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Abstrakt

Poṕı̌seme kryptografický protokol, ktorý umožňuje l’ubovol’nej sku-

pine ϕ l’ud́ı spoločne (bez pomoci dôveryhodnej tretej strany) vy-

generovat’ náhodnú permutáciu π prvkov a potom postupne odha-

l’ovat’ prvky tejto permutácie len určeným účastńıkom. Na dešif-

rovanie prvku vygenerovanej permutácie muśı účastńık protokolu

źıskat’ súhlas aspoň ψ účastńıkov (2 ≤ ψ ≤ ϕ).

Typickým využit́ım takéhoto protokolu je miešanie kariet pri tzv.

mentálnom pokri, teda v protokoloch, ktoré umožňujú skupine l’ud́ı

hrat’ poker prostredńıctvom poč́ıtačovej siete bez pomoci dôvery-

hodného servera.

Súčast’ou práce je aj implementácia nášho protokolu ako knižnica

v jazyku Java, ktorá je l’ahko použitel’ná v l’ubovol’nej siet’ovej

aplikácii.

Abstract

We describe a cryptographic protocol that allows a group of ϕ peo-

ple to cooperatively (without the help of a trusted third party)

generate a random permutation of π elements, and then gradu-

ally reveal elements of the generated permutation only to specific

participants. To decrypt an element of the generated permuta-

tion, a participant must gain cooperation of at least ψ participants

(2 ≤ ψ ≤ ϕ).

A typical use of such protocol is to shuffle cards in the so-called

mental poker protocols, which allow a group of people to play poker

over a computer network without a trusted server.

We also give an implementation of our protocol as a Java library,

which can be easily used by any network application.
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Notation

:= ‘is defined as’ or ‘is set to’ (see also Definition 2.8)

N the set of all natural numbers {0, 1, 2, . . .}

Z the set of all integers {. . . ,−2,−1, 0, 1, 2, . . .}

Z+ the set of all positive integers {1, 2, . . .}

Zn := {0, 1, 2, . . . , n− 1} (Definition 2.1)

Z∗
n := {z ∈ Zn : gcd(z, n) = 1} (Definition 2.1)

(a1, . . . , an) the n-tuple (ordered list) of a1, . . . , an

|A| the number of elements in a (finite) set A

A \B set difference, ie. {a ∈ A : a 6∈ B}

A×B Cartesian product, ie. {(a, b) : a ∈ A ∧ b ∈ B}

f ◦ g the composition of functions f and g, ie. (f ◦ g)(x) = g(f(x))

⌊a⌋ the largest integer b such that b ≤ a

a | b a divides b, ie. b = ka for some k ∈ Z

gcd(a, b) the greatest common divisor of a and b

lcm(a, b) the least common multiple of a and b

φ(n) Euler’s totient function (Definition 2.2)

a = b (mod n) a is congruent to b modulo n (Definition 2.7)

a−1 (mod n) the inverse of a modulo n (Definition 2.10)

a
b
(mod n) := ab−1 (Definition 2.10)

a−b (mod n) := (ab)−1 = (a−1)b (Definition 2.10)

ϕ the number of participants of the protocol

ψ the minimum number of participants necessary to uncover an ele-

ment of the permutation

π the size of the generated permutation

n typically the modulus of a congruence (which may fulfil the role

of a participant’s public key)
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Introduction

In many situations, people who do not know each other well, and therefore have no

reason to trust each other, need to cooperate to achieve some common goal. Some of

them might even have conflicting goals of their own (such as a buyer and a seller who

cooperate on completing a trade, or a group of players who want to enjoy a game of

poker while each of them also wants to win). To this end, they use various techniques

which guarantee that none of them can gain an unfair advantage – for example, flipping

a coin to provide true randomness or using a deck of playing card to achieve secrecy

and provability. Unfortunately, such techniques often require physical presence of the

participants, or some of their security properties are void. For example, if Alice flips a

coin, then Bob, who is not physically present, cannot verify that Alice didn’t lie about

the result – or whether she flipped a coin at all. For years, researchers, mainly in the

field of cryptography, have tried to devise techniques which would guarantee the same

security properties as these physical techniques, but without the need for physical

presence of the participants (only their ability to communicate with each other).

The most straightforward way to achieve this goal is to use a trusted third party –

a special participant of the protocol who is trusted by all other participants. This idea

is not original to cryptography – it is often found in real life as well (a notary public,

a card dealer in a casino, etc.). However, it is not always practical or even possible to

establish such a trusted third party. As a result, cryptographers have been working

to find alternatives to the aforementioned techniques that would retain the various

security properties even when no participant of the protocol can be trusted. A protocol

which allows a group of participants without a trusted third party to cooperatively

achieve some goal, but allows each of them to keep various partial information secret,

is usually called a secure multi-party computation.

In this thesis, we describe a secure multi-party computation protocol for generating

a random permutation of a given size. After the permutation is generated, elements

of this permutation can be gradually revealed to different participants of the protocol.
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Such protocol can be put to use in many situations – for instance, we could use it to

shuffle a deck of cards (a permutation of 52 elements), or to randomly assign different

tasks to a group of people (a permutation of size equal to the number of tasks).

A more detailed description of the protocol is given in the next chapter. We also list

various assumptions and requirements that ensure that the properties of the protocol

are as close as possible to the properties of the aforementioned physical techniques.

Previous research

Various problems that could be classified as secure multi-party computation have

been studied for many years. Perhaps the best known example is
”
coin flipping by

telephone“, first described in [1]. Later, the notion of general-purpose secure multi-

party computation (ie. designing a protocol for secure multi-party computation of

any computable function) has been studied. A good overview can be found in [2],

which gives [3] as the original source.

Although, as far as we know, the specific problem of generating a random permuta-

tion and then disclosing its elements to different participants using secure multi-party

computation, as stated in our thesis, has not been studied before, similar protocols

have often been used in the context of other larger protocols (e.g. voting schemes or

mental card game protocols). Indeed, all mental card game protocols need to shuffle

the deck of cards at one point or another, and therefore necessarily contain a special

case of our protocol as a subroutine.

The problem of mental card games was first stated in [4], which describes the

requirements for playing mental poker and then discusses the feasibility of different

solutions. First mental poker implementation that satisfied all security requirements,

including confidentiality of players’ strategies, was described in [5] and later general-

ized to accommodate different card games in [6]. Our work is a modified and general-

ized version of the card-shuffling protocol from [7] and [8]. Again, a good overview of

the different mental poker protocols designed to date can be found in [9].

Of notable interest is also the problem of verifiable secret shuffle [10], which covers

the permutation part of our protocol. However, it does not concern itself with the

process of revealing the permuted elements to specific participants.
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Structure of this thesis

In Chapter 1, we start by formalizing the goals and security requirements of our

protocol. In Chapter 2, we then describe the necessary mathematical background and

cryptographic primitives used in the protocol. The first part of our work is concluded

by a complete, step-by-step description of the protocol run in Chapter 3.

As a second part of this work, we have implemented the permutation protocol

as a Java library which can be used from any network application. Overview of our

implementation is given in Chapter 4. In addition, we provide a simple example

application based on our library.
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Chapter 1

Goals

Our goal is to design a cryptographic protocol which would allow any group of people

to cooperatively generate a random permutation of a given size, and then disclose

individual elements of this permutation to selected participants. The elements need

not be disclosed all at once and some might even stay undisclosed – the order of the

participants and number of elements disclosed to each of them may be completely

arbitrary.

In this chapter, we formally define the requirements of the protocol and give some

reasonable assumptions which we will be allowed to make. These are designed so

that the properties of the protocol are as close as possible to the analogous physical

techniques, such as card shuffling or drawing names from a hat.

1.1 Protocol requirements

Let ϕ denote the number of participants. Before the protocol run, the participants

decide on two parameters:

• π – the number of permutation elements (e.g. 52 if this protocol is used to

shuffle a standard deck of cards, or ϕ if it is used to generate a permutation of

the participants)

• ψ – the number of participants required to uncover an element of the permuta-

tion (for maximum security, ψ could be set equal to ϕ – however, in many card

games, such as poker, it is common for participants to drop out of the game

before it ends, and setting ψ < ϕ would allow some of these participants to

disconnect from the game server even though the protocol run is not finished)
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We may assume that ϕ ≥ 2, π ≥ 2 and 2 ≤ ψ ≤ ϕ, since otherwise the protocol is

trivial.

The protocol run then consists of two phases:

1. In the first phase, an encrypted permutation of the set {1, . . . , π} is generated.

Each participant must be allowed to provide input for this step, and the protocol

must guarantee that the generated permutation is random as long as at least one

participant’s input is random. After this step is completed, no participant may

be able to gain any information about the generated permutation. However, each

participant must still be able to verify that the result is indeed an encryption of

a permutation of {1, . . . , π} (ie. it does not contain any non-unique or invalid

elements).

2. The second phase comprises several (no more than π) steps. In each step, the

participants decide on a single participant P and provide this participant with

enough information so that P can decrypt a single element of the generated

permutation. The participant P must be able to verify that this is indeed a

valid permutation element (ie. that it belongs to the set {1, . . . , π} and that the

same element has not been uncovered by a different participant in one of the

previous steps). Additionally, no other participants may gain any information

about the permutation that they did not have before.

Unlike the first phase, each step of the second phase only requires inputs from

ψ of the ϕ participants (each step can be completed by a different set of ψ

participants). No set of ψ − 1 or less participant must be able to gain any

information about the permutation.

At an arbitrary time after the protocol completion, a participant P might want to

prove to other participants that a specific permutation element was uncovered to P

in a particular step. The information gained by the participants during the protocol

run must be sufficient to achieve this.

1.2 Assumptions

Our protocol will operate under the following assumptions.

Assumption 1.1. All communication between participants is public.
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Although in practice, the communication will most likely be implemented as a set

of point-to-point communication channels between each pair of participants, we will

not assume that these communication channels are secure. Under Assumption 1.1, a

malicious participant may gain access to the communication channel between any two

different participants. As a consequence, we will need to encrypt any messages that

have the potential to break the protocol if they become public.

We may need to base the security of the encryption scheme on the assumption

that a particular mathematical problem is intractable. All such assumptions will be

listed in sections relevant to the specific cryptographic schemes.

