of the output frame corner points
depend on the desired resolution: our application uses the standard
Full HD resolution (1920 x 1080 pixels). The homography matrix relat-
ing the four projected points to the corner points of the output frame
is calculated using the OpenCV function findHomography. Applying
this matrix to the input frame yields the desired ROI crop-out.

In summary, this algorithm allows cropping out the ROI based on
its center in the input image. Since the mapping between the source
and the output image is linear, no line bending is employed. As a
result, the obtained ROI is still a rectilinear image, but due to the lower
FOV it covers, the image looks more natural to the eye.

6.2.3 Pitch Tilt Correction

Looking closely at the output image in Figure 6.3, it can be observed
that the pitch is slightly rotated. The undesired effect of pitch rotation
gets more pronounced at higher pan levels. We address this problem
in step 4 of our algorithm, where we move the tangent point of the
inverse gnomonic projection up (or down, depending on the dataset),
effectively tilting the pitch outward or toward the camera. Figure 6.4
shows the effect of pitch tilt correction on our dataset.

35



6. Virtual Camera Module

(a) Before Correction (b) After Correction
The frames are shown with their respective ROIs in the original frame.

Figure 6.4: Pitch tilt correction demonstration.

6.3 Movement Smoothing

This section presents the method used to achieve a smooth camera
transition from one target to another. First, requirements for camera
movement are listed. Next, the PID (proportional–integral–derivative)
controller family is presented, which forms the basis for the PI (pro-
portional–integral) controller used in this thesis. Finally, the influence
of individual controller parameters is described and technical details
are given.

6.3.1 Requirements

The transition is expected to progressively accelerate at the beginning
of the movement and decelerate when approaching its end, with min-
imal overshooting. Furthermore, the transition speed should be high
enough to follow dynamic scenarios, such as counter-attacks. The
transition properties should be easily adjustable by the user.
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Σ Σ Σ
y(t)

+
+ +

+ +

r(t) e(t)

Target
center

Current
center

Figure 6.5: Block diagram of the PI controller.

6.3.2 PID Controller

This task comes from the field of control theory, where the aim is to
drive a system state towards a target level. Awell-established controller
family is the so-called PID controller family. It is ubiquitously used in
industry to regulate temperate, flow, pressure, speed, or other process
variables [49].

The PID controller is a closed feedback control loop that keeps the
actual output of a process as close to the target as possible [49]. It
achieves this by calculating the error e(t) (the difference between the
actual output and the target) and relating this error to the controller
output y(t) by a transfer function. This transfer function consists of:
the proportional term P, the integral term I, and the derivative term D
(hence the name PID controller).

6.3.3 PI Controller

This thesis uses only the proportional and integral terms, i.e., the
PI version of the PID controller family. The transfer function is then
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defined as
e(t) = r(t)− y(t), (6.5)

y(t) = y(t) + Kpe(t) + Ki

∫ t

0
e(τ)dτ, (6.6)

where r(t) and y(t) are the target and the actual output (camera center
coordinate) at time t, respectively; Kp and Ki are the coefficients for the
proportional and integral terms, respectively. This transfer function is
also shown in block diagram in Figure 6.5.

6.3.4 Parameter Tuning

The Kp and Ki coefficients must be set appropriately for the PI con-
troller to work correctly, each having its distinct effect on the camera’s
behavior.

The proportional coefficient Kp allows the user to regulate the
responsiveness of the camera. By directly depending on the instanta-
neous value of the error, it also provides a gradual slowdown. How-
ever, in case of target change, using only the P term would result in
sudden movement changes, harming smoothness.

The integral coefficient Ki addresses this issue by adding a slow
reaction factor to the controller. Before changing the direction of mo-
tion, it gradually slows down, resulting in a smoother behavior. Also,
by accumulating the error, it increases the maximum speed, which is
suitable for capturing counter-attacks. For a detailed description of
these coefficients and ways of tuning them, refer to [49].

Even though the integral term causes some minor overshooting,
which could be compensated by the derivative term, achieving the
highest precision possible is not our aim and, thus, we decided to omit
the derivative term by setting Kd to 0. Furthermore, the use of the
derivative term increases the controller’s sensitivity to noise, making
the system less stable, which would be more harmful to our purposes
than minor overshooting.

Our application uses three separate PI controllers: two for the
ROI center point (x and y coordinates) and one for the zoom (focal
length of the virtual camera). Advantages of this approach include low-
performance overhead and customizability by the user. This solution
meets the listed requirements and produces satisfactory results.

