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Abstrakt

Tato práce se zabývá úlohou autonomnı́ho robotického průzkumu neznámého prostředı́ šesti-

nohým kráčejı́cı́m robotem. Cı́lem průzkumu je nejen vytvořit prostorovou mapu prostředı́, ale

také určit průchodnost prozkoumaných částı́ prostředı́. Robotický průzkum je založen na navi-

gaci robotu k hranici mezi známým a neznámým prostředı́m. Robot na základě aktuálnı́ho mod-

elu prostředı́ autonomně stanovuje dalšı́ navigačnı́ cı́l tak, aby efektivně vytvořil výškovou mapu

prostředı́.

Navržený systém pro autonomnı́ robotický průzkum je zaměřen na malé kráčejı́cı́ roboty,

jež mohou nést pouze malé a lehké senzory. Maximálnı́ nosnost robotu omezuje možnost volby

vhodného lokalizačnı́ho systému, který je nutný pro autonomnı́ navigaci a stavbu výškové mapy

prostředı́. Z existujı́cı́ch lokalizačnı́ch systémů byla vybrána metoda ORB-SLAM2 jako výchozı́

vizuálnı́ lokalizace, která byla rozšı́řena o využitı́ senzorické fúze s externı́m lokalizačnı́m systé-

mem a inerciálnı́ jednotkou. Kromě tohoto řešenı́ je v práci využita kamera pro lokalizaci, jejı́ž

součástı́ je jednotka kombinujı́cı́ výpočet vizuálnı́ lokalizace a senzorické fúze, která tak přı́mo

poskytuje odhad polohy a natočenı́ kamery (robotu).

V rámci experimentálnı́ části práce byly porovnány obě metody vizuálnı́ loalizace a spolehli-

věji fungujı́cı́ metoda byla použita v experimentálnı́m nasazenı́ navrženého a implementovaného

systému autonomnı́ho průzkumu v reálném prostředı́. Vyvinutý systém byl nasazen na šestinohém

kráčejı́cı́m robotu uvnitř budovy i ve venkovnı́m prostředı́, kde systém úspěšně realizoval plně

autonomnı́ průzkum. Navržené řešenı́ bylo dále nasazeno na pásovém robotu v několika dalšı́ch

experimentálnı́ch scénářı́ch zahrnujı́cı́ch vnitřnı́ prostory a důlnı́ chodby, které byly úspěšně

mapovány v rámci DARPA Subterranean Challenge.

Klı́čová slova: Explorace, SLAM, Šestinohý kráčejı́cı́ robot, Elevačnı́ mapa, Reprezentace map

stromem, ORB-SLAM2, Senzorická fůze
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Abstract

The autonomous robotic exploration of an unknown environment with a hexapod walking robot

is addressed in this thesis. Since the multi-legged walking robot is capable of traversing rough

terrains, the proposed exploration system creates a map of the unknown environment while si-

multaneously performing the traversability assessment of the explored environment to reach nav-

igational waypoints. The concept of frontiers has been utilized to detect navigational waypoints

at the border of unknown space and already explored space represented by an elevation map.

The proposed system is targeted to run onboard of a small robot. Therefore, the localiza-

tion system required to build the elevation map incrementally uses vision-based localization de-

ployed on a small and lightweight camera. The state-of-the-art visual localization ORB-SLAM2

has been chosen as the default localization system, for which we proposed improvements based

on sensory fusion with the Global Navigation Satellite System and Inertial Measurement Unit

(IMU). Although ORB-SLAM2 provides sufficiently precise localization, we have also studied

an alternative embedded vision-based localization system which has an inbuilt processor capable

of sensory fusion. The precision and reliability of both localization systems have been experi-

mentally evaluated, and more suitable localization system has been used during the experimental

deployments of the proposed exploration system.

Based on the presented results, we can conclude that both studied localization systems pro-

vide localization of the robot with sufficient precision for deployment in an autonomous explo-

ration scenario, but the novel embedded localization system is more reliable than ORB-SLAM2.

The proposed elevation mapping technique enhanced by efficient quadtree based data represen-

tation exhibited low computational requirements that supports onboard deployment, and it is

capable of covering large areas which have been demonstrated during multiple deployments in

the real-world scenario. The developed exploration system enabled the hexapod walking robot

to explore indoor and outdoor environments fully autonomously. The selected parts of the de-

veloped framework have also been successfully deployed on a tracked robot platform in various

scenarios, including mine environment within DARPA Subterranean Challenge.

Keywords: Exploration, SLAM, Hexapod walking robot, Elevation map, Quadtree, ORB-SLAM2,

Sensory fusion
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Chapter 1

Introduction

Robotic exploration is a problem to obtain a model of an unknown area by a mobile robot that au-

tonomously decides where to go next. Many exploration approaches to create a spatial model of the

environment, such as [1], [2], address the problem by extending the idea of the frontier-based ex-

ploration introduced in [3]. The frontiers are reachable parts of the environment at the border of the

unknown and already explored parts of the environment, and they are used to generate possible way-

points towards which robots are navigated to acquire new information about not yet explored parts

of the environment. The explored environment can be represented by a spatial map but also by more

complex models that enable to drive the exploration by, e.g., entropy [4] or model variance if the

purpose of the exploration is to measure additional physical quantity. This thesis focuses on spa-

tial autonomous exploration, and the particular environments where the developed system has been

deployed are shown in Figure 2 and Figure 3.

In addition to spatial mapping, traversability assessment [5] and planning of safe paths to the

navigation waypoints [6] are essential tasks of autonomous exploration, especially for robots operating

in unstructured and rough terrains environments. Such environments can be found outdoors, in mines,

at search and rescue or extraterrestrial missions. Not just a terrain type or exploration approach, but

also the particular robot platform might influence the exploration performance. Wheeled robots are

a common choice for exploration of flat indoor terrains. However, uneven terrains require robots

with high traversability capabilities that can be achieved by multi-legged robots or combined wheeled

and legged robot as in [6]. Regarding the particular robot type, a multi-legged robotic platform is

considered in this thesis.

Although multi-legged robots have relatively good terrain transmittance, small multi-legged robots,

such as Phantom X Mark II (with the size of the robot body 10 × 18 cm and paid load capacity

approximately 1 kg including battery), have limited operational capacity, and therefore, the avail-

able sensors and more specifically computational resources are also limited. Fortunately, novel cam-

eras provide several options for vision-based localization and spatial mapping that are the essential

tasks for exploration. One of the options the needed localization is the state-of-the-art vision-based

method ORB-SLAM2 [7], which can be further enhanced by the localization fusion [8]. In addition

to such traditional vision-based localization method, a new embedded localization system the Intel

RealSense T265 [9] has been recently introduced to the market. The Intel RealSense T265 uses the

visual localization improved by the sensory fusion using measurements of the Inertial Measurement

Unit (IMU) that are coupled onboard and the system directly provides an estimation of the robot pose.

However, as far as we know, there is no experimental evaluation of the precision and reliability of this

particular embedded localization system on multi-legged walking robots. Thus, the properties of both

localization systems are provided in the thesis, together with the report on their comparison and ex-

perimental evaluation. Based on the evaluation results, the best performing system is deployed within

the proposed and developed exploration framework that has been experimentally verified in several

practical scenarios with completely autonomous decision-making and robot navigation.

The rest of the thesis is organized as follows. A brief overview of the related work is presented in

Section 2 while the addressed problem is specified in Section 3. The developed system is described

in Section 4 and achieved exploration and mapping results in the selected scenarios are reported in

Section 5, together with the experimental evaluation of two localization systems. The concluding

remarks and ideas for future work are summarized in Section 6.

1



1. Introduction

(a) Hexapod walking robot with developed sensor

rig for autonomous exploration

(b) Tracked robot used within DARPA Subter-

ranean Challenge

Figure 1: Robotic platforms used within this thesis.

(a) Chimney location (b) The Resulting elevation map of chimney location

(c) Yard location (d) Resulting elevation map of chimney location

Figure 2: Outdoor locations autonomously explored by the hexapod walking robot.

Figure 3: The elevation of an explored indoor corridor by the tracked robot.
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Chapter 2

Related work

The fundamental approach for the autonomous building of a spatial map of the unknown area is

frontier-based exploration [3], where frontiers are regions on the boundary of the already explored and

unexplored parts of the environment. The frontiers are used as possible waypoints towards which the

robot can be navigated to explore the environment. Numerous approaches extending the pioneering

work [3] can be found in the literature, e.g., [1], [2], where the authors extend the method to multiple

robots by a utility function.

The spatial exploration strongly relies on mapping and localization of the robot. Hence, it might

be beneficial to explicitly consider the uncertainty of the robot pose because it can improve the ac-

curacy of the build map as it is reported in [10], where the authors propose exploration strategy that

combines the maximization of the map information and minimization of the uncertainty in the robot

pose estimation. A similar idea has been exploited in [4], where entropy is employed to combine

information about the robot pose and environment to select the most suitable navigational waypoint.

Although there are various exploration approaches, we base our exploration system directly on

the idea of the frontier-based approach [3] because we expect further challenges in developing full

autonomous navigation for a small hexapod walking robot. The frontier-based spatial exploration is

principally composed of several parts from which the most important are the localization, mapping,

and selection of the next navigational goal towards which the robot is navigated [11]. Therefore, the

following parts of this section work are dedicated to an overview of the existing solutions to these

parts.

2.1 Mapping

An important part of the spatial exploration is a suitable data representation of the environment model,

the map. Several map representations can be found in the literature [12], but the traditional and

commonly used approach is the occupancy grid [13] that divides the space into cells, and each cell

represents the probability of being occupied. The pure occupancy grid is suitable for a combination

of flat terrain and wheeled robot, but it is not suitable for capturing an uneven terrain traversable by a

walking robot. On the other hand, the extension of the occupancy grid to full 3D representation, known

as the OctoMap [14], is computationally more demanding than the elevation map proposed in [15].

Besides, further approaches exploiting properties of the elevation map have been proposed [16], [17],

which steers for the selection of the elevation map as a suitable environment model representation.

Successful deployments of elevation map in exploration scenarios with walking robots are reported

in [5], [6], and therefore, we have chosen the elevation map as the spatial model also because of

low computational demands. An example of the build elevation map by the developed framework is

shown in Figure 4. Moreover, we followed the idea of tree representation used in the OctoMap [14],

and we propose to represent the elevation map by a quadtree to make its representation less memory

demanding. The elevation map can also be used to assess the traversability of the explored terrain,

which can be based on detecting the maximum slope as it is reported by the authors of [6] who further

proposed to generate a cost map based on the distance from the obstacles to lowering the risk of driving

the robot close to untraversable areas. In the herein proposed method, the traversability assessment

follows [6], but the Distance Transform algorithm [18] has been employed to generate a cost map.