Assumption 1.2. There is no group of ψ or more dishonest participants cooperating

with each other.

Note that we do not guarantee the honesty of any particular participant. In fact,

there can be as many as k − 1 dishonest participants cooperating with each other

trying to break the protocol.

If ψ or more participants were secretly cooperating with each other, then (by the

aforementioned requirements) they could just uncover all the permutation elements

and thus render the whole cryptographic protocol meaningless. However, Assumption

1.2 can be made stronger by setting ψ := ϕ. In this case, we simply assume that at

least one participant is honest, which is a natural and trivial assumption.

As a consequence of the lack of any assumptions about honesty of the specific

participants, we must provide verifiability in each step of our protocol. Whenever

there is an opportunity for some participant to cheat, this participant must provide

a proof that they completed the step in question correctly. We may need to use

zero-knowledge proofs in the protocol steps where secret information could be leaked

otherwise, but we will also use simpler (but knowledge-leaking) proofs in other steps.
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Chapter 2

Building blocks

2.1 Mathematical background

All of our cryptographic functions work on specific subsets of integers. In this section,

we first provide some basic definitions and then proceed to show various important

properties of these subsets.

Definition 2.1. Let n ∈ Z+. Then

Zn := {0, 1, 2, . . . , n− 1}

Z∗
n := {z ∈ Zn : gcd(z, n) = 1}

It is easy to see that |Zn| = n. The size of Z∗
n is harder to determine, and is

traditionally represented by the so-called Euler’s totient function.

Definition 2.2. Let n ∈ Z+. Euler’s totient function φ(n) is defined as the number

of positive integers less than n that are relatively prime to n, ie.

φ(n) := |Z∗
n|

We will now derive values of φ(n) for some important special cases.

Lemma 2.3. Let p be a prime number. Then

φ(p) = p− 1

φ(p2) = p(p− 1)

Proof. The only integer from Zp not relatively prime to p is 0. Therefore, φ(p) =

|Zp| − 1 = p− 1.

p2 is relatively prime to all of Zp except the multiples of p. There are exactly
⌊

p2

p

⌋

= p such multiples in Zp, and therefore φ(p2) = |Zp2|−p = p2−p = p(p−1).
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Lemma 2.4. Let n = pq be a product of two distinct prime numbers. Then

φ(n) = (p− 1)(q − 1)

Proof. Clearly, the only prime divisors of n are p and q. Any integer not relatively

prime to n is therefore either a multiple of p or a multiple of q. Let P be the set of

multiples of p from Zn and Q be the set of multiples of q from Zn. We can now write

Z∗
n as Zn \ (P ∪Q), and since P ∪Q ⊆ Zn, it follows that |Z

∗
n| = |Zn| − |P ∪Q|.

|P | =
⌊

n
p

⌋

=
⌊

pq

p

⌋

= q and similarly |Q| = p. Note that P ∩ Q = {0}, since the

second smallest natural number divisible by both p and q is pq = n 6∈ Zn. By the

inclusion-exclusion principle, it follows that |P ∪Q| = |P |+ |Q| − |P ∩Q| = q+ p− 1.

Putting it all together:

φ(n) = |Z∗
n|

= |Zn| − |P ∪Q|

= n− (q + p− 1)

= pq − q − p+ 1

= (p− 1)(q − 1)

Lemma 2.5. Let n = pq be a product of two distinct prime numbers. Then

φ(n2) = nφ(n)

Proof. Again, p and q are the only prime divisors of n2. Therefore, |Z∗
n2| = |Zn2| −

|P ∪Q|, where P is the set of multiples of p from Zn2 and Q is the set of multiples of

q from Zn2 .

|P | =
⌊

n2

p

⌋

=
⌊

p2q2

p

⌋

= pq2 and similarly |Q| = p2q. P ∩Q contains all multiples of

lcm(p, q) = pq smaller than n2, and therefore |P ∩ Q| =
⌊

n2

pq

⌋

=
⌊

p2q2

pq

⌋

= pq. By the

inclusion-exclusion principle, it follows that |P∪Q| = |P |+|Q|−|P∩Q| = pq2+p2q−pq.

φ(n2) = |Z∗
n2|

= |Zn2| − |P ∪Q|

= p2q2 − (pq2 + p2q − pq)

= pq(1− q − p+ pq)

= pq(p− 1)(q − 1)

= nφ(n)
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2.1.1 Congruences modulo n = pq and n2

Although some operations can be proven to work on Zn or Z∗
n for any n ∈ Z+, we

will usually require n to be of a specific form. The following definition gives an useful

restriction that we will commonly use.

Definition 2.6. Let n ∈ Z+. We say that n is admissible, if n is a product of two

distinct odd prime numbers p, q such that

p ∤ (q − 1) and q ∤ (p− 1)

Note that for all admissible n = pq, the numbers p, q, p− 1 and q− 1 are pairwise

relatively prime. As a consequence, n is also relatively prime to φ(n) (see Lemma

2.4).

We now define the congruence relation and some of its basic properties.

Definition 2.7. Let n ∈ Z+, a, b ∈ Z. We say that a is congruent to b modulo n if

n | (a− b)

We write

a = b (mod n)

Definition 2.8. Let n ∈ Z+. We say that x is a solution of the congruence

f(x) = 0 (mod n) (∗)

if (∗) holds and x ∈ Zn.

We will also sometimes use the notation

x := a (mod n) for some a ∈ Z, n ∈ Z+

to denote that the variable x should be set to the value of the solution of the congruence

x = a (mod n)

In such cases, we will always make certain that this congruence has a unique solution.

Theorem 2.9. Let n ∈ Z+, a ∈ Z. If gcd(a, n) = 1, then the congruence

ax = 1 (mod n)

has exactly one solution. If gcd(a, n) 6= 1, the congruence has no solutions.
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Proof. Proven as Theorem 2.9 in [11].

Definition 2.10. Let n ∈ Z+, a ∈ Z∗
n. By a−1 (mod n), we will denote the unique

solution of the congruence ax = 1 (mod n). We call this number the inverse of a

modulo n. We will also use the following notation:

a

b
:= ab−1 (mod n)

a−b := (ab)−1 = (a−1)b (mod n)

From basic number theory [11], we know that Definition 2.10 preserves the dis-

tributive properties of exponentiation, ie. for any a, b ∈ Z∗
n, c, d ∈ Z and n ∈ Z+, it

holds that

acbc = (ab)c (mod n)

acad = ac+d (mod n)

(ac)d = acd (mod n)

It is also known that the set Z∗
n is closed under multiplication modulo n and, as a

consequence, also closed under modular exponentiation.

Let us now prove the validity of some simple congruence relations.

Lemma 2.11. Let n,m ∈ Z+, a, b ∈ Z. Then if

a = b (mod n) and a = b (mod m)

it must also hold that

a = b (mod lcm(n,m))

Proof. From Definition 2.7:

n | (a− b) m | (a− b)

which immediately gives that lcm(n,m) | (a− b).

Lemma 2.12. Let n,m ∈ Z+, a, b ∈ Z and let m | n. Then

a = b (mod n) implies a = b (mod m)

Proof. From Definition 2.7:

a = b (mod n)

⇒ n | (a− b)

⇒ m | (a− b) (since m | n)

⇒ a = b (mod m)

16



Corollary 2.13. Let n ∈ Z+, a ∈ Z∗
n and let

ā := a−1 (mod n2)

Then

ā = a−1 (mod n)

Proof. First, note that by Theorem 2.9 both a−1 (mod n) and a−1 (mod n2) are well-

defined and unique, since gcd(a, n) = 1 implies that gcd(a, n2) = 1. Now

ā = a−1 (mod n2)

aā = 1 (mod n2)

aā = 1 (mod n) (by Lemma 2.12)

ā = a−1 (mod n)

Note that we cannot directly apply Lemma 2.12 to the original congruence, since a−1

(mod n) and a−1 (mod n2) might be two different numbers.

Lemma 2.14. Let n ∈ Z+, a, b ∈ Z. Then

a = b (mod n)

implies that

an = bn (mod n2)

Proof. Since a = b (mod n), we can write a as b + kn for some k ∈ Z. Then, by the

binomial theorem:

an = (b+ kn)n

=

(

n

0

)

bn +

(

n

1

)

bn−1kn+

(

n

2

)

bn−2(kn)2 + . . .+

(

n

n

)

(kn)n

=

(

n

0

)

bn +

(

n

1

)

bn−1kn

(since all the remaining terms are multiples of n2)

= 1bn + nbn−1kn

= bn + bn−1kn2

= bn (mod n2)
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To show that the last two relations hold, we will require the following generalisation

of Fermat’s theorem.

Theorem 2.15 (Euler’s theorem). Let n ∈ Z+, a ∈ Z∗
n. Then

aφ(n) = 1 (mod n)

Proof. Proven as Theorem 2.8 in [11].

Lemma 2.16. Let n = pq be admissible and let

λ := lcm(p− 1, q − 1)

Then for all a ∈ Z∗
n it holds that

anλ = 1 (mod n2)

Proof. Since (p− 1) | λ, we can write λ = k(p− 1) for some k ∈ Z. Then

anλ = apqk(p−1)

= (ap(p−1))qk

= (aφ(p
2))qk

= 1qk (by Theorem 2.15)

= 1 (mod p2)

Similarly, anλ = 1 (mod q2). Since lcm(p2, q2) = p2q2 = n2, by Lemma 2.11 it follows

that

anλ = 1 (mod n2)

Lemma 2.17. Let n = pq be admissible and let

n̄ := n−1 (mod φ(n))

Then for all a ∈ Z∗
n it holds that

ann̄ = a (mod n)

Proof. First, note that n̄ is well-defined, since the admissibility of n guarantees that

gcd(n, φ(n)) = 1.
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Since nn̄ = 1 (mod φ(n)), it follows that φ(n) | (nn̄ − 1) and therefore we can

write

nn̄− 1 = kφ(n) for some k ∈ Z

nn̄ = kφ(n) + 1

Then

ann̄ = aann̄−1

= aakφ(n)+1−1

= a(aφ(n))k

= a1k (by Theorem 2.15)

= a (mod n)

2.1.2 Powers of 1 + n (mod n2)

Our encryption scheme, described in section 2.2, will be based on powers of 1 + n

modulo n2. In this section, we explore the basic form of these powers and, most

importantly, show how this exponentiation operation can be reversed (ie. how to

compute discrete logarithms with respect to the base 1 + n modulo n2).

