
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Graphical Editor for Job Structure
Configuration in Java EE 7 Batch
API

Bc. Tomáš Milata
Study programme: Open Informatics
Specialisation: Software Engineering

May 2015
Supervisor: Ing. Jiří Pechanec

Acknowledgement / Declaration

I would like to express my gratitude
to following people. Ing. Jiří Pechanec
and Ing. Tomáš Černý, MSc. for bring-
ing education and professional experi-
ence closer together, which gave me a
great topic for my thesis. JBoss Tools
open source community for being very
welcoming, yet providing valuable feed-
back. All of the participants taking part
in usability testing for their willingness.
My family for their support, my sister
also for helping me to correct my En-
glish, and my girlfriend Pája for her un-
derstaning for me not being very sup-
portive last weeks.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

v

Abstrakt / Abstract

Java Batch API, část specifikace
Java EE 7, představuje jazyk k po-
pisu dávkových úloh založený na XML,
označovaný JSL. Úlohy definované JSL
utváří struktury, jež si lze představit
jako vývojové diagramy. Nedostupnost
žádného vizuálního editoru na plat-
formě Eclipse pro takovéto úlohy byla
inspirací k vytvoření nového nástroje.
Tato práce analyzuje Batch API a již
existující nástroje. Na základě těchto
analýz se ukazuje jako nejvýhodnější
rozšířit existující projekt JBoss Tools.
Klíčovými funkcionalitami tohoto no-
vého nástroje jsou možnost graficky
upravovat elementy úloh a spojení mezi
nimi nebo obousměrná synchronizace
změn mezi grafickým a textovým edi-
torem. V této práci je popsán proces
návrhu, implementace a vyhodnocení
nástroje pomocí testů s uživateli. Soft-
warový příspěvek se podařilo začlenit
do následující připravované verze JBoss
Tools, jejíž vydání je naplánováno na
říjen 2015.

Klíčová slova: Java EE 7, Batch API,
JSR-352, dávkové úlohy, grafický editor,
diagram

Java Batch API, part of the Java
EE 7 specification, introduces an XML-
based Job Specification Language. Jobs
defined by this JSL form structures
which can be visualized as workflows
charts. Absence of visual graphical
editors for Java Batch jobs on Eclipse
platform inspired us to create a new
tool. This thesis analyzes the Batch
API and existing tools. Based on these
analyses, extension of existing JBoss
Tools project shows up to be the best
option. The key features of the new
editor are ability to graphically edit job
elements and their transitions or bi-
directional synchronization of changes
between the graphical and a text edi-
tor. The thesis describes the process of
design, implementation and evaluation
of the tool by usability tests. Finally,
the software contribution is integrated
into the next prepared version of JBoss
Tools to be released in October 2015.

Keywords: Java EE 7, Batch API,
JSR-352, batch jobs, graphical editor,
diagram

vi

Contents /

1 Introduction .1
2 Overview .3
2.1 JEE Batch .3

2.1.1 Building blocks3
2.1.2 Java API and Job Sp-

eficiation Language4
2.1.3 Chunking5
2.1.4 Transitions5
2.1.5 Transitions and Nested

Flows .7
2.2 Spring Batch vs JEE Batch8

3 Analysis .9
3.1 Existing Tools and Related

Works. .9
3.1.1 jBatchSuite.9
3.1.2 Intellij IDEA9
3.1.3 Spring Batch Support

in Intellij IDEA 10
3.1.4 WebSphere Developer

Tools . 10
3.1.5 JBoss Forge Addon 10
3.1.6 Spring Tools Suite 11
3.1.7 Spring Netbeans Mod-

ule . 11
3.1.8 JBoss Tools 12

3.2 Typical User and User Needs . 12
3.3 Features and Requirements. . . . 13

4 Solution Design 15
4.1 Initial Decisions 15

4.1.1 GUI in Context of
Frameworks 15

4.2 GUI . 16
4.2.1 Eclipse Conventions 16
4.2.2 Discussion of Diagram

Structure 16
4.2.3 Sketches & Prototypes. . . 17

4.3 Software Architecture. 18
4.3.1 Eclipse . 18
4.3.2 Sapphire 19

5 Implementation. 21
5.1 Contributing to JBoss Tools

project . 21
5.1.1 GitHub Flow 21
5.1.2 Workflow of JBoss Tools . 22

5.2 Software Structure 22
5.2.1 Model. 23

5.2.2 Actions 23
5.2.3 Content Proposal 23
5.2.4 Connections 24
5.2.5 Layout . 24
5.2.6 Extensions. 24
5.2.7 Utilities 24

5.3 Used Technologies 24
5.3.1 Maven . 25
5.3.2 Eclipse Tycho 25
5.3.3 JUnit . 25
5.3.4 Travis CI 25

5.4 Work Process of the Project. . . 25
5.4.1 Preparation 26
5.4.2 Implementation Chal-

lenges . 26
5.4.3 Merging changes 26

6 Evaluation. 27
6.1 Features Implemented 27
6.2 Demonstration of the Editor . . 28

6.2.1 Example Weather Ap-
plication 28

6.2.2 Invalid Configuration
Handling 29

6.3 Usability Testing 30
6.3.1 Participants 30
6.3.2 Scenario of the Session . . 31
6.3.3 Test Setup. 33
6.3.4 Test Execution 34
6.3.5 Test Evaluation 38

6.4 Known Issues. 40
6.5 Possibilities of Future Ex-

tensions . 40
6.5.1 Persistence of Diagram

Layout . 40
6.6 Author’s Personal Insights 41

7 Conclusion . 42
References . 44

A User Documentation 47
A.1 Prerequisities 47
A.2 Installation . 47
A.3 Usage . 47

B Screenshots . 49
C Contents of the Attached CD . . 50
D Glossary . 51

vii

/ Figures

2.1. JEE Batch domain model4
2.2. Job instances and executions4
2.3. Chunking .5
2.4. Difference between next and

restart transitions7
3.1. jBatch Suite graphical editor . . 10
3.2. Tree-form XML editor in

WebSphere Developer Tools . . . 11
3.3. Graphical batch editor in

Spring Tools Suite. 12
4.1. Sketches — ways of display-

ing nested flows 18
4.2. Part of initial Sapphire model

— flow elements 19
4.3. Part of initial Sapphire mod-

el — batchlet, chunk and
outcomes. 20

4.4. Part of initial Sapphire model
— item handling elements 20

5.1. GitHub Flow 21
5.2. Merging vs Rebasing 23
6.1. Ratio between benefits and

costs for using various num-
bers of heuristic evaluators
and test users to find usabil-
ity problems in a medium-
large software project. 30

6.2. Usability Test Environment . . . 33
6.3. Custom Layout 40
6.4. Automatic Layout 41
A.1. Installation from Update Site . 47
A.2. Batch Job Wizard 48
A.3. Properties View 48
B.4. Screenshot of the diagram

editor . 49

viii

Chapter 1
Introduction

”To look at the history of batch processing, you really need to look at the history of
computing itself”, says Michael Minella, member of the JEE Batch specification [1]
expert group in [2]. One of the most important use cases of first computers was to
run long-running and non-interactive tasks. But is this programming paradigm still
applicable to today’s applications? As Minella [2] claims, ”the business world runs on
batch” and he adds valid reasons:

.Sometimes all data is not available immediately. A printed bank account statement
has to be generated at the end of the month after all transactions are settled, not
after every single transaction..Sometimes it is just worth waiting from the business point of view. It makes sense
to wait a few hours to check whether user cancels his order and process it with other
orders in a batch than to put what user has ordered immediately after he click Buy
button..Also efective planning and scheduling can save resources. E.g. idle computing time
at night can be utilized better when scheduled in a predictable way.

The new Batch API, part of the Java EE 7, provides a standardized technology for
developing batch applications. The main benefits of using Java and an open source tool
for batch processing are listed in [2]: maintainability, flexibility, scalability, development
resources, support and cost.

The Batch API introduces an XML-based Job Specification Language for description
of job workflows. Although the whole Java EE 7 [3] was released in 2013, it is surprising
that some parts such as Batch have not been not reflected much in support of IDEs.

Typical user of the JSL is a Java programmer who can orient quickly in Java code.
Orientation in code written in any domain-specific language such as JSL code may be
harder as there is a higher chance that developer does not use it as often as the primary
language (Java).

The other drawback of the JSL is the potential comlexity of the whole structure of
large jobs.

Therefore it would be more convenient to represent batch jobs visualized in a struc-
ture similar to workflow charts. A tool able to support such visualization could save
development time to a potentially high number of Java developers. The most impor-
tant assignment of this thesis is to develop such tool.

Eclipse was chosen as a reasonable target platform for our new tools due to its high
extensibility and a fact that many similar visual editors exist and therefore we have a
real proof of concept that the idea is feasible.

Except for developing a visual editor for batch jobs, these are aims of this thesis:

.An analysis of the Batch API needs to be perfomed..Existing solutions have to be analyzed..Source code should be available with open source..The editor should be demonstrated on examples and user documentation written.

1

1. Introduction .

.The final software should be tested with users to evaluate its usability.

The editor should also fulfill following requirements:

. It should be able to create and manipulate elements of the job worklow in graphical
way, as well as their connections..Text editing should be also supported and changes should be propagated between
the source code and the visual represention in both directions..The application should provide content assist for existing Java artifacts..Eclipse conventions should be followed in the sense of user interface and distribution
of application.

The requirement to offer source code to open source communities implies two possible
scenarios. First is to develop own new tool and try to persuade others to contribute.
The other one is to contribute to an existing project.

If either one of these strategies is successful, it will guarantee (apart from teamwork
skills) a certain level of quality of the final software and therefore should be one of the
main criteria of success.

2

Chapter 2
Overview

This chapter focuses on Java EE Batch both as a technical specification and as a
tool from programmer’s point of view; describes its domain model, language and API.
We will also shortly mention its relation to Java standardization process and to other
projects similar to Java EE Batch.

2.1 JEE Batch

By JEE Batch or Batching API or other similar names we mean the Java Specification
Request (JSR) no. 352 [1] from 2013 which is a specification document issued as one of
many standards by the Java Community Process1). This JSR belongs to the Java EE
7 standard [3].

It is worth mentioning that, in general, by Java EE we do not represent any particular
library, SDK or application server. It may be understood as a set of standards that
need to be fulfilled by an application server in order to be Java EE compliant. E.g. for
the Java EE 7 standard we have Oracle’s Glassfish 4 reference implementation, Wildfly
8 by RedHat and others.

Some Java EE standards may be based on already existing and successful imple-
mentations, such as Spring Batch, which was an inspiration of JSR-352. Although the
standardization process may seem like re-inventing the wheel from one point of view,
it is important because it gives us a certain guarantee level for the future, e.g. support
and bugfixing or possibility to easily switch to other implementation which complies
with the same standard.

