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Brno, Spring 2015





Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Pavel Čadek
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cussions about the topic and advice he has provided during writing of this
thesis. I would also like to thank Mgr. Marek Trtík, PhD., who helped me
with the implementation and regularly discussed the topic with me. I must
express my gratitude to closer friends, who stood next to me in difficult
moments. Last, but not the least, I would like to thank my family for their
unconditional support and patience throughout my whole studies.

v





Abstract

We present a new method for computation of upper bounds on the num-
ber of visits of given program locations. These bounds are expressed as
functions over input variable symbols. A description of the algorithm is the
core of this thesis. We have implemented our method in a prototype tool
Looperman and evaluated it on benchmarks from the literature. Besides
the evaluation results, we provide also a detailed description of two other
tools, Loopus and KoAT, which we used for the comparison with our tool.
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1 Introduction

Static program analysis plays an important role in code optimization and
verification. Demands for tools that are able to automatically prove cer-
tain program properties grow over time. One of the most important pro-
gram property is its time complexity and termination. Indeed, for a lot of
real systems, like embedded systems in cars or aircraft, there is a necessity
to prove that they terminate on any input within some time limit. How-
ever, time complexity analysis is useful for any systems working with large
data. Consider, for example, sorting algorithms: some of them are practi-
cally useless for very large arrays, because they could spend hours sort-
ing them, while other finish the computation within seconds. Most of the
current static analysis tools in this area compute only termination or an
asymptotic complexity of a program. But one can see that there is a sig-
nificant difference between time complexities n2 and 1000 · n2, while the
asymptotic complexity is the same. We present an algorithm for computing
more precise time bounds. The need for the precision can be seen in the
embedded systems: hardware which has to perform n operations within
certain time limit is more expensive, than hardware which has to perform
just n

2 operations. Note that there is no simple way of deriving the real time
estimation out of the theoretical complexity given in abstract time units,
because some instruction in the source code can be more time-demanding
than another one. Therefore only the upper bounds on the number of loop
iterations ("loop bounds", for short) are usually computed. With them, the
real time estimation can be derived. We propose a more general goal: We
want to compute an upper bound on the number of visits of any given pro-
gram location as a function over its input variables (we call such a bound
a "symbolic bound"). This formulation allows us to infer the time complex-
ity for every costly instruction separately and it can result into different
bounds for locations on different branches of the same loop. Note that an
instruction can be costly also concerning computational space (e.g. a mem-
ory allocation). Symbolic bounds can be useful, for example, for various
kinds of schedulers. With them, the schedulers can compute the resources
(e.g. space or processor time), which a function demands, in advance, with
just the function’s input values. Other usage can be in program verification,
or code optimization.

We have implemented a prototype tool, that computes symbolic bounds
on the number of visits of given program locations. We present our algo-
rithm in Chapter 2. Its computational steps are explained there on the well-
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1. INTRODUCTION

known sorting algorithm Bubble Sort used as input. In the next chapter,
we present two recently proposed alternative approaches for computing
the bounds as well as a brief overview of tools in the area of termination
and complexity analysis. Finally, in Chapter 4, we present the results of
evaluating our experimental tool on a set of scientific benchmarks and its
comparison with other four tools for computing loop bounds.
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2 Symbolic Bound Computation Algorithm

2.1 Preliminaries

This section defines terms and notation employed by the algorithm. Par-
ticularly the terms backbone, induced flowgraph, and upper bound for a

transition should be noticed, because they are not commonly used. Most of
the definitions come from [18].

2.1.1 Control Flow of the Program

We represent programs by labelled transition systems. We consider only
instructions operating on scalar variables a, b, . . . of type Int and multi-
dimensional array variables A, B, . . . of type Intk → Int. We use two
kinds of instruction: an assignment and an assumption. The assignment
instruction is either of the form a:=e for some (integer) expression e and
some scalar variable a, or A[e1, . . . , ek]:=e for some (integer) expressions
e, e1 . . . ek and some array variable A : Intk → Int. The assumption in-
structions are of the form assume(γ) for some quantifier-free formula γ

over program variables. We often omit assume from the assumption in-
structions.

Definition 2.1. Let I be a set of instructions. A flowgraph is a tuple P =

(L, T, ls, le), where L is a finite set of program locations, T ⊆ L × I × L is a

finite set of program transitions, and ls, le ∈ L are different start and exit loca-
tions respectively. A location is branching if its out-degree is 2. All other locations

have out-degree at most 1. Outgoing transitions of any branching location are la-

belled with assumptions assume(γ) and assume(¬γ) for some γ. We assume

that every location is reachable from ls and ls has no predecessor. Analogically, le
is reachable from all locations and le has no successor.

Definition 2.2. A path in a flowgraph is a finite sequence l1l2 · · · lk of locations

such that k > 0 and for all 1 ≤ i < k there is a transition from li to li+1. A

path from the start to the exit location is called a complete path. A backbone is a

complete acyclic path.

Definition 2.3. Let π be a backbone with a prefix αv. There is a loop C with an

entry location v along π, if there exists a path vβv such that no location of β

appears in α. The loop C is then the smallest set containing all locations of all such

paths vβv.

3



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

ls

a

b c

d

le

Figure 2.1: Example of nested loops. Instruction labels are omitted here.

For example, the flowgraph in Figure 2.1 has two backbones: π1 = lsale
and π2 = lsabdle . Both of them contain the loop entry a to the loop
{a, b, c, d}, but only π2 contains the loop entry b to the loop {b, c}. This is
a simplified example of a typical program with nested loops and a possible
return statement inside the outer one.

Remark 2.4. We can assign exactly one backbone π to each complete path π′ by

the following procedure: If π′ is acyclic, then the backbone is directly π′. Otherwise,

we find the leftmost repeating node in π′, remove the part of π′ between the first

and the last occurrence of this node (including the last occurrence), and repeat

the procedure. In other words, the backbone π arises from π′ by removing all loop

iterations. We say that π is the backbone of the path π′.

Definition 2.5. For a loop C with an entry location v, a flowgraph induced by
the loop, denoted as P (C, v), is derived from the subgraph of the original flow-

graph induced by C, where v is marked as the start location, a fresh location v′ is

added and marked as the exit location, and every transition (u, ι, v) ∈ T leading to

v is replaced by a transition (u, ι, v′).

A loop path is a backbone of a flowgraph induced by a loop.

Figure 2.2 shows the flowgraph induced by the loop {a, b, c, d} from our
previous example. It has one loop path (backbone) abda′. There is the loop
{b, c}with the loop entry b along this loop path.

4



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

a

b c

d

a′

Figure 2.2: The flowgraph induced by the loop {a, b, c, d} from Figure 2.1.
Instruction labels are omitted here.

2.1.2 Symbolic Execution

The core idea of symbolic execution (as described in [13]) is that instead
of supplying the normal inputs to a program (e.g. numbers), one supplies
symbols representing arbitrary values. The execution proceeds as a normal
execution except that values may be symbolic expressions over the input
symbols. When a conditional branching appears, the execution continues
on each branch separately and keeps the condition, which the inputs must
satisfy in order for an execution to follow the associated path. More pre-
cisely, the condition is altered every time an assume instruction is executed.
If it is not satisfiable after that, there is no program run which could follow
the particular path and we can stop the execution.

Definition 2.6. By symbolic expressions we mean all expressions built with

integers, standard integer operations and functions, and

• symbols a, a′, a′′, . . . for each scalar variable a,

• function symbols A,A′, . . . for each array variable A, where arity of A

corresponds to the dimension of array A,

• a lambda expression λ(x1, . . . , xk).e of arity k ≥ 1, where e is a symbolic

expression over x1, . . . , xk,

• a countable set {κ1, κ2, . . .} ∪ {K} of variables called path counters, and

• a special symbol ⋆ called unknown.

5



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

Remark 2.7. Among the operations and functions allowed in the symbolic expres-

sion are also max,min and ite, where ite(ψ, e1, e2) equals e1 if ψ holds and e2
otherwise.

Remark 2.8. We use the notation e[x/ex] for denoting the expression e, where

all occurrences of a variable symbol or a path counter x are replaced by ex. Simi-

larly, we use the notation e[xi/ei | i ∈ I] for denoting the expression e, where all

occurrences of xi are replaced by ei, for each i ∈ I .

Definition 2.9. A symbolic memory is a function θ assigning to each scalar

variable a a symbolic expression and to each array variable A of arity k ≥ 1 a

symbol A or a lambda expression of arity k.

A path condition is a boolean formula over the symbols used in symbolic ex-

pressions, which the inputs must satisfy in order for an execution to follow the

corresponding path.

A symbolic state is a couple (θ, ϕ), where θ is a symbolic memory and ϕ is a

path condition.

Remark 2.10. We can extend the symbolic memory function from variables to

whole expressions in a natural way. For example, when θ(a) = a and θ(b) = c+1,

then θ(a+ b− 3) = a+ c− 2.

2.1.3 Bound Computation

Finally, we need to define the terminology for our main purpose: We want
to get an upper bound on the number of executions of some transition in
a flowgraph. There is a term "ranking function" often repeated in various
ways in the literature (e.g. [17, 5, 2]), which is used for that purpose. We use
the term "upper bound for a transition" instead, because we find it more
suitable for our approach.

Definition 2.11. An upper bound for a transition t (resp. an upper bound
for a loop C with a loop entry v) in a flowgraph P is a symbolic expression ρ

with the following properties:

• The only symbols in ρ (except of integers, lambda expressions, and standard

integer operators and functions) are symbols for variables appearing in P .

• If P is executed on any input, then t is executed at most ρ′ times, where ρ′

is the expression that we get by replacing each scalar variable symbol a by

the initial value of the variable a and each array variable symbol A by the

initial function of the variable A.

6



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

Remark 2.12. A lower bound could be defined analogically. Because we usually

work with upper bounds, by terms "bound for a transition" we always mean the

upper bound.

Remark 2.13. Note that the loop bound computation is a subproblem of our aim,

so our method can be applied for it too. In fact, our experimental tool Looperman

works in two modes: computation of bounds for given transitions or computation

of bounds for all loops in a program.

2.2 Basic Idea

The algorithm uses the idea of loop summaries described in the article Ab-

stracting Path Conditions [18], which uses symbolic execution to find a nec-
essary condition for reaching a given program location. However our goal
is different: we want to find upper bounds for the number of executions of
given transitions.

When a program is executed on some input, the execution follows some
complete path. From Remark 2.4, we know that each complete path has
exactly one backbone, so all runs can be divided into finitely many classes
according to the backbones of the paths they follow. Therefore we analyse
each backbone separately and put the results together in the end. Assume
we analyse a backbone π. We perform the symbolic execution along π until
we come to a loop entry. Before we continue with the next transition along
π, the loop is processed and the values of variables are changed according
to the inferred effect of the loop. The bounds are computed together with
the symbolic execution. We can look on a bound for a transition as a counter
of its executions. Hence we start with the bound 0 for every transition and
increment it during the analysis.

Suppose some transition lies within a simple loop with just one loop
path and no loop nested within it. Then the amount, by which its bound
must be incremented after execution of the loop, is exactly the number of
the loop iterations. To find it, we first treat the loop like a standalone pro-
gram and compute the effect of executing it once. Then we associate a path
counter κ to the loop path. We can look on a path counter as an imaginary
variable, which is 0 before entering the loop and it is increased by 1 at the
end of each loop iteration following the particular loop path. In this case,
κ corresponds to the number of finished iterations. Knowing the effect of
executing the loop once, we try to compute the variable values after κ iter-
ations. By substituting these values into the looping condition, we can infer

7



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

int i:=0;

do

i:=i+1;

while (i<x);

a

b

i:=0

c

i:=i+1 i<x

d

i>=x

b

c

i:=i+1

b′

i<x

Figure 2.3: Example of a simple C-like code (on the left) with its flowgraph
(in the middle) and the flowgraph induced by the loop {b, c} with the loop
entry b (on the right).

a bound on the size of κ, which is also a bound on the number of the loop
iterations.

Let us explain the concept on a simple example from Figure 2.3. We see
that the program has only one backbone π = abcd. The symbolic execu-
tion starts with the symbolic values x for the variable x and i for i. All
the bounds are 0 at the beginning. After the first transition (a,i:=0, b) its
bound is incremented to 1 and the value of the variable i is updated to 0.
Now we are at location b that is a loop entry to the loop {b, c}. So we pause
the symbolic execution and process the loop.

The flowgraph induced by the loop {b, c}with the entry b is depicted in
Figure 2.3 on the right. We first compute the effect of executing it once. It has
one backbone bcb′ with no loop entry. We start a new symbolic execution at
the new start location b. To avoid confusion with the values from the main
flowgraph, we start with the value x′ for x and i′ for i. After executing both
transitions along the backbone, we end with values i′ + 1 for i and x′ for
x and the path condition i′ + 1 < x′. From this we can conclude that after
κ iterations, the values are i′ + κ for i and x′ for x and thus the condition
to perform an iteration of the loop after κ iterations is i′ + κ+ 1 < x′. Now
we return back to the context of our main flowgraph. We entered the loop
with the value 0 for i and x for x. Hence we can substitute these values for
i′ and x′ in the condition i′ + κ + 1 < x′, getting κ + 1 < x. The maximal

8



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

κ satisfying it is x − 2, so before the last iteration, κ is at most x − 2. Thus,
after including the fact that the number of iterations cannot be negative, we
get the bound max(0, x − 1). We increment by that amount the (currently
zero) bounds for transitions (b,i:=i+1, c) and (c,i<x, b). The last thing we
need to do before we leave the loop, is updating the values of variables. We
can see that the variable x stays unchanged, no matter how many iterations
were taken. However, the size of i depends on the number of iterations. For
the simplicity of explanation, we assign the value ⋆ (standing for unknown)
to i, which is always a safe approximation.1

After the loop procedure, we continue with the next transition along
the main backbone, which is (b,i:=i+1, c). We raise its current bound
max(0, x − 1) by 1, getting max(1, x). The new value for i is ⋆ + 1 which
equals ⋆. The last transition (c,i>=x, e) is of the assume type, so we should
alter the path condition. By substituting the values of x and i we get ⋆ ≥ x.
Such a condition is evaluated to true (because of the ⋆ symbol), so the path
condition stays the same. The bound for the transition is incremented from
0 to 1.