Lemma 2.18. Let n ∈ Z+, a ∈ N. Then

(1 + n)a = 1 + an (mod n2)

Proof. By induction over a:

• For a = 0:

(1 + n)0 = 1 = 1 + 0n (mod n2)

• Let (1 + n)a = 1 + an (mod n2) for some a. For a+ 1, it then follows:

(1 + n)a+1 = (1 + n)a(1 + n)

= (1 + an)(1 + n)

= 1 + n+ an+ an2

= 1 + n+ an+ 0

= 1 + (a+ 1)n (mod n2)

19



This regular form of the powers of 1 + n modulo n2 allows us to compute discrete

logarithms to the base 1 + n modulo n2 easily.

Definition 2.19. Let n ∈ Z+. We define the function

Ln : {1 + kn : k ∈ Zn} → Zn

such that

(1 + n)Ln(a) = a (mod n2) for all a ∈ {1 + kn : k ∈ Zn}

Note that this function is well-defined, since for each a ∈ Zn the result of (1+n)
a =

1 + an (mod n2) is different.

Corollary 2.20. Let n ∈ Z+. Then for all a ∈ {1 + kn : k ∈ Zn} it holds that

Ln(a) =
a− 1

n

Proof. The formula follows directly from Lemma 2.18. Note that this is not a modular

division, but a regular division over Z. The form of a guarantees that n | (a− 1).

Lemma 2.21. Let n ∈ Z+, a, b ∈ N. Then

(1 + n)a = (1 + n)b (mod n2)

if and only if

a = b (mod n)

Proof. The following relations are equivalent:

(1 + n)a = (1 + n)b (mod n2)

1 + an = 1 + bn (mod n2) (by Lemma 2.18)

an = bn (mod n2)

n2 | (an− bn)

n | (a− b)

a = b (mod n)
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2.1.3 Injectiveness of xn (mod n2)

Raising elements of Z∗
n to the n-th power modulo n2 is another operation that we

will commonly use in our encryption scheme. In this section, we show that for an

admissible n, this operation is also uniquely reversible.

We start by studying the number of solutions of the congruence xn = 1 (mod n2)

for an admissible n. It will then follow that the function xn (mod n2) is an injection

from Z∗
n to Z∗

n2 (Lemma 2.27).

First, we reference two known number-theoretical results.

Theorem 2.22. Let n,m ∈ Z+, gcd(n,m) = 1 and let p(x) be a polynomial with

integer coefficients. Let N denote the number of solutions of the congruence

p(x) = 0 (mod n)

and let M denote the number of solutions of the congruence

p(x) = 0 (mod m)

Then the congruence

p(x) = 0 (mod nm)

has exactly NM solutions.

Proof. This is a corollary to the Chinese Reminder Theorem. It is proven as Theorem

2.20 in [11].

Theorem 2.23. Let p be an odd prime number and a, b ∈ Z+. Then the congruence

xa = 1 (mod pb)

has exactly gcd(a, φ(pb)) solutions.

Proof. This is a special case of Corollary 2.42 in [11].

Lemma 2.24. Let n = pq be admissible. Then the congruence xn = 1 (mod n2) has

exactly n solutions.

Proof. By Theorem 2.23, the congruence xn = 1 (mod p2) has gcd(n, φ(p2)) solutions.

From Lemma 2.3, we get

gcd(n, φ(p2)) = gcd(p2q2, p(p− 1))

= p (since q and p− 1 are relatively prime)
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Similarly, the congruence xn = 1 (mod q2) has q solutions. By Theorem 2.22, the

congruence xn = 1 (mod p2q2) then has pq = n solutions.

Lemma 2.25. Let n = pq be admissible. Then the solutions of the congruence xn = 1

(mod n2) are {1 + kn : k ∈ Zn}.

Proof. By Lemma 2.18, it holds for all k ∈ Zn ⊆ N that

(1 + kn)n = 1 + nkn = 1 (mod n2)

By Lemma 2.24, there can be no more than these n solutions.

Corollary 2.26. Let n = pq be admissible. Then the congruence xn = 1 (mod n2)

has exactly one solution in Zn: the number 1.

Proof. All other solutions given by Lemma 2.25 are clearly larger than n.

Lemma 2.27. Let n = pq be admissible. Then the function f : Z∗
n → Z∗

n2 defined as

f(x) := xn (mod n2)

is injective.

Proof. Let x1, x2 ∈ Z∗
n such that xn1 = xn2 (mod n2). Then by Lemma 2.12 it also

holds that

xn1 = xn2 (mod n)

xn1
xn2

= 1 (mod n)

(x1

x2

)n

= 1 (mod n)

x1

x2
= 1 (mod n) (by Corollary 2.26)

x1 = x2 (mod n)

And since x1, x2 ∈ Z∗
n, it must hold that x1 = x2.

2.2 Encryption scheme

Since (by Assumption 1.1) all communication between participants is publicly read-

able, we need to employ an encryption scheme to guarantee that no data is read by
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anyone other than the intended recipient. However, to be able to successfully com-

plete our protocol, we will require this encryption scheme to satisfy some additional

requirements.

In this section, we first describe these requirements in more detail, and then pro-

ceed to describe a specific cryptosystem that satisfies them.

2.2.1 Requirements

• We require a public-key cryptosystem: At the beginning of the protocol run,

each participant will generate a pair of keys – a private key which they will keep

secret, and a public key which will be released to all other participants. The

public key will then allow anyone to generate encrypted messages that will only

be readable by the owner of the respective private key.

• The encryption function must be probablistic, ie. it must be a function of two

arguments: the secret message, and an additional large random value. This

guarantees that the set of possible ciphertexts is much larger than the set of all

possible plaintexts, and therefore the probability of encrypting the same mes-

sage to the same ciphertext twice is negligible. If the encryption function were

deterministic (the same plaintext would always encrypt to the same ciphertext),

any ciphertext could be decrypted by simply encrypting all possible values and

comparing the result to the original ciphertext. In our case, such an attack

would be devastating, since in most cases, the set of possible plaintexts is small

(on the order of the permutation size).

• The function must satisfy the following homomorphic property :

E(x+ y) = E(x) ⋆ E(y)

where ⋆ denotes any operation that can be easily computed (such as modular

multiplication or exponentiation). This will allow us to perform the addition

operation on arbitrary ciphertexts without decrypting them. Our protocol will

use this homomorphic property extensively, both for ‘masking’ ciphertexts (so

that no one but the intended recipient is able to tell whether two ciphertexts

encrypt the same value), and for participants to prove their honesty without

revealing their secrets (see section 2.5).
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2.2.2 Paillier cryptosystem

Several well-known public-key cryptosystems (RSA, ElGamal) have a homomorphic

property. However, the homomorphic property of both RSA and ElGamal is multi-

plicative and not additive as specified by our requirements (furthermore, RSA is not

probablistic without additional modifications). We have therefore decided to reach

for a cryptosystem based on a different mathematical problem.

In [12], Goldwasser and Micali propose a probablistic cryptosystem based on the

quadratic residuosity problem. This cryptosystem satisfies a homomorphic property

E(x)E(y) = E(z) where z := x+ y (mod 2)

Although this makes it additively homomorphic as required, the small modulus 2

makes it insufficient for our purposes. The Goldwasser–Micali cryptosystem is also

known to be inefficient, since it only allows for encryption of a single bit at a time.

However, this cryptosystem spawned several other schemes based on the higher-

degree composite residuosity problem, which overcome the inefficiency problems, as

well as satisfy an additive homomorphic property with higher modulus. For a good

overview of some of these cryptosystems, see [13] or [14]. There have also been some

specialized schemes proposed for the various protocols, such as in [7] which our pro-

tocol is based on.

We have, however, decided not to use such a specialized encryption scheme, but

instead base our work on a well-known and tested cryptosystem. We have therefore

chosen the scheme proposed by Pascal Paillier in [15], which is efficient and has a very

regular mathematical structure. It has been an object of extensive research since its

publication (see e.g. [16], [14]) and has not yet fallen to any cryptanalytic attacks.

In the following sections, we describe a simplified version of this cryptosystem

which satisfies all of our requirements. The composite residuosity problem, which the

scheme’s security is based on, is then formally defined and discussed in section 2.2.6.

2.2.3 Encryption function

In [15], Paillier defines the encryption function as

εg(x, y) := gxyn (mod n2)

where the values of n and g fulfil the role of the public key, and the factorization of n

is kept secret as the private key.
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Paillier then proceeds to show that this function is a bijection from Zn × Z∗
n to

Z∗
n2 , as long as g and n satisfy certain conditions. As suggested in [16], we will set

g := 1 + n instead of using a variable g (the public key will therefore consist of the

single number n). This simplifies the cryptosystem considerably and also allows for

a more efficient implementation. As can be seen by Theorem 2.29, this choice of g is

valid, as long as n is of a particular form.

Definition 2.28. Let n ∈ Z+. We define the Paillier encryption function

En : Zn × Z∗
n → Z∗

n2

as

En(x, y) := (1 + n)xyn (mod n2)

Note that by Lemma 2.18

En(x, y) := (1 + xn)yn (mod n2)

The properties of this function now depend solely on the choice of the public key

n. For our purposes, it is above all required that the encryption function is invertible,

ie. for any ciphertext c, there must be a unique message x such that En(x, y) = c for

some y. This property is covered by the following theorem.

Theorem 2.29. Let n be admissible (according to Definition 2.6). Then En is a

bijection.

Proof. By Lemma 2.5, the number of elements |Zn × Z∗
n| = nφ(n) is equal to the

number of elements of Z∗
n2 . It is therefore sufficient to prove that En is an injection.

Let (x1, y1), (x2, y2) ∈ Zn × Z∗
n such that En(x1, y1) = En(x2, y2) and let λ :=

lcm(p− 1, q − 1).