The JSR 352[1] defines itself as a description of ”the job specification language, Java
programming model, and runtime environment for batch applications for the Java plat-
form.” It speaks about batch processing as typically bulk-oriented, non-interactive ex-
ecution in the background. The specification [1] addresses some common requirements
of batch applications: checkpointing, logging, parallelism, control and interaction with
batch instances like initiation, stopping or restarting.

2.1.1 Building blocks

The main idea of JEE batch is to compose batch jobs (an abstraction of a task to
be accomplished) of steps. There may be either item-oriented steps (called chunks
consisting of reader, processor and writer units or a free-form steps called batchlets.
The domain model includes many other entities, such as flows that compose steps
into encapsulated units, various listeners, checkpoints, parallelization on both item and
step levels, flow control elements. The step-level parallelization can be achieved by
using split elements which are comprised of nested flows. These flows are executed
concurrently.

1) https://jcp.org/

3

https://jcp.org/

2. Overview .

Figure 2.1. Diagram of JEE Batch domain model taken from JSR 352 [4]

Jobs can be launched via the JobOperator and information about their execution is
stored in a JobRepository.

There is a difference between jobs, jobs instances and job executions, as shown in
figure 2.2. While a job is a container of steps, a job instance is a logical instance of
this job. There may be more instances, we may e.g. create one instance every day.
And each of these instances may have multiple executions, because e.g. the first try to
execute one instance has failed and we want to run it again. Therefore, a job execution
represents a single attempt to execute a job instance.

Figure 2.2. Job instances and executions taken from JSR 352 [1]

2.1.2 Java API and Job Speficiation Language

From batch programmer’s perspective, writing JEE Batch application consists of writ-
ing batch job files in Job Specification Language (JSL) and providing Java classes im-
plementing Batch API interfaces which are referred to from the JSL files.

The JSL is a XML-based language the structure of which corresponds to the batch
model. The *.xml files with batch jobs must be present in the META-INF/batch-jobs

directory and the file names serve as identifiers of the jobs. Here is an example of a
simple job consisting of one chunk step:

<?xml version="1.1" encoding="UTF-8"?>

<job id="job" xmlns="http://xmlns.jcp.org/xml/ns/javaee" version="1.0">

<step id="myStep">

<chunk item-count="3">

<reader ref="myItemReader"/>

4

. 2.1 JEE Batch

<processor ref="myItemProcessor"/>

<writer ref="myItemWriter"/>

</chunk>

</step>

</job>

The Java API consists of a set of interfaces and abstract classes. The abstract
classes serve mainly for developer’s convenience as he might be satisfied with some
default behaviour. This is the ItemReader interface as an example:

public interface ItemReader {

public void open(Serializable checkpoint) throws Exception;

public void close() throws Exception;

public Object readItem() throws Exception;

public Serializable checkpointInfo() throws Exception;

}

2.1.3 Chunking

The specification document [1] describes an algorithm of processing items as follows
(see figure 2.3): An items is read by reader and passed for processing to processor.
This repeats until the number of the read items reaches the commit interval. Then
the processed items are passed to the writer, written all at once and the transaction is
committed.

Figure 2.3. Algorithm of processing items taken from JSR 352 [1]

2.1.4 Transitions

JSR-352 specification [1] contains 3 types of transions:

.Unconditional next transitions — specified by next attribute of steps, flows and
splits. (Note that only one such transition may be specified for one step, flow or
split).

<step id="step1" next="step2"/>

<step id="step2"/>

5

2. Overview .

.Conditional next transitions — represented by nested <next> elements within a
step, flow or decision with a required on attribute which defines an exit status to be
matched. If the exit status of a step execution is equal or matches (* wilcards are
allowed as well) to the on attribute, the transition is used.

<step id="step1">

<next on="MY_STATUS" to="step2"/>

</step>

<step id="step2"/>

.Restart transitions — defined by <stop> elements that work the same as conditional
next transition from the status matching point of view. When a stop element is
matched by status, job is restarted. Instead of a next target they have a restart

target element which specifies the element to continue with after restart.

<step id="step1">

<stop on="MY_STATUS" restart="step2"/>

</step>

<step id="step2"/>

The JSL contains also <end> and <fail> outcome elements, which are not considered
to be transitions, though, as they do not specify a target element and they always
terminate the job. The end element indicates a successful execution and the fail element
an error status.

<step id="step1">

<stop on="STOP_STATUS" restart="step2"/>

<fail on="FAIL_STAUTS"/>

<end on="END_STATUS/>

<next on="NEXT_STATUS" to="step2"/>

</step>

<step id="step2"/>

If we take a look at the batch elements and slightly generalize our view, we may infer
that there are 4 types of flow elements and these can transition from one another. By
flow elements we mean steps, flows, splits and decisions. This may suffice for general
overview and basic understanding. The further facts are, however, essential for our
purposes to develop an editor:

.A job may not begin with a decision. When a job is run, it begins with a first flow
element in the XML file. But there is no use running a decision first as its purpose is
to decide which status to return based on executions of previous steps. That is the
reason for signature of decide: method in Decider interface:

String decide(StepExecution[] executions) throws Exception;

.There can be no condional transitions from a split. Since flows inside a split are
executed in parallel, there is no single unambiguous exit status that could be used
for matching. Therefore, only unconditional transitions are allowed from a split..There can be no unconditional transitions from a decision — as a decision serves for
decision purposes, it does not make sense to always transition to a single element.
Such decision could be omited and replaced with a direct transition.

6

. 2.1 JEE Batch

2.1.5 Transitions and Nested Flows

One of possible puporoses for having flows in the JSL is a sort of encapsulation known
from object-oriented programming languages. As many other sources do, also Arun
Gupta [4] refers to a flow as an execution element which ”defines a sequence of execution
elements that execute together as a unit.”.

The term sequence not very descriptive, though. On the one hand, the final execu-
tion is a sequence as JSR-352 does not allow cycles. On the other hand, contents of a
flow can be a much more complex tree-structure (with other nested flows etc.)

An important restriction that provides the encapsulation is that next transitions
may point only to target element contained directly in the same parent as the source
element. It means that only direct children of a job or a flow can be interconnected.
Figure 2.4 illustrates valid and invalid transitions.

The only exception is the stop (restart) transition which may target only a child
element of the root job element. From the point of view of structured programming, it
looks like a goto command.

job flow

next restart

Figure 2.4. Difference between next and restart transitions

7

2. Overview .

2.2 Spring Batch vs JEE Batch

It is no secret that design of JSR 352 was very much inspired by Spring Batch 1) and
that JSR 352 brought similar funcionality that Spring Batch had already supported.
Although there were some incompatibilities for a certain time after the JSR 352 release,
the Spring documentation [5] now claims that since 3.0 version, Spring Batch is in
compliance with the standard.

As a result, there are now two possible ways how to use Spring Batch, either the old
Spring-specific API with its own org.springframework.batch.* classes and slightly
different XML language, or stick to the standard JSL and javax.batch API.

Neverthless, Spring Batch provides much more functionality above the standard,
e.g. various readers/writers for specific usages (certain databases, file system, etc.) or
support for passing of type-safe properties instead of standard String properties from
java.util.Properties.

1) http://projects.spring.io/spring-batch/

8

http://projects.spring.io/spring-batch/

Chapter 3
Analysis

In this chapter, we will review the state of the art in this field and summarize existing
solutions. We will also analyse requirements of potential users that will result in a
specification of features that our tool should provide.

3.1 Existing Tools and Related Works

This section captures a list of known tools (on any platform) that provide support for
Java EE Batch or Spring Batch and are available at the time this analysis is being
performed (November 2014).

Following points were considered in the analysis:

Similarity to the assignment of this thesis
Obvious features and concepts in the UI from the usability perspective
Code reusability for our purposes

3.1.1 jBatchSuite

At first sight, this project [6] extending NetBeans IDE appears to be a close match to
our needs as it provides a GUI and drag and drop approach to configuration of JSL files.
It is also able to generate implementations of javax.batch.api interfaces according to
the drawn diagrams.

The downside of this one-man project is that it is not very active (only 8 commits
so far in the Subversion trunk) and therefore potentially to immature and early code
base to be built upon.

What is missing from the usabilty point of view is that the diagrams created by user
are persisted in different artifacts that the .xml job file itself. That means also that
JSL files created by hand are not recognized for batch support. Propagation of changes
is only one-way (from diagram to XML), triggered by user clicking on a button, and
user also has to jump between the diagram file and the generated XML by hand; there
is no natural connection of those 2 artifacts.

Since this tool is based on JSR-352 API, some source code might be reusable, e.g.
classes that model Batch entities.

3.1.2 Intellij IDEA

IntelliJ IDEA has become quite popular last years among Java developers, partly due
to its advanced and intelligent code assistance. However, their approach seems to prefer
intelligent and smooth text editors to visual tools. And so is IDEA’s support for JEE
Batch.

Except for standard support for XML editing according to XSD (which is a gen-
eral feature of IDEA for all XMLs) such as code completion and validation of entered
elements and properties, there are some more advanced JEE Batch-related functions.

9

3. Analysis .

Figure 3.1. jBatch Suite graphical editor

Namely, these include search for usages and refatoring support, code completion for
names of entities (defined both in java and xml) and navigation to definition or warn-
ing if entity does not exist, as is presented in [7]. Batch files containing a valid XSD
location are discovered automatically, there is no need to set up the Batch nature of
the files.

IntelliJ in Ultimate version, where Java EE support is available, is a commercial tool
with mostly closed source code (at least the Java EE part) which prevents us to reuse
any code from it.

3.1.3 Spring Batch Support in Intellij IDEA

Support of Spring Batch in IntelliJ is much the same as for JEE Batch. The difference
is that it takes into account the Spring dependency injection model. Thanks to Spring’s
advanced options of passing properties to Batch entities from XML, it provides some
extra features like Expression Language resolution.

3.1.4 WebSphere Developer Tools

This Eclipse-based IDE provides simple support for editing JEE Batch files in a form of
XML tree editor and some standard Eclipse-style wizards to create Batch related JSL
artifacts and Java classes. The XML uses the usual pattern that allows for switching
between tabs with text source and a tree view.

Unfortunately, the lack of ability to display jobs in a graphical diagram makes this
tool only a context-aware XML and tree-form editor.

The source code is, unfortunately, not publicly available.

3.1.5 JBoss Forge Addon

This tool does not really fit among other tools from this selection since it targets
different group of users due to its command-line nature.

10

. 3.1 Existing Tools and Related Works

Figure 3.2. Tree-form XML editor in WebSphere Developer Tools

Neither its source code [8] seems reusable, because it does not contain any domain
model layer. It operates directly with XML ojbects and generates artifact from file
templates.