The navigation through the environment represented by the elevation map requires to plan a path

for the robot. Multiple algorithms can be utilized and since the environment is represented by a grid-

like map, graph search algorithms can be employed, such as the A* algorithm [19] used by the authors

3



2.2 Robot localization

Figure 4: An example of the elevation map, where untraversable cells are shown in red, grown un-

traversable cells are in orange, traversable cells are in green, and frontier cells are in blue. The further

visualizations of the elevation map use a similar color schema.

of [6] to plan paths to the waypoints generated based on the detected frontier cells. The detection of

the frontiers can be based on [20], where two algorithms of frontier detection are described. The first

method searches the whole map, while the second algorithm (called Fast Frontier Detector) detects the

frontier cells only from new incoming measurements and then join them with the previously detected

frontier cells. However, in very large scenarios, there can be a huge number of frontier cells; hence,

clustering of the frontier cells and selection of the cluster representative has been proposed in [21]

to lower the computational demands of determining possible waypoint locations. The particular next

navigation goal is selected from the possible waypoint locations by a utility (or cost) function that, in

the simplest case, selects the closest waypoint to the robot [3].

2.2 Robot localization

Precise localization is necessary requirement for a mobile robot that incrementally builds a metric map

of the environment. There are two main classes of the localization methods that are used to localize

a mobile robot. The first class of methods is external localization methods that rely on equipment

mounted in the environment, which is used to localize the robot. One of these methods is the Global

Navigation Satellite System (GNSS), i.e., GPS, Galileo or GLONASS which provide the position of

the robot outside of the buildings, where the satellites should ideally be at the line of sight. For indoor

and GNSS-denied environments, where the satellites are not at the line of sight, a different localization

method has to be used. Methods suitable for indoor and GNSS-denied localization can be based on

different beacons or transmitters to localize the robot; these systems include localization estimated

based on WiFi signal [22] or, e.g., ultrasound [23]. Other methods are based on optical sensors for

robot tracking like total stations that measure the distance from a corner reflector attached to the robot

or complex camera systems such as Vicon [24] can be used (for small scale indoor environments). Re-

garding cost-efficient camera-based systems, conventional cameras can be utilized to track distinctive

pattern attached to the robot as in the existing WhyCon [25] or AprilTag [26] setups.

The second class of the methods represents localization methods that rely only on interoceptive

4



2.2 Vision-based localization

or exteroceptive sensors mounted on the robot. The interoceptive sensors include wheel encoders to

localize the robot by counting the wheel turns, which is called wheel odometry, which at some extent

can also be considered for multi-legged robots. In [27], the authors propose a relative localization

for hexapod walking robot based on the robot model supported by measurements from IMU. The

disadvantage of [27] is the necessity of the precise kinematic model, which is hard to obtain. The

exteroceptive sensors can also be used for precise localization, see benchmark results reported in [28].

An example of a commonly used exteroceptive sensor for the localization is a laser range-finder (LI-

DAR) used, e.g., in [29]. Besides, various types of the cameras can be utilized as well [30], [31], [7].

Although LIDARs provide relatively precise localization [28] and distance measurements are more

precise than measurements from the cameras, we limit ourselves to sensory equipment that can be

carried by a small hexapod walking robot. Therefore, we mainly focus on vision-based localization

using small cameras.

2.2.1 Vision-based localization

The well-known vision-based localization approach is the Visual odometry [32], where the initial

position of the robot is known, and each next position of the robot is estimated by iteratively com-

puting changes of the robot position based on the correspondences detected between the consecutive

camera frames. The correspondences are detected as the regions in the images with a similar ap-

pearance; there are different types of regions used by localization approaches. A typical example of

these regions is salient points in an image which appears at the places of significant changes of pixel

intensities. The large class of methods that detect correspondences between images based on salient

points is called feature-based localization. In this thesis, we focus mainly on the feature-based visual

localization methods, because of their precision reported in [33], [28], or [34], and their relatively low

computational demands.

Figure 5: Overview of a simple visual odometry.

Processing blocks of the considered feature-based visual localization are depicted in Figure 5,

and they operate as follows. At first, image features are extracted by a process that consists of two

phases: feature detection and feature description. During the feature detection, a limited number of

image features is detected, then a local representation of each detected feature, i.e., feature descriptor,

is calculated. After that, descriptors of features detected in the current camera frame and feature

descriptors obtained previously are compared to find the correspondences between the current and

previous frames. The process of finding the correspondences based on the comparison of the feature

descriptors is called feature matching. Matched features define the found correspondences between

the frames that are used to compute a geometrical transformation between these frames. The resulting

camera pose is computed from the initial pose and product of all following transformations calculated

from the beginning frame to the current frame.
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Image features

The text above indicates that image features play a crucial role in feature-based visual localization

methods. The properties of image features affect the computational requirements of the localization

method and also its precision, which has been shown in [35]. In that paper, the authors show that

Speeded Up Robust Features (SURF) [36] lead to more precise localization than faster to compute

Features from Accelerated Segment Test (FAST) [37] combined with Binary Independent Elementary

Features (BRIEF) [38], and Oriented FAST and Rotated BRIEF (ORB) [39]. However, it is worth

noting that the authors of [35] processed the sensory data captured during the robotic experiment with

the same framerates. However, during the online deployment, the onboard computational power of

a robot is usually limited. Thus methods with lower computational requirements may run on higher

framerates, which also improves the precision of the localization. Moreover, in [40], we have shown

that if there is enough computational power to process all the frames incoming from the sensors,

the trajectory estimate provided by visual localization can reach very high precision. We found out

that in some cases, it is better to use features that are fast to detect like ORB, because it enables the

localization system to provide pose of the robot with a higher frequency than in the case of more

demanding features, and the localization system less likely loses the robot pose.

2.2.2 Visual Simultaneous Localization and Mapping

Simultaneous Localization And Mapping (SLAM) [41] are methods that employ more complex tech-

niques of searching correspondences between frames to allow more reliable and more accurate lo-

calization than simple visual odometry [32]. The fundamental technique of SLAM is a loop closure,

which addresses the problem of the localization drift by observing a scene that was already seen. The

localization drift is produced by the error accumulated from all the calculated transformations along

the whole path of the robot. If the robot closes the loop, the error accumulated in the loop can be

decreased. Therefore, SLAM is more suitable for long-term localization than the visual odometry,

especially if the robot revisits some places.

Existing methods of visual SLAM can be divided based on several criteria: full/online, sparse/dense,

and direct/indirect. Full SLAMs consider the whole path of the robot, which enables the SLAM sys-

tem to recalculate the path when a loop closure is detected, and also improve the underlying map.

Whereas the online SLAM seeks to estimate only the current camera pose, which is computationally

less demanding. The amount of the information taken from an image can be used to further classify

SLAM systems as sparse or dense. SLAM systems classified as dense use all or most of pixels in an

image to estimate a position of the camera and detailed map of the environment. The advantage of

dense SLAM is that the detailed underlying map can also be used for other purposes, e.g., for colli-

sion avoidance. However, the computational requirements of dense methods are high due to the high

number of processed points. An example of a dense SLAM method is presented in [42], where the au-

thors propose to use almost all available pixels of the RGB-D image to estimate a pose of the RGB-D

camera. A method that uses a lower amount of points, and thus can be considered as the semi-dense

method is, for example, the LSD-SLAM [43].

SLAM systems classified as sparse use a small number of image pixels to calculate a pose of

the camera, and construct a coarse map of the environment. The comparison between the number of

pixels used by semi-dense and sparse methods is shown in Figure 6. The examples of sparse SLAMs

are ORB-SLAM2 [44], [7], RGBDSLAMv2 [45] or S-PTAM [46]. The way the image pixels are

used divides the SLAM methods to direct and indirect methods. Direct methods use directly the

intensity of pixels to estimate the camera position, e.g., from the depth of the scene, which is done

in LSD-SLAM [43]. On the other hand, the indirect methods use a special representation of the

interesting regions (e.g., image features) instead of operating directly with pixel intensities. Although

SLAM methods can lower the position error if the robot closes the loop, the performance of the visual
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2.2 Sensory fusion for vision-based localization

(a) Pixels used for depth map construction by the

LSD-SLAM (retrieved from [43])

(b) Image features detected by ORB-SLAM2

Figure 6: Example of processed pixels by different SLAM methods.

localization can be further enhanced by sensory fusion.

2.2.3 Sensory fusion for vision-based localization

Various approaches to sensory fusion can be identified in the literature. In this work, we consider

mainly the approaches related to the robotic localization and sensory fusion for estimation of the

orientation. The authors of [47] proposed to improve the Stereo Parallel Tracking and Mapping (S-

PTAM) [48] by the Extended Kalman Filter (EKF) for a fusion of the sensory measurements from IMU

to predict positions of the previously seen image features. Hence, the improved S-PTAM [47] is more

reliable and can provide the position of the robot at a higher frequency, even when the robot moves

unsmoothly. A different way of sensory fusion is to separate the sensory fusion algorithm from the

localization module completely. In [8], we have proposed to use Kalman filter (KF) to fuse the output

from ORB-SLAM2 and with the GNSS to lower the drift produced by the visual localization system.

The approach [8] of sensory fusion has the advantage of being less dependent on the localization

method. Thus, the localization method can be easily replaced.

Many other approaches use Kalman filter for sensory fusion as well, e.g., [49] to name some. The

main functionality of Kalman filter is divided into two phases [41]. The first phase is the prediction

phase during which the filter predict means of the states and their uncertainty solely based on the model

of the system. During the second phase, the sensory measurements are used to correct the current

estimate of the system state. Another approach, very similar to Kalman filter is Information filter

utilized in [50]. From the usage perspective, the difference between Kalman filter and Information

filter is the complexity of the prediction phase, and correction phase, which are listed Table 1.

Table 1: Complexities of Kalman filter and Information filter

Phase Kalman filter Information filter

Prediction phase O(n2) O(n2.4)

Correction phase O(n2.4) O(n2)

n is the size of the state vector [41]

Besides the robot model, the sensory fusion for the estimation of the orientation has to take into

account the representation of the orientation, which can be based on quaternion. The approach [51]

proposes to use EKF for the sensory fusion of the orientation represented by quaternions with IMU
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2.2 Sensory fusion for vision-based localization

measurements. In addition to sensory fusion for visual localization described in the literature, there

is a novel off-the-shelf commercially available sensor Intel RealSense T265 [9] with an inbuilt unit

capable of vision-based localization enhanced by the sensory fusion with IMU.
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Chapter 3

Problem Statement

The goal of this work is to propose a solution for autonomous spatial exploration and employ it on the

hexapod walking robot in real-world scenarios. The complexity of the exploration task leads us to de-

compose the proposed solution into several parts: spatial mapping, exploration strategy, and algorithm

for path following. The proposed framework is developed for real robots, especially for hexapod walk-

ing robots and robots with a differential drive. The use of the proposed framework requires a robot

with a ROS [52] driver1.

The spatial mapping of the environment requires precise and reliable localization. Therefore, the

localization fusion and two different state-of-the-art vision-based localization systems are detailed in

the thesis. Both vision-based localization systems have been experimentally evaluated, and the more

suitable localization system has been used during the deployment of the hexapod walking robot in

autonomous exploration scenarios. The key criterion of the comparison of the localization systems is

their precision. Thus, we describe metrics of the localization precision in the following text to make

the thesis more self-contained.