(1 + n)x1yn1 = (1 + n)x2yn2 (mod n2)

(1 + n)x1λynλ1 = (1 + n)x2λynλ2 (mod n2)

(1 + n)x1λ = (1 + n)x2λ (mod n2) (by Lemma 2.16)

(1 + n)(x1−x2)λ = 1 (mod n2)

1 + (x1 − x2)λn = 1 (mod n2) (by Lemma 2.18)

(x1 − x2)λn = 0 (mod n2)

n2 | (x1 − x2)λn
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n | (x1 − x2)λ

n | (x1 − x2) (since gcd(λ, n) = 1)

x1 = x2 (mod n)

and since x1, x2 ∈ Zn, this implies that x1 = x2. Substituting x1 = x2 = x in the

original equation, we get

(1 + n)xyn1 = (1 + n)xyn2 (mod n2)

yn1 = yn2 (mod n2)

y1 = y2 (mod n) (by Lemma 2.27)

We have shown that choosing an admissible n as their public key provides each

participant with a valid encryption function.

However, we cannot rely on the honesty of the participants. As described in section

2.5.2, a dishonest participant might in some cases gain an advantage by intentionally

choosing a public key that would allow for non-unique decryption of some messages.

The following theorem will give us a simple way to detect such attempts.

Theorem 2.30. Let n ∈ Z+ such that En is not an injective function. Then for all

(x, y) ∈ Zn × Z∗
n there exists (x′, y′) ∈ Zn × Z∗

n, (x
′, y′) 6= (x, y) such that En(x

′, y′) =

En(x, y).

Proof. Since En is not an injective function, there exists (x1, y1), (x2, y2) ∈ Zn × Z∗
n

such that (x1, y1) 6= (x2, y2) and En(x1, y1) = En(x2, y2). Let us take one such x1, y1,

x2, y2. Without loss of generality, we will assume that x1 ≥ x2.

En(x1, y1) = En(x2, y2)

(1 + n)x1yn1 = (1 + n)x2yn2 (mod n2)

(1 + n)x1−x2
(y1

y2

)n

= 1 (mod n2) (1)

Note that y2 ∈ Z∗
n, which implies that gcd(y2, n) = 1 and therefore gcd(y2, n

2) = 1,

so y−1
2 is well-defined.

For the given (x, y), let us now set

x′′ := x+ x1 − x2

y′′ := y
y1

y2
= yy1 ¯̄y2 (mod n2) where ¯̄y2 := y−1

2 (mod n2)
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and

x′ := x′′ (mod n)

y′ := y
y1

y2
= yy1ȳ2 (mod n) where ȳ2 := y−1

2 (mod n)

Then by Lemma 2.21

(1 + n)x
′

= (1 + n)x
′′

(mod n2) (2)

Furthermore, by Corollary 2.13

¯̄y2 = ȳ2 (mod n)

and therefore by Lemma 2.14

¯̄yn2 = ȳn2 (mod n2)

Then

(

y′
)n

= (yy1ȳ2)
n

= ynyn1 ȳ
n
2

= ynyn1 ¯̄y
n
2

=
(

y′′
)n

(mod n2) (3)

We can now show that En(x
′, y′) = En(x, y):

En(x
′, y′) = (1 + n)x

′
(

y′
)n

= (1 + n)x
′′
(

y′′
)n

(from (2) and (3))

= (1 + n)x+x1−x2
(

y
y1

y2

)n

= (1 + n)xyn(1 + n)x1−x2
(y1

y2

)n

= En(x, y)1 (from (1))

= En(x, y) (mod n2)

Note that if x1 6= x2, then x1 − x2 ∈ {1, 2, . . . , n− 1} and therefore x′ 6= x. Similarly,

if y1 6= y2, then
y1
y2
6= 1 (mod n) and therefore y′ 6= y. Since either x1 6= x2 or y1 6= y2,

this implies that (x′, y′) 6= (x, y).
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2.2.4 Decryption function

Definition 2.31. Let n be admissible. We define a pair of Paillier decryption func-

tions

Dn : Z∗
n2 → Zn

D′
n : Z∗

n2 → Z∗
n

as follows:

Dn(c) = x

and D′
n(c) = y

if there exists (x, y) ∈ Zn × Z∗
n such that En(x, y) = c.

By Theorem 2.29, the admissibility of n guarantees that both decryption functions

are well-defined. However, Theorem 2.29 alone does not lead to any efficient way of

computing Dn(c) and D′
n(c).

The following theorem gives a modified version of Paillier’s original formula for Dn

[15], which is suitable for our simplified version of the scheme.

Theorem 2.32. Let n = pq be admissible. Then for all c ∈ Z∗
n2, Dn(c) can be

computed as follows:

λ := lcm(p− 1, q − 1)

ĉ := cλ (mod n2)

Dn(c) :=
Ln(ĉ)

λ
(mod n) (see Definition 2.19)

Proof. Since n is admissible, there exists a unique (x, y) ∈ Zn×Z
∗
n such that En(x, y) =

c. Then

(1 + n)xyn = c (mod n2)

(1 + n)xλynλ = ĉ (mod n2)

(1 + n)xλ = ĉ (mod n2) (by Lemma 2.16)

(1 + n)xλ = (1 + n)Ln(ĉ) (mod n2) (by Definition 2.19)

xλ = Ln(ĉ) (mod n) (by Lemma 2.21)

x =
Ln(ĉ)

λ
(mod n)

Dn(c) =
Ln(ĉ)

λ
(mod n)
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And since Dn(c) ∈ Zn, it must indeed be equal to the (unique) solution of this con-

gruence. Note that gcd(n, λ) = 1 is guaranteed by the admissibility of n.

Although the second argument to the encryption function will never carry any use-

ful data, we will sometimes need to decrypt it to provide verifiability in our protocol.

Theorem 2.33. Let n be admissible. Then for all c ∈ Z∗
n2, D

′
n(c) can be computed as

follows:

n̄ := n−1 (mod φ(n))

D′
n(c) := cn̄ (mod n)

Proof. Since n is admissible, there exists a unique (x, y) ∈ Zn×Z
∗
n such that En(x, y) =

c. Then

(1 + n)xyn = c (mod n2)

(1 + n)xyn = c (mod n) (by Lemma 2.12)

Note that 1 + n = 1 (mod n):

1xyn = c (mod n)

yn = c (mod n)

ynn̄ = cn̄ (mod n)

y = cn̄ (mod n) (by Lemma 2.17)

D′
n(c) = cn̄ (mod n)

And since D′
n(c) ∈ Z∗

n, it must indeed be equal to the solution of this congruence.

2.2.5 Homomorphic property

It is easy to see that Paillier cryptosystem satisfies the required homomorphic prop-

erty: Multiplication of ciphertexts results in an encrypted sum of the respective plain-

texts. Additionally, as can be seen by the following theorem, the encryption function

satisfies a similar homomorphic property for the second argument.

Theorem 2.34. Let n be admissible, x1, x2 ∈ Zn and y1, y2 ∈ Z∗
n. Let

x := x1 + x2 (mod n)

y := y1y2 (mod n)
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Then

En(x1, y1) En(x2, y2) = En(x, y) (mod n2)

Proof.

En(x1, y1) En(x2, y2) = (1 + n)x1yn1 (1 + n)x2yn2

= (1 + n)x1+x2(y1y2)
n

= (1 + n)x(y1y2)
n (by Lemma 2.21)

= (1 + n)xyn (by Lemma 2.14)

= En(x, y) (mod n2)

2.2.6 Security

As discussed before, the security of Paillier cryptosystem depends on the intractability

of the composite residuosity problem. We prove this result formally in this section.

Definition 2.35. Let n ∈ Z+. We say that c ∈ Zn2 is an n-th residue modulo n2, if

there exists y ∈ Zn2 such that

c = yn (mod n2)

Otherwise, we say that c is an n-th non-residue modulo n2.

Definition 2.36. We define the composite residuosity problem as follows:

Given an admissible n and c ∈ Z∗
n2 , determine whether c is an n-th residue modulo

n2.

The security of Paillier cryptosystem relies on the following assumption.

Assumption 2.37. The composite residuosity problem is intractable (there exists no

polynomial-time algorithm that solves this problem).

We will show that the cryptosystem is secure as long as this assumption holds,

by reducing the composite residuosity problem to the problem of computing Dn in

polynomial time. We will need the following lemma.

Lemma 2.38. Let n be admissible and c ∈ Z∗
n2. Then c is an n-th residue modulo n2

if and only if

Dn(c) = 0
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Proof. (⇒) Since c is an n-th residue modulo n2, there exists y ∈ Z∗
n2 such that

yn = c (mod n2)

Let us set y′ := y (mod n). Then by Lemma 2.14

(

y′
)n

= yn = c (mod n2)

En(0, y
′) = (1 + n)0

(

y′
)n

= c (mod n2)

and therefore Dn(c) = 0.

(⇐) Since Dn(c) = 0, there exists y ∈ Z∗
n ⊆ Z∗

n2 such that

En(0, y) = c (mod n2)

(1 + n)0yn = c (mod n2)

yn = c (mod n2)

and therefore c is an n-th residue modulo n2.

Theorem 2.39. Let n be admissible. Then the problem of computing Dn is intractable.

Proof. For the purpose of contradiction, let us assume that the problem is tractable,

ie. we have a polynomial-time algorithm to compute Dn. Then, given c ∈ Z∗
n2 , we

can use the following polynomial-time algorithm to determine if c is an n-th residue

modulo n2:

1. Use the polynomial-time algorithm for Dn to compute Dn(c).

2. If the algorithm returned Dn(c) = 0, return ‘residue’. Otherwise return ‘non-

residue’.

The correctness of this algorithm follows from Lemma 2.38. Since by Assumption 2.37

there is no polynomial-time algorithm to solve the composite residuosity problem, this

is a contradiction.

Note that the decryption function can be efficiently computed if the attacker can

factor the public key n or if they can compute discrete logarithms modulo n2 efficiently.

The problem of computing Dn therefore cannot be harder then any of these problems.

However, no equivalence has been proven yet. Some additional reductions and further

discussion is given by Paillier in [15].
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2.3 Using the encryption scheme

2.3.1 Notation

Although we have used En, Dn and D′
n with n denoting the value of the specific

public key throughout this section, this will not be practical in later sections when

we are not discussing the internals of the cryptosystem. In further sections, we will

therefore use the notation Ei,Di,D
′
i to denote encryption and decryption using the

i-th participant’s public key.