38



7 Evaluation

It is not clear how to approach the evaluation of our system. A labor-
intensive way could be manually setting the camera PTZ coordinates
for each frame by a person and comparing it to the estimations. How-
ever, as already discussed in this thesis, people have different framing
preferences, and thus, these PTZ coordinates could differ widely, even
among experienced camera operators. Given this subjective nature of
the evaluation of such a system, one could also conduct a user study,
as, e.g., in [11].

Nevertheless, we decided to utilize the broadcast footage provided
with our evaluation dataset (presented in Section 7.1).We compare the
estimated frames (referred to as the main camera) with the broadcast
video frames (referred to as the VAR camera). For the metric, we
compute the average Intersection over Union (IoU) of their top-down
projected frames.

This chapter first presents the evaluation dataset and the technical
setup. Second, it describes the method and the results of full match
evaluation. Third, it uses a second evaluation method: pass/fail man-
ual inspection of 30-second clips of selected match highlights. Last, it
draws conclusions from the obtained results in the discussion section.

7.1 TrnavaZilina Dataset

With the help of Goal Sport Technology, we recorded the entire soccer
match between FC Spartak Trnava and MŠK Žilina in the Slovak First
Football League. It was the sixth round of the Niké Liga on 03.09.2023
at 17:30 at Anton Malatinský Stadium in Trnava.

The description of the recording setup (shown in Figure 7.1) fol-
lows. The camera used for recording was the Aida UHD-100A1. It was
equipped with a wide-angle, rectilinear lens by Theia Technologies2.
This setup provided a horizontal and vertical angle of view of 115
and 83 degrees, respectively3. We used the Blackmagic UltraStudio

1. https://aidaimaging.com/uhd-100a/
2. https://www.theiatech.com/lenses/183/?lens=ML183A
3. While this information can be acquired by camera calibration, we obtained it
from the manufacturer’s product page.
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Figure 7.1: The TrnavaZilina recording setup.

4K Mini4 for recording a 4K (3840 x 2160px) video in 30 frames per
second (FPS) and bitrate 7710 kbps encoded with the H264 codec.

The Slovak Football Association kindly provided the original broad-
cast footage from the primary (VAR) camera, however, for evaluation
purposes only. Thus, for legal grounds, the full-length footage from
neither the VAR camera nor the main camera could be enclosed in the
attachments of this thesis. Only several 30-second clips from the main
camera are attached for testing purposes5.

This is a challenging dataset for our algorithm especially due to the
player jersey colors: one team is wearing yellow jerseys and the other is
wearingwhite jerseys. In the training dataset of our detector, yellow is a
typical color for the referee andwhite for the ball. As shown previously
in Figure 3.3, this may lead to incorrect label assignment for objects of
these colors. To address this, all detected object classes (except for the
ball) are treated as players in our experiments. Furthermore, some
parts of the dataset contain strong lens flares due to direct opposite
sunlight. Their bright color and strong contrast cause false positive
detections, harming the Cameraman module estimation quality. To
avoid this at the time of recording the dataset, it is recommended to use

4. https://www.blackmagicdesign.com/products/ultrastudio/techspecs/W-
DLUS-11
5. See the clip p0_shot4.mp4 for a delightful bicycle kick
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lens hoods. For the sake of evaluating our system, we are discarding
the false positive detections by predefining the areas containing the
lens flares; these areas are then discarded in the detection pipeline
(see Section 4.3).

7.2 Full Match Evaluation

To compare two views of a scene, it is necessary to convert the frames
into a common coordinate system. We decided to use the top-down
view as this common space, where, after projecting the two views, we
get two finite sample sets of pixels, where a pixel belongs to a set iff it
has a value greater than zero.

7.2.1 Metric

Next, we want to find a metric that lets us compare multiple algo-
rithms over the full match. If we used only the intersection, an over-
conservative algorithm that stays fully zoomed out throughout the
whole match would achieve the highest score. Another metric could
be the difference between the two sets. This would penalize the over-
conservative case; however, in case of no overlap, the difference would
be the same as for an optimal framing. Thus, we want to also penal-
ize areas that are not overlapping. A metric combining both types of
penalization is the IoU, or the Jaccard index. It is a commonly used
similarity measure and is defined as follows:

IoU(A, B) =
|A ∩ B|
|A ∪ B| =

|A ∩ B|
|A|+ |B| − |A ∩ B| , (7.1)

where A and B are finite sample sets.

7.2.2 Algorithm

The evaluation algorithm takes two videos (main and VAR) as input
and outputs their mean and median IoU.