Because we have reached the exit location, the analysis is finished
with the following bounds: 1 for transitions (a,i:=0, b) and (c,i>=x, e),
max(1, x) for (b,i:=i+1, c) and max(0, x− 1) for (c,i<x, b).

We provide a detailed description of the algorithm in the next section,
including the treatment of more backbones in the main flowgraph, multi-
path loops, or nested loops.

2.3 The Algorithm

This section introduces the algorithm as a pseudo-code. We explain all the
computation steps on Bubble Sort (see Figure 2.4) used as input for our
algorithm. It is a typical example of a program, where our method provides
better precision than the state-of-the-art tools.

2.3.1 The Main Procedure

The main procedure ExecuteProgram takes a flowgraph of a program as
input and returns the set of backbones of the flowgraph, the result of sym-
bolic execution of these backbones and the overall bounds for transitions
in the flowgraph. In the notation of the pseudo-code, β stays for a function

1In practise, we use more sophisticated method for computing variable values after
loops.

9



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

Algorithm 1: ExecuteProgram(G)

Input:
G // a flowgraph of a program

Output:
({(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)}, β) // the set of feasible backbones of the

flowgraph with symbolic memories and path conditions after their execution; the

overall bounds for all transitions

1 {π1, . . . , πk} ←−DetermineBackbones(G)

2 result←− ∅

3 foreach i = 1, . . . , k do

4 Initialize βi to return {0} for each transition.
5 Initialize θi to return a for each scalar variable a and A for each array

variable A.
6 Initialize ϕi to true .
7 Let πi = v1 . . . vn.
8 foreach j = 1, . . . , n− 1 do

9 if vj is a loop entry then

10 Let C be the loop with the loop entry vj along πi.
11 Compute the flowgraph P (C, vj) induced by the loop.
12 (βi, θi)←−ProceedLoop(P (C, vj), θi, ϕi, βi)

13 Let t be the transition (vj , ι, vj+1).
14 if ι has the form assume(ψ) and θi(ψ) contains no ⋆ then

15 ϕi←−ϕi ∧ θi(ψ)

16 if ϕi is not satisfiable then

17 Continue at line 24.
18 if ι has the form a := e then

19 θi(a)←−θi(e)

20 if ι has the form A[i1, . . . , im] := e then

21 θi(A)

←−λ(x1, . . . , xm). ite(
∧m

n=1 xn = θi(in), θi(e), θi(A)(x1, . . . , xm))

22 foreach ρ ∈ βi(t) do

23 ρ←−ρ+ 1

24 Insert (πi, θi, ϕi) into result.
25 foreach transition t do

26 β(t)←−∅

27 foreach (ρ1, . . . , ρk), ρi ∈ βi(t) for each i ∈ {1, . . . , k} do

28 Insert max(ρ1, . . . , ρk) into β(t).
29 return (result, β)

10



2. SYMBOLIC BOUND COMPUTATION ALGORITHM

void bubble_sort(int n, int* A){

for(int i = 0; i < n - 1; i++){

for(int j = 0; j < n - i - 1; j++){

if(A[j+1] < A[j]){

int tmp = A[j + 1];

A[j + 1] = A[j];

A[j] = tmp;

}}}}

Figure 2.4: Bubble Sort written in C.

that maps each transition to a set of its bounds (in opposite to the previous
section, we allow more bounds for each transition). Further, π, θ, ϕ stay for
a backbone, a symbolic memory and a path condition, respectively. Note
that in practice, we do not compute bounds for all the transitions. If we are
interested only in the loop bounds, one transition per loop is enough.

At first, the algorithm finds the backbones of the input flowgraph. The
outer foreach loop iterates over the backbones and do the analysis for
each of them independently. This provides the symbolic memory and the
path condition resulting from our (modified) symbolic execution along the
backbones. In the end, the overall bounds are computed from the local
bounds of the backbones.

Running Example 2.3.1. The flowgraph of Bubble Sort is depicted in Figure

2.5. There is only one backbone π1 = abk with one loop entry b to the loop

{b, c, d, e, f, g, h, i, j}.

Let us have a look now at one iteration of the outer foreach loop (lines
4 to 24). Assume we analyse the backbone πi. We initialize its local bounds
βi to return {0} for each transition. If some transition remains unvisited at
the end of the analysis of πi, it means it is unreachable during an execution
along πi, and 0 is a correct bound for it. If, at some point of the analysis,
we are not able to infer any bound for some transition, we set βi to return
∅ for it.2 Next, the initialization of local symbolic memory θi and local path
condition ϕi takes place. Note that we always denote an initial value of
some variable x by x (respectively x′, x′′, . . . at loops).

Running Example 2.3.2. In our example, we will compute bounds only for tran-

sitions t1, t2, t3, and t4. The initial values of local symbolic memory, path condition

2An empty set of bounds can be understood as a possibly infinite number of executions.

11
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a

b

t1 : i:=0

c

t2 : i<n-1

d

j:=0

e

j>=n-i-1

i:=i+1

f

j<n-i-1

g

A[j+1]<A[j]

h

tmp:=A[j+1]

i

A[j+1]:=A[j]

j

A[j]:=tmp

t4 : A[j+1]>=A[j]

t3 : j:=j+1

k
i>=n-1

Figure 2.5: Flowgraph of the program in Figure 2.4. t1, t2, t3, and t4 mark
the corresponding transitions (they are not part of the instructions).
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2. SYMBOLIC BOUND COMPUTATION ALGORITHM

and bounds for the only backbone π1 are:

θ1 = {n 7→ n, A 7→ A, i 7→ i, j 7→ j, tmp 7→ tmp}

ϕ1 ≡ true

β1(t1) = β1(t2) = β1(t3) = β1(t4) = {0}

In the inner foreach loop (lines 8 to 23), the backbone is symbolically
executed step by step (with a special treatment of loops). In every iteration
we move to the next location on the backbone. The current location is de-
noted by vj . If it is not a loop entry, we directly execute the next transition
along the backbone and include the effect into the symbolic state, i.e. either
the path condition ϕi (for assume instructions) or the symbolic memory θi
(for assignments) is altered. If the transition is of the assume type and the
new path condition is not satisfiable, no further transitions along the back-
bone can be visited. Hence we finish the execution with the current bounds,
save the computed results for the backbone and then continue with the next
cycle of the outer foreach loop at line 3. Otherwise, we raise all bounds
for the executed transition by 1 and continue further with the execution of
the backbone.

Running Example 2.3.3. In our example, the symbolic memory after the execu-

tion of the transition (a, i := 0, b) is θ1 = {n 7→ n, A 7→ A, i 7→ 0, j 7→ j, tmp 7→

tmp}. The set of bounds for t1 changes from {0} to {1}. The path condition remains

unchanged.

If the current location is a loop entry, we need first to detect and take
into consideration the effect of the loop before we continue with the next
transition along the backbone. For that we compute the flowgraph induced
by the loop and use it as an input to the procedure ProceedLoop. It alters
not only the bounds for the transitions inside the loop, but also values of all
variables modified inside the loop.

Running Example 2.3.4. The flowgraph induced by the loop with the loop entry

b from our example is depicted in Figure 2.6. After the loop procedure, we have the

following values:

θ1 = {n 7→ n, A 7→ λx.⋆, i 7→ ⋆, j 7→ ⋆, tmp 7→ ⋆}

ϕ1 ≡ true

β(t1) = {1}, β(t2) = {max(0, n− 1)},

β(t3) = β(t4) = {ite(n < 2, 0, (n−1)·n
2 )}

The steps leading to this result are described at Running Example 2.3.5 in Subsec-

tion 2.3.2.
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b

c

t2 : i<n-1

d

j:=0

e
j>=n-i-1

b′
i:=i+1

f

j<n-i-1

g

A[j+1]<A[j]

h

tmp:=A[j+1]

i

A[j+1]:=A[j]

j

A[j]:=tmp

t4 : A[j+1]>=A[j]

t3 : j:=j+1

Figure 2.6: The flowgraph induced by the loop from Figure 2.5.
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a

b

i:=0

c1

x<0

c2

x≥0

d
x:=-x x:=x

e

i:=i+1 i<x

f

i>=x

Figure 2.7: Example to show computing of the overall bounds out of the
local ones.

When we are done with all the backbones, the last remaining thing is
to put the bounds together. For every transition t, we first initialize β(t) to
return ∅. Then for each combination of bounds holding for t on the separate
backbones, we need to take the maximum of them. This is done at lines
27 to 28. Because all the resulting bounds are correct, the most precise one
is the minimum of them. Note that we would get the same result by the
following expression: max(min(βi(t)) | i ∈ {1, . . . , k}). The reason why we
do not use it is that we need all the separate bounds as simple as possible
when we process nested loops, as we will see later in Subsection 2.3.4.

Let us explain the idea on an example with three feasible back-
bones with their local bounds β1(t) = {a, b}, β2(t) = {c, b + 1} and
β3(t) = {a}. The overall bounds are then β(t) = {max(a, c, a),max(a, b +

1, a),max(b, c, a),max(b, b + 1, a)} = {max(a, c),max(a, b +

1),max(b, c, a)}. Hence for input values 1 for the variable a, 3 for b

and 2 for c, the most precise bound is max(a, c) = max(1, 2) = 2. Thus the
transition t is executed at most 2 times for this particular input values.

Another example, that is more realistic, is the flowgraph depicted in
Figure 2.7. It is an altered version of the example from the previous section:

15
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we added the update of x to its absolute value before entering the loop.
The flowgraph has two backbones: π1 = abc1def and π2 = abc2def . Let
t = (d,i:=i+1, e). While the bound set β2(t) = {max(1, x)} for the second
backbone (as we inferred in Section 2.2), the first backbone enters d with
the value −x of x, resulting in the bound set β1(t) = {max(1,−x)}. Thus
the overall set of bounds for t is β(t) = {max(max(1,−x),max(1, x))} =

{max(1,−x, x)}.

2.3.2 The Loop Procedure

The procedure ProceedLoop takes a flowgraph induced by a loop as in-
put, together with the symbolic memory θin, the path condition ϕin, and
the bound function βin, which all hold while entering the loop. It returns
the bound function βout and the symbolic memory after the loop.

For computing bounds inside the loop, we do not take into account
the input bounds at first. We introduce a new bound function βloop, which
stores only the bounds on the number of executions during looping. In op-
posite to the main function, we initialize it to return ∅ for each transition
inside the loop. The bounds for each transition are then added only if we
are able to infer the bound on the number of iterations going through it.
The same holds for βout, but βout must return the same value as βin for the
transitions outside the loop.3

After the initialization of bound functions, we first compute the effect
of one iteration of the loop (line 3), without any dependence to the input
symbolic memory, path condition or bound function. Thus we get symbolic
memories and path conditions for all loop paths and the bound function
βinner. If there is no other loop inside the currently processed loop, βinner
returns only bound sets {1} or {0} for each transition, because no transition
could be visited twice during one iteration. However, there can be some
non-trivial bounds for some transitions, if there is a nested loop inside. To
distinguish the variable values resulting from line 3 from the input variable
values, we use the primed symbols for variables (a′, a′′, . . . ).

We continue with the computation of a loop summary, which is the ef-
fect of iterating the loop several times on the symbolic memory. More pre-
cisely, if we have loop paths π1, . . . , πk and path counters κ1, . . . κk, the sym-
bolic memory θ~κ keeps values of variables after κ1 iterations of π1, κ2 itera-
tions of π2 etc. Note that we abstract from the order in which the loop paths
are taken during the looping. This part of the analysis is described in more

3The domain of βout contains also transitions, which are not in Gin.

16
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Algorithm 2: ProceedLoop(Gin, θin, ϕin, βin)

Input:
(Gin, θin, ϕin, βin) // a flowgraph induced by a loop; an input symbolic

memory and path condition; input bounds for all transitions

Output:
(βout, θout) // the bounds and symbolic memory after the loop

1 Initialize βloop to return ∅ for each transition t in Gin.
2 Initialize βout to return ∅ for each transition t in Gin and βin(t) otherwise.
3 ({(π1, θ1, ϕ1), . . . , (πk, θk, ϕk)}, βinner)←−ExecuteProgram(Gin)

4 θ~κ←−ComputeSummary({(π1, θ1), . . . , (πk, θk)})

5 if βinner(t
′) = ∅ for some transition t′ in Gin then

6 Continue at line 27.
7 foreach i = 1, . . . , k do

8 ϕ~κ
i ←−UpdateWithKappa(ϕi, θ

~κ)

9 ϕ~κ
i ←−UpdateWithInput(ϕ

~κ
i , θin)

10 ϕ~κ
i ←−ϕ

~κ
i ∧ ϕin

11 foreach transition t in Gin do

12 if βinner(t) = {0} then

13 βout(t)←− {0}

14 Continue at line 10.
15 if t is not a part of any loop in Gin then

16 Let X = {j | t connects two subsequent locations from πj}

17 βloop(t)←−ComputeBounds(X,
∨

j∈X ϕ~κ
j )

18 else

19 Let X = {j | t lies on a loop, the loop entry of which is on πj}
20 foreach ρinner ∈ βinner(t) do

21 ρ~κinner ←−UpdateWithKappa(ρinner, θ
~κ)

22 ρ~κinner ←−UpdateWithInput(ρ
~κ
inner, θin)

23 βloop(t)←−βloop(t) ∪ NestedBounds(ρ
~κ
inner, X, ϕ

~κ
1 , . . . , ϕ

~κ
k)

24 foreach ρloop ∈ βloop(t) do

25 foreach ρin ∈ βin(t) do

26 Insert ρloop + ρin into βout(t).
27 θout←−MemoryAfterLoop(θ

~κ)

28 return (βout, θout)

17
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detail in Subsection 2.3.3.

For the following steps, we want to be sure, that the execution will not
"get stuck" in the middle of an iteration of the currently processed loop,
i.e. either a whole iteration is performed, or the loop is exited. Such situa-
tion can occur only if there is an unbounded loop nested in the currently
processed one. Thus to be on the safe side, we leave all the bounds for all
transitions inside Gin empty in such case and continue to the end of the
procedure. This is done at lines 5 to 6.