3.1 Metrics of the localization precision

In principle, the localization performance metrics that can be found in the literature [53], [54], [34]

assumes that the precision of the localization is measured from the comparison of a robot trajectories

estimated by the localization system under the test and a reference localization system. The trajectories

provided by localization systems used within this thesis are sequences of poses, where each pose is a

time-stamped vector

pvec =

[

q

t

]

, (1)

where q is quaternion, which represents the orientation of the robot, and t is the position of the robot.

The localization system under the test generally provides the trajectory estimate with a differ-

ent frequency than the reference localization, which is induced by, e.g., usage of different sensors.

However, the comparison of two trajectory estimates proposed in [53] require to have both trajectories

time-synchronized, i.e., all the poses of the trajectory estimate are compared with poses of the ground

truth acquired at the same times. The authors of the evaluation method described in [53] propose to

find for each pose of an estimated trajectory, the pose of the ground truth which has the closest times-

tamp. After the time-synchronization, we have two sequences of n poses ordered by timestamps in

the format of (1), where for each pose of the estimated trajectory, there is a pose of the ground truth

with the same timestamp.

The metrics described in [53] are defined for trajectories, where all poses are represented by SE(3)

matrices. A robot pose in SE(3) is thus composed of

PSE(3) =

(

R3×3 t3×1

01×3 1

)

, (2)

where the vector t is the robot position, and R is SO(3) rotation matrix which represents an orientation

1ROS driver of a robot is not a part of the solution, and it supposed that the driver controls the robot motion by forward

and angular velocities.
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3.1 Metrics of the localization precision

of the robot 2. Thus, the poses of the trajectory estimate and the ground truth are transformed from the

format (1) to SE(3).

Let the trajectory estimate with poses in SE(3) be denoted as P′ = {P′
1,P

′
2 · · · ,P

′
n}, and

the corresponding time-synchronized ground truth trajectory be denoted as Q = {Q1,Q2, · · · ,Qn}.
Generally, the localization system under the test provides a trajectory estimate in a different coordinate

frame than the ground truth. Therefore, we introduce a trajectory estimate P = {P1,P2, · · · ,Pn},
which is the trajectory estimate transformed into the coordinate frame of the ground truth reference

trajectory. The first way to obtain the transformation S from P′ to P is to assume that the error of the

first pose of the estimated trajectory is zero, then S is computed from the first poses of the trajectory

estimate and first pose of the ground truth as S = Q1P
′−1
1 . However, the absolute error of such

transformation suffers from misalignment of the trajectory, e.g., if the orientation provided by the

localization system under the test is not reliable even at the beginning of the trajectory. Therefore, we

propose to use a second way to obtain S. The second way to get the transformation S is to seek a

transformation that minimizes the root mean squared error (RMSE) between the estimated trajectory

and the ground truth [53].

When we obtain trajectories P and Q, both metric of the Absolute Trajectory Error (ATE) and

Relative Pose Error (RPE) can be employed to evaluate the precision of the trajectory estimate. ATE

is defined by the equation [53]

Fi = Q−1
i Pi, (3)

ATE represented by the SE(3) matrices Fi can be divided into the translational part of ATE Fi,t and the

rotational part of ATE Fi,φ, as it was used in [35]. The translational part of ATE measures distances

between the estimated poses and poses of the ground truth. Similarly, the rotational part of ATE

measures an error of the robot orientation.

Statistical measures of the mean, root mean squared (RMS), standard deviation and maximum and

minimum values are used in different benchmarks for a comparison of the trajectories. In this work,

we use the mean of the translational part of ATE [53] given as

ATEt =
1

n

n
∑

i=1

‖ Fi,t ‖, (4)

(5)

RPE is calculated using [53]

Ei = (Q−1
i Qi+∆)

−1(P−1
i Pi+∆), (6)

where ∆ is a pre-defined interval. A straightforward selection used in this thesis is ∆ = 1 for which

the RPE measures the error between the consecutive frames. There are also other possible selections

of ∆, e.g., adaptive selection of ∆ used in [28] for which the distance traveled between the compared

poses is constant. Besides, the authors of [53] propose to select ∆ as a set of values over all possible

time intervals.

The statistical measure of the mean is used for RPE as for ATE, i.e.,

RPEt =
1

k

∑

∆

(

1

m

m
∑

i=1

‖ Ei,t ‖

)

, (7)

(8)

where m = n−∆ and k is the number of ∆ time intervals, Ei,t is the translational part of RPE.

The reason to use RPE in addition to ATE is to evaluate a local drift of the localization, which,

however, captures only the local consistency of the map.

2Representation of poses by the SE(3) matrix can be expressed as a transformation of the standard basis of the space IR3

from the beginning of the coordinates.
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Chapter 4

Proposed Method

The exploration task is a complex problem, and therefore, we divided the proposed robotic explo-

ration framework into three main modules: localization, exploration, and path following. The con-

nections between the modules are visualized in Figure 7. The sensory measurements are processed by

Figure 7: Architecture of the proposed exploration framework.

the localization module that provides the robot pose for the exploration and path following modules.

The sensors also provide point clouds that are together with the robot pose used to build an elevation

map of the robot surroundings. Next, paths to the determined waypoints that lead to the exploration

of the unknown terrain are selected within the exploration module. Finally, the path following module

ensures that the robot moves according to the path planned by the exploration module.

The Robot Operating System (ROS) [52] has been selected as middleware to mediate interfaces

between the modules. The ROS connects the modules using a system of messages. Although custom

messages can be created, only the standard ROS messages have been used for the communication

between the modules to increase the reusability of the implemented software components. Moreover,

the standard ROS messages enable the usage of various tools, e.g., 3D visualization tool RViz, and

existing simulators.

4.1 Exploration

The exploration module is responsible for repeated determination of the path that is used by path fol-

lowing module to explore unknown parts of the environment. Thus, the exploration can be expressed

as an iterative procedure that based on the current map of the environment being explored, determines

a set of possible waypoints, selects the next most suitable navigational location to explore the envi-

ronment, and plan a path along which the robot is navigated. Since the robot velocity is limited, it

is not necessary to update the plan frequently, and therefore, navigational goal might updated at the

frequency of 5Hz, which is in accordance of the mapping module that is detailed in Section 4.3. In

particular, for each new update of the elevation map, it is examined if the actual path of the robot is

feasible. If the path is no longer feasible, new navigational goal is determined, otherwise the plan is

updated every 8 s.

The procedure for determining new waypoints follows the frontier-based approach [3] and the next

goal location is selected as the closest waypoint to the robot. The metric used to determine the distance

between a possible waypoint and the robot is the cost of the shortest path to the waypoint produced by
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4.2 Vision based Localization

the planner; but we further employ traversability assessment and safety among the obstacles. However,

Euclidean distance is utilized to presort the possible waypoints to speed-up the waypoint selection, and

the cost of a possible path is computed for the five closest reachable waypoints at maximum. Finally,

the exploration terminates if there are no more possible waypoints to follow.

4.2 Vision based Localization

The feature-based visual localization ORB-SLAM2 [7] has been chosen from the existing localization

methods overviewed in Section 2.2 as the localization method suitable for the hexapod walking robot.

Although ORB-SLAM2 is reported to be relatively accurate localization system [28], we propose

several improvements including the localization fusion. Moreover, the new embedded localization

system the Intel RealSense T265 [9] (further referred to as T265 for short), has been considered as

an alternative to ORB-SLAM2. Because there are (as far as we know) no experimental evaluations

of T265 in a scenario with the hexapod walking robot, we provide an experimental evaluation of the

localization precision and reliability provided by T265 and also a comparison with ORB-SLAM2 in

Section 5.4. Based on the results of the experimental evaluation, the more suitable approach has

been used during the experimental deployment of the proposed exploration framework in real-world

experimental scenarios. Both localization systems are briefly described in the rest of this section.

4.2.1 ORB-SLAM2

The ORB-SLAM2 has been selected as a suitable localization method mainly because of (i) it is

publicly available3; (ii) its precision [28]; (iii) and its ability to use very small sensors that are suitable

to be mounted on our small walking robot. In the rest of this section, we briefly describe ORB-SLAM2

to make the text more self-contained.

The architecture of ORB-SLAM2 can be divided into three parts (see Figure 8)

• tracking,

• local mapping,

• loop closing;

that run in parallel.

The tracking provides the camera pose for each new frame, and it is responsible for a keyframe

selection. More specifically, the localization of the camera is based on the visual odometry enhanced

by an optimization using the Bundle adjustment [55], and it works as follows. At first, features in a new

frame are detected. The features are then tried to be matched with features from the previous frame.

Feature matching is accelerated by tracking of features, which means that each feature is matched

with features in a close neighborhood of the presumed position of the feature in the next frame. Thus,

the feature does not have to be matched with all newly detected features. The reobservability of the

previously seen features is supported by searching the covisibility graph, which is shown in Figure 9. If

the matching phase fails, then ORB-SLAM2 employs a module for the place recognition to relocalize

the camera. Tracking is also in charge of a keyframe selection which happens when the frame contains

a sufficient quantity of new features. Thus, the keyframe is the frame which stores a sufficient amount

of new information about the environment.

The keyframes are processed by the local mapping using Bundle adjustment to optimize the local

map. Local mapping also extracts the most important features from the keyframes and put them into

the global feature map, which is used when tracking is lost.

3ORB-SLAM2 is available at http://webdiis.unizar.es/˜raulmur/orbslam/.
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4.2 ORB-SLAM2

Figure 8: ORB-SLAM2 architecture.

A loop closure detection is based on detecting sets of features that were already observed, which

is used to improve the precision of the localization [41]. ORB-SLAM2 detects loop closures for each

keyframe, and when a loop closure is detected, the algorithm calculates error accumulated in the loop.

Then, the covisibility graph is corrected and duplicated features in the feature map are merged.

The system uses ORB features [39] that are classified as close or far based on a distance from

the camera center. Distances of the close features can be reliably estimated to be used for the visual

odometry, especially for the calculation of the camera translation. On the other hand, a distance of far

features cannot be reliably estimated, but these features are usually suitable for the loop closure.

Based on our experience with the experimental deployment of ORB-SLAM2 [8,33], we improved

its ROS interface as follows. First, we enable to process compressed RGB images and publish local-

ization for each processed frame. Besides, we propose a method of sensory fusion for the localization.
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4.2 Sensory fusion for the localization

Figure 9: An example covisibility graph produced by ORB-SLAM2. Features are shown as small

dots; green connections indicate reobserved features in the specific keyframes (blue elements).

4.2.2 Sensory fusion for the localization

Unsmooth motion, temporal lack of image features, or localization drift affect the precision of the

vision-based localization, and in the worst case, the localization system can fail to localize the robot.

