New Challenges in Planar Emulators

Faculty of Informatics, Masaryk University

Brno, Czech Republic

Definition 1 (Planar Emulator)
Graph G has a planar emulator # if H is a finite planar graph and
there exists a homomorphism from H onto G that is locally surjective.

Graph G on the right side is known not to have a drawing in the plane
without edge crossings (Kuratowski, 1930). However, we can construct
graph H which has the same inner structure as G (i.e. every vertex has
all the neighbours as in G) and it can be easily drawn in the plane. We
call H a planar emulator for G.

The following are two main questions in the field of finite planar emu-
lators:

‘When does a finite planar emulator for a given graph exist?
What is the class of graphs with planar emulators?

Conjecture 2 (Fellows 1988, Kitakubo 1992)
The class of graphs with a finite planar emulators is equal to the class
of graphs with a projective embedding.

For almost 20 years, there has been no progress in this field. Con-
jecture 2 was believed to be true until two emulators for two non-
projective graphs, comonly denoted by K45 — 4K, and K222, were
surprisingly published in 2008 (Rieck, Yamashita). This shows that
non-projective graphs with planar emulators exist, but we do
not know anything about them. The goal of our work is to provide
characterization of all such graphs.

Motivation

Even though the problem of finite planar emulators is formulated purely
theoretically, it can have many practical consequences. Planar graphs
are nice because many problems, which are hard on graphs in general,
can be solved quickly (in a polynomial time) if the graph is planar.
A proper understanding of the concept of planar emulation can allow
us to extend those fast polynomial algorithms to other graphs that are
non-planar themselves, but have a finite planar emulator.

Martin Derka

mderka@mail.muni.cz

Our Approach

In our work, we prove that if a non-projective graph G has a finite
planar emulator, it can be trivially derived from a non-projective graph
that is internally 4-connected (see below). This means that the only
interesting graphs are the internally 4-connected non-projective graphs
that do not violate some other restrictions that must be met by a graph
with a finite planar emulator.

In an internally 4-connected graph, every vertex with precisely 3 neigh-
bours must satisfy the condition that those 3 neighbours are not con-
nected by an edge (i.e. no edge between the red vertices).

The class of internally 4-connected non-projective graphs can be sys-
tematically generated. We implemented a computational framework in
order to enumerate all such graphs to show that only a small number
of them can have a finite planar emulator. Even though all the graphs
of our interest can be systematically generated, it is not an easy task
as the number of them is enormous.

We conducted many experiments within which we explored all the
known ways of generating internally 4-connected graphs. Our first
computations required hundreds of hours of computations employing
supercomputers and grids. Most of our computations were conducted
on 128 core Intel Xeon X7560 @ 2.27 GHz at the Faculty of Informatics,
Masaryk University, and using the computational grid Metacentrum.

Getting a better understanding of how those generating methods apply
to our class of graphs, we were able to pick the best method and suggest
further optimization, which now allows us to conduct all the necessary
experiments on a regular personal computer, e.g. our 6-year-old Intel
Core 2 Duo @ 2.0 GHz.

David R. Cheriton Scool of Computer Science
University of Waterloo, Waterloo, ON, Canada

UNIVERSITY OF

WATERLOO

©

More Examples of Emulators

VIR
Nl
e

® ®

(1) We proved that, up to a limited number of exceptions, there are
only a few graphs that contradict Fellows’ characterization of graphs
with finite planar emulators.

(2) We discovered some interesting structural anomalies in the class
of internally 4-connected graphs that we call “violating cycles”. These
structures are of an extreme interest with respect to other problems.
(3) Proof of our results includes a computational part. We provided
a clear description of our computational framework and optimized al-
gorithms. This allows easy independent verification of our results in a
commonly accessible setup.

(4) We outlined a computational approach to traversing internally 4-
connected graphs. This approach can be applied to other problems in
graph theory.