Remark 2.14. In the following, by an iteration along a loop path πi we mean

an iteration of the loop, that follows a path, the backbone of which is πi (see Remark

2.4), and by an iteration along a set of loop paths Π we mean an iteration along

a loop path from Π. By ~κ iterations we mean κ1 iterations along π1, κ2 iterations

along π2 etc. By a bound for a loop path π (resp. a set of loop paths Π) we

mean an upper bound on the number of iterations along π (resp. Π).

For each loop path πi, we need to compute the condition for performing
an iteration along πi after ~κ iterations. In the path condition ϕi for a single
iteration along πi (independent on the input), we first substitute the value
θ~κ(x) for each symbol x′ in ϕi, and then we substitute the value θin(x) for
each symbol x′ in ϕi. In the end, we add the path condition ϕin, with which
we entered the loop. The condition for the loop path πi after ~κ iterations is
denoted by ϕ~κ

i .

Let us show the idea on a loop with one loop path π1, a condition ϕ1 ≡

x′ > 0 and the symbolic memory resulting from the loop summary θκ1(x) =

x′−κ1. Roughly speaking, the meaning of the condition ϕ1 is that if x′ is the
value of x at the loop entry and x′ > 0 holds, an iteration of the loop can be
performed. So if we want to infer the condition for entering the loop after
κ1 iterations, we need to substitute the value of x after κ1 iterations for x′ in
the condition ϕ1. Assume x is the input value for x. Then x−κ1 is the value
of x after κ1 iterations and we get the condition x − κ1 > 0 ≡ κ1 ≤ x − 1.
Hence the number of iterations before the last iteration is at most x − 1, so
the upper bound for the number of iterations is max(0, x).

At this point, we can start to compute the bounds. In every iteration of
the foreach loop at lines 11 to 26, the resulting set of bounds is computed
for one transition t from the induced flowgraph Gin. If βinner(t) = {0}, t
cannot be visited during any loop iteration, so βout(t) = βin(t). The com-
putation is simple, if t is not a part of any nested loop in G. Then t must
lie on at least one loop path. The set X contains the indices of loop paths,
on which t lies, so we want to compute bounds on the number of iterations

18
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while (x>0)

if (y>0)

y:=y-1;

x:=x-1;

a

b

t1 :x>0

c

t2 :y>0

d
y:=y-1

y≤0

a′

x:=x-1

Figure 2.8: Code with a multi-path loop on the left and the flowgraph in-
duced by the loop on the right.

along loop paths with indices from X . Every time t is visited, at least one
of the conditions for those loop paths must be satisfied, which means their
disjunction must hold. We use these conditions as input for the procedure
ComputeBounds (see Subsection 2.3.5).

Let us have a look at the loop in Figure 2.8. The induced flowgraph
has two loop paths: π1 = abcda′ and π2 = abda′ with conditions ϕ1 ≡

(x′ > 0) ∧ (y′ > 0) and ϕ2 ≡ (x′ > 0) ∧ (y′ ≤ 0). The procedure
ComputeSummary infers θκ1,κ2(x) = x′ − κ1 − κ2 and θκ1,κ2(y) = y′ − κ1.
Suppose θin(x) = x, θin(y) = y and ϕin =⇒ (x > 0) ∧ (y > 0). Then
ϕκ1,κ2

1 ≡ (x−κ1−κ2 > 0) ∧ (y−κ1 > 0) ∧ ϕin and ϕκ1,κ2

2 ≡ (x−κ1−κ2 >

0) ∧ (y − κ1 ≤ 0) ∧ ϕin. The transition t1 lies on both π1 and π2, so after
κ1 iterations of π1 and κ2 iterations of π2 it is visited κ1 + κ2 times. Hence
we want to compute the upper bound on the size of κ1 +κ2. Note that after
each iteration along {π1, π2} the sum κ1 + κ2 is increased by 1 and it is 0 at
the beginning. Moreover, after ~κ iterations, the condition to enter the loop
along {π1, π2} is ϕκ1,κ2

1 ∨ϕκ1,κ2

2 ≡ x− κ1− κ2 > 0 ∧ ϕin. From that we con-
clude κ1 + κ2 ≤ x− 1, so the biggest size of κ1 + κ2 to iterate the loop along
{π1, π2} is x − 1. At the end of that iteration, the sum κ1 + κ2 is increased
by 1 for the last time. Thus the bound for t1 is x − 1 + 1 = x. The transi-
tion t2 lies only on π1, so we compute the bound for κ1 with the condition
ϕκ1,κ2

1 ≡ (x−κ1−κ2 > 0) ∧ (y−κ1 > 0) ∧ ϕin. From x−κ1−κ2 > 0 we infer
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κ1 + κ2 ≤ x− 1 and thus κ1 ≤ x− 1 (all path counters are non-negative, so
we can subtract κ2 from the left side of the inequation), and from y−κ1 > 0

we infer κ1 ≤ y − 1. Thus we have inferred two bounds for t2: x and y.

The situation is more complicated if the transition t, for which we
compute the bounds, lies inside a loop nested in the currently processed
one. The set X then contains indices of loop paths, from which the
nested loop can be entered. Note that at this point of the analysis, the
nested loop on which t lies was already processed during the procedure
ExecuteProgram at line 3, which means that its inner bounds (during
one iteration of the outer loop) are already stored in βinner. However, these
bounds are still independent on θin and θ~κ. Hence, we transform them at
lines 21 to 22 in the same way like we transformed the conditions at lines 8
to 9. From every inner bound for t we can infer several overall bounds.
Here, by overall bounds we mean the maximum number of executions
of t during all iterations of the currently processed loop. The procedure
NestedBounds is explained in detail in Subsection 2.3.4.

Let us look now at lines 24 to 26. All bounds for t during the looping
are stored in βloop(t). We need to add them to the input bounds βin(t). Note
that each combination ρin + ρloop is a correct bound, because ρin ∈ βin(t) is
a correct bound for t before the looping and ρloop ∈ βloop is a correct bound
for t during the looping. All such inferred bounds are added to the final
result βout(t).

Finally, we need to compute the symbolic memory after the loop, that
assigns only symbolic expressions without path counters to the variables.
For simplicity, we can set all variables, which are changed inside the loop,
to the symbol ⋆ (resp. λ(x1, . . . , xk).⋆ for array variables of arity k) and keep
the values from θin for the unchanged ones. More sophisticated method is
proposed in Subsection 2.3.6.

Running Example 2.3.5. Let us go through the loop procedure once again with

Bubble Sort. We start with the loop from Figure 2.6. The input symbolic memory

is θin = {n 7→ n, A 7→ A, i 7→ 0, j 7→ j, tmp 7→ tmp}, the input path con-

dition ϕin ≡ true and the input bounds βin(t1) = {1}, βin(t2) = βin(t3) =

βin(t4) = {0}. After initialization of βloop and βout we call ExecuteProgram

on the flowgraph. The procedure first determines its only backbone π1 = bcdeb′.

During the symbolic execution along π1 we come to the (nested) loop entry d and

call ProceedLoop again, this time with the flowgraph induced by the nested

loop, that is depicted in Figure 2.9.
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d

f

j<n-i-1

g

A[j+1]<A[j]

h

tmp:=A[j+1]

i

A[j+1]:=A[j]

j

A[j]:=tmp

t4 : A[j+1]>=A[j]

d′

t3 : j:=j+1

Figure 2.9: The flowgraph induced by the loop from Figure 2.6.
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Let us go through ProceedLoop with the nested loop in Figure 2.9. The in-

put symbolic memory is θin = {n 7→ n′, A 7→ A′, i 7→ i′, j 7→ 0, tmp 7→ tmp′},

the input path condition ϕin ≡ i′ < n′ − 1 and the input bounds βin(t2) =

{1}, βin(t3) = βin(t4) = {0}. After initialization of βloop and βout we call

ExecuteProgram. There are two backbones with no loop entry in the flowgraph:

π1 = dfjd ′ and π2 = dfghijd ′. The procedure returns the following results:

θ1 = {n 7→ n′′, A 7→ A′′, i 7→ i′′, j 7→ j′′ + 1, tmp 7→ tmp′′}

ϕ1 ≡ j
′′ < n′′ − i′′ − 1 ∧ A′′(j′′ + 1) ≥ A′′(j′′)

θ2 = {n 7→ n′′, A 7→ λx. ite(x = j′′, A′′(j′′ + 1), ite(x = j′′ + 1,

A′′(j′′), A′′(x))), i 7→ i′′, j 7→ j′′ + 1, tmp 7→ A′′(j′′ + 1)}

ϕ2 ≡ j
′′ < n′′ − i′′ − 1 ∧ A′′(j′′ + 1) < A′′(j′′)

βinner(t3) = βinner(t4) = {1}

We continue at line 4 of ProceedLoop. The symbolic memory resulting from the

loop summary computation (as described in Subsection 2.3.3) is θκ1,κ2 = {n 7→

n′′, A 7→ λx.⋆, i 7→ i′′, j 7→ j′′+κ1+κ2, tmp 7→ ⋆}. We do not take the if branch

at line 5, because no inner bound set is empty. After updating ϕ1 and ϕ2 at lines 7

to 10 we get:

ϕκ1,κ2

1 ≡ κ1 + κ2 < n′ − i′ − 1 ∧ ⋆ ≥ ⋆ ∧ ϕin

≡ κ1 + κ2 < n′ − i′ − 1 ∧ i′ < n′ − 1

ϕκ1,κ2

2 ≡ κ1 + κ2 < n′ − i′ − 1 ∧ i′ < n′ − 1

Now we can compute the bounds for the transitions t3 and t4. Neither of them has

the inner bound {0} and neither is a part of a loop inside the currently processed

loop (there is no such loop). Let us start with t3: It lies on both π1 and π2, so

X = {1, 2} and we compute the upper bound on the size of κ1 + κ2 after the

last iteration from the looping condition ϕκ1,κ2

1 ∨ ϕκ1,κ2

2 ≡ κ1 + κ2 < n′ − i′ −

1 ∧ i′ < n′ − 1, from which we infer the bound βloop(t3) = {n′ − i′ − 1} (see

Subsection 2.3.5). Because βin(t3) = {0}, from the loops at lines 24 to 26 we get

βout(t3) = {n′ − i′ − 1 + 0}. So as for t4, it lies only on π1, so we compute

the bound on the size of κ1. Similarly like in the previous transition, we get the

looping condition κ1 + κ2 < n′ − i′ − 1. We can safely subtract κ2 from the left

side (because path counters are non-negative) and get κ1 < n′ − i′ − 1. Hence

βout(t4) = βout(t3) = {n′ − i′ − 1}. For the transition t2 outside the currently

processed loop we have βout(t2) = {1}. Finally, we compute the output symbolic

memory θout = {n 7→ n′, A 7→ λ(x.⋆), i 7→ i′, j 7→ ⋆, tmp 7→ ⋆}.

Now we continue with the outer loop (the flowgraph in Figure 2.6). After

adding the effect of the inner loop and finishing the symbolic execution along π1,
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ExecuteProgram returns the following:

θ1 = {n 7→ n′, A 7→ λx.⋆, i 7→ i′ + 1, j 7→ ⋆, tmp 7→ ⋆}

ϕ1 ≡ (i′ < n′ − 1) ∧ (⋆ ≥ n′ − i′ − 1) ≡ i′ < n′ − 1

βinner(t2) = {1}, βinner(t3) = βinner(t4) = {0, n
′ − i′ − 1}

ComputeSummary returns θκ1 = {n 7→ n′, A 7→ λx.⋆, i 7→ i′ + κ1, j 7→

⋆, tmp 7→ ⋆}. The if branch at line 5 is not taken. After the loop at lines 7

to 10, we have ϕκ1

1 ≡ κ1 < n − 1 ∧ ϕin ≡ κ1 < n − 1. The transi-

tion t2 does not have the inner bound {0}, it is not a part of the nested loop

and it lies on π1, so we infer the bound max(0, n − 1) for it. The transitions

t3 and t4 lie in the nested loop. As we infer in Subsection 2.3.4 (Running Ex-

ample 2.3.6), the resulting bounds for both are {ite(n < 2, 0, (n−1)·n
2 )}. At the

end we get the result βout(t1) = {1}, βout(t2) = {max(0, n − 1)}, βout(t3) =

βout(t4) = {ite(n < 2, 0, (n−1)·n
2 )}. The symbolic memory after the loop is

θout = {n 7→ n, A 7→ λx.⋆, i 7→ ⋆, j 7→ ⋆, tmp 7→ ⋆}. With the output values

we continue the analysis on the main flowgraph (Figure 2.5). However, no bound

is further changed.

We have described the two main parts of our algorithm:
ExecuteProgram and ProceedLoop. We have shown them step by
step on Bubble Sort. In the following subsections, we explain the smaller,
but non-trivial parts of the algorithm.

2.3.3 Computation of a Loop Summary

The goal of the procedure ComputeSummary is to compute the effect of a
loop on the symbolic memory in dependence on the number of iterations of
each of its loop paths. That means that we abstract from the order, in which
the various loop paths were executed. This excludes loops like:

while (x<n)

if (random)

x:=x+1;

else

x:=x*2;

The reason why we cannot compute the effect of the loop is that taking
the if branch in the first iteration and else branch in the second may result
in different values than taking the else branch in the first and if branch in
the second iteration. However the order, in which the loop paths are taken,
is not usually important for the number of iterations in real programs.
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Algorithm 3: ComputeSummary({(π1, θ1), . . . , (πl, θl)})

Input:
{(π1, θ1), . . . , (πl, θl)} // results from single execution of loop paths

Output:
(θ~κ) // the computed summary

1 Introduce fresh path counters ~κ = (κ1, . . . , κl) for loop paths π1, . . . , πl,
respectively.

2 Initialize θ~κ to return ⋆ for each scalar variable and λ(x1, . . . , xk.⋆), for each
array variable of arity k.

3 repeat

4 change←− false

5 foreach scalar variable a such that θ~κ(a) = ⋆ do

6 Compute an improved value e for the variable a from symbolic
memories θ1, . . . , θl and θ~κ.

7 if e 6= ⋆ then

8 θ~κ(a)←− e

9 change←− true

10 until change = false

11 foreach array variable A do

12 if θi(A) = A for all i ∈ {1, . . . , l} then

13 θ~κ(A)←− A

14 return (θ~κ)
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The input for the procedure are loop paths π1, . . . , πl and symbolic mem-
ories θ1, . . . , θl denoting the effect of executing them once and the output is
the symbolic memory θ~κ after κ1 iterations of π1, κ2 iterations of π2, . . . , and
κl iterations of πl.