That is, if there are ϕ participants with public keys n1, . . . , nϕ, we will use

Eni ,Dni ,D
′
ni

and

Ei,Di,D
′
i

interchangeably. We will make sure that the context makes it clear which notation is

used.

Since the second argument to the function Ei never carries any useful data (it only

provides the encrypted function with the required probablistic property), we will also

sometimes use the notation

Ei(x) or Eni(x)

to denote that the second argument is irrelevant at this specific point (ie. it should

be chosen randomly from all applicable values).

2.3.2 Encrypting large values

By Definition 2.28, it is only possible to encrypt messages from Zn with a given public

key n. Sometimes, however, we will need to send a message that is not guaranteed to

belong in this set.

In such cases, we will use the following procedure to encrypt the (possibly) large

value x:

Encrypt-Large(n, x)

c← 0

repeat c← n2c+ En(x mod n)

x← x div n

until x = 0

return c
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This function splits x into its base-n digits (each of which therefore belongs to

Zn), encrypts each digit separately and the resulting encrypted values (which belong

to Zn2) are combined into a single number c by taking each encrypted value as one

base-n2 digit of c.

Decryption function is then analoguous:

Decrypt-Large(n, c)

x← 0

repeat x← nx+Dn(c mod n2)

c← c div n2

until c = 0

return x

In our protocol, we should never need to send messages larger than approximately

2n, and thus no message should ever be split into more than two ‘digits’.

2.4 Threshold scheme

The requirement that each permutation element must be decryptable by any ψ of

the ϕ participants naturally calls for a threshold secret sharing scheme. One such

threshold scheme, which is well-known and good for our purposes, is described by

Shamir in [17].

In Shamir’s scheme, a secret value x is split into ϕ values x1, . . . , xϕ such that any

ψ of these values are both sufficient and necessary to compute the original value of x.

The secret shares x1, . . . , xϕ are created as follows:

1. A prime number p is chosen such that p > ϕ and p > x.

2. ψ − 1 random numbers p1, . . . , pψ−1 ∈ Zp are generated.

3. The ϕ shares are computed as follows:

xi := x+ p1i+ p2i
2 + . . .+ pψ−1i

ψ−1 (mod p)

From number theory [11], we know the following result.

Lemma 2.40. Let p be a prime number. Then (Zp,+, ·), where both binary operations

are modulo p, is a field.
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Let P be a polynomial of degree ψ − 1 with coefficients (x, p1, . . . , pψ−1) over this

field. It is easy to see that each share xi is simply the value of P evaluated at the

point i. Additionally, evaluating this polynomial at 0 gives us the value of x:

P (0) = x+ p10 + p20
2 + . . . pψ−10

ψ−1 = x

Every polynomial of degree ψ − 1 is uniquely determined by any ψ of its points,

which implies that this scheme satisfies the required threshold property.

Furthermore, if less than ψ shares are known, then for each possible x ∈ Zp there

exists at least one polynomial Q of degree ψ − 1 such that Q(i) = xi for all known

shares xi and Q(0) = x, and an attacker has no way of knowing which of these

polynomials is the secret polynomial P and therefore has absolutely no information

about which of the possible x ∈ Zp is the correct secret value.

2.4.1 Generating the shares

It is usually assumed that a trusted third party prepares the shares x1, . . . , xϕ and then

secretly distributes them to the respective participants. Neither of these assumptions

is applicable to our protocol, as we do not have access to a trusted third party nor a

secret communication channel.

We will solve this problem by generating the shares cooperatively by all the par-

ticipants:

1. First, a trivial set of coefficients (x, 0, . . . , 0) is used to generate the ϕ secret

shares. This results in ϕ equal shares:

(x, . . . , x)

2. The participants now take turns to modify the set of shares in the following way:

Let

(x1, . . . , xϕ)

be the original set of shares. The participant generates ψ − 1 random numbers

r1, . . . , rψ−1 ∈ Zp and computes for all i ∈ {1, . . . , ϕ}:

yi = 0 + r1i+ r2i
2 + . . .+ rψ−1i

ψ−1 (mod p)

The new secret shares are then computed as follows:

(x1 + y1, . . . , xϕ + yϕ)
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It is easy to see that (0, r1, . . . , rψ−1) form the coefficients of a polynomial R of

degree ψ − 1 with R(0) = 0 and R(i) = yi for all i ∈ {1, . . . , ϕ}. If P denotes

the polynomial defined by the original shares, then the new set of shares defines a

polynomial Q with degree ψ − 1 such that Q(0) = P (0) + R(0) = x + 0 = x and

therefore the new shares encode the same secret value.

2.4.2 Keeping the shares secret

The proposed scheme does not satisfy Assumption 1.1, since if all communication

is public, then no amount of modification of the shares prevents a participant from

simply accessing all the shares and computing the secret value.

To prevent a participant from reading other participants’ secret shares, each share

must be encrypted by the respective participant’s public key. Instead of

(x1, . . . , xϕ)

we must therefore work with the tuple

(E1(x1), . . . ,Eϕ(xϕ))

It might seem that encrypting the values would prevent us from performing the

computations described in the previous section. However, this is where the homo-

morphic property of Paillier cryptosystem comes into play. Instead of adding the

computed value yi to the original value of the share xi, we will encrypt yi using the

same public key and then simply multiply the encrypted values. The resulting set of

shares can thus be computed as follows:

(E1(x1) E1(y1), . . . ,Eϕ(xϕ) Eϕ(yϕ))

Using the homomorphic property of Paillier cryptosystem, it follows that

Di(Ei(xi) Ei(yi)) = xi + yi (mod i-th participant’s public key)

which satisfies our requirements as long as xi+ yi does not exceed the value of any of

the participants’ public keys.

2.4.3 Recovering the secret value

Given ψ secret shares

xi1 , . . . , xiψ (ij ∈ {1, . . . , ϕ} for all j ∈ {1, . . . , ψ} and no two ij are equal)
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we need to find the unique polynomial of degree ψ − 1 that passes through all the

points

(i1, xi1), . . . , (iψ, xiψ)

Although it is possible to compute the original coefficients of the polynomial used

to generate the shares, this would be unnecessarily complicated for our purposes. To

recover the secret value, we just need to evaluate the resulting polynomial at the

point 0, and therefore we will only compute a simpler form of the polynomial called a

Lagrange interpolating polynomial [18]. The resulting Lagrange polynomial can then

easily be evaluated at any given point, including 0.

Lagrange interpolating polynomial

Let F be a field, k ∈ Z+ and let (x1, y1), . . . , (xk, yk) ∈ F
2.

Definition 2.41. We define the polynomial Pi for all i ∈ {1, . . . , k} as

Pi(ξ) = yi

k
∏

j=1
j 6=i

ξ − xj
xi − xj

Lemma 2.42. For all i ∈ {1, . . . , k}, it holds that

Pi(xi) = yi

Proof. For ξ = xi, all of the fractions are equal to

xi − xj
xi − xj

= 1

and therefore the whole product is equal to 1.

Pi(xi) = yi1 = yi

Lemma 2.43. For all i, j ∈ {1, . . . , k}, i 6= j, it holds that

Pi(xj) = 0

Proof. In each case, the product now includes the fraction

xj − xj
xi − xj

= 0

and therefore the whole product is equal to 0.

Pi(xj) = yi0 = 0
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Lemma 2.44. Pi is of degree k − 1.

Proof. Follows immediately from the fact that Pi is a product of a constant term and

k − 1 linear terms.

Definition 2.45. We can now define the Lagrange interpolating polynomial as

P(ξ) =
k

∑

i=1

Pi(ξ)

Lemma 2.46. P is a polynomial of degree k − 1 and for all i ∈ {1, . . . , k} it holds

that

P(xi) = yi

Proof. As a sum of a finite number of polynomials of degree k − 1, the degree of P

cannot exceed k − 1.

For all i ∈ {1, . . . , k}, it holds that

P(xi) = P1(xi) + . . .+ Pi−1(xi) + Pi(xi) + Pi+1(xi) + . . .+ Pk(xi)

= P1(xi) + . . .+ Pi−1(xi) + yi + Pi+1(xi) + . . .+ Pk(xi) (by Lemma 2.42)

= 0 + . . .+ 0 + yi + 0 + . . .+ 0 (by Lemma 2.43)

= yi

2.5 Cheating prevention

By the requirements listed in Chapter 1, we cannot rely on the honesty of any partic-

ipant. If there is a protocol step where a participant P may gain an advantage by not

following the protocol correctly, this step must always be followed by a step where P

proves to all other participants that they did not take advantage of this opportunity

to cheat them.

In this section, we discuss all such exploitable protocol steps and, for each of these

steps, provide a method for the participants to prove their honesty.

Since in some cases the specific protocol step may involve information that needs

to stay secret, some of these proofs will need to be constructed in such a way that the

verifying participant does not gain access to the secret information.

The original technique used to construct such proofs required all participants to

reveal this secret information after the end of the protocol run (for example, after a
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game of poker, all players would have to reveal all cards that they received during

the game). This is often undesirable, so most of the current protocols use zero-

knowledge proofs for this purpose instead. These allow a participant to prove to

another participant that an encrypted value has some property, without revealing any

information about the value. For a good overview of zero-knowledge proofs, see e.g.

[19].

2.5.1 Cheating when generating the permutation

During the first phase of our protocol, the participants take turns to modify the

encrypted values of the permutation elements’ secret shares, as described in section

2.4.2.

A dishonest participant might try to cheat in this step by modifying the elements

in an invalid way: If P represents the original polynomial with P (0) = x, then

adding a polynomial R with R(0) 6= 0 to P would result in a modified value of the

secret permutation element x. Although the cheating participant would be unable

to predict what the resulting value would be, this would still very likely result in an

invalid permutation (with a duplicate element or an element not belonging to the set

{1, . . . , π}).

We therefore require all participants to prove that the polynomial R they added

to a specific set of secret shares satisfies the condition that

R(0) = 0

Obviously, they cannot disclose the coefficients of the polynomial or the resulting

values R(1), . . . , R(ϕ) that were added to the shares, so this is an example of a protocol

step where zero-knowledge proof is necessary.

However, simply modifying all permutation elements by adding a random polyno-

mial to their secret shares is not enough. As will be described later (in section 3.2),

the participants must also secretly shuffle the permutation elements to hide their order

from the remaining participants. The complete statement that needs to be proven is

thus as follows.
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Proof statement

Let

M =















c1,1 c1,2 . . . c1,ϕ

c2,1 c2,2 . . . c2,ϕ
...