The embodiment of these issues can be partially overcome by careful parametrization of the selected

visual localization method [33]. In this thesis, we propose to use the sensory fusion to get more

reliable and even more precise localization. The proposed sensory fusion for the localization is based

on approaches described in Section 2.2.3, especially on our recent work [8]. We propose to divide the

fusion for the localization into two parts; the first part is responsible for fusion of the robot position,

and the second part is in charge of the orientation fusion. Both parts are described in the following

parts of this section.

Sensory fusion for the position estimation

The proposed sensory fusion is designed for the robot position estimated by the incremental localiza-

tion that is further assisted by measurements from external localization system, e.g., GNSS, but it can

be easily extended to use a measured acceleration of the robot or any other source of the robot position

estimation. The incremental localization is supposed because the proposed exploration technique does

not explicitly take into account the uncertainty of the robot position. Thus, the SLAM system might

not close the loops4, since it is not explicitly driven to do so.

The core of the position fusion is Kalman filter. In particular, we consider a linear and discrete-

time model of the robot that can be described by the state equation

xk+1 = Axk +Buk. (9)

4If the SLAM does not close the loops it drifts similar to incremental localization.
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4.2 Sensory fusion for the localization

Kalman filter itself can be defined by the following equations [41]

µk = Akµk−1 +Bkuk (10)

Σk = AkΣk−1A
T
k +Rk (11)

Kk = ΣkH
T
k (HkΣkH

T
k +Qk)

−1 (12)

µk = µk +Kk(zk −Hkµk) (13)

Σk = (I−KkHk)Σk. (14)

For our description, µk and Σk are predictions of mean and covariance of the robot state vector xk

based on the last estimated mean µk and covariance Σk of the robot state vector. The predictions can

be made asynchronously with the correction phase represented by (12), (13), and (14), e.g., in the case

the robot position is needed in an arbitrary time. The matrix Rk represents the uncertainty of the robot

model, and the vector zk is the measurement obtained according to

zk = Hkxk + δk, (15)

where δk is the Gaussian noise with the zero mean and covariance Qk.

We propose to use a simplified model of the robot with the robot body motion that can be described

as
[

pk+1

vk+1

]

=

[

I3×3 ts · I3×3

03×3 I3×3

] [

pk

vk

]

+

[

t2
s

2m · I3×3
ts
m
· I3×3

]

fk, (16)

where ts is the sampling time of the discretization, m is the robot weight, fk is the force that moves

the robot, pk and vk are the position and velocity of the robot, respectively.

The position provided by incremental localization drifts, and therefore, its uncertainty grows to in-

finity. On the other hand, estimates of the transformations between the consecutive robot positions are

relatively accurate, and uncertainty of these transformations is bounded because it is not affected by

the localization drift. Hence, we propose to fuse differences between the consecutive robot positions

instead of using directly the robot position provided by the incremental localization. The straight-

forward way to incorporate differences of the consecutive positions is to substitute the robot velocity

using

vk =
rk − rk−1

ts
=

∆rk

ts
, (17)

where rk is the 3 DoF position of the robot provided by the incremental localization system. Then,

the model of the robot (16) changes to

[

pk+1

∆rk+1

]

=

[

I3×3 I3×3

03×3 I3×3

] [

pk

∆rk

]

+

[

t2
s

2m · I3×3
t2
s

m
· I3×3

]

fk. (18)

The force fk, which moves the robot, can be estimated from the robot acceleration measured, e.g.,

by IMU or from the control signals to the motors of the robot. If fk is not available, it is possible to

follow the tracking scenario like in [56], which considers fk = 0. In that case, the model of the robot

estimates the robot position by summing the robot position with the last known position difference;

thus, it is a variant of the constant velocity motion model.

If the position measurements provided by the external localization zp,k and position differences

z∆r,k computed from the incremental localization are provided synchronously, i.e., zk = [zp,k z∆r,k]
T ,

we can incorporate the measurements using (15). The uncertainty of the measurements zk is repre-

sented by the covariance matrix Qk that is together with the matrix Hk can be composed as

H = Hk=1,2,... = I6×6, Qk =

[

Qp,k 03×3

03×3 Q∆q,k

]

.
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4.2 Sensory fusion for the localization

The uncertainty of the external localization and the uncertainty of the incremental localization are

represented by Qp,k and Q∆r,k, respectively. In most cases, the external localization and incremental

localization provide the measurements asynchronously. Therefore, the correction phase of Kalman

filter is done separately for zp,k, and z∆r,k measurements.

We have evaluated the proposed method of sensory fusion for the robot position in [8], where

the incremental localization has been provided by ORB-SLAM2 for RGB-D data from a small aerial

vehicle, and the external localization was provided by simulated unreliable GPS signal. Note, Kalman

filter enables to predict the position of the robot independently on the incoming measurements. It is

specifically useful if the visual localization provides position at a low frequency, and the synchroniza-

tion with measurements from a range sensor is required. Since the proposed sensory fusion is only for

the position estimation, we also propose the sensory fusion for the orientation to increase the accuracy

and reliability of the whole 6 DoF pose estimation of the robot.

Sensory fusion for the robot orientation

The main motivation of the sensory fusion for the orientation is to overcome a failure of the visual

localization at least for a short period until the visual localization is reset or some image features

become visible. There are several ways to do sensory fusion based on the available sensory equipment

and orientation representations.

The ROS framework used within the exploration framework use quaternions to represent the robot

orientation, thus we propose to use Extended Kalman filter (EKF) for sensory fusion based on [51].

The principle of filtering is similar to the previously shown position fusion; the main difference is in

the state equation. Thus, we show how to derive the state equation in what follows.

Let we have an angular velocity ω = [ωx, ωy, ωz] of the robot provided by IMU. Relation between

the angular velocity and orientation represented by quaternion q = [qx, qy, qz, qw] can be described

by the differential equation [51]

q̇ =
1

2
Ω(ω)q, Ω(ω) =









0 −ωz ωy ωx

ωz 0 −ωx ωy

−ωy ωx 0 ωz

−ωx −ωy −ωz 0









. (19)

Next, we can discretize (19) to

qk+1 = exp

(

1

2
Ωk(ωk)ts

)

qk, (20)

where ts is the sample time and exp() denotes the matrix exponential. For a short sample time,

the matrix exponential can be approximated using its first-order and second-order items of Taylor

series [57] and we can get

qk+1 =

(

I4×4 +
1

4
Ωk(ωk)ts

)

qk. (21)

Hence, (21) is the state equation, and the rest is just an application of EKF approach.

The alternative way to the depicted fusion with IMU is to directly use Attitude Heading Reference

System (AHRS), which provides orientation as a result of the internal sensory fusion based on the

gyroscope, accelerometers, and magnetometer sensors. Since the AHRS provides an orientation, it

can be directly used instead of the orientation provided by a visual localization. Then, before the

position fusion by Kalman filter, the position differences provided by the visual localization have to

be projected into the coordinate frame defined by the AHRS and fused position. The advantage of

fusion with AHRS is the removal of the localization drift produced by the visual localization.
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4.2 Tracking camera Intel RealSense T265

4.2.3 Tracking camera Intel RealSense T265

The proposed alternative localization system to the ORB-SLAM2 is the tracking camera Intel Re-

alSense T265 shown in Figure 10. The visual localization provided by the T265 is assisted by the

sensory fusion with IMU. Moreover, the tracking camera has fisheye lenses that ensure a high overlap

of consecutive images to improve the reliability of the visual SLAM. The sensory fusion enables the

camera to estimate the robot position even when the images from the camera temporary do not provide

any useful information.

Figure 10: Tracking camera Intel RealSense T265.

Cameras of T265 have IR filters able to eliminate the influence of the IR light emitted by active

RGB-D camera the Intel RealSense D435, and thus both cameras can be used at the same time. The

advantage of the embedded localization system based on T265 is that all the computations related to

the visual localization and sensory fusion are done onboard the camera, and thus a less computational

power is needed to be carried by a robot, or it can be used for another demanding task such as path

planning. Technical parameters of T265 are summarized in Table 2.

Table 2: Technical parameters of the Intel RealSense T265

Parameter Value

Resolution [px] 848× 800
Max framerate [Hz] 30

Size [mm] (H/W/D) 24.5× 108× 12.5
Weight [g] 55

Power consumption [W] 1.5

Shutter type Global
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4.3 Mapping and Planning

4.3 Mapping and Planning

The elevation map is used as a spatial model of the robot surroundings within the proposed exploration

framework. We build the elevation map incrementally from the preprocessed point clouds incoming

from the sensors. The point cloud preprocessing includes removal of flawed noisy points (generated by

reflections from the robot body and too distant measurements) and transformation of the point cloud to

the global coordinate frame of the map using the robot pose provided by the localization module. Prior

the points of a new point cloud are incorporated into the elevation map; we utilize the grid defined by

the elevation map to select only the points that have the maximal height in the corresponding cell of the

grid, which ensures the elevation map captures the highest obstacles on the ground. Then, the selected

points are one-by-one incorporated into the elevation map as measurements of the terrain height.

Each cell (i, j) of the elevation map contains an estimate of the terrain height hk and its variance

σ2
h,k. Thus, a newly measured height zk and its variance σ2

z,k for the particular cell (i, j) are fused

with the current estimate of the height using Kalman filter based approach [16]

hk =
σ2
z,khk−1 + σ2

h,k−1zk

σ2
z,k + σ2

h,k−1

(22)

σ2
h,k =

σ2
z,kσ

2
h,k−1

σ2
z,k + σ2

h,k−1

, (23)

where the variance of new measurement σ2
z,k is calculated by the linear sensor model [16]. Cells of

the elevation map, where no measurements were yet incorporated, are marked as unknown.

4.3.1 Map representation

Because the exploration framework is supposed to be used in large scale scenarios, we put extra effort

to find an efficient and effective map representation. There are several ways to represent elevation

maps, and the straightforward approach is to represent the elevation map as a uniform grid. However,

a more sophisticated way is to represent the map as a quadtree structure, see Figure 11, because it

reduces the memory requirements. On the other hand, the main advantage of storing elevation maps

(a) Uniform grid (b) Quadtree structure

Figure 11: Elevation map representations (white color represents unknown space).

as uniform grids is the complexity of the access to individual cells, which does not depend on the

size of the map and can be bounded by O(1). However, an elevation map represented by a uniform

grid uses memory inefficiently in the case of large environments with many obstacles and unreachable

areas. The memory inefficiency is demonstrated in the following simple example.
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4.3 Map representation

Figure 12: Example map with the size 707×707 m and resolution 10 cm of unknown space (in white)

crossed by a corridor with the size 1000× 2 m (in green).

Let the map represent a corridor 1 km long such as one that is visualized in Figure 12. The

memory requirements of both map representations are depicted in Table 3. The quadtree structure

requires to store links to the next nodes of the quadtree, and thus the size of a cell of the quadtree is

more memory demanding than the cell representation of the uniform grid. However, if the quadtree

covers the area crossed by the long thin corridor, it requires fewer cells in the total than the uniform

grid representation. Since one of our motivation for the studied exploration and mapping arises from

the DARPA Subterranean Challenge with such corridors and mine tunnels, we consider the quadtree

representation as more suitable for the proposed exploration framework.