After introducing the path counters κ1, . . . , κl, we safely initialize θ~κ to
return ⋆ for each scalar variable and λ(x1, . . . , xk).⋆ for each array variable
of arity k. During the loop at lines 3 to 10, we improve the precision of
θ~κ until we reach a fix point (no value of any scalar variable is further
changed). The crucial step is the computation of an improved value e for
a scalar variable a (line 6). For that purpose, we use the definition from [18].
In the following, we use the notation θ~κ〈d〉 for denoting the expression d,
where every occurrence of each variable symbol a is replaced by θ~κ(a). The
improved value e is defined as ⋆, except in the following cases:

1. For each loop path πi, we have θi(a) = a. In other words, the value
of a is not changed in any iteration of the loop. This case is trivial. We
set e = a.

2. For each loop path πi, either θi(a) = a or θi(a) = a + di for some
symbolic expression di such that θ~κ〈di〉 contains neither ⋆ nor any
path counters. Let us assume that the latter possibility holds for loop
paths π1, . . . , πm. The condition on θ~κ〈di〉 guarantees that the value of
di is constant during all iterations over the loop. In this case, we set
e = a+

∑
1≤i≤m θ

~κ〈di〉 · κi.

3. There exists a symbolic expression d such that θ~κ〈d〉 contains neither
⋆ nor any path counters. For each loop path πi, either θi(a) = a or
θi(a) = d. Let us assume that the latter possibility holds for loop paths
π1, . . . , πm. In other words, the value of a is set to d in each iteration
with loop path πi for 1 ≤ i ≤ m, while it is unchanged in any other
iteration. Hence, we set e = ite(

∑
1≤i≤m κi > 0, θ~κ〈d〉, a).

4. For one loop path, say πi, θi(a) = d for some symbolic expression d

such that θ~κ〈d〉 contains neither ⋆ nor any path counters except κi.
Further, for each loop path πj such that i 6= j, θj(a) = a. That is,
only iterations along loop path πi modify a and they set it to a value
independent on other path counters than κi. Note that if we assign d
to a in the κi-th iteration with loop path πi, then the actual assigned
value of d is the value after κi−1 iterations along the paths. Therefore
we set e = ite(κi > 0, (θ~κ〈d〉)[κi/κi − 1], a).
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Note that one can add another cases covering other situations where the
value of a can be expressed precisely, e.g. the case capturing geometric pro-
gressions (like while (x<n) x:=2*x;).

In Bubble Sort, we had only instances of the first and the second case and
we have seen its application in practise in Subsection 2.3.2. Let us show the
other cases on the following examples:

while (x>y)

x:=y;

while (x>0)

x:=y;

y:=y-1;

The variable x from the left example falls into the third case, while in
the right example it falls into the fourth case. The variable y falls into the
first case in the left example and second case in the right example. Note
that if the algorithm tries to compute the improved value for x before y,
then after the first iteration of the loop at lines 3 to 10 of ComputeSummary,
the symbolic memory θ~κ returns ⋆ for x and y for y and the resulting value
ite(κ1 > 0, y, x) (resp. ite(κ1 > 0, y − (κ1 − 1), x) for the second example)
is known after two iterations. However, the order of the variables, in which
the summary is computed, does not influence the result.

For a simplicity of the algorithm we improve values of array variables
only if they remain constant during the loop.

2.3.4 Dealing with Nested Loops

The goal of the procedure NestedBounds is to infer bounds for a transi-
tion t inside a loop Cinner nested in a loop Couter. Let us describe the input
values: The outer loop has k loop paths: π1, . . . , πk. Further, ϕ~κ

i is the con-
dition that after ~κ iterations the next iteration of the loop can be along πi,
and ρ~κinner is the bound on the number of executions of t during the next
iteration after ~κ iterations. X is the set of indices of loop paths, along which
t can be visited, i.e. they contain the loop entry to the nested loop, inside
which t lies.

At first, we safely initialize Bres to ∅. We are able to infer the overall
bounds only if the inner bound is in the specific form defined at line 2
of the procedure. Thus if the procedure fails to transform the bound into
such form, it returns ∅. Let ΠX = {πi | i ∈ X}. The set Y introduced at
line 3 contains indices of loop paths, which are not in ΠX , but they can
influence the inner bound. We want to have the inner bound expressed
with just one path counter, so we introduce a fresh path counter K, which
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Algorithm 4: NestedBounds(ρ~κinner, X, ϕ
~κ
1 , . . . , ϕ

~κ
k)

Input:
(ρ~κinner, X, ϕ

~κ
1 , . . . , ϕ

~κ
k) // a bound on the number of executions of a

transition inside a nested loop in the next iteration after ~κ iterations of the outer

loop; a set of indices of the outer loop paths with a loop entry to the inner loop;

path conditions of all outer loop paths after ~κ iterations of the outer loop

Output:
Bres // the set of overall bounds

1 Bres←−∅

2 Try to transform ρ~κinner to the form max(c, e+ a1κ1 + . . .+ akκk), where
e, c, a1, . . . , ak are symbolic expressions without path counters. If it is not
possible, return ∅.

3 Let Y = {j | j /∈ X ∧ aj 6= 0}

4 BY
outer ←−ComputeBounds(Y,

∨
j∈Y ϕ

~κ
j )

5 Introduce a fresh path counter K. // K =
∑

j∈X κj

6 aXmax←−max(aj | j ∈ X)

7 aYmax←−max(aj | j ∈ Y ) // Here max(∅) = min(∅) = 0.

8 ρKinner ←−max(c, e+ aXmaxK +max(0, aYmax)min(BY
outer))

9 BX
outer ←−ComputeBounds(X,

∨
j∈X ϕ~κ

j )

10 foreach ρXouter ∈ B
X
outer do

11 ρres←−
∑ρX

outer
−1

K=0 ρKinner
12 Insert ρres into Bres

13 return Bres
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counts the number of iterations along ΠX . The nested loop is visited only
during iterations along ΠX . To be on the safe side, we transform the inner
bound into its maximal value after K iterations along ΠX : We replace the
subexpression

∑
j∈X ajκj by aXmaxK, where aXmax = max(aj | j ∈ X). The

subexpressions ajκj , where j ∈ Y , are still there. Let ΠY = {πi | i ∈ Y }.
The maximal increase of the inner bound in each iteration along ΠY is
aYmax = max(aj | j ∈ Y ). The set of upper bounds on the number of it-
erations along ΠY is BY

outer declared at line 4. If aYmax < 0, i.e. each iteration
along ΠY decreases the inner bound, we must transform the inner bound
as if there was no iteration along ΠY to obtain the maximal value. There-
fore, we replace the subexpression

∑
j∈Y ajκj by max(0, aYmax)min(BY

outer).
In this way we get the improved inner bound ρKinner, that contains only one
path counter K.

At line 9, we compute the bounds on the number of iterations along
ΠX . Note that in the first iteration K = 0 and it is increased by 1 after each
iteration along ΠX . Hence if ρXouter is a (non-zero) bound on the number of
iterations along ΠX , K = ρXouter − 1 in the last iteration. Thus the resulting

overall bound is ρres =
∑ρX

outer
−1

K=0 ρKinner. Note that if ρXouter = 0, the inner
loop cannot be visited and

∑−1
K=0 = 0 is a correct bound for t.

Running Example 2.3.6. In Bubble Sort, the transition t3 is a part of the nested

loop. The bound on the number of executions of t3 during one iteration of the outer

loop (Figure 2.6) is n′ − i′ − 1 (see Running Example 2.3.5). We know that after

κ1 iterations of the only loop path in the outer loop, the variable i has value κ1 and

n has value n. Hence the bound on the number of executions of t3 in the (κ1 + 1)-

th iteration of the outer loop is ρκ1

inner = n − κ1 − 1. Moreover X = {1} and

ϕκ1

1 ≡ κ1 < n − 1. We transform ρκ1

inner to the form max(0, n − 1 + (−1) · κ1),

so c = 0, e = n − 1, and a1 = −1. Because Y = ∅, aYmax = 0 and BY
outer = ∅.

Moreover aXmax = −1, so we get ρKinner = max(0, n−1−K). Further, we compute

BX
outer = {max(0, n − 1)}. Hence the result is

∑
max(−1,n−2)
K=0 max(0, n −K −

1). Suppose the number of iterations of the outer loop is greater than 0 (which

means n ≥ 2). Then n − K − 1 is always greater or equal 0, because the biggest

size of K is n − 2. Hence we can simplify the sum to
∑n−2

K=0 n − K − 1. After

applying the well known formula for the sum of arithmetic progression, we get

ρres = (n−0−1+n−n+2−1)·(n−1)
2 = n·(n−1)

2 . After adding the possibility of zero

iterations (n < 2), we get the resulting bound ite(n < 2, 0, n·(n−1)
2 ). Because

there is no other outer bound from which we could infer the overall bound, the

resulting set of bounds is {ite(n < 2, 0, n·(n−1)
2 )}.

Let us explain the algorithm on two more complicated examples. In Fig-
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a

b

n>0

c

n>5

d

j:=0

e

t :j<k

j:=j+1

f

j>=k

n<=5

a′

n:=n-1

a

b

n>0

c

n>5

d

j:=0

e

t :j<k

j:=j+1

g

n<=5

f

j>=k k:=k+1

h

k:=k+1

a′

n:=n-1

Figure 2.10: Induced flowgraphs by loops with two loop paths and a nested
loop.
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ure 2.10, there are two flowgraphs induced by loops with a nested loop. In
both of them we want to infer bounds for the transition t. We begin with
the left one. There are two loop paths: π1 = abcdfa ′ and π2 = abfa ′. Assume
we entered the loop with the value n for n and k for k. After κ1 iterations
of π1 and κ2 iterations of π2, the variable n has value n− κ1 − κ2 and k has
value k. The nested loop with t has an entry only on π1. Thus X = {1}.
The number of executions of t in each iteration of π1 is ρκ1,κ2

inner = max(0, k)

and it is unvisited if the loop path π2 is executed. Assume ϕin ≡ true . From
the condition ϕκ1,κ2

1 ≡ n − κ1 − κ2 > 0 ∧ n − κ1 − κ2 > 5 we infer
BX

outer = ComputeBounds(X,ϕκ1,κ2

1 ) = {max(0, n − 5)}. Further, ρKinner =

max(0, k), so the only resulting bound is ρres =
∑

max(−1,n−6)
K=0 max(0, k).

Suppose the number of iterations of the outer loop is greater than 0 (i.e.
n ≥ 6). Then ρres =

∑n−6
K=0max(0, k) = (n − 5) ·max(0, k). After includ-

ing the possibility of zero iterations, we get the resulting bound ite(n <

6, 0, (n− 6) ·max(0, k)).

The example on the right is slightly more complicated. The flowgraph
has two loop paths: π1 = abcdfha ′ and π2 = abgfha ′. Assume we entered the
loop with the value n for n and 0 for k. After κ1 iterations of π1 and κ2 itera-
tions of π2, the variable n has value n−κ1−κ2 and k has value κ1+2·κ2. The
nested loop with t has an entry only on π1. Thus X = {1}. The number of
executions of t after ~κ iterations is bounded by ρκ1,κ2

inner = max(0, κ1 + 2 · κ2).
Thus Y = {2}. Further, BY

outer = {max(0, n)}, aYmax = 2, and aXmax = 1, so
ρKinner = max(0,K + 2 ·min({max(0, n)})) = max(0,K + 2 ·max(0, n)).
Finally, we compute BX

outer = {max(0, n − 5)} and get the only result-
ing bound ρres =

∑
max(−1,n−6)
K=0 max(0,K + 2 · max(0, n)) = ite(n <

6, 0,
∑n−6

K=0K + 2n) = ite(n < 6, 0, (n−5)·(5n−6)
2 ). Note that we could not

avoid some over-approximation here: in fact, π2 cannot influence the num-
ber of executions of t, because the nested loop is entered only during the
first n − 5 iterations. Thus the correct bound is

∑
max(−1,n−6)
K=0 K = ite(n <

6, 0, (n−6)·(n−5)
2 .

2.3.5 Computation of Bounds

The procedure ComputeBounds infers bounds on the number of iterations
of given loop paths out of the necessary condition, which must hold in each
iteration of any of the loop paths. The input is the set of indexes of these
loop paths and the condition. Output is the set of inferred bounds.

Let Π = {πi | i ∈ I} be the set of loop paths with indexes from I . At
first, we check if it is possible to iterate along Π at least once. Before the first
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iteration along Π each path counter κi, i ∈ I equals 0. Let ϕ′ be the formula,
which we gain by substituting each occurrence of κi, i ∈ I in ϕ by 0. If ϕ′

is not satisfiable, then the number of iterations along Π must be 0. In fact,
the number of iterations along Π must be 0 if the number of iterations along
any superset Π′ ⊇ Π is 0. Testing the case of 0 iterations of a proper superset
Π′ ⊃ Π of Π requires including the conditions for all loop paths to the input
of ComputeBounds. We will omit it here, for simplicity. Let us have a look
at examples a) and b) from Figure 2.11. The loop in the first one has always
0 iterations, while the loop in the second one does not have to have always
0 iterations, but it has a loop path along which no iteration is possible.

Algorithm 5: ComputeBounds(I, ϕ)

Input:
(I, ϕ) // a non-empty set of indexes of loop paths; a disjunction of path

conditions for them

Output:
Bres // a set of derived bounds on the number of iterations along the loop

paths with indexes in I

1 if ϕ[κi/0 | i ∈ I] is not satisfiable then

2 return {0}

3 Replace all occurrences of ite(
∑

i∈M > 0, e1, e2),M ⊇ I in ϕ by e1.
4 if ϕ is not satisfiable then

5 return {1}

6 Bres←−∅

7 Transform ϕ to the (possibly most simplified) CNF.
8 foreach clause ψ of ϕ do

9 Try to transform ψ to the form b1κ1 + . . .+ bkκk < e, where bj > 0 for
all j ∈ {1, . . . , k}, e is a symbolic expression without path counters and
there is some bi for each i ∈ I . If the attempt fails, continue with the
next clause at line 8.