1. Export frames
Export a frame every 10 seconds both from the main and the
VAR footage.
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Figure 7.2: Visualization of the evaluation metric: IoU of the top-down
projected estimated (main) and reference (VAR) frames.
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2. Top-down transform

Transform these frames into a unified top-down view. We use
the homography matrix mapping points from the screen space
to the top-down space (described in more detail in Section 3.4).
For the main frame, we utilize the homography matrix of the
original frame at the time of cropping the ROI (see step 6 in
Figure 6.3).
For the VAR frame, however, we do not have the homography
matrix yet. To obtain it, we first need to calibrate the camera, i.e.,
to determine the camera position and rotation with respect to
the pitch. For this, we use the TVCalib method [50]. TVCalib
takes the broadcast frames as input and outputs the intrinsic and
extrinsic parameters of the camera, including the homography
matrix and the segment reprojection loss (described in [50]).
We use this loss to discard low-quality (invalid) calibrations
from the evaluation. To assess the calibration quality, we use the
segment reprojection loss. We assume that an invalid calibration
has a significantly higher or lower loss than most of the losses.
To find the threshold values for discarding outliers, we use the
boxplot lower and upper whiskers as follows:

tlow = Q1 − 1.5IQR, (7.2)
thigh = Q3 + 1.5IQR, (7.3)

where tlow and thigh are the lower and the upper threshold, re-
spectively; Q1 and Q3 are the first and the third quartile, respec-
tively; and

IQR = Q3 − Q1. (7.4)

Figure 7.3 shows examples of valid and invalid calibrations with
their respective loss values.

3. Overlay

Overlay the main and the VAR projected frames over each other
and calculate their IoU.
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Table 7.1:Mean IoU of different algorithm variants.

Algorithm First half Second half Full match
Single detector 0.3696 0.3390 0.3548
Ball detector 0.3600 0.3337 0.3472
Imgsz640 0.3539 0.3257 0.3402
N1000 0.3695 0.3390 0.3548

7.2.3 Results

Table 7.1 shows the full match evaluation results for four outputs of
our system using the TrnavaZilina dataset.

Single detector This is our reference algorithm; the rest of the evalu-
ated algorithms are only variants of it, differing only in a single
parameter. This algorithm uses a single detector for both the
players and the ball, with an image size of 960 pixels and 500
particles for the Particle Filter. For a complete list of parameters
for this variant, refer to the thesis attachments.

Ball detector This variant tests the effect of using a specialized ball
detector YOLOv8n_960_ball (described in Chapter 4) instead of
a single, universal detector for all object classes. The resulting
mean IoU is lower than in the case of a single detector.

Imgsz640 Decreasing the resolution of the detector input image from
960 to 640 pixels is demonstrated by this algorithm variant. As
expected, it resulted in a drop in the mean IoU.

N1000 This algorithm variant uses 1000 PF particles instead of 500,
which did not result in improved mean IoU.

7.3 Clips Evaluation

Apart from focusing on the match as a whole, we wanted to test
whether all key moments are captured well. In particular, whether all
goals and shots are in frame and whether the algorithm can follow
fast counterattacks.
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Subfigure (a) shows the calibration loss boxplot of the full match used for
determining the lower (tlow) and upper (thigh) threshold for discarding
invalid calibrations. In this case, tlow = 0.0034 and thigh = 0.0188.
The rest of the subfigures show examples of top-down views of a valid
calibration (b), invalid calibration with loss above the upper threshold (c),
and invalid calibration with loss below the lower threshold (d).

Figure 7.3: Calibration results of VAR full match recordings.
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Table 7.2: Clips evaluation results.

Clip Single detector Ball detector Imgsz640 N1000
p0_shot1 Pass Pass Pass Pass
p0_shot2 Pass Pass Pass Pass
p0_shot3 Pass Pass Pass Pass
p0_shot4 Pass Pass Pass Pass
p0_zoom Fail Fail Fail Fail
p1_counter1 Fail Fail Pass Fail
p1_goal1 Pass Pass Pass Pass
p1_goal2 Pass Fail Pass Pass
p1_shot1 Pass Pass Pass Pass
p1_shot2 Fail Fail Fail Fail

Prefix p0 denotes the period of the game—0 for the first and 1 for the second.
The suffix denotes the situation captured by the recording—whether it is a
goal, a shot, a counterattack, or a clip testing the adaptability of the
algorithm for various zoom requirements.

We thus decided to export 10 clips capturing such scenarios. 9 of
them are around 30 seconds long and capture 6 shots, 2 goals, and
1 counterattack. There is one clip of length 1 minute and 21 seconds
(p0_zoom), which captures a part of the game with variable require-
ments for zoom: zoom in to capture the game in the rear part of the
pitch, then zoom out to cover an attack, and finally capture the shot at
the end of the action.