Table 3: Memory requirements of map representations for the scenario shown in Figure 12

Map representation: Uniform grid Quadtree

Cell content Cell type, height, Cell type, height,

height variance height variance,

links to next quadtree nodes

Cell size [B] 9 41

Size of known cells [MB] 2 8

Total map size [MB] 430 11

The main disadvantage of the elevation map stored as a quadtree structure is in noticeably in-

creased complexity of accessing to individual cells, which can be bounded by O(log n), where n

depends on the size of the environment represented by the map. It is because the quadtree has to

be searched to find a particular leaf corresponding to the requested cell. The more complex access

slows down map processing, especially when the elevation map is processed by multiple methods and

a new point cloud regularly updates the map. We propose to overcome this issue by an additional data

structure that works as a cache.

Cache for the elevation map represented by the quadtree

The main assumption of the proposed cache technique is that new measurements do not affect all

cells of the elevation map, but only cells that are close to the robot. Therefore, the proposed cache,

which we call QPTRmatrix, stores the precomputed pointers to the leaves of the quadtree map in

the neighborhood of the robot, see Figure 13. The minimal size of the neighborhood covered by

the QPTRmatrix has to be larger than the range of the robot sensors plus an overlap, which ensures

the consistency with the rest of the map. The size of the QPTRmatrix affects the computational

requirements of the map update, and thus, we propose to use the QPTRmatrix as small as possible.

The quadtree structure and the QPTRmatrix enable us to represent unknown space efficiently,

while still be able to run operations like convolution almost as fast as on the map stored in a uniform

grid. The cost of QPTRmatrix maintaining is its computation, which is needed only when a new point

cloud updates the map. In a particular deployment in the exploration, point clouds from sensors update

the map at the frequency of 5 Hz. For computations performed on the Intel i5 processor with the map
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4.3 Detection of untraversable areas

Figure 13: QPTRmatrix utilized for caching leaves of the quadtree representation of the elevation

map.

resolution 5 cm and the cached area 20×20 m large, the computation of QPTRmatrix takes approxi-

mately 10ms. The QPTRmatrix is then used during the five operations with the map (measurement

insertion, traversability assessment, growing untraversable areas, cost map computation, and frontier

detection). Thus, overall, the QPTRmatrix saves approximately 50 ms as single access without the

cache corresponds to the creation of the QPTRmatrix.

4.3.2 Detection of untraversable areas

The proposed elevation map is used to detect untraversable places that should be avoided by the robot.

The straightforward way to detect untraversable places is to use a model of the robot and test if there

exists a configuration of the robot so that the robot legs can be placed on certain positions in the

map. The disadvantage of such an approach is in the high computational requirements for searching

the configuration space of the robot. Thus, we have used simplified approach based on [6], where

untraversable cells (i, j) are detected by the maximal local height difference gh(i, j) computed as

gh(i, j) = max({|h(i, j)− h(i− 1, j)|,

|h(i, j)− h(i+ 1, j)|,

|h(i, j)− h(i, j − 1)|,

|h(i, j)− h(i, j + 1)|}),

(24)

where h(i, j) is the height of the cell (i, j). A particular cell (i, j) is considered traversable if gh(i, j)
does not exceed a predefined threshold gmax that is estimated from the particular robot kinematics.

Growing untraversable areas

Since the planning algorithm plans a path for the center of the robot body, we grow untraversable cells

by the radius of the robot shape circumference to consider the physical dimensions of the robot. An

example of the grown untraversable areas is shown in Figure 15b.
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4.3 Cost map

(a) Default distance D8 kernel

(b) Kernels for the proposed distance cost algorithm

Figure 14: Kernels based on distance metric D8.

4.3.3 Cost map

The ability to detect untraversable places enables the robot to be navigated through the environment

so that the robot should not reach the untraversable cells. However, the precision of the path following

depends on the precision of the locomotion control and also localization. If the path following might

be imprecise, it is desirable to navigate the robot to places that are as far from the untraversable

areas as possible so that the chance of visiting these places is reduced. The authors of [6] proposed

to use a cost map to penalize cells near the untraversable places. In our work, we propose to alter

the Distance transform [18] to achieve similar behavior. Moreover, we also penalize cells near the

unknown places, which are potentially dangerous, e.g., there might be a deep hole in the terrain,

which is not captured by the sensors. There are more versions of Distance transform, e.g., Distance

transform for quadtrees [58], but we have already employed the concept of QPTRmatrix which maps

quadtree structure to the uniform grid. Hence, we can deploy methods specifically designed for simple

grids.

(a) Only distance cost (blue) (b) Distance cost combined with grown untraversable

cells (orange)

Figure 15: Distance cost (d = 0.07, dcost = 0.7) and untraversable cells grown by 40 cm generated

from red untraversable cells for map with resolution 10 cm. Note, the traversable area (green) is

surrounded by an unknown space, which increases the distance cost as well.
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4.3 Cost map

Algorithm 1: Distance cost algorithm for a grid of size L×M

1 procedure Reset()

2 foreach l ∈ L do

3 foreach m ∈M do

4 if cell(l,m) = untraversable or cell(l,m) = unknown then

5 dcost(l,m)← dobs
6 else

7 dcost(l,m)← 0

8 procedure Top-left pass()

9 for l = 1 to L− 2 do

10 for m = 1 to M − 2 do

11 dcost(l,m)← max( dcost(l,m),
12 dcost(l,m− 1)− d, dcost(l − 1,m)− d,

13 dcost(l − 1,m− 1)− 1.41d, dcost(l − 1,m+ 1)− 1.41d )

14 procedure Down-right pass()

15 for l = L− 2 to 1 do

16 for m = M − 2 to 1 do

17 dcost(l,m)← max( dcost(l,m),
18 dcost(l + 1,m)− d, dcost(l,m+ 1)− d,

19 dcost(l + 1,m− 1)− 1.41d, dcost(l + 1,m+ 1)− 1.41d )

The Distance transform computes the distance from the closest untraversable or unknown cell.

We propose to use Distance transform algorithms [18] utilizing distance metric D8 so that it directly

computes the cost which penalizes planning over the cells near the untraversable or unknown cells.

The developed distance cost algorithm is depicted in Algorithm 1 and it is three-pass algorithm that

computes distance costs using decomposition of the D8 distance kernel, see Figure 14. The two main

parameters of the distance cost algorithm are (i) the cost of the untraversable and unknown cells dobs,

and (ii) a decrement d of the distance cost with the distance D8 from the untraversable or unknown

cells. The negative costs are prevented by the initial Reset procedure of Algorithm 1.

An example of the resulting penalization provided by the distance cost algorithm is visualized in

Figure 15a. Note, that at some distance from the obstacles, the distance cost completely vanishes,

which enables to recompute distance cost on a particular area based on the QPTRmatrix and still keep

the cost map consistent for the whole map. More specifically, the consistency is achieved by doing the

reset phase of the distance cost algorithm at an area that is smaller than the area used in the rest of the

phases. The distance cost can also be used to the speed-up growing of untraversable areas, but since

the distance cost does not use the Euclidean distance metric, it provides just an approximation of the

obstacle growing by a circular shape.
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4.3 Frontier detection

4.3.4 Frontier detection

Possible waypoint locations for the exploration are generated from frontier cells that are detected by

employing ideas of [20]. The frontier detection method called the Wavefront Frontier Detector utilizes

the Breadth First Search algorithm to search almost the entire map for frontiers, which is however

computationally intensive, and thus not suitable for the proposed framework. On the other hand, the

second algorithm presented in [20] and called the Fast Frontier Detector detects frontiers from new

incoming measurements and then join them with the previously detected frontiers, which does not

depend on the size of the map, but on the range of the utilized sensors.

We have built our frontier detection method on the principle of the Fast Frontier Detector [20], and

thus we detect the new frontiers from the minimal amount of data. More specifically, the proposed

method detects new frontiers cells only in the robot surroundings defined by the QPTRmatrix. Then,

the new frontier cells are clustered [21], and the clusters are merged with the clusters in the rest of the

map. The frontier cells are identified as cells that exhibit the following properties on their four-cell

neighborhood.

• The cell is traversable, and at least one of its neighbors is traversable as well.

• At least one neighboring cells is unknown, i.e., the cell has unknown height.

• No neighboring cell is untraversable.

• The robot center has not yet been close to the cell, which prevents the robot from being navigated

to very close waypoint locations. It also ensures that the robot does not fall off an edge between

the traversable and unknown space separated by a high slope.

Figure 16: Frontier cells (blue) detected in an example map and clustered to close groups repre-

sented by possible waypoints (light blue). Untraversable cells are visualized as a red cells, grown

unraversable cells are orange and unknown space has white color.

Based on [21,59], the frontier cell clustering is proposed to lower the computational requirements

of the goal selection for the navigation. The clustering of new frontier cells is performed by Algo-

rithm 2. The algorithm consists of two phases; the first phase divides frontiers into clusters, based

on maximum distance cradius, which ensures that frontier cells of one cluster are not farther than

2 · cradius. During the second phase, the clusters with less than cmin frontiers are removed.

The possible waypoint location is from each cluster extracted as a position of the frontier cell

closest to the average position of all frontier cells in the cluster, which ensures that valid possible

waypoints are located at known cells. After the newly detected frontiers are clustered by Algorithm 2,
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4.3 Planning over the elevation map

Algorithm 2: Proposed frontier cells clustering

Input : (F , cradius, cmin) - F set of frontier cells,

cradius - the maximal radius of each cluster,

cmin - desired minimum number of cells in each cluster

Output: K = {Ci} - set of clusters Ci, where each Ci is a set of frontier cells

⊲ Init clusters

1 K ← ∅
2 foreach f ∈ F do

3 if is close to any first cell of clusters(f,K, cradius) then

4 add to corresponding cluster(f,K, cradius)
5 else

6 C ← {f} // Create a new cluster with the first cell f.

7 K ← K ∪ C

⊲ Remove too small clusters

8 foreach Ci ∈ K do

9 if |Ci| < cmin then

10 K ← K \ Ci

11 return K

the means of the clusters generate new possible waypoints that are joined with all current possible

waypoints in the whole map. The frontier detection and clustering are employed during each update

of possible waypoints, which is triggered by each update of the elevation map whenever new measure-

ments are collected. Example of the detected frontier cells and determined clusters are visualized in

Figure 16.

4.3.5 Planning over the elevation map

Similar to [6], the A* planner [19] has been used for planning over the map. The A* planner is guided

by the heuristic function computed as Euclidean distance to the waypoint, and the travel cost between

two neighboring nodes n and n − 1 is calculated using the eight-neighborhood that is increased by

the distance cost dcost(n) to penalize paths close to the untraversable and unknown cells. The effect

of distance cost is shown in Figure 17. If the number of A* expansions is higher than a certain value

amax (e.g., amax = 20000 in our case), the waypoint is considered unreachable. We avoid planning

over the unknown space because it is possibly dangerous; the only exception is the case when the

robot is already located in the unknown space, e.g., at the beginning of the experiment.