3.1.6 Spring Tools Suite

Spring Tools suite appears to be very advanced tool which covers our criteria very well,
except the fact that it is build upon a different model. Unfortunately, it supports only
the non-JSR version of Spring Batch.

Nevertheless, its features are multitab editor of Batch XML artifacts (classic text
XML editor with code completion, tree-form XML editor and a visual drag & drop edi-
tor), 2-way propagation of changes (XML to GUI and GUI to XML) or e.g. integration
with Spring beans model.

The codebase is split into two modules. Spring IDE is just a set od Eclipse plugins,
Spring Tools Suite contains plugins from Spring IDE bundled together with other fea-
tures and bundled as a full distribution. Source code of the Eclipse plugin has been
released under Eclipse Public License v. 1 which means that some code might be
reused for our purposes even tough its underlying model is different. Code of Spring
Tools Suitei is, however, not public. Therefore a more thorough analysis of code de-
pendencies between these two parts would be required if this project was chosen as a
base for extension.

3.1.7 Spring Netbeans Module

NetBeans IDE has also certain support for Spring Framework, including Spring Batch.
But the Spring NetBeans Module [9] does offer nothing more than just an XML editor
with code completion.

Project is neither used much at the moment, nor actively developed anymore.

11

3. Analysis .

Figure 3.3. Graphical batch editor in Spring Tools Suite

3.1.8 JBoss Tools

This very new project started development quite late compared to others (even the
JIRA feature request [10] is from 22nd of September 2014). Alghough involving this
project into the research at the last minute, after some decisions had been already
made, meant re-evaluting these decisions, it could not be simply overlooked. In may
2015, the project still has not been released in a final version, which is the reason it
could not have been found during the first research for existing editors in autumn 2014.

Among other JEE related features, JBoss Tools offers Batch support. It takes form
of the standard Eclipse 2-tab editor. The former is a XML editor with some validation
accoring to XSD and content assist reflecting the Batch nature. The latter, a tree-form
editor, does not differ much from the WebSpher Developer Tools editor. Unlike the
XML editor, no content proposal is present.

A clear advantage is that the tree-form editor is implemented using Eclipse Sapphire
framework which also supports creating visual (diagram) editors. Diagram and tree-
form editors are able to work with a common Saphire model which means that the
existing model form tree-form editor could be reused.

Source code is open-source and it is licensed under EPL v 1.0.

3.2 Typical User and User Needs

Target users of the visual editor are developers. More precisely, Java developers who are
familiar with basic Elipse concepts. Therefore, this thesis does not focus on teaching
new developers how to control their IDE. Let us assume that user understands the
concept of Eclipse perspectives (different layouts of the whole scren, consisting of several
views, that differ based on the task context they are used for). He or she should also be
able to open a desired file editor, and be familiar with editor tabs and be aware of the
fact that some common views as Properties may have dynamic content based on what

12

. 3.3 Features and Requirements

action is being performed in other views. Although these concepts might cause some
minor troubles for Eclipse newcomers, they are very routine for regular Eclipse users.

One of the main reasons users might want to use our tool is to get a nicely organized
and uncluttered view of the job strucure. As the title of this thesis suggests, the main
design goal should be to visualize the structure. That means the tool should emphasize
important structural features that are not well visible in XML and table-based (or
tree-form) editors. Rather than being a tool for quick editation of any property value
anywhere in the job tree, the tool should help with orientation in the whole job. It
should make easier to analyze existing large and complex jobs and help to create basic
architecture of new jobs.

One may raise a valid question — whether a certain form of user research should be
conducted. Ideally, qualitative research should be taken first to formulate hypotheses
about user needs and potential problems and then a quantitative study to test these hy-
potheses. After a discussion with a supervisor, we decided not to include user research
in this thesis. One reason is the limited time. Secondly, several companies or people
have already invested some time into designig and implementing visual diagram tools.
Spring Batch visual editor or jBatch Suite are based on either slightly different pro-
gramming model or different platform than JSR-352 Eclipse editor, the basic paradigm
from usability point of view may be reused though, or at least serve as an inspiration.
And last but not least, since the target user is a developer, the problem of designing
for yourself does not apply to this design so much.

3.3 Features and Requirements

Let us summarize the facts from previous observations and from the assignment of this
thesis concerning features and requirements of our tool.

According to the assignment, user should be able to create the structure of jobs and
links between elements with drawing. This implicitly assumes that the entities will be
displayed in a kind of a diagram or 2D structure. This is quite natural requirement
because the job structure might become very complicated quickly (e.g. when flows are
nested) which is not very transparent when displayed as a XML tree. The already
working proof of concept is Spring Batch support, part of Spring Tools Suite.

Except for the graphical editor, a classic text editor is a must because developer
must be able to edit the file in any possible way. A XML tree view does not seem to be
necessary because it provides view to the data in the same structure (hierarchy) and
the only difference is in methods of input.

If these two different views of the same file are provided, there should be also a quick
way to switch from one to the other, such as editor with tabs.

Changes should be propagated in both ways and directly without any explicit trigger
or user input. There are tools that require user to e.g. click a button but unless there
is a reason to prevent automatic update, it should be done automatically.

The more advanced tools we have examined show that there is no need to persist
other artifacts than the XML job files and Java classes themselves.

There is also no defensible reason for allowing user not to create his job XML files
by hand. And if so, it still should be possible to open them in the editor.

A standard way of distributing Eclipse plugins is an Eclipse update site. Our tool
should have one as well.

The final list of basic features that the tool should support is:

.Tabbed editor with text view and graphical view

13

3. Analysis .

.Two-way immediate automatic propagation of changes.Source code as a first-class entity (no other persistent artifacts). Installation via standard plugin channel (marketplace).

14

Chapter 4
Solution Design

This chapter discusses the main desing decisions that have been made. Reasons for
choosing Sapphire framework and its comparison to others are presented. It also con-
tains a captured UI design process and an intial design of the whole software architec-
ture.

4.1 Initial Decisions

From the interaction style point of view, Spring Batch support in Spring Tools Suite
and jBatch Suite tools appear to be the closest match to the concept of our tool. Both
of them offer a visual, diagram-style, editor. An advantage of the first one lies in its
wide feature set which covers well our assignment, the latter in its domain model which
is the same as ours and also quite close set of features.

However, they both do not seem to be a wise choice to build on. The main disad-
vantage of Spring Tools Suite is its different domain model and a codebase dependent
on the spring environment. The jBatch Suite’s weaknesses follow from immature code-
base, different platform and lack of certain features which are necessary for us, e.g.
bi-directional editing.

JBoss Tools seems to be the most interesting choice for extension. Support for
diagram editors by Eclipse Sapphire framework and ability to reuse its existing model
makes a promise of possibility to create a new diagram editor without writing a lot of
new code. Its open-source nature also creates chances for merging the finished editor
into the existing project. It has several advantages over creating a project that is not
intented for contribution. In case it is merged into existing JBoss Tools, the potential
users can find and start using this project much easier. A self-distributed project would
require a sort of marketing to find its way to new users. A succesful contribution to
JBoss Tools would also imply that a separate Eclipse update site for installation of the
editor and its updates does not have to be created because the update site by JBoss
Tools fulfills the requirements for an update site from the assignment of this thesis.

After considering all preceding arguments, JBoss Tools was chosen as a a base project
that will be built on.

4.1.1 GUI in Context of Frameworks

Even though there is not much to decide about framework choice when this decision
has already been made by JBoss Tools team, it still necessary to know main advantages
and disadvantages of common Eclipse frameworks so that they can be utilized as much
as possible.

All Eclipse UI framoworks are based on SWT in the low level. SWT is an alternative
to Swing with the main difference that it is implemented differently using native API on
each platform. It is not reasonable to use SWT directly as more high-level frameworks
exist. It provides basic building blocks like button, dialog or tab.

15

4. Solution Design .

JFace is one abstraction level above SWT and allows for features like data binding or
field assist. Its bulding block are mostly aggregated SWT widgets into more complex
structures like Wizards.

GMF (Graphical Modeling Framework), GEF (Graphical Editing Framework) and
EMF (Eclipse Modeling Framework) are all separate Eclipse projects, yet supposed to
be used together. EMF can be used to describe domain using a description language (to
get a metamodel) and then generate model classes. GEF is a technology for creating
graphical editors and GMF utilizes EMF and GEF to create graphical editors based on
a given model. GMF might serve for our purposes to create a diagram editor quite well
but its disadvantage is quite complicated structure (different modeling language than
Java etc.) and many steps needed to get a simple thing done.

Sapphire framework internally used GEF but its model is written by developers
directly in Java using interfaces and annotations.

The core premise as Sapphire documentation [11] says, ”is that the basic building block
of UI should not be a widget (text box, label, button, etc.), but rather a property editor”.
Due to a model-first approach, result code written with Sapphire is very declarative. A
big advantage is that the same model is reusable for both tree-form and diagram editors.
The model can also have a resource (e.g. XML file) attached which can be reflected in
a XML text editor. Then all changes are automatically synchronized among all of the 3
editors. The declarative approach means that in case of form editors, developer has to
choose properties to edit and groups them together. In case of diagrams, developer has
to specify which model entities correspond to diagram nodes, which entities represent
edges and how shapes of nodes should look like.

It appears to be a quite reasonable choice for use cases like Batch API where the
model is really unlikely to change. Therefore analysis can be made in advance to be
sure that the framework is expressive enough to grasp a particular model.

4.2 GUI

4.2.1 Eclipse Conventions

Standard Eclipse guide for developers on how to create good UI is very detailed and
covers a wide range of possible cases. The guidelines document [12] emphasizes main
priciples: user in control, directness, consistency, forgiveness, feedback, aesthetics, and
simplicity.

A great advantage of using a high-level framework as Sapphire is that it handles
most of the cases where developer might make a wrong decision. A Sapphire editor
developer does not need to handle platform matters like lifecycle of views, saving or
preferences. If property editors are chosen and placed wisely and any interaction with
Eclipse platform API is avoided, UI guidelines should be conformed.

A much simplified version of guidelines applicable when using Sapphire would be:

.Use only Sapphire UI API..Group items reasonably (follow the structure of the model).

4.2.2 Discussion of Diagram Structure

Spring Tools Suite and jBatch Suite and were taken as an inspiration. But some changes
had to be made in order to both be able to conform to the rules of Sapphire framework
and to make the final product as usable as possible.

16

. 4.2 GUI

.Nested Flows
The two existing editors have chosen a different approach to the problem of flow

recursion. Spring Tools Suite displays flows nested in an (potentially) unlimited
depth while jBatch Suite requires flow to be opened to see what is inside.

Capabilities of the Sapphire limit us to avoid nesting. However, if we look at the
problem from the perspective of what flows should actually represent, it seems like
it does not really matter. The encapsulation of flows exists for a good reason — no
one from outside should care about its internals. And if someone needs to create flow
internals, he or she does not need to know (almost) the outer context.