10 bmin = min(bi | i ∈ I)

11 if ϕ =⇒ e ≥ 0 then

12 Add ⌈ e
bmin
⌉ into Bres.

13 else

14 Add max(0, ⌈ e
bmin
⌉) into Bres.

15 If there are two bounds ρ1, ρ2 ∈ Bres, for which ρ1 ≤ ρ2 always holds, keep
just ρ1 in Bres and delete the other.

16 return Bres
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As we have seen in Subsection 2.3.3, some variables may have value
ite(

∑
i∈M κi > 0, e1, e2) for some set of loop path indexes M . This form is

not practical for computing the bounds, so we would like to simplify it, if
possible. Suppose M ⊇ I . At this point of the algorithm, we already know,
that there might be more than zero iterations along Π. Let us assume then,
there was already exactly one iteration along Π. Then

∑
i∈I κi > 0, which

implies
∑

i∈M κi > 0, which means we can replace every occurrence of
ite(

∑
i∈M κi > 0, e1, e2) in ϕ by e1. If ϕ is not satisfiable after the substitu-

tion, it means there can be no more than 1 iteration along Π and thus 1 is
a correct bound. Let us have a look at the examples c) and d) from Figure
2.11. The number of iterations of the loop in the first one is at most 1. In
the second example, the number of iterations following the else branch
is at most 1. Without this information we would not even know, that the
program terminates.

Let us continue at line 6 of the algorithm. To be on the safe side, we
initialize Bres to ∅. Then we transform the condition ϕ into the possibly
most simplified conjunctive normal form. Note that each clause of ϕ must
be satisfied in every iteration along Π, so we can infer a bound out of each
one separately. For example if ϕ ≡ κ1 < n ∧ κ1 < m, then we can infer
two bounds n and m on the number of iterations along π1, i.e. one bound
out of each clause.

The only type of clause, from which we are able to infer bound at this
point of the analysis, is a size comparison of two symbolic expressions. We
try to transform it in such a way, that we have a sum of path counters multi-
plied by some positive integers on the left side, a symbolic expression with-
out path counters on the right side and a comparison symbol < between
them (if we have l ≤ r, we transform it into l < r + 1). Recall that af-
ter each iteration along Π, the sum of path counters

∑
i∈I κi is increased

by 1 and in the beginning
∑

i∈I κi = 0. Hence if we have
∑

i∈I κi < e at
the beginning of each iteration and e ≥ 0, the sum can be increased by
1 at most ⌈e⌉ times. Thus the number of iterations is bounded by ⌈e⌉. If
it does not hold that ϕ =⇒ e ≥ 0, we have to include the possibility
that e < 0, so the resulting bound is then max(0, ⌈e⌉). To apply this ap-
proach, we need to transform the clause to have just

∑
i∈I κi on the left side

and a symbolic expression e without path counters on the right. Note that
we can subtract any path counter from the left side while keeping the in-
equation true, because all path counters are non-negative. Thus we get the
inequation

∑
i∈I bmin · κi < e, from which we can infer

∑
i∈I ·κi <

e
bmin

,
because bmin > 0. In this way we get the resulting bound ⌈ e

bmin
⌉ (resp.
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a)
x:=-1;

while(x>0)

x:=x-1

b)
s:=1;

while (x>0)

if (s==1)

x:=x-1;

else

x:=x+1;

c)
while (x<y)

x:=y;

d)
while (x>0)

if (s==1)

x:=x-1;

else

x:=x+1;

s:=1;

e)
while(x>0)

x:=x-k;

f)
i:=0;

while (i<10)

if (i<5)

i:=i+1;

else

i:=i+2;

Figure 2.11: Challenging cases in the bound computation.

max(0, ⌈ e
bmin
⌉)).

There are some special cases, which we did not cover in the algorithm,
but which our implementation supports. The first one is the case of a clause
of the form

∑
i∈I κi < e + κj , j /∈ I . It can be seen in the example d) from

Figure 2.11: Let us assume π1 is the loop path with the condition (s = 1) and
π2 the other one. If we compute the bounds just for π1, we get x−κ1+κ2 > 0,
which is the same as κ1 < x+ κ2. In this case it is sufficient to compute the
bound on the size of κ2, which is the number of iterations along π2, so in
this case we get κ1 < x+ 1 resulting in the correct bound max(0, x+ 1) on
the number of iterations along π1.

Let us stay at the example d). Assume we want to compute the bounds
for the whole loop. We know the bounds max(0, x+ 1) for π1 and 1 for π2,
but we are not able to get a clause of the form κ1 + κ2 < e. Because in every
iteration of the loop we iterate along π1 or π2, we can infer the bound for it
by adding the bounds for π1 and π2 together, getting max(0, x + 2). Thus
during the computation of bounds B for Π, we can compute the bounds B′

for Π′ ⊂ Π and B′′ for Π′′ ⊂ Π such that Π′ ∪Π′′ = Π,Π′ ∩Π′′ = ∅ and insert
all ρ′ + ρ′′ such that ρ′ ∈ B′, ρ′′ ∈ B′′ into B.

Another issue are path counters multiplied by variables or other path
counters, like in the example e), where the value of x after κ1 iterations is
x − k · κ1. Thus the number of the loop iterations is computed using the
condition x − k · κ1 > 0 ≡ k · κ1 < x. If k is positive, the result is ⌈x

k
⌉, but
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a)
i:=0;

while(i<n)

i:=i+1;

b)
i:=0;

while(i<n)

if(nondet())

i:=i+1;

else

i:=i+2;

c)
i:=0;

j:=n;

while(i<n)

i:=i+1;

j:=j-1;

while (j>0)

j:=j-1;

Figure 2.12: Examples for the computation of memory after a loop.

the program may not terminate if k is negative or zero. Note that we would
have to extend our definition of bounds to expressions like ite(ψ, e1,∞).

The last special case is depicted in the example f). Let π1 be the path
with the if branch and π2 the other one. We can get the correct bound 5 for
π1, but from the condition κ1+2 ·κ2 < 10 ∧ κ1+2 ·κ2 ≥ 5 we infer just the
bound ⌈102 ⌉ = 5 for π2. We get the correct bound ⌈10−5

2 ⌉ = 3 by including
the lower bound 5 on the number of iterations along π1.

2.3.6 Computation of a Memory After a Loop

A challenging task is to infer the correct symbolic values without path coun-
ters for variables after a loop. Until now, we kept only values for variables
that did not change inside the loop. All other values contain a path counter
(see Subsection 2.3.3). The problem is that if we do not know the precise
number of iterations of a loop path, we cannot usually substitute any ex-
pression for its path counter.

Look at the example a) from Figure 2.12. The value of variable i after κ1
iterations is κ1. We can infer the upper bound max(0, n) for the loop, which
is also the lower bound for it. Therefore we can assign the value max(0, n)

to i after the loop. The situation becomes more complicated in the example
b). Let us keep aside the problem of extending our approach to function
calls. Let π1 be the loop path following the if branch and π2 the other one.
The value of variable i after κ1 iterations of π1 and κ2 iterations of π2 is
κ1 + 2 · κ2. The precise value of i after the loop is tricky, because it can be
both n or n + 1. A special reasoning must be added to our method to infer
that the lower bound on the size of i after the loop is max(0, n) and the
upper bound is max(0, n + 1). The symbolic execution does not work on
intervals, but we can overcome this problem by assigning i a new value il
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and add the condition il ≤ max(0, n + 1) ∧ il ≥ max(0, n) into the path
condition after the loop.

So as for the variables with values of the form ite(
∑

i∈M κi > 0, e1, e2),
we have to infer the sufficient condition ψ for iterating along Π = {πi |

i ∈ M} at least once and a sufficient condition ψ′ for iterating along Π zero
times. Then the resulting value is ite(ψ, e1, ite(ψ′, e2, ⋆)). The situation gets
even more complicated if e1 or e2 contains a path counter. However, if we
include the input path condition ϕin, with which we entered the loop, and
it holds that ϕin =⇒ ψ (resp.ϕin =⇒ ¬ψ), then all expressions of the form
ite(ψ, e1, e2) can be replaced by e1 (resp. e2).

We can utilize the knowledge of variable values after a loop in cases of
two subsequent loops, where the number of iterations of the second one
depends on the size of a variable changed in the first one. Consider the ex-
ample c) from Figure 2.12. We would not be able to infer the correct bound
0 for the second loop, if we did not compute the value of j after the first
loop.

As we have seen, there are many ways to improve precision of
our approach. We have implemented the algorithm in a prototype tool
Looperman. Some of the extra methods proposed in the last two sub-
sections are included in our implementation. The results of evaluating
Looperman on a set of scientific benchmarks are described in Chapter 4.
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3 Alternative Approaches

Loop bound analysis is currently an active research area. However, much of
the work concerns only with termination proving and all loop bounds are
just side products of the analysis. No requirement on precision gives here
an opportunity to a greater robustness. There are many termination provers
in the literature, such as T2 [4], which replaced the original TERMINATOR
project, ARMC [16] (also built upon the idea of TERMINATOR), APROVE [10]
(the base for the tool KoAT described below), or KITTeL [9].

Loopus [17] came from the idea of the former tool SPEED [11]. It uses
lexicographic combination of ranking functions to infer symbolic bounds
for nested loops. Also the tools Rank [2] and KoAT [5] are based on the
principle of combination of ranking functions, but KoAT adds methods for
computation of the sizes of variables after loops. The tool ABC [3] com-
putes symbolic bounds for nested loops, but it does not treat sequences
of loops. PUBS [1], implemented by the research group COSTA, computes
symbolic bounds via recurrence relations and uses an input generated from
Java bytecode. r-TuBound [14] uses recurrence solving to compute precise
bounds even for nested loops, but it is restricted only to some specific loop
patterns. There are also some tools based on the abstract interpretation on
the interval domain, such as SWEET [8] or AiT [6], but they do not compute
symbolic bounds.

Because loop bound computation is a part of the worst case execution
time analysis (WCET), it is possible to follow the research via the WCET
community [12].

In the next two sections, I explain in more detail methods of two of
the tools, Loopus and KoAT, which are similar to our approach and which
show good results on the benchmark set used for the evaluation.

3.1 Loopus

Loopus is a tool developed at TU Vienna. It is the first tool, which can
derive amortized complexity of the analysed programs. It is implemented
as an intraprocedural analysis based on the LLVM [15] compiler frame-
work. In the next subsections, we explain informally the basic idea of the
approach. For more details, see [17] or [19].
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void main(uint n) {

int a = n, b = n;

l1: while (a > 0) {

a--;

l2: for (int i = n-1; i > 0; i--)

l3: if (b > 0 && nondet()) {

a++; b--;

} } }

Figure 3.1: Example for Loopus written in C.

3.1.1 Basic Idea

The program works in four separate steps:

1. program abstraction to Vector Addition System with States (VASS)
2. control flow abstraction
3. ranking function generation
4. bound computation

Let us show all of them on the example from Figure 3.1: We want to com-
pute upper bounds on the number of iterations of both loops. The example
is challenging in the way that the variable a important for termination of
the outer loop is altered in the inner loop. Particularly, the number of execu-
tions of the if branch in the inner loop influences the number of iterations
of the outer loop.

1. Program Abstraction: First, the analysis abstracts the program to the
Vector Addition System with States (VASS). It is a directed graph similar
to the flowgraph of a program (see 2.1), but the transition labels represent
the increase of program variables. Every transition label can be seen as a
conjunction of formulas of the form x′ ≤ x+ d, meaning that the transition
increases the variable x by at most d, where d is an integer or a symbol for
some constant. Note that x (resp. x′) denotes the value of the variable x

before (resp. after) the transition. The VASS of our example is depicted in
Figure 3.2. For the exact definition, see [17].

An important property of the VASS is that all variables are non-negative.
Hence, for example, if a transition decrements a variable x by 1 and the
value of x is already 0, we cannot proceed the execution through that tran-
sition. Some heuristics used for transforming programs in order to satisfy
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begin

l1

a=n
b=n
i=0

l2

a′≤a−1
τ1 ≡ b′≤b

i′≤i+n−1
Id

l3

Id
a′≤a+1

τ3 ≡ b′≤b−1
i′≤i−1

a′≤a
τ2 ≡ b′≤b

i′≤i−1

end
Id

Figure 3.2: VASS for the example from Figure 3.1
.

this condition are proposed in [19].
Assuming that all variables are non-negative, we can use the following

rules for rewriting program statements into the VASS transitions:

x = x+ c  x′ ≤ x+ c , for c constant
x = c  x′ ≤ x+ c , for c constant
x = y  x′ ≤ x+ b , if b is an upper bound on the size of y

The constant c can be an integer or some symbol for a variable, that stays
unchanged (like the variable n from our example).

2. Control Flow Abstraction: The second phase presents a new abstraction
for bound analysis and it is the core of the approach. Part of the VASS,
which corresponds to nested loops, is rewritten into a transition system
with just one location and several looping transitions. Basically it means
that we abstract from the control flow (inner and outer loop hierarchy) and
make just one big loop with several independent paths. For that we need
to specify the notion of loop path. Let us follow the terminology of Sec-
tion 2.1 (one could notice, that the definition corresponds to our notion of
loop path).

Definition 3.1. A loop path is a path, which

1. starts and ends at some loop entry l,
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2. visits only locations inside the loop of l,

3. does not visit any location twice except for the start and end location.

In our example from Figure 3.2, we can see that l1
τ1−→ l2

Id
−→ l1 is a loop

path, as well as l2
Id
−→ l3

τ2−→ l2. However l2
Id
−→ l1

τ1−→ l2 is not a loop path,
because it starts at l2, which is not the loop entry for the loop containing
l1 (note, that we work only with reducible graphs, which means, that each

loop has a unique entry). The path l1
τ1−→ l2

Id
−→ l3

τ3−→ l2
Id
−→ l1 is not a loop

path, because it visits the location l2 twice and l2 is not its start and end
location.