(a) Planning without distance cost (b) Planning with distance cost

Figure 17: The effect of distance cost algorithm on planning.
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Path smoothing

The path generated by the planner is a sequence of coordinates of the centers of the corresponding

cells. In Figure 18a, it can be seen that due to the rough resolution of the map, the path has sharp

edges, which might produce discontinuities in motion actions. Such a behavior has been overcome

using a sliding average filter, which effect can be observed in Figure 18. The validity of the path

after the filtration procedure has to be checked, especially when the requested sliding window is wide.

If the path is not valid after the smoothing, the easiest solution is to reduce the size of the sliding

window. An example of the smoothed path planned by the A* algorithm on a map obtained during an

experimental deployment is shown in Figure 19. It can be seen that the planned path tends to be in the

middle of the corridor and it also avoids unknown space in the map (white cells).

(a) Window size 1 (No smoothing) (b) Window size 19

Figure 18: Paths smoothed by sliding average with different window sizes.

Figure 19: Path planning example (Path is the pink line, red are untraversable objects, green is

traversable.)

4.3.6 Improvements to the exploration module

Even though the proposed exploration framework is sound, it has been further enhanced by the fol-

lowing practical improvements induced be the real-world deployments.

• Automatic expansion of the map size

In the beginning, the map saved in the quadtree structure is initialized to cover an area of a

certain size. If the robot gets close to the edge of the elevation map, the map is automatically

expanded by creating a new root for the quadtree map. The former root of the map is connected

to the new root as one of its child nodes.
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4.3 Improvements to the exploration module

• Map sharing through the network

The exploration module can produce point cloud generated from the robot surroundings that

represents the resulting local elevation map around the robot. The input to the elevation map is

a point cloud which is inserted according to the rules described in Section 4.3. The source of

these point clouds is usually RGB-D camera or LIDAR, but it can also be a local map produced

by a different exploration module. Such a setup is visualized in Figure 20, and it is beneficial if

the robot is supervised through the network. When we have deployed the mapping framework

Figure 20: Connection of two instances of the elevation map module.

on a tracked robot within the setup shown in Figure 20, the required network bandwidth for

sending sparse parts of the elevation map was less than 100 Kb/s for the size of the local map

18 × 18 m and the map resolution 15 cm. As our future work, we propose to apply a similar

principle to share the elevation maps between multiple robots.

• Moving the robot from untraversable area

The proposed concept of planning the collision-free path combined with the distance cost steers

the robot from untraversable cells and keeps the robot in most cases at some distance from these

cells. However, imperfections in localization or imprecise path following may result in situa-

tions, where the robot center is located at the place in the map that represents an untraversable

cell. In such a case, the untraversable cells under the robot are temporarily cleared, so that it is

possible to plan the path outside the untraversable area.

• Interactive interface

The elevation map module can further support planning a collision-free path to the specified

goal, save the current elevation map to a file, clear the faulty map, etc. These functionalities can

be activated through dedicated ROS topic. Although in most cases, the elevation map is used

within the exploration framework, which works fully autonomously, we have also proposed

an interactive interface which can be used by an operator to select the required functionality.

The interface has been implemented using ROS interactive markers, and an example is shown

in Figure 21. Because the functionalities are controlled through dedicated ROS topics, the

proposed interactive module is entirely independent, and it can be used only if the operator

requires some interaction. The interactive interface has been primarily deployed in experimental

mines within DARPA STIX event which is detailed in Section 5.6.2.
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4.4 Path following module

Figure 21: Example of the interactive interface, where the robot is forced to follow a given goal

location.

4.4 Path following module

We have decoupled the path generation and path execution to increase the modularity of the system.

Hence, the exploration module generates a collision-free path for the robot, and the responsibility for

the path execution lies on the path following module. More specifically, the task of the current module

is to generate control commands for the robot, based on the given path and the robot position.

Figure 22: The architecture of the path following module.

The input to the path following module is the path in the form of a sequence of waypoints. The

path following module pops the first waypoint from the sequence and commands the robot so that

the robot moves towards the waypoint. If the robot reaches the waypoint, the tracker takes the next

waypoint from the sequence, and the robot follows the new waypoint again. The procedure is repeated

until there are some waypoints in the sequence. If there are no waypoints in the sequence, the robot

stops. The execution of the path following module is captured in Figure 22.
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4.4 Path following module

The motion of the robot towards a waypoint is ensured by two proportional control laws; the first

control law sets the angular velocity of the robot based on the angular displacement. If the angular

displacement is higher than the threshold αt (αt = 15 deg in our case), the forward velocity of the

robot is set to zero. Otherwise the second control law sets the forward velocity based on position

displacement of the robot.

In a real-world deployment, the localization might be noisy, or a localization system may provide

pose of the robot with low frequency. Thus, we consider the waypoint as reached if the distance

between the waypoint and the robot is less than the threshold βreach. ( βreach = 2 cm was used

for hexapod walking robot.) Moreover, if the pose of the robot is provided with very low frequency,

the robot might skip a waypoint without reaching it, which results in undesired behavior, because the

robot will turn and try to reach the skipped waypoint. Therefore, we always remove waypoints that

get behind the robot on its path.
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Chapter 5

Results

The proposed exploration framework has been initially run without the localization system in simu-

lations to test the exploration strategy and data handling within the framework. Beside the simulation

results, we have also analyzed computational requirements of the proposed framework. Next, we

experimentally evaluated the selected state-of-the-art localization technique ORB-SLAM2 and new

embedded visual localization system the Intel RealSense T265 (T265 for short). Based on the eval-

uation results, the particular localization approach has been selected for experimental deployment of

the framework in real-world indoor and outdoor autonomous exploration scenarios with the hexa-

pod walking robot. Beside of the deployments on the hexapod walking robot, the proposed robotic

framework has also been deployed on the tracked robot to show modularity of the proposed explo-

ration framework. In particular, we reported on the deployments during the Subterranean Integration

Exercise (STIX) of the DARPA Subterranean Challenge and indoor exploration.

5.1 Simulations

The main simulation tool used for the initial testing of the developed software implementations was

the STDR Simulator [60]. Therefore, we provide a brief description of the simulator and simulation

results for one of the exploration scenarios. Beside the 2D STDR Simulator, we have also used the

Gazebo simulator [61] with the setup for a virtual track of the DARPA Subterranean Challenge to

get more realistic 3D simulations of point cloud data incoming from the robot sensors, and expected

behavior of the proposed solution in tunnels.

(a) 2D laser scan from the simulator. (b) 3D point cloud based on the obtained 2D scan.

Figure 23: Change to the sensory data provided by the STDR Simulator. Note that we consider a

certain height of obstacles (1 m) and ground plane at z = 0.

The STDR Simulator has been selected due to its simplicity and also because it is publicly avail-

able5. The robot motion in the simulator is taking place in the XY plane, while the localization of the

robot is provided in 6 DoF, thus the localization provided by the simulator has replaced the localiza-

tion module of the proposed robotic framework. We have simulated single robot equipped with 2D

5 http://stdr-simulator-ros-pkg.github.io/
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5.1 Simulations

360◦ LIDAR with range 4 m, which provided the laser scans at frequency of 5Hz. Since the proposed

mapping technique is designed for 3D point clouds, we had to alter the scans incoming from the sim-

ulated LIDAR so that they cover ground, not only obstacles. The change to the 2D data is shown in

Figure 23.

(a) Map in the simulator (b) Map explored by the simulated robot

Figure 24: Map explored during the simulation run of the proposed exploration framework. The path

traveled by the robot is visualized by the blue line.

The utilized environment map in the simulation and the resulting map built by the proposed au-

tonomous exploration are depicted in Figure 24. The presented results indicate that the proposed

framework is capable of the exploration, under the assumptions that the range data are not very noisy,

the localization system is precise and reliable, and the robot moves smoothly. Most of these precondi-

tions usually not held in the real-world deployment of the walking robot. Nevertheless, we deployed

the framework on the real hexapod walking robot that is described in Section 5.3 and experimentally

validated if similar results obtained in the simulation can be achieved also in real indoor and outdoor

scenarios. However, we firstly examine the computational requirements of the individual exploration

processes and precision of the considered localization methods that are reported in the following sec-

tions.
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5.2 Evaluation of computational requirements

The computational requirements of the individual processes (modules) of the developed exploration

framework have been evaluated to verify feasibility of the proposed solution and possible deployment

of the framework onboard of the small hexapod walking robot. The computational requirements are

expressed by the CPU utilization of the used Intel i5 3320M processor clocked at 2.6GHz accompa-

nied with 8 GB RAM that corresponds to the computational power that can be onboard of the robot.

The same computational environment has been used for the exploration deployments described in Sec-

tion 5.5. Note that the computational requirements depend on many parameters, especially on the size

of an input point cloud, the map resolution, and size of the cached area. Therefore, the average uti-

lization of the used processor reported in Table 4 provides only an overview of the real computational

requirements in a particular exploration setup.

Table 4: Computational requirements of exploration processes

Exploration Process (Module)
CPU Update

usage rate

Localization by ORB-SLAM2 [7] 208.0% 11Hz

Elevation map building 56.0% 5Hz

Exploration – Determination of navigational goal and path planning 16.8% 8 s

Path Following and Locomotion control 2% –

The maximal CPU usage is 400% because of two cores with Hyper-threading

The results in Table 4 are for the elevation map with the resolution 75mm and cached area 20 ×
20 m. The input sensor was the Intel RealSense D435, which usually provides 70000-280000 points

per a point cloud. For a point cloud with more than 150000 points, the update rate is usually lower than

10Hz. But for smaller input point clouds with thousands of points and cache of the size 100×100 cells,

it is possible to build the elevation map including the traversability assessment, growing untraversable

places, frontier detection, and cost map generation with the update rate almost 100 Hz. Notice that

in the case of T265 as the localization system, the update rate of the localization is 200 Hz, and

ORB-SLAM2 is not needed.

5.3 Description of the hexapod walking robot

In this section, we describe the utilized hexapod walking robot, to provide a complete description of

the setup used during the real-world exploration scenarios. The mechanics of the robot is based on

the off-the-shelf hexapod robot Phantom X Mark II, see Figure 25. The robot platform consists of the

robot body, and six legs. Each leg of the robot is composed of three Dynamixel servo motors AX-12A,

which enables to set a position of the endpoint of the leg at three degrees of freedom (DoF). The robot

weights approximately 2.5 kg, and its actuators enable the robot to carry about 1 kg of additional

load. During the experiments, the total weight of the robot, including the developed sensor rig, was

approximately 2.75 kg. The robot is powered by a Li-pol battery pack (3s, 4 Ah), which provides

enough energy to power the robot for 90 minutes. The distance that the robot is capable to traverse

depends on the terrain type.