...
. . .

...

cπ,1 cπ,2 . . . cπ,ϕ















be a matrix where each row contains the encrypted secret shares of a permutation

element, and let M ′ be another π × ϕ matrix generated by a participant P . P now

needs to prove that M ′ is a valid permutation of the rows of M with a polynomial R

with R(0) = 0 added to each row – ie. that the matrix M ′ is of the form

M ′ =















cf(1),1 E1(R1(1), y1,1) cf(1),2 E2(R1(2), y1,2) . . . cf(1),ϕ Eϕ(R1(ϕ), y1,ϕ)

cf(2),1 E1(R2(1), y2,1) cf(2),2 E2(R2(2), y2,2) . . . cf(2),ϕ Eϕ(R2(ϕ), y2,ϕ)
...

...
. . .

...

cf(π),1 E1(Rπ(1), yπ,1) cf(π),2 E2(Rπ(2), yπ,2) . . . cf(π),ϕ Eϕ(Rπ(ϕ), yπ,ϕ)















where

1. f is a permutation of {1, . . . , π}

2. for all i ∈ {1, . . . , π}, Ri is a polynomial such that Ri(0) = 0

A zero-knowledge interactive proof

Let P be the participant who proves their honesty and V the verifying participant.

They repeat the following steps T times:

1. P generates

• a random permutation g of {1, . . . , π}

• π random polynomials Q1, . . . , Qπ

• πϕ random values z1,1, . . . , zπ,ϕ

2. P sends the following matrix M ′′ to V :















cg(f(1)),1 E1(Rg(1)(1) +Q1(1), yg(1),1z1,1) . . . cg(f(1)),ϕ Eϕ(Rg(1)(ϕ) +Q1(ϕ), yg(1),ϕz1,ϕ)

cg(f(2)),1 E1(Rg(2)(1) +Q2(1), yg(2),1z2,1) . . . cg(f(2)),ϕ Eϕ(Rg(2)(ϕ) +Q2(ϕ), yg(2),ϕz2,ϕ)
...

. . .
...

cg(f(π)),1 E1(Rg(π)(1) +Qπ(1), yπ,1zπ,1) . . . cg(f(π)),ϕ Eϕ(Rg(π)(ϕ) +Qπ(ϕ), yg(π),ϕzπ,ϕ)














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3. V chooses one of the following:

(a) P reveals

• the permutation g

• values of z0,1, . . . , zπ,ϕ

• the values of Qi(1), . . . , Qi(n) for all i ∈ {1, . . . , π}

which V then verifies by comparing the matrices M ′ and M ′′

This is possible due to the homomorphic property of Paillier cryptosystem:

Ej(Rg(i)(j) +Qi(j), yg(i),jzi,j) = Ej(Rg(i)(j), yg(i),j) Ej(Qi(j), zi,j)

(b) P reveals

• the combined permutation f ◦ g

• values of the products y0,1z0,1, . . . , yπ,ϕzπ,ϕ

• the values of Rg(i)(1)+Qi(1), . . . , Rg(i)(n)+Qi(n) for all i ∈ {1, . . . , π}

which V then verifies by comparing the matrices M and M ′′

In either case, V should verify that the revealed permutation is a correct per-

mutation of {1, . . . , π} and that all revealed polynomials evaluate to 0 at the

point 0.

Note that P can cheat in this scheme (and get away with an invalid matrix M ′)

in two different ways:

• If P correctly guesses that V will choose option (a) in step 3, P can prepare the

matrix M ′′ such that the relationship between M ′ and M ′′ is correct, and this

gives V no information about the relationship between M and M ′.

• If P correctly guesses that V will choose option (b), P can prepare M ′′ such

that the relationship between M and M ′′ is correct despite that the matrix M ′

is invalid.

However, P needs to commit to the matrix M ′′ before V ’s choice is revealed, and

therefore has only a 1
2
chance of cheating without detection. Repeating these steps T

times reduces the probability of cheating to an arbitrarily low number 1
2T
.

Also note that P never reveals the secret polynomials Ri to V : In option (a), they

are not used at all, and in option (b), they are ‘masked’ by the random polynomials Qi.
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Similarly, the secret permutation f is either not used in the proof at all, or masked by

a second random permutation g. The proof therefore provides V with no knowledge

about the relationship between matricesM andM ′, except thatM ′ is (very probably)

of the correct form with respect to M .

Non-interactive proof

There is a universal way to replace a zero-knowledge interactive proof by a non-

interactive proof [20]. We simply ‘replace’ the verifier V by a cryptographic hash

function – instead of V choosing one of the options in step 3, P performs the following

steps:

1. P generates T matrices M ′′
1 , . . . ,M

′′
T

2. P uses all T generated matrices as an input to the cryptographic hash function

3. P takes the first T bits of the resulting hash value, and for all i ∈ {1, . . . , T}

proceeds as follows:

(a) if the i-th bit is 0, P proceeds as if V has chosen the option (a) for the

matrix M ′′
i in step 3

(b) if the i-th bit is 1, P proceeds as if V has chosen the option (b) for the

matrix M ′′
i

4. P releases all of the following values:

• all the matrices M ′′
1 , . . . ,M

′′
T

• for each of the matrices, all the values that would have been revealed to V

in the interactive proof

For P to be able to cheat in this scheme, they would have to be able to predict

the output of the hash function. P might also try to cheat by repeating step 1 until

they get a specific hash value that allows P to cheat – however, the expected number

of tries is 2T , which is infeasible except for very small T .

2.5.2 Cheating when uncovering an element

When uncovering a permutation element, a participant Pi receives secret shares from

other participants. To prevent these participants from cheating Pi, they need to prove
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that what they sent is indeed the value of Dj(c), where c is a particular encrypted

secret share (note that the value of c, generated during the first phase of the protocol,

is known to all participants).

Let Pj be the participant who proves that c is an encryption of x to Pi. To achieve

this, Pj simply sends the value of y = D′
j(c) to Pi, who can then easily verify that

c = Ei(x, y)

(in case x or y needs to stay secret from the remaining participants, Pj would encrypt

them with Pi’s public key before sending).

This can be accepted as a proof of correctness, since by Theorem 2.29, there can

be no other x′ or y′ such that c = Ei(x
′, y′). However, Theorem 2.29 depends on the

condition that Pj’s public key is admissible – and, as we cannot rely on the honesty

of Pj to choose an admissible n, we must not take this condition for granted.

Although it is possible to prove that a specific public key is admissible without

revealing its prime factors [21], this is a very complicated and inefficient process.

Fortunately, Theorem 2.30 provides us with an easy way to prove a weaker, but still

sufficient condition.

Proving the uniqueness of decryption with a specific public key

Before the protocol starts, we will require all participants to prove that for each

ciphertext c encrypted with their public key n, there is no more than one possible

decryption (x, y) such that

En(x, y) = c

Theorem 2.30 gives us a very important result: If there exists any ciphertext with

more than one possible decryption, then all valid ciphertexts have at least two possible

decryptions. This means that proving that one ciphertext has a unique decryption is

equivalent to proving that all ciphertexts have unique decryptions.

A participant P can use the following steps to persuade another participant V

that n provides unique decryptions, with probability at least 1
2
:

1. V generates two random numbers x ∈ Zn, y ∈ Z∗
n and sends

c = En(x, y)

to P
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2. P decrypts the received value and sends

x′ = Dn(c)

and y′ = D′
n(c)

to V

3. V verifies that

x′ = x

and y′ = y

If the public key n were such that the decryption is not unique, then P would have

no way of knowing which of the possible decryptions (x′, y′) is equal to the values (x, y)

that V generated. Since by Theorem 2.30 there are at least two possibilities (in many

cases even more), the probability of P correctly guessing is no larger than 1
2
.

The probability of P cheating can be decreased to an arbitrarily low number 1
2T

by repeating these steps T times.

Note that it is absolutely necessary to perform these steps before the protocol

has started (ie. before there are any secret data encrypted with the public key n).

Otherwise, a dishonest verifier V could send these secret values as c in step 1 and

have them inadvertedly decrypted by P . Due to the homomorphic property of the

cryptosystem, this could not be prevented even if P verified that c is not equal to any

of the encrypted values that need to stay secret.
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Chapter 3

The protocol

In this chapter, we describe a complete run of the protocol, step by step. We will use

the following notation, as described in Chapter 1:

• ϕ – the number of participants of the protocol (we will use an index i ∈

{1, . . . , ϕ} to denote a specific participant)

• ψ – the minimum number of participants necessary to uncover an element of the

permutation

• π – the size of the permutation (we will be generating a permutation of the set

{1, . . . , π})

Additionally, the participants should decide on the following security parameters

before the protocol starts:

• S – bit length of the prime numbers used to generate Paillier cryptosystem

public keys

This should be chosen such that factorization of a product of two S-bit numbers

is infeasible.

• T – the number of iterations in a single proof

All of our proofs are constructed such that the probability of an attempt to

cheat to stay undetected in any one iteration is at most 1
2
. The probability of

an incorrect T -iteration proof is therefore at most 1
2T
. T should be chosen large

enough so that this probability is negligible.

For optimal security, we recommend S ≥ 1024 and T ≥ 64.
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3.1 Initialization

3.1.1 Key generation

All participants should generate two prime numbers pi, qi of bit length S and store

them securely as their private key. They should then compute the product ni = piqi,

which becomes their public key. Each participant should distribute their public key

to all other participants.

Note that the same bit length of pi and qi guarantees that

pi < 2qi and qi < 2pi

which in turn guarantees that their product is admissible (Definition 2.6).

3.1.2 Proving key correctness

Each participant must now prove correctness of their public key, as described in sec-

tion 2.5.2. The following exchange must thus be performed between each pair of

participants.

Without loss of generality, let us assume that the participant P1 is proving cor-

rectness of their public key n1 to participant P2.

1. P2 generates T random values x1, . . . , xT ∈ Zn1
and another T random values

y1, . . . , yT ∈ Z∗
n1

and sends

E1(x1, y1), . . . ,E1(xT , yT )

to P1.