There are two basic principles for Control Flow Abstraction:

1. We replace every loop path with one transition denoting the overall
effect of the path.

2. We merge all nested loops with their parent loop.

The abstraction steps are shown in Figure 3.3: The first picture is the VASS
of our example before the abstraction. In the second picture, the loop path

l2
Id
−→ l3

τ2−→ l2 is replaced with the transition ρ2 with the effect of τ2 after
Id (which is the same as τ2). Similarly, we get the transition ρ3 in the third

picture. When we proceed the loop path l1
τ1−→ l2

Id
−→ l1, we see that it

contains a nested loop entry l2 and thus we merge l1 with l2 and replace the
aforementioned loop path with ρ1 at the same time. The result for the loop
in our example is the following set of transitions:

ρ1 ≡ a
′ ≤ a− 1 ∧ b′ ≤ b ∧ i′ ≤ i+ n− 1

ρ2 ≡ a
′ ≤ a ∧ b′ ≤ b ∧ i′ ≤ i− 1

ρ3 ≡ a
′ ≤ a+ 1 ∧ b′ ≤ b− 1 ∧ i′ ≤ i− 1

Let us show the idea of the abstraction on a path in the original VASS:

Let π = l1
τ1−→ l2

Id
−→ l3

τ2−→ l2
Id
−→ l3

τ3−→ l2
Id
−→ l1. It consists of the loop path

π1 = l1
τ1−→ l2

Id
−→ l1 divided into two parts (one at the beginning and one

at the end) and loop paths π2 = l2
Id
−→ l3

τ2−→ l2 and π3 = l2
Id
−→ l3

τ3−→ l2
inside. In the abstracted model, passing π can be modelled as a sequence
of transitions ρ1 ◦ ρ2 ◦ ρ3 (see picture 4. in Figure 3.3), which is the same as

passing l1
τ1−→ l2

Id
−→ l1 after l2

Id
−→ l3

τ2−→ l2 after l2
Id
−→ l3

τ3−→ l2. Because
we use only the commutative ’+’ operator on invariant expressions, we can
rearrange the transitions of π in any order. Thus the simulation is correct.
For the proof, see [17].
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1.
begin

l1

a=n
b=n
i=0

l2

a′≤a−1
τ1 ≡ b′≤b

i′≤i+n−1
Id

l3

Id

a′≤a+1
τ3 ≡ b′≤b−1

i′≤i−1

a′≤a
τ2 ≡ b′≤b

i′≤i−1

end
Id

3.
begin

l1

a=n
b=n
i=0

l2

a′≤a−1
τ1 ≡ b′≤b

i′≤i+n−1
Id

a′≤a
ρ2 ≡ b′≤b

i′≤i−1

a′≤a+1
ρ3 ≡ b′≤b−1

i′≤i−1

end
Id

2.
begin

l1

a=n
b=n
i=0

l2

a′≤a−1
τ1 ≡ b′≤b

i′≤i+n−1
Id

a′≤a
ρ2 ≡ b′≤b

i′≤i−1

l3

Id

a′≤a+1
τ3 ≡ b′≤b−1

i′≤i−1

end
Id

4.
begin

l1

a=n
b=n
i=0

a′≤a
ρ2 ≡ b′≤b

i′≤i−1

a′≤a+1
ρ3 ≡ b′≤b−1

i′≤i−1

a′≤a−1
ρ1 ≡ b′≤b

i′≤i+n−1

end
Id

Figure 3.3: Control Flow Abstraction of the VASS from Figure 3.2.

3. Ranking Function Generation: Before the bound computation, transi-
tions from the previous step are ordered according to their ranking func-
tions from the definition below.

Definition 3.2. We call a variable x a local ranking function for a transition ρ,

if ρ |= x′ < x.

A tuple of variables l = (y1, y2, · · · , yk) is a lexicographic ranking function
for a transition system T if and only if for each transition ρ in T there is a ranking

function component yi that is a local ranking function for ρ and ρ |= y′j ≤ yj for

all j < i.
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The algorithm first determines the local ranking functions of the transi-
tions. For our example it is:

ρ1 ≡ a
′ ≤ a− 1 ∧ b′ ≤ b ∧ i′ ≤ i+ n− 1 a

ρ2 ≡ a
′ ≤ a ∧ b′ ≤ b ∧ i′ ≤ i− 1 i

ρ3 ≡ a
′ ≤ a+ 1 ∧ b′ ≤ b− 1 ∧ i′ ≤ i− 1 b, i

For the next step, the algorithm chooses non-deterministically exactly
one local ranking function for each transition. We can see that the transition
ρ3 has two local ranking functions, so let us choose b for now. We build the
lexicographic ranking function from left to right. On the leftmost position,
there must be a variable (local ranking function), that is not increased by
any transition. For our example it can be only the local ranking function b

for the transition ρ3. We cannot put i on the second position and a on the
third one, because the transition ρ1, the local ranking of which would be the
third component a, would increase the second component i. Thus we get
the lexicographic ranking function (b, a, i).

Note that if we chose i as a local ranking function for ρ3, there would be
only two candidates for lexicographic ranking functions: (a, i) and (i, a).
Because ρ3 with the local ranking function i increases a and ρ1 with the
local ranking function a increases i, neither of those two candidates is a
lexicographic ranking function. In such cases, we say there is a cyclic de-
pendency among the transitions.

4. Bound Computation: We compute the overall bounds for the transi-
tions in the order arising from the previous step. For our example we start
with ρ3. We know that its local ranking function b is decreased by one
each time ρ3 is taken and stays unchanged otherwise, which implies that
Bound(ρ3) = InitialValue(b) = n. Transition ρ1 decreases its local rank-
ing function a by one and only ρ3 increases it by one. However, we already
know that ρ3 can be taken at most n times, so altogether it can increase
a only by n. So Bound(ρ1) = InitialValue(a) + Bound(ρ3) = 2 · n.
Finally, ρ2 decreases its local ranking function i by one and only ρ1 in-
creases it by n−1 (we must assume that n−1 is non-negative), which gives
Bound(ρ2) = InitialValue(i) + Bound(ρ1) · (n− 1) = 2 · n · (n− 1). Let
us return back to Figure 3.1: the if branch of the inner loop corresponds to
the transition ρ3 and the else branch corresponds to ρ2, so the number of
iterations of the inner loop is bounded from above by the sum of bounds
for ρ2 and ρ3, which is 2 · n · (n− 1) + n. In the same way we get the bound
2n on the number of iterations of the outer loop.
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From the bound for ρ3, we can see how the amortized complexity is
achieved. Despite there can be O(n) iterations of ρ3 during one of O(n)

iterations of ρ1, the overall bound for ρ3 is in O(n), not O(n2).
There are some rules to improve the precision of the bound computa-

tion. The first one is simple: when the local ranking function is decremented
by some k > 1, than the resulting bound is divided by k, like in while

(i>0) i:=i-2; The second rule is more complicated. Consider the fol-
lowing program:
x:=n;

while (x>0)

if (?)

t:=t+1;

x:=x-1;

The second phase of the analysis returns transitions ρ1 = x′ ≤ x −

1 ∧ t′ ≤ t + 1 and ρ1 = x′ ≤ x − 1 ∧ t′ ≤ t. The bound n is com-
puted for each one of them, but the bound for the whole loop is n, not
n + n. To avoid such unnecessary over-approximations, the transitions are
merged, when they have the same local ranking functions and decrement
them by the same amount. In this case, we would get just one transition
ρ = x′ ≤ x − 1 ∧ t′ ≤ t + 1 (all the other variables are incremented
by the maximum value of the two merged transitions). However, this im-
provement does not work on our main example from Figure 3.1, because
the local ranking functions of ρ3 and ρ2 are different. The bound for the in-
ner loop is established as 2 ·n · (n− 1)+n while it is in fact just 2 ·n · (n− 1)

(i.e. the maximum, not sum of the two bounds). Methods from [11] could
be used to solve this problem.

3.1.2 Limitations

Despite the tool shows good results on the benchmarks, it has still some
limitations. The first problem is in the program transformation to VASS.
Instructions like x:=x/2 are problematic, because they cannot be easily
transformed into the arithmetic with just ’+’ operator (in some special cases,
taking log(x) except of x would be enough). Instructions of the form x:=y,
where the algorithm fails to find an upper bound on the size of y are prob-
lematic too. There are also some technical issues, like bitwise operations,
external functions, function pointers etc., which are not yet supported. The
algorithm can also fail to transform the program into the VASS, where all
variables must be non-negative. Other problems can arise during the rank-
ing function generation. In some cases, the tool either does not find a local
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void main(int x){

y=0;

while(x>0){

x--;

y=y+x;

}

while(y>0){

for(int z=y-1;z>0;z--);

y--;

}

}

Figure 3.4: Example for KoAT written in C.

ranking function for some transition, or there is a cyclic dependency among
the transitions. However, the latter case appears very sparsely in practice.

3.2 KoAT

KoAT is a prototype tool built on top of a larger APROVE project [10] from
RWTH Aachen University. It uses a modular approach with combining size
and time analysis to infer the asymptotic complexity of an input program.
It can also be used to obtain symbolic loop bounds, but due to the principle
of variable size analysis, it usually greatly over-approximates the complex-
ity. The tool KITTeL [9] can translate C programs into transition rewrite
systems, which are used as input for KoAT. Like in the previous section, I
provide just an informal explanation of how the tool works. For more de-
tails, see [5].

3.2.1 Basic Idea

We will work with the program from Figure 3.4. It has two subsequent
loops, where the number of iterations of the second one depends on the
number of iterations of the first one. If we omitted the first loop, the asymp-
totic complexity would be O(y2). However after the first loop, the size of
y is asymptotically quadratic with respect to x. Hence the overall asymp-
totic complexity is O(x4). This example is challenging in two ways: (1) The
number of iterations of the first loop influences the size of the variable y,
which is crucial for the number of iterations of the second loop. So we need
to combine size and time bound analysis to infer a correct bound for the
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l0

l1

t0 : y:=0

t1 : if(x>0)

x:=x-1

y:=y+x

l2

t2 : if(x<=0)

l3

t3 : if(y>0)

z:=y-1

t5 : if(z<=0)

if(y>0)

y:=y-1

t4 : if(z>0)

if(y>0)

z:=z-1

Figure 3.5: Transition rewrite system for the example from Figure 3.4.

second loop. (2) We must handle non-trivial increments of variables, such
as y:=y+x in the first loop.

First, we transform the input program into the transition rewrite system
(see Figure 3.5). As before, nodes are called locations and labelled edges
are called transitions. Compared to our definition of a flowgraph, here the
transitions can represent a condition and an assignment at once (which does
not make any principal difference).

The algorithm iteratively switches between time bound analysis and
size bound analysis. Let us fix the set of variables V = {v1, . . . , vn}. We
define the set of (upper) bounds C as weakly monotonic functions Zn → N0

and ?, where ?(~m) = ω for all ~m ∈ Z
n. We have ω > n for all n ∈ N0.

Here the condition on the weak monotonicity means that an increase of the
absolute value of any input variable implies an increase of the bound.

There are two important functions for time and size bound analysis:

• runtime approximation R : T → C

• size approximation S : RV → C

Here T is the set of transitions and RV is the set of result variables defined

45



3. ALTERNATIVE APPROACHES

byRV = {(t, v′) | t ∈ T , v ∈ V}. Roughly speaking, if the analysed program
is executed with input m1, . . . ,mn,R(t) = f means, that transition t can be
executed at most f(m1, . . . ,mn) times during the whole program run and
S(t, x′) = g means, that the size of variable x after every execution of t is at
most g(m1, . . . ,mn). On the example, we explain the runtime and size parts
of the analysis separately.

Computing Runtime Bounds: Runtime bounds are computed with the use
of polynomial ranking functions (PRF). A PRF Pol assigns an integer poly-
nomial Pol(l) over the program variables to each location l such that during
any execution of any transition t = (l1, τ, l2), at least one of the following
holds:

1. t does not increase the PRF, i.e. τ ⇒ Pol(l1) ≥ Pol(l2)

2. t decreases the PRF and the PRF is always positive before the execu-
tion of t, i.e. τ ⇒ Pol(l1) > Pol(l2) ∧ τ ⇒ Pol(l1) ≥ 1.

Additionally, the set T≻ of transitions satisfying the second property must
be non-empty.

The constraints on a PRF Pol implies, that the transitions from T≻ can
be used only a limited number of times, because they decrease the measure,
which is always positive before their execution, and no other transition in-
creases it. Suppose l0 is the start location. If the program is executed with in-
put variable sizes m1, . . . ,mn and (Pol(l0))(m1, . . . ,mn) ≥ 0, no transition
from t ∈ T≻ can be used more often than (Pol(l0))(m1, . . . ,mn) times. Con-
sequently max(0,Pol(l0)) is the runtime bound for t. In the example from
Figure 3.5 we could use PRF Pol with Pol(l) = x for all locations l. We can
see that t1 decreases Pol and it is executed only if x>0, so it satisfies the se-
cond property and T≻ = {t1}. We can see that max(0,Pol(l0)) = max(0, x)

is really the bound for t1. On the other hand, we can see that t5 decreases y,
but if we chose Pol ′(l) = y for all locations l, transition t1 could increase it
and thus Pol ′ is not a PRF.

One can see that we cannot simply set R(t) = Pol(l0) for some transi-
tion t. For example, if Pol(l0) = −x, the bound would be negative for posi-
tive value of x. Neither a PRF max(0, x−y) can be used, because it does not
satisfy the condition on the weak monotonicity. Therefore the authors intro-
duce the function [Pol(l)], which results from Pol(l) by replacing all vari-
ables and coefficients by their absolute values (e.g., [x− 3 · y] = |x|+3 · |y|).
Now we can safely setR(t) = [Pol(l0)].

The basic methods for finding PRFs only succeed on simple examples.
It often fails for programs with non-linear runtime. The problem is that the
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t0 t1 t2 t3 t4 t5
R0 ? ? ? ? ? ?

R1 1 ? ? ? ? ?

R2 1 ? 1 ? ? ?

R3 1 |x| 1 ? ? ?

R4 1 |x| 1 ? ? |x|2

R5 1 |x| 1 1 + |x|2 ? |x|2

R6 1 |x| 1 1 + |x|2 |x|4 + |x|2 |x|2

Figure 3.6: Runtime approximations computed during the analysis of the
example from Figure 3.5.

PRF considers all transitions at once. Therefore KoAT uses a new modular
technique that only considers isolated program parts T ′ ⊆ T . On our exam-
ple, we can see that if T ′ = {t3, t4, t5}, we can use Pol(l) = y for all locations
l as a PRF.

The algorithm starts with the runtime bound ? for all transitions. It ite-
ratively improves the runtime approximation and if no more PRF is found,
it deletes transitions, which do not have bound ? and continues the analysis
on the rest.