The hexapod walking robot can be controlled from a small onboard computer Odroid-XU4 or

by an external computer. During the experimental evaluation of the localization systems, we have

controlled the robot via the embedded platform, since it is handy for teleoperation. On the other hand,

we have used the connection to the external computer during the exploration experiments, due to the

poor compatibility of camera drivers (for T265 and D435) with the utilized Odroid-XU4 platform. The

already existing robot interface implemented as a ROS module has been used to control the locomotion

of the robot based on the velocity commands provided by the developed path following module.
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5.3 Sensors

Figure 25: Hexapod walking robot Phantom X Mark II utilized in the exploration scenarios.

Motion gait

There are principally two main ways how control the locomotion of the hexapod walking. The first way

is to use a pattern of leg motion (motion gait), and the second way is to use a precise motion planning

for all the leg endpoints. The motion gait uses different motion generation as a motion pattern and one

of the option is to generate a motion pattern by defining curves for the endpoints of the robot legs and

then compute the inverse kinematics to set the positions of the individual actuators [62].

If there is no sensory feedback, the motion gait blindly steers the robot according to the velocity

commands. Even without any sensory feedback, the robot is able to traverse uneven, but not very rough

terrains. On the other hand, a motion gait supported by the sensory feedback allows the walking robot

to traverse much rougher terrains. In case of the used walking robot, the basic sensory feedback is

provided by utilized Dynamixel servo motors, which have in-built sensors of the angular rotation that

can be utilized to a minimalistic approach for detecting the contact of the leg with the ground based on

the angular error of the servo motor [63]. Also, a noteworthy fact about the mechanical construction of

the hexapod walking robot is that the servo motors consume the most significant amount of energy to

lift the robot body. Thus, the amount of energy consumed when the robot stands with the raised body

and walks is nearly similar. Hence, a faster locomotion of the hexapod robot yields to lower amount

of the energy consumed per traveled distance.

If the terrain is extremely rough with very few possible footholds usable by the robot, it is neces-

sary to precisely plan the motion of the robot body and all the endpoints of the robot legs. Since, the

configuration space of the robot has 24 DoF (6 DoF for robot body and 18 DoF for the robot legs),

such a planning is computationally very demanding and precise information of the robot surroundings

is necessary [64], [65]. On the other hand, the particular terrains considered for the experimental de-

ployment are traversable by the robot [63]. Thus, we used the motion gait locomotion control because

it is less computationally intensive than precise planning [64].

5.3.1 Sensors

Mapping, and also visual localization can use measurements from various sensors, and thus we discuss

possible off-the-shelf sensors in this section. The vision-based localization ORB-SLAM2 supports

three different types of sensors: monocular camera, stereo camera, and RGB-D camera. The usage of

monocular cameras is problematic due to the initialization of the map scale, which has to be estimated

based on known proportions of some object in the scene, or it needs to be initialized based on observed

objects at different distances. Moreover, the scale of the scene in a new camera frame is based on

distances between the previously seen features and translation motion of the robot towards the features;

hence, the scale drifts. The highest drift of the scale is observed if the robot turns with a radius close

to the zero, which the hexapod walking robot is capable of and the path following module is designed
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5.3 Sensors

(a) Stereo camera Tara
(b) RGB-D camera Asus Xtion Pro

(c) RGB-D camera Microsoft Kinect v2 (d) RGB-D camera Intel RealSense D435

Figure 26: Sensors considered for vision-based localization.

to use this feature to quickly clear out unexplored areas that are not in camera field of view. Here,

it is worth of noting that a high drift induced by a near zero turn radius is one of the main issues of

deploying vision-based localization methods designed for cars on hexapod walking robots [34]. On

the other hand, stereo and RGB-D cameras can estimate the depth of the scene from a single frame,

and therefore, they are more suitable for ORB-SLAM2 deployed on the hexapod walking robot.

Stereo camera

The drift of the scale induced by a single camera can be avoided by using stereo camera, which is

composed of two cameras with the parallel optical axes at the defined distance called the baseline.

The distance of a feature detected by both cameras is then calculated using triangulation. It is obvious

that the triangulation is more accurate if the image is taken from both cameras at the same time, i.e.,

the shutters of both cameras are synchronized. The estimate of the depth of the scene does not depend

only on the synchronization of the shutters, but also on a type of the camera shutters. The most

suitable shutter type for mobile robotics is the global shutter that enables the camera to capture the

whole scene at the same time. An example stereo camera which has synchronized sensors MT9V024

with the global shutter is E-con systems Tara [66] that is shown in Figure 26a. Tara is lightweight,

runs at 60 FPS, and has built-in IMU, but its resolution is only 752× 480 pixels.

RGB-D camera

The RGB-D camera provides standard an RGB color image and depth image with the distances from

the camera center to points corresponding to the pixels of the color image. The advantage of the

RGB-D camera against the ordinary stereo camera is that a depth of the scene is directly provided by

the camera and it is not necessary to triangulate each image feature from a pair of images, which is

slower to compute. Therefore, the ORB-SLAM2 can process data from RGB-D camera faster than

data from an ordinary stereo camera, which makes the RGB-D cameras more suitable sensors for

ORB-SLAM2. Different RGB-D cameras are available and a brief description of three of them (see

Table 5) follows.

One of the RGB-D cameras used in mobile robotics is Microsoft Kinect V2 [67]. Although the

resolution of the Microsoft Kinect V2 is relatively high; it is not suitable sensor for the used hexapod

walking robot because of the weight and its dimensions. The Asus Xtion Pro has already been suc-
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5.3 Intel RealSense D435

Table 5: Parameters of considered RGB-D sensors

RGB-D camera Asus Xtion Pro Microsoft Kinect V2 Intel RealSense D435

Max resolution [px] 640× 480 1920× 1080 1280× 720
Framerate [Hz] 30 30 30

Max distance of use [m] 3.5 4.5 10

Size [mm] (H/W/D) 50× 180× 35 66× 249× 67 25× 90× 25
Weight [g] 170 1400 72

cessfully used for visual localization of the hexapod walking robot [35], but its resolution is lower than

the resolution of the Intel RealSense D435 [68] (further denoted D435). Moreover, D435 is able to

provide not just a color and depth image for the visual localization system, but it also provides a point

cloud of the scene, which makes the preprocessing of the mapping faster. Therefore D435 has been

chosen for the visual localization and mapping within the proposed robotic framework. Parameters of

discussed RGB-D cameras are summarized in Table 5.

Intel RealSense D435 D435 consists of two IR cameras (both with the global shutter), IR projector,

and one RGB camera with the rolling shutter. The absence of the global shutter on the RGB camera

induces a geometrical distortion of the image, especially when the robot turns fast, which motivate to

use D435 as an IR stereo camera instead of the RGB-D. Under good light conditions, D435 can provide

depth image computed from the IR stereo pair while having the IR projector switched off. However,

if the light conditions are not perfect, e.g., indoors, the IR projector has to be used to emit a special

pattern of the infrared light. The pattern is reflected from objects in front of the camera, and depth

of the scene can be estimated even in the environment with low sensing conditions. The IR cameras

capture the reflected pattern and distances are computed from the comparison of the reflected pattern

and the reference pattern6. D435 further supports synchronization with more D435 cameras on a

hardware level using special synchronization cable.

Figure 27: Hexapod walking robot with developed sensor rig designed for the exploration.

6If the IR projector is switched on, D435 cannot be used as a stereo camera, because the IR pattern is visible in the

images, and it would affect the localization system.
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5.3 Intel RealSense D435

Sensor rig

Since the cameras of T265 have IR filters able to eliminate the influence of IR light emitted by D435,

it is possible to use both cameras at the same time. Thus, we have designed a special sensor rig for

the hexapod walking robot to hold both cameras together with additional LED light (with the power

of 18W). The sensor rig itself is shown in Figure 27, and a view from the sensor rig is in Figure 28.

(a) T265: left image (b) T265: right image

(c) D435: RGB image (d) D435: depth image

Figure 28: View from the sensor rig mounted to the hexapod walking robot.
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5.4 Experimental evaluation of the localization systems

5.4 Experimental evaluation of the localization systems

Prior the deployment of the proposed exploration framework in real-world scenarios, the accuracy

and reliability of the localization system based on the ORB-SLAM2 with Intel RealSense D435, and

the precision of the localization provided by the Intel RealSense T265 were experimentally evaluated.

Since the exploration framework is designed for rough terrains, we have also considered rough terrains

during the examination of the precision of the evaluated localization systems. The experimental evalu-

ation took place in an indoor laboratory environment that is shown in Figure 30b. In the experimental

deployment, the robot walked 20 closed trails on a flat terrain, partially covered by a rough artificial

terrain build from the irregularly shaped wooden blocks with different heights, see Figure 30b. During

the experiments, the robot has been teleoperated and walked the trails ten times (trial 1), five times

(trial 2), and five times (trial 3).

Figure 29: Schema of the evaluation process.

Both sensors (T265 and D435) were attached to the robot using the sensor rig shown in Figure 30a.

Since ROS is already used as middleware in the proposed system, the rosbag tool has been utilized

to collect all data from the onboard sensors synchronously together with the measurements for an

off-board reference localization system [26]. The RGB-D images from D435 were captured at the

frequency 15 Hz with the resolution 1280 × 720 px. The stored images can be read by the rosbag

frame-by-frame, or processed in real-time for the same frequency as they were captured. The online

deployment was simulated by feeding the ORB-SLAM2 by RGB-D images at the same frequency as

they were captured. After all the data were processed, the trajectory estimates provided by T265, by

ORB-SLAM2, and the corresponding reference trajectories were evaluated using metrics described in

Section 3.1, i.e., absolute trajectory error (ATE) and relative pose error (RPE). The data flow during

the evaluation of both localization systems is visualized in Figure 29.

The reference localization system is based on AprilTag [26] that is an external localization system

able to provide full 6 DoF position of the robot. AprilTag localizes a distinctive pattern attached to

the robot with centimeter precision, which is shown in Figure 30a. The robot with the attached pattern

has been observed from the top camera with the resolution 1920 × 1080 and framerate 20 FPS. The

images from the top camera obtained during the experiment were processed frame-by-frame to get as

detailed ground truth as possible.

Evaluation

The accuracy of the localization systems is evaluated using the standard metrics of ATE and RPE [53].

Besides the accuracy, the reliability of the localization systems was evaluated by the following prin-

ciple. We have counted all the cases, when the localization system failed to track the robot for more

than two seconds as a track lost, which not necessarily leads to complete failure of the localization,
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5.4 Experimental evaluation of the localization systems

(a) Robot with the sensor rig and April Tag. (b) Experimental setup with a trail marked by the red arrow.

Figure 30: Experimental setup for the evaluation of the localization systems.

e.g., ORB-SLAM2 can deploy its module for relocalization. However, if the localization system was

unable to cover more than 75% of the trail, we count it as loc. failed.

During each trial, several trails were performed sequentially without a reset of the localization

systems. Thus the localization systems were enabled to use loop closures to improve the precision of

the localization. After each trial, both localization systems under the test were reset. The results for

all the trials of the experimental evaluation are listed in Table 6.