If an appropriate navigation UI is provided, the flow traversal should not be a
problem at all and it should work like e.g. browsing through directories in a file
explorer.

Another benefit is that this approach scales well with size of the whole job. Editors
displaying all nested nodes globally might reach their limits at quite a low count of
total nodes..Start and Terminating Nodes

The jBatch Suite tool has shown a questionable way of presenting start and ter-
mination of the job. There are start and end entities that can be placed directly in
the graph. An advantage of this way is that from the ”flowchart” perspective, it is
obvious where the job starts end ends. On the other hand, it does not represent well
what the job XML file really contains. The correspondence between JSR-352 entities
and graph entities is weaker, e.g. there is no such thing in the JSL as a transition
from a start node to a step. And terminating elements belong directly to an element
(e.g. step), it is not a separate entity.

Since the described representation has its disadvantages and we are also restricted
by Sapphire to use only the first-class entites (like step, split etc.) to represent nodes,
there will be no start and terminating nodes and no transitions from/to them. An
indicator of a start element and terminating elements should be visible directly in
the diagram, though.

Note: Restart transitions are not intended to be displayed at all. Unlike next transi-
tions they do not obey rules regarding nesting and always point to a top-level element.
From within a nested flow there is no node displayed that would serve as a target end-
point. In the rot job there is a target element visible but source may not be visible as
it may be located in depth inside a flow. There could be even one flow with more than
one descendant flow with a restart transition. On the top-level view, it would be even
more confusing because there would be more transitions from one flow.

4.2.3 Sketches & Prototypes

Some sketches (see figure 4.1) were drawn during discussions about the problem of
displaying flow internals vs. navigation inside. They served to discover some potential
design flaws like e.g. limited space for elements inside nested flows.

After the structure of digrams was clear, a first small application prototype was
created. It was the so-called evolutionary prototype, i.e. its source code eventually
evolved into the final software. The reason for this choice was the fact that a proof-of-
concept application had to be developed as soon as possible to make sure that Sapphire
framework and existing model is really applicable to this use case. Prototyping was
also quite ”cheap” regarding time costs as writing in the declarative way is really fast,
especially when the Sapphire model is ready.

17

4. Solution Design .

Figure 4.1. Sketches — ways of displaying nested flows

4.3 Software Architecture

In open source world it is not always very easy to manage to get new changes merged
into an existing project. Especially if developer:

. Is new to the project or does not know it in detail..Has not contributed to it yet.. Is not well known in open source communities..His changes are too big to process.

And since one of the key criteria of this project is to be merged into the existing
codebase, a key strategy for the software design is to change as little existing code as
possible.

4.3.1 Eclipse

18

. 4.3 Software Architecture

Everything necessary for development of batch editor is located in the batch subdirec-
tory of the repository.

batch/

|-- features

| |-- org.jboss.tools.batch.feature

| |-- org.jboss.tools.batch.test.feature

|-- itests

| |-- org.jboss.tools.batch.core.itest

| |-- org.jboss.tools.batch.ui.itest

|-- plugins

| |-- org.jboss.tools.batch.core

| |-- org.jboss.tools.batch.ui

|-- target

|-- tests

|-- org.jboss.tools.batch.ui.test

The plugins subfolder contains all executive code. Ideally, only code in org.jboss.

tools.batch.ui should be changed. The org.jboss.tools.batch.core contains sup-
port for Batch nature of Eclipse project and utility classses which allow e.g. to query
for certain batch artifacts.

The itests directory is important as it contains integration tests which should not
be broken. Also new test cases for the diagram editor should be added there.

The features directory contains only definitions for the Batch feature so that it can
be installed via Eclipse update site.

Eclipse dependencies and extensions to Eclipse platform are specified in plugin.xml

file. Since all Sapphire dependencies are already present and the Batch editor is already
registered, there is no need to modify anything.

4.3.2 Sapphire

Figure 4.2. Part of initial Sapphire model — flow elements

The existing Sapphire model shown on figures 4.2, 4.3 and 4.4 by JBoss Tools team is
very straightforward and copies the structure of the JSR-352 model. Similar elements
classes are aggregated under a common ancestor.

The whole UI description resides in a single .sdef file, for both form and diagram
editor. Form definitions for the tree-form editor may be reused for so-called Properties
View Contribution Page, which is a dynamic content displayed in the standard Eclipse
Properties view.

When a Sapphire editor is initialized, an object representing XML element is passed
to it as a root of editor model. Traversal through nested flows may be achived by
passing different roots to the editor.

The design of the implementation is as follows:

19

4. Solution Design .

Figure 4.3. Part of initial Sapphire model — batchlet, chunk and outcomes

Figure 4.4. Part of initial Sapphire model — item handling elements

.Reuse the existing model and modify it only when necessary..Add a new tab for diagram editor using the Sapphire API..Map diagram nodes to all flow elements in the job..Achieve navigation through nested flows by passing different model elements..Find out a way to map next attributes and elements to diagram connections..Properties not editable directly in diagram should be accesible using the Properties
view.

20

Chapter 5
Implementation

This chapter focuses on the process of implementation and contribution to the existing
project. Readers should get a basic idea how the editor was implemented and why.
An overview of used technologies is presented and some developer insights from the
working process are shown.

5.1 Contributing to JBoss Tools project

JBoss Tools is a large project providing IDE support for various technologies somehow
related to Java EE and JBoss (or Wildfly) application server. Users may use tools
offered by this project either as a pre-packaged IDE (called JBoss Developer Studio)
with all tools pre-installed or as a manually installed Eclipse plugin (called JBoss Tools).
Sources of JBoss Tools are available online, mostly under Eclipse Public License v1.0.
They are separated into many git repositories [13]. The Batch module is a part of the
jbosstools-javaee [14] repository which also contains e.g. IDE tools for CDI, JSF or
Seam.

5.1.1 GitHub Flow

CREATE A

BRANCH

Create a branch in your

project where you can

safely experiment and

make changes.

OPEN A PULL

REQUEST

Use a pull request to get

feedback on your changes

from people down the hall

or ten time zones away.

MERGE AND

DEPLOY

Merge your changes into

your master branch and

deploy your code.

ADD COMMITS DISCUSS AND REVIEW

Figure 5.1. GitHub Flow, taken from [15]

JBoss Tools team uses so-called GitHub flow (shown on figure 5.1) for managing their
source code and code from external contributors. GitHub describes the process on their
website [16] as follows; its consists of these steps:

1. Create branch
Meaning that all our changes are done in a new branch. Important recommen-

dations are that the new ”topic” branch should be created off of the master branch
and anything in the master branch should be always deployable. Also, names of the
topic branches should be self-decriptive.

2. Add commits
Commits of the changes in the code should have meaningful descriptions explaining

reasons of changes as well. These basic separate unit of changes have their meaning

21

5. Implementation .

in rolling-back changes or they can serve as a base for creating other changes in a
new branch.

3. Open a Pull Request
This step means that changes are ready for reviewing and a discussion about them

should start. Developers may also accompany their code with a short documentation
written in markdown.

4. Discuss and review your code
Reviewers may add feedback to the requested changes and developer has a chance

to work on their additional requirements. Additional changes are reflected and are
displayed in a single timeline together with comments.

5. Merge and deploy
It means merging changes to the master branch. The pull request is closed but

remains searchable for future.

Note: The workflow may differ a little based on the chosen approach to repostory
access. In the ”fork & pull” model, a separate fork of the original repository is created
and the final changes are transfered from the topic branch of the fork to the master
branch of the original repository. In the shared repository model, changes in the topic
branch of the repository are transfered to the master branch of the same repository.

5.1.2 Workflow of JBoss Tools

JBoss Tools use GitHub ”fork & pull” workflow model. One of the biggest advantages
of such workflow is that it allows completely strange developers to work independently
on their own fork and also instead of managing access rights to the main repository for
every user who would like to push their changes, users just request someone who has
access rights to merge his changes.

A README repository documentation file contains a guide [17] on how to manage
source changes which recommends following:

.Changes should be made in a topic branch named after an issue number. All issues
of JBoss Tools, including feature request are tracked by JIRA issue tracking system..The master branch of the forked repository should be kept up-to-date with the main
repository master branch. Changes from the topic branch should be applied to master
using the rebase command, not merge.

Although the final repository file contents after the rebase and merge commands
should not differ, the history of commits makes the difference (see figure 5.2). While
merge creates a new commit with two or more predecessors, rebase reapplies changes
from one branch on top of head of the other branch. An article at Attlassian web [18]
mentions pros and cons of both approaches. Regarding rebase it states that ”The major
benefit of rebasing is that you get a much cleaner project history. First, it eliminates
the unnecessary merge commits required by git merge. Second, as you can see in the
above diagram, rebasing also results in a perfectly linear project history”.

Note: What has proven successful during the development whas the interactive (re-

base -i) command which allows to ”squash” several commits into one. It leads to
much cleaner log of commits becase we may eliminate similar consecutive commit mes-
sages like e.g. ”Added files”, ”Added forgotten file”. Interactive rebase is, however, not
the only way to squash commits, as Chacon and Straub describe in [19].

5.2 Software Structure

22

. 5.2 Software Structure

Figure 5.2. Merging vs Rebasing, taken from [18]

5.2.1 Model

Classes of org.jboss.tools.batch.ui.editor.internal.model package represent
the JSR-352 model written using Sapphire framework. The model consists only on
interfaces with annotated fields and getters / setters which are used by the framework
to generate imlementing classes.

The original model by JBoss Tools team had to be modified to conform some re-
quirements of the diagram editor.

Flow and Job classes were given a common ancestor FlowElementsContainer which
can be used as a root model element for the diagram editor.

OutcomeElement fields of Steps, Flows and Decisions had to be split into lists of
TerminatingElements and NextElements as they need to be handled differently in the
diagram UI.

The old model contained fields corresponding to the next attributes only as a
String value. Even though there was an implementation of PossibleValueService

attached that provided data for content proposal in the UI, it was replaced by
ReferenceService which also provides content proposal and also an object-oriented
access. It implies that using this service we may get a type-safe reference to a target
element of the next attribute. It simplifies handling value changes in implementation
of a ConnectionService(see below).

Also some optimization was done to reduce repetition of fields of the same type. E.g.
all fields corresponding to next attributes were extracted to a common superinterface.
These improvements were done only in situations where it could save a lot of writing
new code. In situations without this obvious savings it was not performed because of
the strategy to change as little code as possible.

5.2.2 Actions

Actions are one of the core features of Sapphire. Using actions a functionality can
be split into specification of how an action be fired and into a executive code of this
action. Using action handler filters it can be decided dynamically whether an action is
applicable to a given context. Custom actions implemented for the editor can be found
in org.jboss.tools.batch.ui.editor.internal.action package.