2. P1 decrypts all received values and sends the decrypted values

x′1, . . . , x
′
T and y′1, . . . , y

′
T

back to P2.

3. P2 verifies that

x′1 = x1 . . . x′T = xT

y′1 = y1 . . . y′T = yT
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3.1.3 Modulus of the field for Shamir’s scheme

To satisfy all the requirements, we shall set the modulus p to the smallest prime

number such that

p > max{ϕ, π}

We will now use polynomials over the field (Zp,+, ·) for all shared secret values (for

details about Shamir’s scheme, see section 2.4).

3.2 Generating the permutation

As each permutation element is described by a set of ϕ secret shares (see section 2.4),

the whole permutation can be represented by a π×ϕmatrix where each row represents

a single permutation element.

As described in section 2.4.1, we start with each element represented by a set

of trivial secret shares. The initial permutation is thus represented by the following

matrix:

M0 =















E1(1, 1) E2(1, 1) . . . Eϕ(1, 1)

E1(2, 1) E2(2, 1) . . . Eϕ(2, 1)
...

...
. . .

...

E1(π, 1) E2(π, 1) . . . Eϕ(π, 1)















All participants Pi (i ∈ {1, . . . , ϕ}) then perform the following steps:

1. randomly permute the rows of Mi−1 to get M ′
i−1

2. for each row of M ′
i−1:

(a) generate ψ − 1 random numbers from Zp – the coefficients of a random

polynomial R over the field (Zp,+, ·) such that R(0) = 0

(b) for all j ∈ {1, . . . , ϕ}, multiply the j-th column by the encrypted value

Ej(R(j)) (due to the homomorphic property of Paillier cryptosystem, this

results in addition of R(j) to the original value)

More details can be found in sections 2.4.1 and 2.4.2.

3. publish the resulting matrix as Mi

4. publish the non-interactive zero-knowledge proof from section 2.5.1 to prove

correctness of Mi to all other participants
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The final encrypted permutation is represented by the matrix Mϕ, which all par-

ticipants receive from the participant Pϕ.

3.3 Uncovering a permutation element

This step can be repeated up to π times.

Since the permutation is random, the order of uncovering the elements is irrelevant.

We will thus uncover the elements from the final permutation matrix Mϕ row by row.

In each step, the participants decide on a single participant Pi (i ∈ {1, . . . , ϕ})

who shall receive the next permutation element.

Let

E1(x1, y1), . . . ,Eϕ(xϕ, yϕ)

be the secret shares of the current permutation element to be revealed.

For all j ∈ {1, . . . , ϕ}, j 6= i, the participant Pj now performs the following

exchange with Pi:

1. Pj decrypts their secret share and sends both xj and yj to the receiving partic-

ipant Pi:

Ei(xj),Ei(yj)

2. Pi decrypts the received values (let x′ and y′ denote the decrypted values) and

verifies that

Ej(x
′, y′) = Ej(xj, yj) from Mϕ

After Pi has received and verified shares from at least ψ− 1 other participants, Pi

can compute the value of the permutation element x:

1. let xi be Pi’s secret share, and let j1, . . . , jψ−1 ∈ {1, . . . , ϕ} be the indices of

the participants from which Pi has received and verified their secret shares

xj1 , . . . , xjψ−1

2. compute the Lagrange interpolating polynomial P from the set of points

(i, xi), (j1, xj1), . . . , (jψ−1, xjψ−1
)

3. the value of the permutation element is now

x = P(0)
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3.3.1 Proving correctness to other participants

At an arbitrary time during the protocol run or after the protocol has finished, Pi

might want to prove to other participants that x is the value they received in a

particular step.

To do this, Pi simply reveals at least ψ shares xj and yj from the specific row of

Mn. All other participants can then simply verify that Ej(xj, yj) is equal to the value

in their copy of Mϕ.

If Pi is only revealing the received element to a specific subset of the remaining

participants, Pi simply encrypts the values of xj and yj by their respective public

keys.

Note that this proof does not require any interaction and all participants can

easily verify it, as long as they still have access to the matrix Mϕ and all public keys

generated during the run of the protocol.
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Chapter 4

Implementation

4.1 Framework

To allow us to implement such a complicated protocol without running into technical-

ities at every step, we have designed a simple framework which allows us to abstract

from various technical details (such as network communication) and write the pro-

tocol implementation in a way similar to the abstract mathematical notation that is

commonly used in cryptography literature.

For instance, if a cryptographic protocol contained the following step:

A→ B : n,m

The implementation for participant A would contain this simple Java statement:

b.send("n", "m");

Here, b is an object of the class RemoteParticipant, which handles all communi-

cation with the participant B.

On B’s machine, there is a similar RemoteParticipant object representing par-

ticipant A. This object listens on the communication channel between A and B in

the background, and when it receives the values of n and m, it automatically stores

them. B can then access the stored values by simply calling

a.get("n")

a.get("m")

Any call to the get method blocks until the requested value becomes available.

Therefore, it is not important whether A calls b.send("n") before or after B calls
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a.get("n") – our framework handles synchronization of the participants automati-

cally.

Often (especially in protocols with many participants), it is advantageous to run

multiple parallel computation threads even on a single machine. For instance, while

one of A’s threads is blocked because it requires a value not yet received from B,

another thread might continue performing computations not depending on this value.

To synchronize these local threads, our framework provides two methods: set and

get (this is in fact the same method as RemoteParticipant.get, but in a different

object). Any thread trying to get a value which has not yet been set is blocked until

it becomes available.

A short overview of the framework design and its features follows. More complete

documentation is provided with the source code on the attached CD.

4.1.1 Framework classes

Abstract class DataBackedObject

This abstract class provides the described get and set functionality to its subclasses.

In addition, it provides a special kill method. When an object is killed, all

threads waiting on this object’s get calls are unblocked and these get calls throw an

exception.

This is useful to prevent deadlocks when it is clear that the values will never

become available – for instance, because the network connection to a participant has

been lost.

The class DataBackedObject has two subclasses.

Abstract class Protocol (extends DataBackedObject)

This class should be extended by all protocol implementations. The extending classes

must provide a run method which starts the protocol. Additionally, they may provide

other methods which perform the specific protocol steps. For example, our permuta-

tion protocol implementation contains an uncover method which uncovers the next

permutation element.

The Protocol class provides various useful features to its subclasses:

• When a new Protocol object is created, a RemoteParticipant object is auto-

matically created for each participant.
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• Since this class extends DataBackedObject, it provides the get and set meth-

ods which can be used to synchronize threads performing various steps of the

protocol.

The kill method can also be useful when the protocol run has failed for some

reason (e.g. a disruption by participants trying to cheat) and needs to be ended

before all threads have finished their computations.

• The runWithEach(ParticipantAction action) method starts a new thread

for each remote participant and runs the specified action in this thread. This

is usually much faster then running the action for each participant in turn,

since while one thread is waiting to receive a value from the remote participant,

other threads can continue performing computations and communicating with

the other participants.

The ParticipantAction is an interface with a single method:

public void run(RemoteParticipant p);

By default, when any of the launched threads fail (throw an uncaught exception),

the kill method of the protocol is called immediately to stop the protocol.

• broadcast(key) is useful for sending a value to all other participants in paralell,

ie. it provides an abbreviated syntax for the following statement:

runWithEach(new ParticipantAction() {

public void run(RemoteParticipant p) {

p.send(key);

}

});

The constructor of Protocol (and therefore of all its subclasses as well) requires

that an InputStream and an OutputStream object is provided for each remote par-

ticipant. The initialization of these objects is left to the programmer of the particular

application, however, we provide some helper classes to make this easier (see section

4.1.2).
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Class RemoteParticipant (extends DataBackedObject)

An array of RemoteParticipant objects is automatically initialized by the Protocol

class. Subclasses of Protocol can either access these objects directly using the

participants array, or they can use the runWithEach method described earlier.

Each RemoteParticipant object handles all operations related to the specific par-

ticipant:

• When a RemoteParticipant object is initialized, a background thread is started

automatically which reads all data received from the participant and stores it

using the inherited set method.

• The inherited get method can be used to access any value received from the

remote participant.

• When connection to the participant is lost, the inherited kill method is called

to immediately stop all threads depending on data from this participant.

This usually results in the thread throwing an uncaught exception and killing

the whole protocol, but it does not have to be so. For instance, when uncovering

a permutation element in our protocol, we catch this exception and only kill the

whole protocol if less than ψ participants are left.

• The send(key) method can be used to send values from local (Protocol) data

to the participant. This method calls protocol.get(key), and is therefore

blocked if the respective value is not available yet.

4.1.2 Helper classes

The described framework classes do not handle network connections in any way. When

creating a new Protocol instance, a set of InputStream and OutputStream objects

must already be prepared by the application creating the Protocol object. To simplify

this process for most common cases, we provide some simple helper classes.

Input/output stream multiplexing

Each protocol implemented using our framework needs to have its own communication

channel open with each participant. Therefore, it is often necessary to have more than

one communication channel with the same participant (for example, one for protocol

data and one for application data).

52



To prevent application developers from having to open multiple connections to

the same host, we provide two simple classes: OutputStreamMultiplexer takes one

OutputStream objects and splits it into up to 256 new OutputStreams.

On the other end, an InputStreamDemultiplexer must be used to split the re-

sulting combined output stream into its parts.

Example usage:

OutputStream os = ...;

OutputStreamMultiplexer osm = new OutputStreamMultiplexer(os):

osm.getOutputStream(0).write(a);

osm.getOutputStream(1).write(b);

InputStream is = ...;

InputStreamDemultiplexer ism = new InputStreamDemultiplexer(is);

System.out.println(ism.getInputStream(0).read());

// outputs the value of a

System.out.println(ism.getInputStream(1).read());

// outputs the value of b

Class ConnectionManager

This class can be used to initialize connections with all remote participants easily.

As an input, it takes an array of network addresses, the ID of the local participant

(the application developer must make sure that the ID is unique) and optionally the

number of input/output streams that are to be provided for each participant.

The ConnectionManager then opens a connection to each of the given addresses

and provides an array of InputStream and OutputStream objects ready to be used

in the Protocol constructor. If the number of streams requested was more than

one, each stream is split into more streams using OutputStreamMultiplexer and

InputStreamDemultiplexer.