For our example we start with T0 = T and R0(t) =? for all t. The run-
time approximations computed during the analysis are stated in Figure 3.6.
The algorithm finds a PRF Pol0(l0) = 1 and Pol0(l) = 0 for all other loca-
tions l. T≻ = {t0}, hence R1(t0) = [Pol0(l0)] = 1 and R1(t) = R0(t) other-
wise. Another PRF is Pol1(l0) = Pol1(l1) = 1,Pol1(l2) = Pol1(l3) = 0 with
T≻ = {t2}, which results into R2(t2) = [Pol1(l0)] = 1 and R2(t) = R1(t)

otherwise. The last PRF for T0 is Pol3(l) = x for all l, where T≻ = {t1}. Thus
R3(t1) = [Pol3(l0)] = |x| andR3(t) = R1(t) otherwise.

At this moment, there is no more trivial (linear or constant) polynomial
ranking function, which could be found, so we continue with a submodule
T1 = {t3, t4, t5}. The algorithm finds PRF Pol4(l2) = Pol4(l3) = y with
T≻ = {t5}. Now Pol4(l0) is not defined, so we can infer only a local bound
for the module T1. The only entry to T1 is l2, through transition t2. So the
local bound for t5 is [Pol4(l2)] = |y|. At this moment, we have S(t2, y′) = |x|2

from the size part of the analysis (explained later). Moreover, we know that
we can visit T1 only through t2 and t2 can be executed only R3(t2) = 1

times. The overall runtime approximation for t5 is then R4(t5) = 1 · |x|2 =

|x|2. Again,R4(t) = R3(t) for the other transitions.
We continue with T2 = {t3, t4}. The entry location is again l2. We find
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PRF Pol5(l2) = 1,Pol5(l3) = 0 with T≻ = {t3}. Hence the local runtime
bound for t3 is 1. It does not contain any variable, so we do not have to
consider size approximations. However, this time T2 is reachable through
two transitions, t2 and t5. Because R4(t2) = 1 and R4(t5) = |x|2, we infer
R5(t3) = (1 + |x|2) · 1 = 1 + |x|2 and R5(t) = R4(t) for the rest. Note that
if there was more than one entry location, we would compute the runtime
approximations separately and sum them in the end.

We cannot use PRF Pol5(l2) = Pol5(l3) = z for T2, because it is not
clear, whether t3 increments or decrements z. Hence, we have to work with
T3 = {t4} and Pol5(l3) = z with T≻ = {t4}. The entry is l3 via the transition
t3. The size approximation S(t3, z′) = x2 is available at the moment. Thus
the final runtime approximation isR6(t4) = R5(t3) · [Pol5(l3)[z/S(t3, z)]] =

(|x|2+1) · |x|2 = |x|4+ |x|2. As usual,R6(t) = R5(t) for the other transitions.
Because there are no more transitions with bound ?,R6 is the result runtime
approximation.

Computing Size Bounds: We could see that for a successful runtime anal-
ysis we sometimes need size bounds. To find them, we first infer local

size bounds Sl, that approximate the effect of a single transition on the
sizes of variables. More precisely, Sl(t, v′) describes how the size of the
post-variable v′ is related to the sizes of pre-variables of the transition
t. So in our example we have Sl(t1, y′) = |y| + |x|. The absolute values
here are again for the reason of weak monotonicity. We could also infer
Sl(t1, x

′) = max(|x| − 1, 0), but in this case we use a simpler expression
Sl(t1, x

′) = |x|, which is also a safe size approximation, because of the con-
dition x>0.

With the local size bounds for each result variable we proceed to the
next step, which is a construction of a result variable graph (RVG). Its nodes
are the result variables and there is an edge from a result variable (t1, v

′
1)

to (t2, v
′
2) if t1 can be used directly before t2 and the variable v1 appears in

the local size bound of Sl(t2, v′2). The RVG for our example is depicted in
Figure 3.7 (note that for better understanding, the nodes here are labelled
with Sl(t1, x′) ≥ (t1, x

′)). For example, the result variable (t1, y
′) has four

predecessors: (t0, y′) and (t0, x
′), because t0 can directly precede t1 (in some

program run) and both x and y appear in the local size bound |y|+ |x|, and
(t1, y

′) together with (t1, x
′), because t1 can also directly precede itself and

both x and y appear in the bound. Another interesting node is (t3, z
′). Its

local bound does not contain the variable z and thus it is connected only
to nodes with the variable y. As we can observe from the graph, the initial
value of z is thus unimportant for transitions t3, t4, and t5.
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|x| ≥ (t0, x
′) 0 ≥ (t0, y

′) |z| ≥ (t0, z
′)

|x| ≥ (t1, x
′) |y|+ |x| ≥ (t1, y

′) |z| ≥ (t1, z
′)

|x| ≥ (t2, x
′) |y| ≥ (t2, y

′) |z| ≥ (t2, z
′)

|x| ≥ (t3, x
′) |y| ≥ (t3, y

′) |y| ≥ (t3, z
′)

|x| ≥ (t4, x
′) |y| ≥ (t4, y

′) |z| ≥ (t4, z
′)

|x| ≥ (t5, x
′) |y| ≥ (t5, y

′) |z| ≥ (t5, z
′)

Figure 3.7: The RVG for the example from Figure 3.5.

After the construction of the RVG, we compute the global size bounds.
Each strongly connected component (SCC) represents a set of result vari-
ables, which may influence each other. Recall that SCC is a maximal sub-
graph with a path from each node to every other node. We call an SCC
trivial if it consists of only one node without a self-loop. We treat trivial
and non-trivial SCCs differently. The analysis starts with S(α) =? for ev-
ery result variable α. We assume that the start location is not a loop en-
try, so (t0, v

′) forms always a trivial SCC and its local bound is also the
global bound. Hence, for our example S(t0, x′) = |x|,S(t0, y

′) = 0 and
S(t0, z

′) = |z|. Consider another trivial SCC (t3, z
′). The local bound con-

tains only y, so we substitute it by the maximal possible value of y, which
can appear before executing the transition t3. From the RVG we see that
there are two incoming edges from the nodes with variable y: |t2, y′| and
|t5, y

′|. Thus to infer the global size bound for (t3, z
′), we need values

S(t2, y
′) and S(t5, y′), which we do not have yet. Hence we must proceed

first some of the non-trivial SCCs.

Each non-trivial SCC corresponds to a loop and thus each of its local
changes can be applied several times. We classify the result variables α from
the non-trivial SCC depending on their local size bounds to the following
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classes:

1. α is an "equality": α is not larger than its pre-variables or a constant.
2. α "adds a constant": some constant value is added to the variable in

each iteration.
3. α "adds variables": some other variable values are added to the vari-

able in each iteration.

So for our example, the result variables (t1, x′) and (t1, z
′) are in the "equal-

ity" class. Because t1 does not change their sizes, the global size bounds are
constrained only by the preceding transition t0. Thus S(t1, x′) = S(t0, x′) =
|x| and S(t1, z′) = S(t0, z′) = |z|.

The result variable (t1, y
′) is in the last class, as the value of variable x

is added to y in each iteration. From the runtime analysis we know that the
maximal number of executing the looping edge t1 is R(t1) = |x|. The max-
imal increase of y in each iteration is max(S(t0, x

′),S(t1, x
′)) = |x|. Hence,

the global size bound S(t1, y′) equals S(t0, y′)+|x|·|x| = 0+|x|2. Note that if
there was a cyclic dependency between (t1, x

′) and (t1, y
′), we would fail to

infer a size bound. An example of such a cyclic dependency between vari-
ables (taken from [5]) is while (z>0) { x:=x+y; y:=x; z:=z-1},
that increase the size of x exponentially. The global bounds for result vari-
ables from the second class are inferred analogically to the result variables
from the third class.

Let us continue with our example: (t2, x′), (t2, y′) and (t2, z
′) are triv-

ial SCC, so the global bounds are S(t2, x′) = max(S(t0, x
′),S(t1, x

′)) =

max(|x|, |x|) = |x|, S(t2, y′) = max(S(t0, y
′),S(t1, y

′)) = max(0, |x|2) =

|x|2 and S(t2, z′) = max(S(t0, z
′),S(t1, z

′)) = max(|z|, |z|) = |z|.
Next, we have SCC {(t3, x′), (t4, x′), (t5, x′)}. The method allows a cyclic

dependency between result variables with the same variable, like in this
case. Thus, we can find out that all result variables from this SCC are in the
first class and compute global size bounds S(t3, x′) = S(t4, x′) = S(t5, x′) =
S(t2, x

′) = |x|. In the same way we get S(t3, y′) = S(t4, y′) = S(t5, y′) = |x|2.
The only remaining nodes are the result variables with z. (t3, z′) forms a
trivial SCC, so its global bound is S(t3, x′) = max(S(t2, y

′),S|t5, y
′|) = |x|2.

(t4, z
′) forms a non-trivial SCC and it is in the first class. Thus S(t4, z′) =

S(t3, z
′) = |x|2. Finally, (t5, z′) forms a trivial SCC and thus S(t5, z′) =

max(S(t3, z
′),S(t4, z

′)) = |x|2.

The overall procedure combines the runtime and size analysis as long
as there is any improvement of the bounds. As each step improves the run-
time bounds, we can stop the procedure at any time and get correct bounds
(however, some of them may be ’?’).
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3. ALTERNATIVE APPROACHES

3.2.2 Limitations

One limitation is that the method only generates polynomial bounds. For
an exponential and logarithmic complexity bounds, ranking functions like
loga(v) could be added. Another limitation is that the method allows only
certain forms of local size bounds in non-trivial SCCs. For example, as-
signments like x:=2*x inside a loop are not currently handled, but the
procedure could be extended in this way too. The method also over-
approximates the sizes of variables, which are both incremented and decre-
mented in the same loop. The main problem is that we are restricted only
to weakly monotonic bounds, which causes big over-approximations (for
example, bounds like x − y are transformed into |x| + |y|). Due to all these
imprecisions, the approach sometimes infers bounds, that are asymptoti-
cally larger than necessary.
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4 Experimental Evaluation

4.1 Implementation

We have implemented our algorithm from Chapter 2 as a part of the sym-
bolic execution tool suite Bugst1, which can work with input programs in
LLVM format [15]. Our tool Looperman computes symbolic upper bounds
on the number of iterations of program loops as well as bounds on the num-
ber of executions of any program location. At the moment, it performs only
intraprocedural analysis. We use the Z3 SMT solver [7] for checking satis-
fiability of conditions and simplifying expressions. We have implemented
our own inequation solver for computing the bounds. A guide for running
the analysis on C programs is given in Appendix B.

4.2 Experimental Results

We have compared Looperman against the tools Loopus [17], KoAT [5],
PUBS [1], and Rank [2] on 199 benchmarks from the scientific benchmark
suite used to evaluate KoAT and Loopus.2 Because KoAT expects an in-
ternal representation of programs as input, we used a translation of these
benchmarks to C programs provided by the authors of Loopus.3 We ex-
cluded the benchmarks used to evaluate the tool T2 [4], because they are
specialized in termination proving rather than loop bound analysis. We also
excluded the functional RAML programs and programs with recursive func-
tion calls, because our tool does not support them. We took the evaluation
results for KoAT, PUBS, and Rank from the report about the tool KoAT.4 For
running the benchmarks on Loopus, we used the version of Loopus pro-
vided online by the authors.5 The results of evaluating the tools on the set
of 199 benchmarks are stated in Table 4.2. Because some of the tools do not
output loop bounds, we compared only asymptotic complexities inferred
by the tools (for example, we take the bound max(0, a2 + b − 1) as O(n2)).
Columns 2-5 state the number of programs, for which the respective tool

(2) found an asymptotically correct bound,
(3) failed to compute a bound,

1http://sourceforge.net/projects/bugst
2http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity
3http://forsyte.at/static/people/sinn/loopus/CAV14
4http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity/report.html
5http://forsyte.at/static/people/sinn/loopus
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4. EXPERIMENTAL EVALUATION

Correct Bound Failed Time-out Incorrect Bound

Looperman 104 95 8 0
Loopus 163 36 0 0
KoAT 140 57 22 2
PUBS 85 85 1 29
Rank 26 171 0 2

Table 4.1: Analysis results for the benchmark suite.

Looperman vs. F. / S. S. / F. S. / S. (better) S. (better) / S. S. / S. (same)

Loopus 61 2 8 0 94
KoAT 54 18 3 3 80
PUBS 28 47 2 3 52
Rank 10 88 0 0 16

Table 4.2: Detailed comparison against the other tools. (In the first row, "F."
stands for "failed" and "S." for "Succeeded" and the value for Looperman is
on the left of the slash.)

(4) did not complete the analysis within 60 seconds,
(5) inferred an asymptotically incorrect bound.

The last column shows that, except of Loopus, all of the other tools derived
at least one incorrect bound. Especially the tool PUBS showed itself unre-
liable for the loop bound analysis. This is in contrast with results from the
literature, where only the number of inferred bounds (correct or incorrect)
is measured.

Table 4.2 provides more detailed comparison of Looperman against the
other tools. The columns 2-6 state the number of programs, on which the
respective tool

(2) succeeded to compute a correct bound while Looperman failed,
(3) failed to compute a correct bound while Looperman succeeded,
(4) inferred asymptotically better result than Looperman,
(5) inferred asymptotically worse result than Looperman,
(6) inferred asymptotically the same result as Looperman.

The last three columns cover the cases, when both Looperman and the re-
spective tool succeeded to infer a correct bound within the time limit. We
can see from the table that no tool overrun Looperman on all benchmarks
(and vice versa).

To sum up the results, Looperman was significantly better than PUBS

and Rank, but it did not manage to infer more bounds than Loopus and
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4. EXPERIMENTAL EVALUATION

Correct Bound Failed Incorrect Bound

Looperman 191 120 0
Loopus 265 43 3

Table 4.3: Analysis results for the benchmark suite by means of the number
of bounded loops.

Loopus succeeded, Looperman failed 81
Loopus failed, Looperman succeeded 7

Both succeeded, Loopus asymptotically better 7
Both succeeded, Looperman asymptotically better 0

Both succeeded, asymptotically the same, Loopus more precise 2
Both succeeded, asymptotically the same, Looperman more precise 33

Both succeeded, the same bounds 142

Table 4.4: Detailed Comparison of Looperman against Loopus.