5.2.3 Content Proposal

The org.jboss.tools.batch.ui.editor.internal.services.contentproposal

package contains implementation of ContentProposalService which serves for pro-

23

5. Implementation .

viding content assist in both form and diagram editors. The service can determine its
context (in which model element it is used) and based on that information it provides
content assist for very specific types of batch artifacts.

At first, several separate classes were used instead of common RefProposalService.
It had advantages in a clean code without reflection. But after Mr. Kabanovich’s
suggestion ins discussion about pull request [20] that the mapping between these classes
and batch articats could be externalized for possible reuse, the implementation was
changed to his suggested way.

5.2.4 Connections

Sapphire unfortunately does not support connections from an element that would
be represented using its attribute. That is the case of a transition using next

attribute. Although these connections cannot be declared in the .sdef file, it is
possible to implement a custom ConnectionService to provide the necessary be-
havior. Since two connection types exist in the diagram editor and on of them
can be handled by the StandardConnectionService, the custom implementation
(BatchDiagramConnectionService) determines the connection type and manages
method calls itself or delegates to the standard service accordingly. For a more detailed
description see package org.jboss.tools.batch.ui.editor.internal.services

.diagram.connection and its javadoc which is attached.

5.2.5 Layout

Due to some incompatibilities between the standard connection service and cus-
tomizations of the diagram editor (described further in section 6.5, the diagram
layouts are not persisted and automatic layout is used when editor is reopened.
The BatchDiagramLayoutPersistenceService class serves just to override default
behaviour not to save diagram layouts.

5.2.6 Extensions

Extensions to Sapphire are added via sapphire-extension.xml file. In our case a
BatchPathFunction extension class was added to display a path from root element to
a flow node which is currently set as a content of the editor. The class adds a function
into the Sapphie Expression Language which means that it can be called directly from
the .sdef file.

5.2.7 Utilities

The org.jboss.tools.batch.ui.editor.internal.util package contains so far just
one utility class that provides mapping of model element types to batch artifacts.

5.3 Used Technologies

All the technical details regarding Eclipse Platform and Sapphire can be found in section
5.2 as it is related to it closely. A short descrition of all other interesting technologies
used follows below.

24

. 5.4 Work Process of the Project

5.3.1 Maven

Maven is an industry standard for building Java projects. Except from running build
tasks it serves as a dependency manager. Tests are configured to be run automatically
during each build.

An interesting speciality for this project is that running mvn install is not recom-
mended (according to the documentation [14]) on development machines as installing
target platforms from maven may interfere with local development Eclipse instance.
Therefore mvn clean verify should be used to check whether build is correct and
tests pass.

5.3.2 Eclipse Tycho

This technology is useful mostly for running automatized integration tests. Tycho is a
maven plugin which allows to specify and configure a complete target Eclipse instance
and run it. Although for development it is not very useful as running is slower than
on a regular (installed) Eclipse instance, it is very convenient for running tests. The
headless runner allows to run a completely functional Eclipse from command line even
when no Eclipse is installed, it just downloads all required dependencies from maven
repositories.

5.3.3 JUnit

JUnit is the main testing framework used on the project. In a testing terminology, most
of the test that were already existing, were integration tests. No layers are mocked
during such tests, which means that a real platform is run and operations are executed
in the same way as user would execute them. Some tests, however, use Platform API
to control the tests, which means it is not a real black-box testing as is used e.g. with
Selenium tests for web applications. The usage of Platform API means that the same
method calls that are used internally are also used for test control, e.g. mouse is not
emulated or forced to perform an action to open an editor but a Platform method
openEditor() is called instead.

5.3.4 Travis CI

Travis CI is a continuous integration service. It is free for open source and has very easy
integration with GitHub. This service provided an invaluable help to check whether
new commit has broken build or tests.

After a few-click setup of repository and adding .travis.yml configuration file, ser-
vice was ready to react to every new commit in the GitHub repository. It ran a Maven
command to build the whole batch project and run all test suites. Since the whole de-
velopment changes consited of approx. 80 commits, it would have been a lot of manual
work and waiting time on a local PC to verify each of these commits. It was used for
most of the time of development until the pull request. The configuration file had to
be removed before the merge to JBoss repository.

The service uses virtual linux machines to run the tests so the configuration file can
contain almost any script. In this case a customized setup had to be done in order to
run GUI Eclipse test, nevertheless the time spent on configuration was really worth it.

The history of all builds can be found at [21].

5.4 Work Process of the Project

25

5. Implementation .

5.4.1 Preparation

Before start of development and a final decision whether to choose JBoss Tools, it was
important if they are interested in such contribution. Since their reply in an internal
communacation was positive, development could finally begin.

It was unclear for a while whether JBoss Tools team will continue with development
using Sapphire at all due to a bug [22]. Luckily, the bug in underlying SWT library
was fixed in March and Sapphire framework was not dropped for Jboss Tools Batch
project.

5.4.2 Implementation Challenges

The definitely worst experience from the implementation part was trying to figure out
how to achieve specific what was needed in Sapphire. Framework documentation is
very poor and the only source of examples online are the very few official examples
from Sapphire repository.

The most difficult part to implement was the custom connection service. On the one
hand, it is easy to find what needs to be implemented. On the other hand, ”details” like
necessity to broadcast specific so that new connections are displayed cannot be found
anywhere and it took long hours and days reading framework code and debugging to
resolve cases like this.

Fortunately, Sapphire developers were always helpful and also managed to fix quickly
a bug [23] that was found during development which would block the whole work if it
was not fixed quickly.

5.4.3 Merging changes

The pull request [20] with a contribution of diagram editor changed 64 files in total.
3509 lines of code were added and 456 deleted. It was merged after a few days of
discussion and additional improvements. Comments of JBoss Tools team members,
description of changes and a promotional video with features of batch diagram can be
found in [20].

JBoss Tools team required to have the whole change set in a single or a few commits,
Therefore the whole history of approx. 80 commits was squashed into one. A nice view
of the work history also with build results can be found at [21].

26

Chapter 6
Evaluation

This chapter evaluates the diagram editor from various aspects. A list of implemented
features is presented, then these features are demonstrated on examples. Next follows a
usability testing section describing the whole usability testing process from preparation
to resolutions of the found issues. Finally, a list of know issues and possible future
extensions is provided.

Due to a fact that reviewing changes of large contributions may take a very long
time to process, it was necessary to send a pull request as soon as possible. And
since usability testing is also a very time-consuming work, a decision was made to try
to merge existing chages as soon as possible in a first pull request, then perform the
usability testing and after that, send potential patches in additional pull requests.

6.1 Features Implemented

The following list contains features that were not present in the JBoss Tools Batch
editor before and were added. Please note that it does not necessarily mean they were
all implemented from scratch. In some cases existing features were reused to create new
ones.

.<step>, <flow>, <split> and <decision> elements can be created in the diagram
by selecting from the Palette and placing onto the background..Transition using next attribute and conditional transitions using <next> element can
be drawn between elements..Tri-directional propagation of changes (all ways between XML, diagram and form
editor). Invalid transitions cannot be created:

. No conditional transitions from splits.

. No unconditional transitions from decisions.

. Transitions only on the same level (a transition cannot go between a nested flow
and outer element).

.Navigation through nested flows. (Both regular flows and flows inside a split)..Content proposal:

. For Java beans by name according to @Named annotation

. By classname

. Filtered by context (job listeners, step listeners, mappers, reducers, processors
etc.)

. For Batch XML artifacts used in references

.Property editors with dynamic content based on currently selected element in the
diagram for editing non-visual properties.. Ids of elements editable directly on the node..An action to set an element as a start of the job (move to the first place).

27

6. Evaluation .

.Terminating outcomes shown directly in the diagram next to nodes (end, fail, and
stop on status).

6.2 Demonstration of the Editor

6.2.1 Example Weather Application

An example weather forecast application was created to demonstrate capabilities of the
editor. A slightly modified version of the same application was used for usability testing
with users. The application does not perform any real calculation. More than a full
application it is rather a skeleton to show the Batch part. It is deployable and runnable,
all the batch parts work as any production appplication would, only the Java code inside
the referred beans only prints informative text to standard output instead reading real
files, writing to DB and calculating forecast. The purpose of the demonstration is to
show that the XML result produced by the editor can be runnable as a regular JSR-352
job.

Motivation: We need to calculate weather forecast based on data from weather
stations that are sent to us daily. Input data from one day is stored in N CSV files on
file system. The data needs to be read and saved into are database. Then long-running
forecast computations can be run. Since rain and temperature forecast results do not
depend on each other, they may be run in parallel. After all forecast calculations are
done, it is time to check whether some notifications have to be sent. If the forecast
looks fine, the batch job finishes. If rain is expected, a rain notification is sent. If snow
is approaching, a snow notification is sent.

Description:

.The first csvStep is a chunk step with an item reader and writer referring to corre-
sponding Java beans. Also a custom checkpoint algorithm is assigned (its implemen-
tation is overriden to make no checkpoints) just for demostration. The step always
transitions to a split..The forecastSplit contains two flows. Each of them contains single batchlet step for
forecast calculation. As soon as both calculations are finished, application continues
to a decision along the next transition..The decider bean reference form the decision returns a status which is used to deter-
mine direction of next transition..Based on the status of decider, either rain or snow notification step is called. These
are, again, simple batchlets..Java Batch classes are annotated by @Named annotation so that the can be reffered
to by name.

There is a short video enclosed to this thesis which captures the process of creating
this application. All Java code had been prepared before start, the job file is started
from scratch. The source code is attached as well.

Running:
Prerequisities: You must have Java and Maven insalled and a running instance of

Wildfly 8 or 9 to be able to deploy to it by Maven.

. In command prompt, cd to the root of the application (the directory where the
pom.xml file is located)..mvn clean install

28

. 6.2 Demonstration of the Editor

.mvn wildfly:deploy

Assuming your Widlfy instance is running and you did not change the default con-
figuration such as ports, you should be able to visit url http://localhost:8080/com

.example.batch-1.0-SNAPSHOT which starts the batch job. In the output of Wildfly
you should see the log of the batch that was run, something like:

23:18:46,927 INFO [stdout] (Batch Thread - 1) Reading file 1

23:18:46,928 INFO [stdout] (Batch Thread - 1) Reading file 2

23:18:46,928 INFO [stdout] (Batch Thread - 1) Reading file 3

23:18:46,929 INFO [stdout] (Batch Thread - 1) Saving data to DB.

23:18:46,930 INFO [stdout] (Batch Thread - 1) Saving data to DB.

23:18:46,930 INFO [stdout] (Batch Thread - 1) Saving data to DB.