4.2 Protocol implementation

Using the described framework, we have implemented the complete permutation pro-

tocol from this thesis. The resulting Java archive, cryperm.jar, can be attached to

any Java application and then used freely from within this application. This section

describes the basic usage of the library.
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The protocol implementation is represented by the class Cryperm (which, as re-

quired, extends the abstract framework class Protocol).

To securely generate a random permutation from within a network application,

simple initialize an object of this class (a new object can be initialized for each per-

mutation):

Cryperm perm1 =

new Cryperm(

localId,

inputStreams,

outputStreams,

requiredParticipantCount,

permutationSize

);

where

• localId is the index of the local participant (the application must guarantee

that on each machine, the localId is unique and that no participant is missing)

• inputStreams, outputStreams – arrays of streams connected to the other par-

ticipants (the length of both arrays must be equal to the number of participants)

ConnectionManager can be used to initialize connections between each pair of

participants and prepare the inputStreams and outputStreams arrays.

• requiredParticipantCount – the value of ψ (as used in this document)

• permutationSize – the value of π (as used in this document)

After the Cryperm object is created, the protocol is immediately started (this

spawns several threads, as described in the previous section).

The permutation elements can then be uncovered by calling

int element = perm1.uncover(recipientId);

or

int element = perm1.uncover(recipientId, elementId);
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This performs the steps necessary for the participant recipientId to successfully

uncover the next permutation element. All participants must make sure to call this

method with the same arguments. If recipientId is the local participant, then the

method blocks until the result is ready and returns the uncovered value.

See section 4.3.1 for an example of how all the parts of the library are combined.

4.2.1 Parallelism

Our implementation of the protocol takes full advantage of the framework’s parallelism

capabilities. For instance, the correctness of a participant’s public key is proven to

all other participants in parallel. Similarly, after the permutation is generated, all

requests to uncover an element are handled paralelly – and thus, if one participant

is too slow or even drops out, it does not slow down the other participants that are

waiting to have their elements uncovered.

As soon as the first participant receives all public keys, they can generate the initial

permutation matrix and start the permutation process (this can be done in parallel

to the public key correctness proofs). Furthermore, if the first participant shuffles the

elements (rows of the matrix) first and then starts adding random polynomials to each

row, they can send each row to the second participant as soon as the values of this

row are calculated (ie. there is no reason to wait until the whole matrix is ready).

Unfortunately, if the second participant were to proceed in the same way (shuffle

the rows first and then add the polynomials and send them out), they would first

have to wait until the whole matrix is received, which would cause all parallelism to

be lost.

Therefore, we have decided to break the symmetry by having all odd-numbered

participants (1, 3, . . .) shuffle the rows before adding the polynomials and sending them

out, and all even-numbered participants (2, 4, . . .) add the polynomials to the rows as

they are received, and only after all the rows are received and modified, shuffle the

rows and send them out to the next participant (see Figure 4.1).

This speeds up the permutation process by approximately a factor of 2. Although

the asymptotic time complexity of the protocol stays the same, it is of considerable

importance in practice, especially for the common special case ϕ = 2, where, as a

result, the protocol is almost completely parallel.
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Figure 4.1: Scheme of parallelism in the permutation generating step

4.3 Example application

We have used our library to implement a simple console (text-only) poker application.

This application first deals five cards to each player and then allows the players to

replace some of the received cards.

The following is a sample output of one run of the application:

Card 1: 4♦

Card 2: K♣

Card 3: Q♦

Card 4: 2♦

Card 5: 10♥

Replace cards: 1 4

Replacing 2 cards...

Card 1: 2♥

Card 2: K♣

Card 3: Q♦
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Card 4: 5♣

Card 5: 10♥

Although we decided to leave out the implementation of game mechanics that are

not directly related to card dealing (such as betting or keeping track of the players’

money), all of these could easily be handled by the players communicating in a separate

channel, e.g. an external chat room. Therefore, our application provides a complete

and working (albeit not exactly user friendly) solution to players who want to play

poker securely over a computer network.

4.3.1 Implementation

Our application needs a configuration file which contains the number of players (ϕ),

number of players necessary to uncover a card (ψ) and network addresses of all the

players (this configuration file must be the same for each player). The game must then

be started for each player (on the machine with the respective address) as follows:

./crypoker <path to configuration file> <player ID>

After parsing the configuration file, the application uses ConnectionManager to

establish connections to all other players:

ConnectionManager cm = new ConnectionManager(localId, addresses, 2);

Note that we have requestes two streams to be created for each player – one for

the permutation protocol and one for the poker application. The connection manager

provides us with arrays of streams necessary for starting the permutation protocol:

Cryperm cryperm =

new Cryperm(

localId,

cm.getPartialInputStreams(1),

cm.getPartialOutputStreams(1),

requiredPlayerCount,
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First, five cards are uncovered to each player:

int[] cards = new int[5];

for (int i = 0; i < playerCount; ++i) {

for (int j = 0; j < 5; ++j) {

int card = cryperm.uncover(i);

if (i == localId) {

cards[j] = card;

}

}

}

The second set of streams created by ConnectionManager is then used to commu-

nicate the number of cards to exchange to the remaining players. Additional calls to

cryperm.uncover() are then used to exchange the correct number of cards for each

player.
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Conclusion

We have successfully designed and implemented a cryptographic protocol according

to the stated requirements.

As a proof of concept, we have also implemented a simple poker application and

tested it using various parameters.

As expected (by the large number of operations on very large numbers, especially

in the zero-knowledge proofs), the application is not always fast enough to be used in

practice. However, relaxing the security parameters to smaller (but still reasonable)

values can make the complete protocol run fast enough to successfully play a game of

poker.

For example, with S = 256 and T = 16 (see Chapter 3 for explanation of the pa-

rameters), the card-shuffling process was completed in approximately one minute on

our testing machines. Although these parameters are much smaller than the recom-

mended values, an attacker would still need several hours to break the protocol even

with considerable resources at their disposal. Such parameters are therefore perfectly

sufficient for playing a game of poker which should not take more than a few minutes.

Further speed gains could be achieved by optimizing both the protocol implemen-

tation and our framework (e.g. the network communication model). However, we

believe that our implementation has successfully shown that the proposed protocol

is not only of theoretical interest, but can be implemented and used for practical

purposes as well.

On-line resources

For up-to-date information about the status of the project, please check the project

website at http://s.ics.upjs.sk/~jjergus/dp/.
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Resumé

Našim ciel’om bolo poṕısat’ a implementovat’ kryptografický protokol, ktorý l’ubovol’-

nej skupine ϕ l’ud́ı umožńı spoločne, bez pomoci dôveryhodnej tretej strany, vygene-

rovat’ náhodnú permutáciu π prvkov. Prvky permutácie potom môžu byt’ postupne

odhal’ované jednotlivým účastńıkom protokolu, pričom počet odhalených prkov ani

priradenie jednotlivých prvkov účastńıkom nie je určené.

Typickým využit́ım takéhoto protokolu je napŕıklad miešanie kariet pri tzv. men-

tálnom pokri, teda v protokoloch, ktoré umožňujú skupine l’ud́ı hrat’ poker prostred-

ńıctvom poč́ıtačovej siete bez pomoci dôveryhodného servera.

Protokol

Prvá fáza protokolu (vytvorenie zašifrovanej permutácie) vyžaduje vstupy od všetkých

účastńıkov, aby za predpokladu, že aspoň jeden účastńık je čestný, bola zaručená

náhodnost’ výslednej permutácie. Na dešifrovanie prvku vygenerovanej permutácie

však už stačia len vstupy od ψ účastńıkov (2 ≤ ψ ≤ ϕ), kde ψ je parameter, na

ktorom sa účastńıci pred spusteńım protokolu dohodnú. V špeciálnom pŕıpade môže

byt’ zvolené ψ = ϕ, č́ım sa dosiahne maximálna bezpečnost’.

Pri návrhu protokolu sme vychádzali z predpokladu, že všetka komunikácia medzi

účastńıkmi je verejná, a teda všetky informácie, ktoré musia zostat’ pred niektorými

účastńıkmi utajené, musia byt’ zašifrované. Na šifrovanie sme použili Paillierov krypto-

systém [15], ktorý má okrem dostatočnej bezpečnosti (ze predpokladu, že tzv. problém

vyšš́ıch reźıdúı zložených č́ısel nie je efekt́ıvne riešitel’ný) má aj d’aľsie matematické

vlastnosti nevyhnutné pre náš protokol.

Aby sme splnili požiadavku, že na odkrytie prvku permutácie stač́ı spolupráca

ψ z ϕ účastńıkov protokolu, použili sme Shamirovu prahovú schému na zdiel’anie

tajomstva [17]. Každý prvok permutácie je tak rozdelený na ϕ zašifrovaných čast́ı,

pričom l’ubovol’ných ψ z nich stač́ı na dešifrovanie pŕıslušného prvku.
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Počas generovania zašifrovanej permutácie muśı každý z účastńıkov dokázat’, že

postupoval podl’a protokolu. Aby nebola porušená bezpečnost’ protokolu, použ́ıvame

na tento účel bezznalostný dôkaz.

Implementácia

Na ul’ahčenie implementácie protokolu sme si najprv vytvorili framework, ktorý nám

umožnil abstrahovat’ od technických detailov ako sú siet’ová komunikácia či synchro-

nizácia jednotlivých účastńıkov.

S pomocou tohto frameworku sme potom implementovali kompletný navrhnutý

protokol ako knižnicu jazyka Java, ktorá je jednoducho použitel’ná z l’ubovol’nej sie-

t’ovej aplikácie.

Ako ukážku sme implementovali jednoduchú textovú verziu hry poker.

Hoci naša implementácia s doporučenými bezpečnostnými parametrami môže byt’

pŕılǐs pomalá na praktické použ́ıvanie, zńıžeńım týchto parametrov na nižšiu (no stále

rozumnú) úroveň sa dá rýchlost’ dostatočne zvýšit’. Podarilo sa nám teda ukázat’, že

navrhnutý protokol nie je len teoretickým výsledkom, ale je uplatnitel’ný aj v praxi.

On-line zdroje

Na stránke http://s.ics.upjs.sk/~jjergus/dp/ sú zverejňované aktuálne infor-

mácie o projekte.
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Attachments

A. CD with source code of the Java library and example application.
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