We wanted to look at these clips with the eye of a spectator, for
whom it is essential to see the ball constantly. Thus, we processed each
clip and observed whether the ball was always in the frame. If it was,
it passed our test, otherwise, it failed.

7.3.1 Results

Table 7.2 shows that the algorithms passed the majority of cases. All
shots and goals are framed well, capturing both the active player and
the goal with the goalkeeper.
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The deficiencies of the algorithm emerge in three clips: p0_zoom,
p1_counter1, and p1_shot2. During dynamic parts of the game, when
the ball is played from side to side, the camera sometimes struggles to
follow the ball, resulting in losing it from the frame for a fewmoments.
Even though, in these cases, the camera kept most of the players in
the frame, and the ball eventually reappeared, we consider these clips
to be failed estimates.

7.4 Technical Details

Initialization The initial PTZ coordinates of the algorithm were
initialized so that both goals were in the frame. This fact may be
reflected in the mean IoU of the clips, where in the first few seconds,
the camera is panning from the center to the pitch.

Performance The estimations were run on a remote computing
server equipped with AMD EPYC 7702P 64-Core CPU, 512GB RAM,
and NVIDIA A100 80GB GPU. The computation time for two match
periods run in parallel was 3 hours and 44minutes (approx. 6.5 FPS on
average). The computation of one frame took approx. 100 ms, where
the bottleneck did not lie in the detection phase, which took only 25ms
thanks to the small detector, but in the image sampling operations.

Metric Limitations Note that, for this particular dataset, the two
cameras are neither mounted on the same tripod nor placed near each
other (the main camera is standing approximately 15 meters apart
from the VAR camera). Furthermore, the broadcast camera uses a
more zoomed-in framing for a more immersive effect for the viewers,
whereas the main camera aims to use a more zoomed-out framing, as
mentioned in Section 5.1. Consequently, the IoU could not be precisely
equal to 1 even if the estimated ROI closely matched the reference
ROI.

Nevertheless, this is not an issue sincewe require a relativemeasure
that allows us to compare algorithm variants on the same dataset. The
same holds for the interpretability of the IoU: by looking at the number,
it is not easy to infer whether the algorithm performs poorly, but it
serves well for comparison purposes. It also allows detecting large
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deviations from the broadcast frame, which might be the case for
especially poorly performing algorithms.

7.5 Discussion

From the presented results and our observations while browsing the
estimated footage, we can conclude that the algorithm performs well
in most situations. It moves the camera smoothly, capturing all key
moments and following the important part of the game most of the
time. Even in the case of failed clips, the system managed to recover
swiftly. Since doubling the number of particles in the particle filter
did not lead to any significant improvements, we can consider leaving
the number of particles at 500, or even decreasing it with decreasing
variance (as in [40]).

The most significant observable difference between the estimated
and the reference footage is the decreased image quality. While some
companies argue that the recordings are not meant for professional TV
broadcasting, and the reduced video quality format works really well on devices
with smaller screens [51], the low resolution combinedwith poorer light
conditions negatively impacts also the detector. This brings more false
positives into the Cameraman module, which we found to be the most
harmful factor for estimation quality.

For example, the clip p1_counter was obtained in the second half
of the game, when the scene was darker than in the first half, and thus,
the image was noisier and blurrier (see Figure 7.4). This resulted in
the detection of more false positives caused by players in white jerseys,
which held back the camera from following the actual ball movement
(even though the ball was constantly detected). As shown in Table 7.2,
Imgsz640 is the only variant that managed to keep the ball in frame for
this clip. This is due to the lower number of false positive detections
produced by the detector when given an image of a lower resolution.
The negative impact of false positives can also be observed in the
separate ball detector variant, which performs worse than the single
detector algorithm in the mean IoU and the clips.
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The false positives are holding back the camera from following the
counterattack. Notice that the ball (white) is correctly detected near the
right edge of the frame, but the particles (red) are attracted towards their
nearest ball detections.
Note: The yellow, orange, and teal boxes correspond to detections of players,
referees, and goalkeepers, respectively. Since many boxes are labeled
incorrectly, we treat them as one class in our algorithm. The figure also
shows the bounding box encapsulating all players (with added margins)
used for estimating the zoom level as explained in Section 5.3.