KoAT. However, as we can see in the next subsections, our tool provides
more precise results than Loopus in many cases and KoAT returns only
bounds for the whole program run, so unlike Looperman, it is practically
useful only for the asymptotic complexity. For the complete table of results,
see the electronic attachments described in Appendix A.

4.2.1 Detailed Comparison with Loopus

Loopus infers bounds for all loops separately, so we could compare it with
our tool on each loop from the benchmarks. The columns 2-4 in Table 4.2.1
state the number of loops, for which the respective tool:

(2) found an asymptotically correct bound,
(3) failed to compute a bound within the time limit,
(4) inferred an asymptotically incorrect bound.

As we can see from the table, Looperman was able to correctly bound
191 out of 311 loops contained in the benchmarks. Loopus inferred more
bounds, but three of them were incorrect. The reason why the tools show
better results than in Table 4.2 is that they could fail to find all loop bounds
for some program, but they were still able to bound some loops contained
in it.

Table 4.2.1 states more detailed comparison on the benchmark loops. It
shows that Loopus bounded many loops where Looperman failed. How-
ever, there is a large set of loops, for which both tools inferred asymptoti-
cally the same bounds, but our tool was more precise. Bubble Sort is a typi-
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4. EXPERIMENTAL EVALUATION

a)
while (x>0)

if (a>0)

a:=a-1;

else

a:=n;

x:=x-1;

b)
a:=n;

while (a>0)

while (n>0 && ?)

n:=n-1;

a:=a-1;

c)
while (x>0)

while (y<n)

y:=y+1;

while (y>0)

y:=y-1;

x:=x-1;

Figure 4.1: Some representative programs for the comparison of
Looperman against Loopus.

cal example of such programs. The reason why Looperman achieves more
precise bounds is the technique of computing bounds for nested loops as
a sum of arithmetic progression. Loopus would in this case just multiply
the bound for the outer loop with the maximum number of iterations of the
inner loop within one iteration of the outer loop.

Another advantage of Looperman is that it can infer more than one
bound for each loop. Thus on loops like while(x>0 && y>0){x:=x-1;

y:=y-1} it provides better result, because both max(0, x) and max(0, y)

are correct bounds for the loop. The reason why Loopus covers only one of
the bounds is that it chooses only one local ranking function for each transi-
tion. However, it is not a fundamental advantage of our approach, because
Loopus could be easily extended to provide the results for all possible se-
lections of local ranking functions.

The loop in Figure 4.1a) represents a typical situation, where Loopus

infers a bound, while Looperman fails. The reason is that we are not able to
compute the loop summary value for the variable a. Loopus, on the other
hand, first computes the local ranking functions a for the if branch and
x for the else branch, then it creates the lexicographic function (x, a) and
infers the bounds x for the else branch and x · n+ a for the if branch.

The situation where Loopus infers asymptotically more precise bound
is shown in Figure 4.1b). Loopus computes asymptotically linear bound
for the inner loop, while Looperman infers a quadratic bound. The reason
for that touches the functionalities, which are not covered in the basic al-
gorithm (however, they are proposed in Subsection 2.3.6): the value of the
variable n after each iteration of the outer loop is not known, but it cannot
be more than n, so it is set to a new symbol nl with a constraint nl ≤ n. Thus
Looperman over-approximates the bound nl for the inner loop to n in ev-
ery iteration of the outer loop, which results in the asymptotically quadratic

56



4. EXPERIMENTAL EVALUATION

a)
while (x>0 && t>0)

x:=x-t;

b)
while (x>y)

x:=x-1;

Figure 4.2: Some representative programs for the comparison of
Looperman against KoAT.

bound with respect to n.
Figure 4.1c) represents a program, where Looperman succeeds to find a

bound, while Loopus fails. Looperman infers that the value of the variable
y is n after the first loop and 0 after the second (as a result of the extra func-
tionalities proposed in Subsection 2.3.6) and thus it can compute bounds for
both inner loops. On the other hand, Loopus merges the two inner loops
and loses the information that the first loop precedes the second one. More
precisely, it gains two transitions with a cyclic dependency among them, so
it cannot infer any bound for them.

To sum up the results, Loopus is more scalable than Looperman, but it
provides less precise results on a considerably large set of loops. Moreover
unlike our tool, Loopus does not support computation of bounds on the
number of visits of any given program location.

4.2.2 Detailed Comparison with KoAT

A big disadvantage of KoAT is that it does not output bounds for each
loop separately. Thus we cannot provide the detailed comparison on loops,
like in the previous subsection. However, an extension to compute bounds
for each loop could easily be implemented. Let us show the general cases,
where one tool overruns the other:

When analysing the program in Figure 4.2a), Looperman cannot infer
any bound from the condition x − t · κ1 > 0. An extension to cope with
programs of this type is left for future research. On the other hand, KoAT
assigns the polynomial ranking function x to each location. Let t be the tran-
sition corresponding to the instruction x:=x-t. It decreases the polynomial
ranking function and x ≥ 1 holds every time before t is executed and thus
the runtime bound |x| is inferred for t. This runtime bound is also an upper
bound for the number of the loop iterations. At the same moment, this ex-
ample shows the unnecessary over-approximations in KoAT, because if the
initial value of x is negative, the number of loop iterations is 0, not |x|.

Figure 4.2b) shows another source of the over-approximations. KoAT
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4. EXPERIMENTAL EVALUATION

Type 1 2 3 4 5 6 7 8 9 X

Count 10 4 6 11 5 1 3 10 8 141

Table 4.5: Number of recognized types of failure on the benchmarks.

finds the correct polynomial ranking function Pol = x − y, but it sets the
bound to [Pol ] = |x|+ |y|. Looperman, on the other hand, infers the correct
bound max(0, x− y).6

4.3 Observations and Future Work

After closer examination of the benchmarks on which our tool failed, we
have classified them by the reason of failure to ten classes. A representative
for each of the first eight types is given in Figure 4.3. The type for each par-
ticular benchmark on which Looperman failed, is stated in the complete ta-
ble of results (see Appendix A). The following overview briefly introduces
all the types and suggests the particular idea for future work.

Type 1: Some inequation during the bound computation is linear with re-
spect to all path counters, but it contains a path counter multiplied by
a variable. During the analysis of the loop in Figure 4.3a), Looperman
derives the inequation x − t · κ1 > 0, but it cannot infer bounds from
inequations containing path counters multiplied by variables. A pos-
sible solution is proposed in Subsection 2.3.5.

Type 2: Some inequation during the bound computation is not linear with
respect to some path counter. During the analysis of the loop in Fig-
ure 4.3b), Looperman infers the inequation (x − κ1) · (y − κ1) > 0.
The solution is in improving our inequation solver for the procedure
ComputeBounds (Subsection 2.3.5) or connecting our algorithm to an
external one.

Type 3: One variable is incremented by a value of another variable, which
changes in each iteration. We can see in the representative program
that the value of x is asymptotically quadratic with respect to y af-
ter the loop. The problem could be solved by extending the pro-
cedure ComputeSummary (Subsection 2.3.3), but only some special
cases could be covered, like in Figure 4.3c), where there is a linear
growth of y.

6Do not take into account the different notation for initial values of variables, like x in
Looperman and x in KoAT.
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4. EXPERIMENTAL EVALUATION

a) Type 1:
while (x>0)

x:=x-t;

c) Type 3:
y:=0;

x:=0;

while(x<n)

y:=y+1;

x:=x+y;

e) Type 5:
while (x>0)

if (a>0)

a:=a-1;

else

a:=n;

x:=x-1;

g) Type 7:
while(x>0 && x<n)

if (a>0)

x:=x+1;

a:=a-1;

else

x:=x-1;

b) Type 2:
while (x*y>0)

x:=x-1;

y:=y-1;

d) Type 4:
x:=1;

while (x<n)

x:=2*x;

f) Type 6:
while(x>0 && x<n)

if (a>0)

x:=x+1;

else

x:=x-1;

h) Type 8:
b:=0;

c:=0;

while (c<n)

tmp:=c;

c:=b+1;

b:=tmp;

Figure 4.3: Representative programs for the types of failure.
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4. EXPERIMENTAL EVALUATION

Type 4: There is an exponential growth of some variable in the loop. As
before, the problem requires an extension of the loop summary com-
putation.

Type 5: There is a loop with two loop paths π1 and π2. Looperman is not
able to infer any bound for the loop, because it considers the effect
of iterating along both loop paths at once when computing the loop
summary. However, we could infer a bound ρ1 for the number of iter-
ations solely on π1 (without any inference of π2), as well as ρ2 for the
iterations solely on π2. This type covers the cases where it holds that
the resulting bound is ρ1 · ρ2. The representative example is identical
to the example in Figure 4.1c). This type, as well as the types 6 and 7,
requires a different approach to bound computation. One of the pos-
sible solutions is proposed in the article Reachability Bound Problem

[11].

Type 6: This type is similar to type 5, but the difference is that the resulting
bound is the maximum of ρ1 and ρ2 (not a multiple). In Figure 4.3f)
either the if branch is executed in each iteration of the loop and the
else branch is never visited, or the other way round.

Type 7: There is a loop with two loop paths and the first n iterations follow
only one path, while the remaining ones follow only the second.

Type 8: This type covers some unusual and interesting programs, where
the loop typically requires an ad hoc approach. We can see in Figure
4.3i) that the variable c is incremented by 1 every second iteration. We
would get this information, if we computed the effect of two subse-
quent iterations at once. There is no weighty reason to implement any
extension to cover these programs, because they are very rare.

Type 9: Looperman was not able to compute the bounds before time-out.
This problem comes when the input C program contains a lot of
branches, because our algorithm is exponential with respect to the
branching count. Moreover, the LLVM compiler increases the number
of branches even more, but many of them are infeasible. Some heuris-
tics and refining the input could overcome the problem in many cases.

Type X: This type covers programs, which we were not able to classify to
the previous types and for which we see no simple way of extending
our tool.
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4. EXPERIMENTAL EVALUATION

Table 4.3 states the number of recognized occurrences of each of the
types of failure in the benchmarks. From the types, the best candidates for
future extensions are 1, 4, and 9, because they are easy to cope with and fre-
quent at the same time. On the other hand, dealing with some of the loops
of types 3, 8 or X could be a challenging research topic for the future.
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5 Conclusion

We have presented a new approach to symbolic loop bound computation,
which is based on the symbolic execution. The description of the algorithm
in Chapter 2 is the core of this thesis. We have implemented the algorithm
in a prototype tool Looperman built upon the tool suite Bugst. The ex-
perimental results given in Chapter 4 show that our tool is less robust than
two of the four tools used for the comparison, but it provides more precise
results in many cases. Moreover, unlike the others, it supports computing
bounds on the number of visits of any given program location.

An important part of the thesis is also the description of two alternative
approaches in Chapter 3. They are implemented in the tools that proved the
best results in the experimental evaluation: Loopus and KoAT. Introduc-
tion of these algorithms allowed us to provide more detailed comparison
of Looperman against both of the tools. It may also be an inspiration for
eventual combination of the techniques.

In the electronic attachments, we provide the tool together with all com-
ponents needed to run it, the set of benchmarks we used for evaluation, and
the detailed table of results on those benchmarks. All the attachments are
described in Appendix A and B.

We believe this thesis brings new ideas to the area of symbolic loop
bound analysis. We hope that it will bring an inspiration for future research
and that one day tools deriving complexity in terms of symbolic bounds
will be both robust and precise at the same time.
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A Electronic Attachments

There are three folders in the attachment of this thesis:

Benchmarks: This folder contains all the benchmarks used to evalu-
ate our tool as well as the complete table of results "Benchmark

Comparison.xlsx"1. There are several rows for each benchmark.
The first one, written in bold font, contains the name of the bench-
mark, the number of loops the benchmark contains, the number of
loops, which Looperman successfully bounded, and in each of the
next columns, the asymptotic complexity inferred by the respective
tool or the symbol "F" standing for "Failed" or "T/O" for time-out. In
the next rows, there are the results of Looperman and Loopus on the
respective loop (the loops are ordered by the lines, on which their loop
entries appear). For Looperman, there are also added the types of er-
rors (see Section 4.3). In the whole table, red colour denotes incorrect
bounds, green (resp. brown) colour means that Looperman inferred
a more precise (resp. less precise) bound than Loopus.

Bugst: This folder contains the source code of Bugst. The part correspond-
ing to Looperman is in subfolders "bounds" and "tools/looperman".

Looperman: This folder contains everything needed to run Looperman on
Windows (tested on Windows 7 and Windows 8). The manual is given
in Appendix B.

1The folder contains the same table also in .csv and .xml format.
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B Running Looperman on Windows

Preparing the Input: The input for Looperman is a program in lonka for-
mat, which is a special flowgraph representation of programs used within
Bugst. A C program a.c is converted to the lonka format by the following
steps:

1. Convert a.c into a.llvm by the tool Clang, which is part of the
LLVM compiler infrastructure1:
clang.exe -emit-llvm -g -S a.c -o a.llvm

2. Convert a.llvm into a.cel.llvm by the tool llvm2celllvm, that
is a part of the Bugst suite.
llvm2celllvm_Win32_Release.exe a.llvm -O a.cel.llvm

3. Convert a.cel.llvm into a.lonka by the tool celllvm2lonka,
that is a part of the Bugst suite.
celllvm2lonka_Win32_Release.exe a.cel.llvm -O a.lonka

The easiest way to convert a set of C programs into lonka format is run-
ning the script !buildAll.bat. The script converts all files with the ex-
tension .c in the folder testPrograms and the resulting lonka files are
saved to the same folder.

Options for Running Looperman: The program supports the following
options:

-h Prints a help message.
-v Prints the currect version of the tool.
-I 〈file〉 A lonka program to be analysed.
-X 〈n〉 Sets the time-out in seconds. The default value is 60.
--verbose Enables commented output.
--functionCallBounds If the program is run with this option, bounds

are not computed for loops, but for all transitions with function calls.
Hence, to compute an upper bound on the number of executions of
some line in a program, one has to insert into the C code a call of some
function with no effect (like void bound(){}) just before that line.

The easiest way to run Looperman on a set of lonka files is to run
the script !boundAll.bat, which calls Looperman on each file a.lonka
from the folder testPrograms with the following options:
looperman_Win32_Release.exe -I a.lonka -X 60

1http://llvm.org
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