23:18:46,939 INFO [stdout] (Batch Thread - 3) Calculating

temperature forecast.

23:18:46,941 INFO [stdout] (Batch Thread - 2) Calculating

rain forecast.

23:18:47,443 INFO [stdout] (Batch Thread - 2) Rain forecast finished.

23:18:47,940 INFO [stdout] (Batch Thread - 3) Rain temperature

finished.

23:18:47,942 INFO [stdout] (Batch Thread - 1) Decision status: SNOW

23:18:47,944 INFO [stdout] (Batch Thread - 1) It is going to snow so

drive carefully!

6.2.2 Invalid Configuration Handling

To demostrate that the editor also handles negative cases, following examples of invalid
configurations were prepared together with description how the editor handles them.

.Case: Next attribute on a decision

<decision id="decision" next="step"></decision>

<step id="step"></step>

Behavior: The transition cannot be created using the diagram at all. If such configu-
ration is created using XML editor, a validation marker is shown in the XML editor
with a warning that next attribute is not allowed according to [XSD]. If switched to
the diagram, no connection is shown here. Note: The validation against XSD is a
feature from the original editor by JBoss team..Case: Next element on a split

<split id="split">

<next on="aaa" to="step"/>

</split>

<step id="step"></step>

Behavior: Same as the previous case: Diagram does not allow to create such transi-
tion. If this code is written in text editor, XSD validation error is shown and diagram
does not display this transition..Case: Missing element id

<step>

</step>

Behavior: A validation marker shows up in the diagram node, in the form editor
next to the Id field and on the corresponding line in the XML editor. The validation
message says Id must be specified.

29

6. Evaluation .

.Case: More that one batchlet inside a step

<step id="step">

<batchlet ref="myBatchlet"></batchlet>

<batchlet ref="myBatchlet"></batchlet>

</step>

Behavior: The Add action offers batchlet as an option only when no batchlet or
chunk is present yet. Therefore the diagram and form editors will not create such
configuration. If someone does so in the text editor, a validation marker is displayed
in XML, form and diagram editors with a label Must have at most 1 items.

6.3 Usability Testing
There exist certain rules on how to set an appropriate number of participants for usabil-
ity testing. E.g. a common ”rule of thumb” about 5 usability tests discovering ”most”
of the usability problems. Such approach may be, of course, criticised, as e.g. in article
[24] by Spool and Schroeder.

On projects with limited resources (time, money, etc.) the more important question
is which number of usability test is the most profitable. Even on this project a decision
had to be made whether to spend more time on usability tests or to develop new features,
fix existing bugs, etc. Even though there exist studies, such as one [25] by Nielsen and
Landauer claiming that for a medium-large software project the highest ratio of benefits
to costs is achieved for 3.2 test users, as shown on figure 6.1, such value cannot be
quantified for our project since it is hardly measurable by money. Therefore the final
value of 4 participants was intuitively set as an estimate of the optimum value.

Figure 6.1. Ratio between benefits and costs for using various numbers of heuristic eval-
uators and test users to find usability problems in a medium-large software project.

6.3.1 Participants

4 volunteers participated in the usability session. All of them work for a single SW
company with offices in Prague. Each of the 4 participants was familiar with the Batch

30

. 6.3 Usability Testing

API but participants with different levels of knowledge were chosen on purpose. Also
both regular Eclipse users and Intellij IDEA users were included to get some basic
insights how user interaction on these two platforms might differ.

Participant 1:

.Java developer.Familiar with JSR-352.Has actively used Spring Batch in his projects. IntelliJ IDEA user but also has used Eclipse for a longer time.Male.27 years old

Participant 2:

.Analyst and Java developer.Has used Spring Batch in his projects.Uses Eclipse daily.Male.38 years old

Participant 3:

.Java and Grails developer.Has read about JEE Batch but has never used it on a project.. Intellij IDEA user but has know Eclipse from the past.Male.35 years old

Participant 4:

.Java developer.Uses Spring Batch in one of his projects.Uses both IntelliJ IDEA and Eclipse, it depends on current project..Male.28 years old

6.3.2 Scenario of the Session

Schedule of test session was planned as follows:

. Ice breaking, briefing (What is participant expected to do, whan he can expect),
agreement on recording.Tasks 0 - 5 (30 minutes).Follow-up interview, debriefing

No pre-test interview was performed as data about participants were collected when
scheduling the date of the session.

Participants were given 6 tasks, each of them consisted of a printed assignment and
a XML file they should create in the diagram editor as a result of their task, such as
this exmaple of Task 4:

<step id="csvStep" next="forecastSplit">

<chunk>

<reader ref="csvReader"></reader>

<writer ref="dbWriter"></writer>

31

6. Evaluation .

</chunk>

</step>

<split id="forecastSplit" next="forecastDecision">

<flow id="rainFlow">

<step id="rainStep">

<batchlet ref="rainForecastBatchlet"></batchlet>

</step>

</flow>

<flow id="temperatureFlow">

<step id="temperatureStep">

<batchlet ref="temperatureForecastBatchlet"></batchlet>

</step>

</flow>

</split>

<decision id="forecastDecision" ref="test.ForecastDecision">

<end on="OK"/>

<next to="snowNoticifactionStep" on="SNOW"/>

<next to="rainNotificationStep" on="RAIN"/>

</decision>

<step id="rainNotificationStep"></step>

<step id="snowNoticifactionStep"></step>

They were guided by a moderator so that they can focus rather on their work with
the tool than trying to understand how the whole application should work. Participants
were explained details about the application before the first task. They were informed
they are expected to create only the job XML file and existing Java classes can be just
used without knowing their internals.

Task assignments were in Czech but their translated versions are provided below.
They are accompanied with motivation (what can be learned during the tasks). Please
note that following questions are not hypotheses for quantitative testing. They are just
topic with respect to which the scenarios were designed.

.Task 0: Open the existing job.xml file in the project. Explore the IDE and editors
any way you like.

Motivation: To see how user reacts to the new editor and to let him get familiar
himself. Does he understand meaning of the three editor tabs?.Task 1: Create a step named csvReader that serves for saving the CSV data to
database. The step should contain a chunk. The chunk should contain a reader that
references the csvReader Java bean and a writer with a reference to dbWriter.

Motivation: To see if user understands that nodes represent XML elements, how
can he add them to the step and how to do basic property editing. Does he know
where to edit inner properties? To see how he uses content assist. How does he react
to changes in Properties view based on current selection. Is the concept of transitions
clear? How does he create transitions?.Task 2: For parallel calculation of two different weather forecast, create a split
containing two flows, a rainFlow and a temperatureFlow. Each flow should contain
a step with a reference to appropriate batchlet.

Motivation: How does user understand elements nesting? Is he able to open a
nested flow? Does he realize he is in it now and how to navigate back?.Task 3: Now, two different types of notification must be sent according to the result
of the forecast.

32

. 6.3 Usability Testing

Create a forecastDecision that will:

. end on OK status. transition to a rainNotificationStep on RAIN status. transition to a snowNotificationStep on SNOW status

Motivation: Do conditional transitions cause any troubles?.Task 4: Replace the two notifications with one common badWeatherNotification.
Each transitions should point to the new node.

Motivation: What methods does participant use to accomplish the tasks? Does
he move the lines end endpoints and how?.Task 5: Add an additional step named excelStep (for reading Excel files) at the
beginning of the job so that it continues with csvStep.

Motivation: Is the Set as Start action clear?

6.3.3 Test Setup

Usability testing session were performed in 2 days with 2 participants per each day.
Both session took place directly in developers’ offices during a regular working day.
The only difference compared to their own working environment was that they were
performing the tasks on a different computer, yet with the same operating system
they use (Windows 7).

Such conditions are more accurate in the sense of simulating realistic results
compared to distraction-free laboratory tests.

The disadvantage of this choice was that participants were willing to spend only
approx. 30 minutes with this experiment.

Figure 6.2. Usability Test Environment

33

6. Evaluation .

6.3.4 Test Execution

In general, the test execution completed successfully and provided valuable feed-
back. After the first participant it showed that the original estimate of 30 minutes
for all tasks had been a little over-estimated. Therefore other participants were
told a shorter estimate (slightly over 20 minutes). The other 3 participants com-
pleted all tasks in about 25 minutes. Screen and sound records of all participants
are available on the attached CD.

Some participants were being disturbed a little during their sessions, e.g. be-
cause of an important phone call, collegue’s laugh or other colleagues entering
the room and saying hello. However, all session were managable and the real vs.
laboratory test balance was very adequate.

Next follow the session logs for all participants. Only relevant events are in-
cluded, i.e. only those referring to questions that were posed and those which
bring important new ideas. Execution times for each individual tasks are not
logged as it makes no sense to analyze them statistically on such small data set.

Participant 1
[3:55] P1 understands the core concept of diagram, i.e. the nodes from the

palette have to be insterted into the diagram area.
[4:01] After inserted a step, P1 recognises that a text input for step id was

activated and that it is a requried field.
[4:24] Although P1 was not supposed to focus on setting step as a start, he

proactively wants to do so. He notices the Set as Start button and correctly
identifies the start indicator with the same icon.

[4:30] P1 thinks he should add an item reader and writer directly to the csvStep.
That is just a matter of Batch API knowledge.

[5:05] P1 tries to add item reader using the context menu (right click) on the
chunk area. Such action is however, not available. Although he sees the Show in
Properties View action, he thinks it will not help him accomplish the task.

He is guided by moderator how to open the Properties View so that he can
continue with the task.

[5:55] P1 succesfully finds the Reader tab in property views and identifies the
correct row for entering a reference to the csvReader bean.

He expects content assist but since he performs no action to trigger it, he gets
no assist. That might be caused by the fact that his main IDE used at work is
Intellij IDEA which triggers content proposal automatically (as he himself explains
at the end of the session).

[7:30] P1 correctly recognizes that transitions using the next XML attribute
can be modeled using the Next transition from the pallete and can be applied to
exisiting objects in the diagram.

He is not aware about the protocol for creating diagram connections, i.e.: click
transition, click source node, click target node. He assumes that at first the source
node should be selected, then transition chosen and then target node selected.

At the end of the session he explains he was used to that procedure from a
different visual editor (maybe Enterprise Architect but he is not sure).

[8:20] When trying to add a flow inside a split, P1 at first makes a mistage and
drops a new flow next to existing split instead of creating one inside. He also
tries to create a reference to existing outer flow from inside of the split using the
property view editor.

34

. 6.3 Usability Testing

After moderator’s hint to see generated source code he realizes his mistakes by
himself and is able to recover to a correct state.

The reason of this mistake might be the lack of API knowlegde. He probably
wanted to use same approach with reference to an external flow which is valid for
Spring Batch but not for JSR-352.