Figure 7.4: False positives holding back the camera.
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8 Conclusion

In this thesis, we developed an automatic virtual camera system that
accepts a rectilinear video as input and makes a crop-out of each
frame to produce a video with an automated PTZ. This is achieved by
detecting the players and the ball on the field, estimating a framing
based on the detections, and emulating the smooth PTZ of a real
camera by compensating for perspective distortion. The detections
are also used to render a top-down view of the detection for analysis
purposes. The system allows easy adjustment of parameters, making
it customizable for various datasets and user preferences.

Furthermore, we developed an evaluation algorithm that performs
camera calibration on the broadcast video and compares the estimated
video to the broadcast by computing the IoU of their top-down pro-
jected frames. While this metric is not an absolute measure of quality,
it can serve to compare different algorithm variants to each other and
to detect large deviations from the broadcast frame.

The results show that the system performs well in most situations,
producing smooth movements with minimal jitter and keeping the
ball in the frame throughout all key moments of the match. The main
bottleneck of the system lies in the detector, which harms the estima-
tion by producing false positives. This results in unnatural movements
and impairs the camera’s ability to follow the game action in some
dynamic scenarios.

8.1 Future Work

There is still a lot of room for further exploration in future work. This
section suggests possible areas for improvement, ranging from the
input frame to the evaluation stage.

Input Frame To achieve a higher output frame resolution, two or
more cameras could be rigged together, each covering its respective
field of view. This would be, however, for the cost of increased com-
putational complexity due to an added stitching phase.
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Frame Splitter A desired feature for a production-ready product of
this kind is deriving the Frame Splitter PTZ parameters automatically,
i.e., without manually positioning the three virtual cameras for each
dataset. Furthermore, non-maximum suppression (NMS) could be
implemented for the overlapping areas of virtual camera frames to
avoid duplicate detections. One can also consider using more than
three Frame Splitter windows for a more zoomed-in input frame for
the detector, utilizing the fact that the detections are computed in a
batch in parallel.

Detector The detector could be undoubtedly improved by further
training on different datasets, using different parameters or base mod-
els (e.g., a larger version of YOLOv81 or a different architecture [22]).
However, given the uniform background of a soccer pitch, there is
more room for optimization. For example, background modeling
could identify moving objects as blobs, and then a deep learning
classifier could assign labels to these blobs, as proposed in [52]. Also,
detection clustering ([26, 27]) could be used not only to discard un-
wanted detections (i.e., coaches, referees, spectators, and staff) but
also to cluster players into teams, which could be a useful piece of
information in the Cameraman module. Discarding unwanted detec-
tions could also work with the fact that the spectators and coaches
tend to be static when compared to the players, as proposed in [53].

Player and Ball Tracking For improved tracking, optical flow could
be leveraged as in [26]. Also, the ball location could be predicted based
on players’ behavior on the pitch [54].

Cameraman For the Cameraman module, we suggest two main
improvements.

First, the algorithm currently does not account for the situation
when the ball is in possession of the goalkeeper. In case the ball is
not detected, the goalkeeper is also unlikely to be included in the
detections (due to discarding the extreme detections as the first step
of the algorithm). As a result, the ball might get out of frame, and

1. https://github.com/ultralytics/ultralytics
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thus, the algorithm should avoid discarding the goalkeeper detection
in this situation.

Second, there is a trade-off between camera sensitivity and smooth-
ness in the tracking and PI controller parameters. A sensitive camera
can adjust to dynamic scenarios, such as counterattacks, for the cost
of being sensitive to noise, leading to unnatural camera movements;
the opposite applies to an overly smooth camera. Instead of laborious
tuning of these parameters, we suggest dynamically changing them
based on the dynamics of the play, using smooth settings for static
play and sensitive settings when rapid movement is detected. For ana-
lyzing the evolution of the game, one can use the decomposition of
individual situations in the game, as in [55], or the players’ motion
field, as in [56].

As an alternative approach, the algorithm could be replaced (or
augmented) by a deep learning regressor, as in [9]. This approach
would, however, require a large amount of training data and provide
less control over the camera characteristics.

Evaluation Given the subjective nature of the evaluation of such a
system, user studies could be conducted for better quality assessment
of individual algorithms, as in [11].

Performance As a performance optimization, every n-th frame could
be skipped from processing, especially in broadcasts using 60 FPS. An-
other considered optimization is suggested in [40], where the number
of PF particles varies with the PF variance.

This system also has the potential to allow the user to choose a
tracked target, e.g., instead of tracking primarily the ball, tracking a
particular player. This could be achieved either by an interactive selec-
tion of a player tracklet, given a reliable player tracker, or by selecting
the player number, given a reliable jersey number classifier [57].
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