Table 6: Precision of the Evaluated Localization Systems

Localization system ORB-SLAM2 Intel RealSense T265

ATEt RPEt track lost loc. failed ATEt RPEt track lost loc. failed

[cm] [cm] [-] [-] [cm] [cm] [-] [-]

Trial 1 (10 trails) 10.15 1.32 19 1 8.31 0.49 0 0

Trial 2 ( 5 trails) 10.91 1.49 8 2 10.27 0.55 0 0

Trial 3 ( 5 trails) 12.45 1.29 10 1 10.92 0.55 0 0

The results summarized in Table 6 show that both localization systems provide competitive pre-

cision and can be employed in the exploration. Note, that a lower RPE of T265 is probably induced

by the fusion with IMU. The numbers of track lost and loc. failed indicate that ORB-SLAM2 is

less reliable than the embedded localization system of T265, which always provide some estimate of

the robot position. Most of the fails of ORB-SLAM2 have been produced on the rough terrain which

induced fast changes of the robot gaze. The relatively quick changes of the robot gaze were also pro-

vided by turns of the robot at the corners of the robot path. Another fact which affects the performance

of ORB-SLAM2 is a low processing frequency of the incoming frames, which rarely reached 11 Hz.

The computer with Intel i5 3320M CPU clocked at 2.6 GHz, and 8 GB RAM has been used to run the

ORB-SLAM2, which roughly correspond to the computational power that can be available onboard

of the hexapod walking robot. Based on the presented experimental evaluation, we state that a more

suitable localization system for the proposed exploration framework is T265.
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5.5 Experimental results with hexapod walking robot

5.5 Experimental results with hexapod walking robot

Based on the evaluation of the localization systems, the Intel RealSense T265 has been selected as

the localization system for the experimental deployment of the developed exploration framework. A

description of the deployment of the proposed framework in fully autonomous exploration scenarios

on the hexapod walking robot follows.

Table 7: Performance indicators for the exploration scenarios with hexapod walking robot

Exploration scenario Indoor corridor Chimney location Yard location

Map resolution [mm] 75 75 75

Traversability threshold gmax [mm] 80 80 120

Max sensor range [m] 2.5 3 3

Exploration time 28 min 15 s 40 min 9 s 44 min 16 s

Traversed distance [m] 49.093 55.507 45.958

The exploration framework has been deployed in fully autonomous exploration missions in three

scenarios: an indoor corridor, outdoor terrain with a concrete surface, and rough grassy terrain; all

located at the campus on Karlovo náměstı́. Since the experimental deployment does not allow to utilize

the reference localization system or spatial reference model of the terrain, the exploration performance

is measured by the exploration time, traveled distance, and visual evaluation of the created map of the

environment. The achieved performance indicators of the experimental scenarios are summarized in

Table 7 and individual maps are shown in Figure 31, Figure 32, and Figure 34. For the comparison

purposes; the average speed of the teleoperated hexapod walking robot in the setup similar to the

indoor corridor shown in Figure 31a is approximately 0.1 ms−1.
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5.5 Indoor exploration

5.5.1 Indoor exploration

In the indoor scenario, we put the localization system on a stress by the shortened range of the RGB-

D camera to 2.5 meters, so the sensor cannot capture both walls of the corridor from a single spot.

Therefore, the robot frequently changed the gaze direction to see the walls on both sides of the corridor,

see Figure 31d.

(a) Indoor corridor during the day. (b) The elevation map built during the exploration.

(c) The whole elevation map of the corridor built during the exploration.

(d) Gaze direction of the robot during the exploration.

Figure 31: Indoor corridor, size of the grid is 5 m.

The small untraversable sets of cells can be seen near one side of the corridor in Figure 31c. These

cells were affected by the measurements biased by the light incoming from the opposite side of the

corridor. Thus, these untraversable cells do not correspond to any objects as it can be seen from

Figure 31a.
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5.5 Outdoor exploration

5.5.2 Outdoor exploration

Chimney location

The next experimental deployment of the exploration framework took place on the concrete panels

near a chimney. The concrete panels are mostly flat, but there are also large cracks in the panels,

which can also be seen in the created elevation map shown in Figure 32. Some of these cracks induced

significant misalignments of the concrete panels, so that these places were detected as untraversable,

and successfully avoided by the robot during the execution, see Figure 32.

(a) View of the chimney location.

(b) The elevation map built during the exploration, size of the grid is 5 m.

Figure 32: Exploration of the chimney surroundings.
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5.5 Outdoor exploration

Yard location

The final experimental testing of the exploration framework took place in the yard, where a wooden

structure is placed in the middle. The uneven grass surface, plants moving in the wind, and net made

exploration of this location very hard, see the view from the onboard sensor in Figure 33. A picture

(a) RGB image (b) Depth image

Figure 33: View from the Intel RealSense D435 during the experiment.

of the yard and maps obtained during the experiments are shown in Figure 34. The robot was able to

explore more than half of the yard (see Figure 34a), but then the experiment had to be terminated due

to weather conditions. In Figure 34c, we show the complete map of the yard that has been finished

after the interuption of the autonomous exploration.

(a) Elevation map builded during the exploration.

(b) Top view of the yard. (c) Elevation map completed without the au-

tonomous mode.

Figure 34: Exploration of the yard, size of the grid is 5 m.

41



5.6 Experimental Deployment on Tracked Robot

5.6 Experimental Deployment on Tracked Robot

In addition to the hexapod walking robot, we also considered the proposed framework and its ex-

ploration and mapping capabilities on a tracked robot to demonstrate modularity of the framework.

The tracked robot has been deployed in challenging mine environment within DARPA Subterranean

Challenge STIX event, where we have deployed mapping and planning techniques to provide and

alternative to the teleoperation of the robots. Moreover, we have deployed the exploration and path

following modules in multiple fully autonomous exploration scenarios with the same tracked robot.

A brief description of the robot is provided in the next section that is followed by the report on the

achieved results.

5.6.1 Description of the tracked robot

The considered tracked robot platform is shown in Figure 35. The robot has onboard computer based

on the Intel NUC with the i7 class processor, which has been used for all computations during the

mapping and exploration experiments with the tracked robot. Various equipment has been mounted to

the robot, but only LIDAR is directly utilized by the framework modules.

Figure 35: Tracked robot platform.

In particular, the tracked robot is equipped with the SICK LMS151-10100 laser range finder that

provides 2D scans of the environment, but the servo motor periodically turns the device, so that the

laser provides 3D scans of the robot surroundings. The disadvantage of such a setup is that the period

of the LIDAR motion is approximately 2 s, which results in a very low frequency of the point clouds

for elevation mapping. The localization of the tracked robot was also based on the point clouds from

the LIDAR using the laser SLAM based on approach [69], which is not a part of this thesis. Hence, the

localization module in the proposed exploration architecture was replaced by the SLAM using LIDAR

scans, but the rest of the framework remained the same.
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5.6 Mapping mines during DARPA Subterranean Challenge

5.6.2 Mapping mines during DARPA Subterranean Challenge

The proposed solution for the elevation mapping has been deployed during the Subterranean Integra-

tion Exercise (STIX) event of the DARPA Subterranean Challenge. In DARPA Subterranean Chal-

lenge, the robots search underground terrain to locate specified artifacts, e.g., survivors, backpacks,

and fire extinguishers as quickly and as precise as possible. The assignment for the STIX event was

to find the artifacts in the tunnels of the Edgar Mine at the Idaho Springs near Denver in Colorado.

The classes of the found artifacts have to be reported with the absolute position of the artifact in the

coordinate frame defined by the entrance gate to the mine, which is shown in Figure 36.

Figure 36: Tracked robot entering the experimental mine through the reference entry gate.

The rules of the STIX enables each team to have one human operator responsible for submitting

detected objects to the DARPA server and controlling the robots. Thus, the operator can teleoperate

the robots, but since the operator is also responsible for checking discovered artifacts, it was found

impractical to rely solely on the operator. Moreover, the delay in the communication, which we have

been experienced makes teleoperation very hard. Therefore the selected strategy to balance between

pure teleoperation and fully autonomous run was to let the operator select goals for the robot via an

interactive interface and let the exploration and path following modules of the developed exploration

framework do the rest. An example of the created map from one of such trial is shown in Figure 37.

Figure 37: The elevation map of the entry part of the experimental mine (resolution of the map is

15 cm).
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5.6.3 Indoor exploration scenarios

The developed exploration framework has been further deployed on the tracked robot in multiple in-

door scenarios. The example of the created elevation map obtained in the fully autonomous exploration

of a part of the campus basement is shown in Figure 38.

Figure 38: Created elevation map during the basement exploration scenario with the grid cell size 5 m.

Figure 39: The created elevation map of the second floor obtained from exploration with marked

narrowing by ping circle. The size of the underlying grid cell is 5 m.

An additional experiment took place in a corridor that is similar to one shown in Figure 31a, but

this time, the corridor has been filled with different obstacles that have been successfully avoided by

the robot during the exploration. In the left part of the map, there was narrowing, so that the passage

was less than 90 cm wide; however the robot with the width about 60 cm was capable of successfully

passing the narrowing without hitting the obstacles. The another issue of this particular exploration

scenario was induced by the tiled floor which reduced the effective range of the LIDAR, so that the

space farther than 3 m in front of the robot was not detected. The exploration of the corridor took

approximately 15 min, and the explored map is shown in Figure 39.
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Chapter 6

Conclusion

In this thesis, we have proposed a robotic framework for the spatial exploration of rough terrains.

The proposed solution includes a careful selection of the localization system, where we have con-

sidered state-of-the-art vision-based localization system ORB-SLAM2, for which we have proposed

sensory fusion with external localization system and IMU. The selection of the localization system

has been completed by the experimental evaluation of the localization provided by ORB-SLAM2,

and localization obtained from the novel embedded solution for the localization based on the Intel

RealSense T265, which utilize sensory fusion and do all the necessary computations onboard. The

experimental evaluation showed that both vision-based localization systems provides competitive ac-

curacy, but the localization provided by the Intel RealSense T265 is more reliable. Therefore, we have

used T265 for the experimental deployment of the developed framework in autonomous exploration

with the hexapod walking robot.

The simulation results and the evaluation of computational requirements have shown the feasibil-

ity of the proposed exploration approach as well as deployments in real-world scenarios. The proposed

exploration framework utilizing the proposed implementation of the elevation mapping has been de-

ployed on the hexapod walking robot which was able to explore the indoor corridor and also outdoor

scenarios, including rough grassy terrain. In addition, the developed framework has been further

deployed on a tracked robot in mapping scenario of the mine environment within the DARPA Subter-

ranean Challenge and in indoor corridors, which have been explored also fully autonomously. During

the indoor exploration experiments with the tracked robot, all the necessary computations were run

onboard.

Beside the reported results from various real-world deployments, the proposed framework has

been further augmented by incremental learning framework for a spatial exploration combined with

the traversal cost model learning that has been accepted for publication at the Robotics: Science and

Systems (RSS) conference [70]. As the future work, we are going to extend the framework to build

the elevation map from multiple sources of the measurements to support the multi-robot exploration.
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