[10:30] P1 successfuly finds a way to open a flow and uses it.
[11:10] After moderator’s hint that content proposal is available, he successfully

finds out the correct keyborad shortcut (CTRL + Space) for activation.
[11:35] P1 obviously understand the concept of navigation in inested flows and

finds a correct button to use to navigate up to the parent.
[12:15] With knowledge gained when creating the first batchlet, P1 is able to

apply it to a similar task again without any problems.
[13:30] P1 is able to add a terminating element with status code reference.
[14:30] P1 recognizes that connections using next element with on status refer-

ence correspond to the Next On transition in the palette view. He is also aware
he can start typing the status code immediately after he creates the transition.

[15:55] P1 reveals the possibility of dragging an endpoint of a connection from
one target node to another and use it to accomplish his task.

[17:00] P1 Finds a correct way to set a step as a start element.
He also states that after few minutes of using the tool it finally starts to feel

intuitive.
Follow-up discussion: P1 suggests to open Properties View by default when

editor is opened. He says he ”quite likes” the editor.
Participant 2
[3:00] P2 Recognizes where to find nodes representing Batch entities and how

to add them to the job.
[3:30] He proactively uses Show in Propoerty View and Show in Source actions

and understands their meanings.
[4:00] P2 opens the content assist dialog for the next attribute. He says ”There

is none” and selects OK for the default (empty) option. But he does not notice
that the first option was selected as default and the field did not remain empty.

[4:30] After a little moment of searching, P2 find the right way to insert a chunk
into step.

[4:35] After inserting the chunk, P2 immediately recognizes where forms for
specifying readers and writers are. he obviously understands the concept of Eclipse
property views.

[5:45] P2 asks moderator whether editor provides content assist for Java beans.
When moderator avoids to answer, he tries it himself and succesfully determines
the correct shortcut for it.

[7:10] Instead of creating a new transition, P2 reuses one he accidentaly created
before. His action indicates he undrestands that arrows represent transitions and
how to reconnect their endpoints.

[8:00] P2 expresses his expectation of a working drag & drop gesture for inserting
flows into a split. When he accidentally drops a flow into the step, he realizes that
he is in an inappropriate location.

[9:40] P2 tries again to insert elements into other elements by dropping them.
Soon after that he discovers the Open Flow button and uses it correctly.

[10:40] P2 has problems finding a wat to insert batchlet into a step. Trying to
find any way to accomplish that he finds out that content of the Property View

35

6. Evaluation .

depends on the current focus in the diagram. After a short break when he tries
to show moderator something in the parent step he finds the right menu. But he
points out that he would expect a menu for adding batchlets in the Property View
because in the context of a split, there is possibility to add flows.

[13:20] P2 states that meaning of the Parent navigation label is not clear to him.
He would expect a possibility to navigate in the structure of the job using nodes
under the node of the XML job file in the Project Explorer view on the left.

[15:55] P2 says he would expect a buton for transition in the context menu of a
node. Then he thinks the best way to specify transition is using the text field. He
is not aware of the option to draw transition from node to node using the icon in
the Palette view.

[17:40] Participant uses wrong procedure of adding transition, he tries to drag
it from one node to another. Soon he realizes how to perform this task right.

[20:30] P2 succesfully finishes task that focuses on changing transition endpoints
by dragging.

[21:15] Also the task to set step as start is executed without problems.
[21:45] P2 asks about existence of automatic layuot feature which indicates he

would like to have such function.
Follow-up discussion: Participant’s answer to question whether he has mistaken

validation markers for delete buttons is positive. He would also like to have error
marked by a validation marker in the editor shown in the common Eclipse Markers
or Problems view and also on appropriate location in the XML editor. He sees the
biggest problem in absence of transition button in the node context menu. Other
things were intutitive for him, he claims. Then he likens the diagram editor to
JBoss Drools editor, the knowledge of which is applicable for him to the Batch
editor.

Participant 3
[3:01] P3 succeeds in adding a step to the job from the palette. He recognizes

that the default text input which is activated after step was inserted refers to step’s
id.

[3:30] P3 also figures out how to add chunks into steps.
[4:26] Participant has problems finding a way to add an item reader. The Show in

Properties View action does not seem important to him so he tries to drop another
step onto the chunk. After a minute of wondering he is guided by moderator.

[4:55] P3 makes an observation concerning validation markers. When he clicks
on it and sees the Id is required. label, he infers that the marker is a delete button
which cannot be used at the moment because the id is missing.

[5:55] When entering a reader reference, P3 just types the text by hand instead
of activating content assist. A possible reason for that might be he is a Intellij
IDEA user.

[7:35] P3 has no problem with creating a next transition on the first try.
[7:55] Participant tries to insert a flow into split by dropping it onto it which is

not supported. However, he finds a working solution using Properties View soon.
[8:44] The Open Flow action is found easily. P3 undrestand he can start inserting

elements inside the flow when it is open.
[9:40] P3 has some problems finding an action to add a batchlet, even though

he has already added a chunk, which is done in the same way. Neverthless, he
succeeds eventually.

36

. 6.3 Usability Testing

[11:15] Afer some unsuccessful retries of returning back to parent step, P3 finally
completes this subtask. He expects a possibility to navigate back using tree nodes
in Package Explorer, the same as P2.

[11:55] After moderator’s hint to expect a content proposal, P3 tries the correct
key shortcut to activate it.

[14:15] P3 has no problem creating next element transitions with on condition.
[16:00] Participant successfully reconnects exisiting transition to a new node.
[17:28] The Set as Start button is discovered and used properly.
[24:15] P3 tries to change a source node of a transition by dragging it to another

element. He fails because it is not supported.
Follow-up discussion: Participant suggests having title bar clickable. It should

be able to navigate directly to the clicked path segment. He also states he would
expect the Outline view to display the whole job even when an inner flow is open.
And it should be clickable. Another option for navigation up could be a button
in the context menu of an element. He also believes a different icon for validation
markers would be less confusing. And he would be satisfied if the Show in Proper-
ties View action was hooked by default on double click. He appreciates flexibility
of the transition lines.

Participant 4
[4:45] P4 manages to add a new step to the job.
When he tries to input and id for the step, he does not realise that the <id>

label serves only as a placeholder. He changes the value to <csvStep>. Perhaps
he thinks he is writing XML code directly (because of the < and > characters).

The same error happens also during execution of some other tasks.
[5:25] Participant tries to click on validation markers. He might guess that the

serve as delete buttons.
[6:40] Trying to add a reader into a chunk, P4 tries to drag the CsvReader.java

file from the Project Explorer and drop it onto the chunk in the diagram. After an
approx. half minut of searching he finally tries to use the Show in Property View
action and finds the Reader tab there.

[7:50] After P4 is given an advice to try to use content assist, he knows he should
use Ctrl + Space shortcut.

[9:00] No matter the task assignment, participant wants to understand how the
content proposal works internally. It might he appreciates the content assist being
smart.

[10:15] Transition using the next XML attribute is created without any prob-
lems.

[10:40] Same as some of previous participants, also P4 tries to add a flow into a
split using a drop gesture.

[11:55] P4 deals with opening the flow without noticable troubles.
[12:55] Participant returns to the parent job and asks why his layout has changed.

His guess is it is because the nodes are sorted automatically (which is true).
[14:00] P4 notices some strange characters (\<) in the id attribute of an entity.

This is the XML encoded < character which he entered in one of previous tasks.
Without moderator’s explanation he would probably be very confused.

[15:50] Participant feels a little inconsistency in the fact that step node labels
contain step id but batchlet or chunk contain only Batchlet or Chunk label. ac-
cording to his suggestion, the label should contain name of the referenced batchlet
bean.

37

6. Evaluation .

[17:55] End outcome element created without any troubles.
[18:45] P4 makes a mistake by double clicking a step node while his mouse cursor

is in the transition mode. It creates an unwanted transition loop.
User tries to use a Revert action (Ctrl + Z) but he is dissapointed that it is

not possible.
During his consequent effort to fix his mistakes he has serious troubles to select

the new transition. He tries it in the right way, yet he does not point his mouse
cursor precisely so he fails.

[21:00] The tasks focused on reconnecting endpoints is unfortunately finished
in a different, less efficient, way by deleting steps first and recreating transitions
to the new step. Being advised explicitely to try to reconnect the transitions,
participant accomplishes the task without much effort.

[22:30] P4 plays with connection bending points and likes to possibility to change
shape of the lines.

[23:50] The way how to set element as a start is understood and task executed
successfully.

Follow-up discussion: P4 claims that after a few minutes of using the SW he
starts to get used to the features he has had problems with on the first attempt,
such as selecting items. The hidden Properties view has been unintuitive to him.
He would also expect the view to be on a different location but, as he says, it
might be due to different layouts of different WYSIWYG editors he is used to.
The Parent navigation button seems alright to him, although he would expect
Back label instead. He would also expect the diagram layout to persist, not to lay
out nodes autmatically but on demand instead.

6.3.5 Test Evaluation

All of the previous findings were analyzed and grouped together if they were re-
peated. They can be divided into 2 groups:

1. Actions that cause some troubles during the first try but users finally figures
out the correct way himself and has no problems with repeating the learned
procedure next time.

2. Problems which user might have problems to solve himself without any advice.

Since none of the users showed any signs of frustration when having problems
from group 1, only problems from group 2 were further analyzed and necessary
steps were done to solve them:

1. Users cannot find a way to edit inner elements of steps and other entities. They
cannot see any corresponding form when the Properties view is hidden. Once
the view is show, they have no problems finding particular form.

Resolution: The issue was fixed by opening the Properties view by default.
An issue in JIRA [26] was created together with a pull request.

2. When no content proposal in the form editor is shown automatically, users think
this feature is not present. Resolution: Eclipse editors are not very consistent
in this. Some provide on-demand assist and some trigger it as soon as user
starts typing. Some forms add a small ”lightbulb” indicator with a tooltip
saying Content Proposal Available. Such indicator is, however, not supported in
Sapphire and therefore a feature request [27] was created in Eclipse BugZill

3. User tries to add a nested flow using drop gesture.

38

. 6.3 Usability Testing

Resolution: The Sapphire framework unfortunately does not support such
drop gestures. Therefore an enhancement request [28] was created in Eclipse
BugZilla.

4. User does not know how to navigate back from nested flow to parent.
Resolution: Unfortunately, Sapphire framework probably does not support a

way to change location of the button to the left of the title in titlebar. Possible
fixes could be:

. An action in the context of the editor (right click)

. To populate the job xml file in the Package Explorer view with additional
sub-nodes representing nested flows

Since there is no obvious solution for this and it would make no sense to send
a quick patch without being completely sure, JBoss Tools community was asked
[29] for help to share their experiences and insight.

5. Users expects a button for creating transitions in the node context menu.
Resolution: This feature is present in a newer version of Sapphire framework,

which will by updated before the final release of the editor, as you can read in
the Jira task by Alexey Kazakov [30].

