
Efficient Concurrent Memoization System
Author Viacheslav Kroilov | Supervisor Daniel Langr

Motivation
A memoization system (or a software cache) stores
a limited number of recent items in local memory
to speed up consequent access to them. It is often used
in servers, databases, scientific applications, and more.

LRU is a simple and popular approach to evict stale
items from the cache. It tracks item access order by
keeping a list of all items and move an item to the list
head on each access. Therefore, the least recently
accessed item is located in the end.

This limits cache scalability with multiple threads
as each access incurs writing to the list head that
becomes a bottleneck.

Write-freedom for recent items
When an item is in the Recent list already, it is not
inserted again. Therefore, accessing recent items
requires no writes to shared memory (that are more
expensive than reads) for managing the lists.

In the reference implementation, writes are still
necessary for synchronizing another part of the cache.
The possibility to avoid these writes is described in
the thesis. To the best of the author’s knowledge,
it would be the first general-purpose concurrent
software cache that allows for write-free lookups.

Evaluation
Both DeferredLRU and existing concurrent caches
were evaluated on the real-world data traces (e.g., disk
read accesses recorded on a search engine) with
up to 32 threads.

Due to better scalability, DeferredLRU achieves higher
throughput with 32 threads than the other caches
in 11 of 16 tests. One of the measurements is shown
in the plot below. The throughput (higher is better) is
examined with varying thread count on the Wiki 1/10
trace (refer to the thesis for information on the traces).

Approach
The thesis presents a novel software cache, called
DeferredLRU, that achieves better parallel speedup
than the existing state-of-art concurrent LRU caches
while delivering comparable hit-rate.

The improvement is achieved by changing the way
items are reordered in the list. A second list, called
the Recent list, is introduced along with the main one.
When an item is accessed, it is appended to the
Recent list instead of moving in the main one.
Due to a simpler structure, appending to the
Recent list is much faster than to the main list.

When the Recent list grows past a defined threshold,
a single thread iterates over all items in it, takes them
out from the main list, and then reinserts them into
the main list head. This operation is called PullRecent.
Inserting multiple items at once allows us to reduce
the number of writes to the main list head (which is
the main point of contention) by orders of magnitude.

Contribution
■ A novel approach to LRU caching that achieves

higher parallel speedup and performance than
existing alternatives

■ Extensive performance evaluation of the approach
■ Recommendations and ideas for further research
■ A reference C++ implementation of DeferredLRU,

available at github.com/metopa/deferred_lru

A B C D

A B C D

RECENT

A B C D

RECENT

A B C D

RECENT

A B C D

RECENT

A

B

C D

RECENT

A

B C

D

RECENT

B C A D

RECENT

Item lookup
1) Initial state
2) C is accessed and added
to RECENT
3) B is accessed and added
to RECENT
4) C is accessed, but
it is in RECENT already

PullRecent
1) Initial state
2) B is removed (it is still
searchable)
3) C is removed
4) B and C are reinserted
in the main list in
a single step

RECENT