6. User expects the diagram layout to be persisted and to perform the auto-layout
on demand.

Resolution: Since this issue is not critical (see the difference on figures 6.4
and 6.3), it remains as a possible future extension, as described on page 40.

7. Validation markers (with a cross) are mistaken for delete buttons.
Resolution: Markers were moved from right to left, which is the standard

location in Eclipse. An issue in JIRA [31] was created together with a pull
request.

8. User expects validation errors to be shown in the common Errors view.
Resolution: When trying to reproduce this issue in a new workspace, errors

started to appear in the view as they should. The bug during the test could have
been caused by an inappropriate workspace handling. (The whole workspace
versioned with Git so that it could be restred after each participant and the
refresh probably caused an inconsistent state).

9. User thinks that the <> characters in the id default value have some meaning in
syntax.

Resolution: The confusing placeholder was removed. A request for enhance-
ment [32] was sent to Jira together with a pull request.

10. User feels that the Batchlet label displayed instead of value of batchlet bean
reference creates an inconsistency in the UI.

Resolution: From a different point of view, if the label contained the ref

value of the batchlet, there would be an inconsistency that all nodes have an id

in the label but batchlet a reference. Ids are the values from XML but refs are
names of Java beans and therefore it is not a good idea to mix them. The other
reason for not doing that is that chunks do not have ids too, but for chunks
there is not a straightforward choice of field to be reflected in the label. The
reason for this change would have to be validated by a quantitative test at first,
so it will not be done for now.

11. User misses a Revert action.
Resolution: This should be definitely handled by the framework as it makes

not sense that every should implement the feature himself. A request for en-
hancement [33] was raised.

39

6. Evaluation .

6.4 Known Issues

All problems found during the usability testing were either fixed and a patch sent
or a request for enhancement was created if it was an issue of framework. The only
exception is the problem with Parent navigation button where an obvious solution
was not known and that is why community was asked [29] for their advice as they
have also right to decide because this project became a part of theirs.

Note: The additional patches with fixes of usability issues were not merged yet
into the main project repository.

6.5 Possibilities of Future Extensions

6.5.1 Persistence of Diagram Layout

Although the Sapphire framework itself is capable of persising layout of diagram
nodes and connections, it is not applicable to our editor due to its certain cus-
tomizations.

Figure 6.3. Custom Layout

The problem is that the Sapphire standard diagram layout persistence service
calls a connection service which is used for the editor to return all existing connec-
tions. The connection service always returns all connections for the current editor
content. This content is, however, not always the same in our case. Sometimes a
nested flow needs to be displayed and in this case the connection service has to list
only connections from the current flow. And when the editor is in the root (job)
element, the connection service cannot include connections from nested flow into
the list of all connections.

Implementing a custom persistence service would require writing of some addi-
tional hundreds lines of code and so it will be kept as an opportunity for contri-
butions in the future.

40

. 6.6 Author’s Personal Insights

Figure 6.4. Automatic Layout

6.6 Author’s Personal Insights

If I, as the author of the thesis, may add some personal opinions, I would say
that working on this project was a great experience. It has shown me that open
source world can be welcoming, yet factual and just. Even though I sill believe
Sapphire was the right choice of framework, I know I should think twice next time
before starting with a tool with such a poor documentation. And the decision
for extending JBoss Tools was definitely the right one. Not only it let me learn
many new things regarding teamwork but it also gives me prospects for my open
source activities in future as the JBooss Tools team has already added me to their
development group.

41

Chapter 7
Conclusion

To summarize what has been done and achieved during work on this thesis, let us
discuss all the objectives that were set:

.A analysis of the Batch API was performed, resulting in observations how Batch
entities should be modeled and represented in the visual editor..Based on the conducted research of existing solutions, main design points re-
garding UI and software architecture were made and JBoss Tools project was
chosen to become a base for the following implementation..A contribution was made to the JBoss Tools project by merging the developed
features back to the project code base. Consequently, the application itself is
available for free online as well as its source code (which licensed under EPL)..The editor was demonstrated on examples of both valid and invalid user input.
An example application was developed using the new tool, its sources attached
and the process development captured into the attached video..User documentation was created and attached..A usability test was performed with real Java developers. The tests provided
valuable feedback and findings which were used to fix usability issues or provide
suggestions for improvement.

Regarding the requirements for the new editor we can state that:

.The main feature of the editor — which is graphical manipulation with batch
entities and their links — was implemented..Apart from the diagram editor, the tool comprises also of a XML editor and a
tree-form editor, the content of which is automatically synchronized with others..The editor provides a dynamic content proposal. Names of Java beans and
batch artifacts are suggested..The tool follows Eclipse conventions and is installable directly to an existing
Eclipse instance using the standard Update Site mechanism.

A serious bug [23] in the Sapphire framework preventing diagram editors from
working on certain circumstances was found thanks to the discoveries during work
on this thesis.

One of the issues found during the usability testing, a problem with Parent
navigation button, which might be hard to find for some users, was not resolved
completely as section 6.4 describes.

Support for persistence of diagram layout might be a nice feature improving
usability and remains as a possibility for future extensions 6.5.

One of the most noticable indications of a certain level of quality of the software
is the fact that the contributing pull request was merged [20] and a feature request
[34] for batch diagram editor in Jira issue tracker was resolved.

The JBoss Tools team provided valuable feedback and requests for improve-
ments, yet their reactions mostly showed appreciation. Such as Max Rydahl An-

42

. .

dersen, lead of JBoss Tools, who commented the pull request [20]: This looks great!
Will take some time to review but want to say Good Job.

The editor was incorporated into the 4.3.0 version of JBoss Tools. Its final
release is scheduled to 15th October 2015.

43

References

[1] JSR-000352. Batch Applications for the Java Platform [online]. Version 1.0
Final Release. Java Community Process, 2013. Available at:
https://jcp.org/aboutJava/communityprocess/final/jsr352/index.html

[2] MINELLA, Michael T. Pro Spring Batch: Batch Processing with the Spring
Batch Framework. New York: Apress, 2011, xiv, 487 p. Expert’s voice in
Spring. ISBN 978-1430234524.

[3] JSR-000342. Java Platform, Enterprise Edition 7. [online]. 2013. Available
at:
https://jcp.org/aboutJava/communityprocess/final/jsr342/index.html

[4] GUPTA, Arun. Java EE 7 essentials. 1st ed. O’Reilly Media, 2013, xvi, 343
pages. ISBN 14-493-7017-9.

[5] Spring Batch - Reference Documentation: JSR-352 Support. [online]. [cit.
2015-02-10]. Available at:
http: / / docs . spring . io / spring-batch / trunk / reference / html / whatsNew .

html#whatsNewJSR-352Support

[6] JBatch Suite: Netbeans plugin. Java.net [online]. [cit. 2014-11-19]. Available
at:
https://java.net/projects/jbatchsuite

[7] Java EE 7 and Batch Processing in IntelliJ IDEA 13. In: YouTube [online].
2013 [cit. 2015-05-09]. Available at:
https://www.youtube.com/watch?v=416mX1mWb-c

[8] GUPTA, Arun. Forge Addons for Java EE 7. In: GitHub [online]. 2014 [cit.
2015-05-09]. Available at:
https://github.com/javaee-samples/forge-addons

[9] Spring Netbeans Module [online]. [cit. 2015-02-10]. Available at:
http://sourceforge.net/projects/spring-netbeans/

[10] JSR-352: Java EE 7 Batch. In: JBoss Issue Tracker [online]. 2014 [cit. 2015-
05-03]. Available at:
https://issues.jboss.org/browse/JBDS-3160

[11] Sapphire Developer Guide: Introduction. Sapphire [online]. 2015 [cit. 2015-
05-09]. Available at:
http://eclipse.org/sapphire/releases/8.1.2/documentation/introduction/

index.html

[12] WEINSTEIN, Jesse. ECLIPSE.ORG. User Interface Guidelines [online].
2013 [cit. 2015-05-09]. Available at:
https://wiki.eclipse.org/User_Interface_Guidelines

[13] JBoss Tools. [online]. [cit. 2015-05-02]. Available at:
https://github.com/jbosstools

44

https://jcp.org/aboutJava/communityprocess/final/jsr352/index.html
https://jcp.org/aboutJava/communityprocess/final/jsr342/index.html
http://docs.spring.io/spring-batch/trunk/reference/html/whatsNew.html#whatsNewJSR-352Support
http://docs.spring.io/spring-batch/trunk/reference/html/whatsNew.html#whatsNewJSR-352Support
https://java.net/projects/jbatchsuite
https://www.youtube.com/watch?v=416mX1mWb-c
https://github.com/javaee-samples/forge-addons
http://sourceforge.net/projects/spring-netbeans/
https://issues.jboss.org/browse/JBDS-3160
http://eclipse.org/sapphire/releases/8.1.2/documentation/introduction/index.html
http://eclipse.org/sapphire/releases/8.1.2/documentation/introduction/index.html
https://wiki.eclipse.org/User_Interface_Guidelines
https://github.com/jbosstools

. .

[14] The JavaEE Tools project. [online]. [cit. 2015-05-02]. Available at:
https://github.com/jbosstools/jbosstools-javaee

[15] The GitHub Flow. [online]. [cit. 2015-05-03]. Available at:
https://guides.github.com/pdfs/githubflow-online.pdf

[16] GitHub Guides: Understanding the GiHub Flow. [online]. [cit. 2015-05-02].
Available at: https://guides.github.com/introduction/flow/

[17] The JavaEE Tools project: Contribute fixes and features. [online]. [cit.
2015-05-03]. Available at:
https://github.com/jbosstools/jbosstools-javaee#contribute-fixes-and-

features

[18] Atlassian Git Tutorial: Merging vs. Rebasing. [online]. [cit. 2015-05-03].
Available at:
https://www.atlassian.com/git/tutorials/merging-vs-rebasing/

[19] CHACON, Scott and Ben STRAUB. Pro Git. New York: Apress, 2014, 456
pages. 2nd edition. ISBN 978-1484200773. Page 305.

[20] MILATA, Tomáš. Visual (diagram) editor for JSR-352 batch job files: Pull
request #326. In: GitHub [online]. 2015 [cit. 2015-05-10]. Available at:
https://github.com/jbosstools/jbosstools-javaee/pull/326

[21] Builds - tomas-milata/jbosstools-javaee. Travis CI [online]. 2015 [cit. 2015-
05-10]. Available at:
https://travis-ci.org/tomas-milata/jbosstools-javaee/builds

[22] KAZAKOV, Alexey. Unhandled event loop exception when opening Batch
Job Configuration editor. In: JBoss Issue Tracker [online]. 2015 [cit. 2015-
05-10]. Available at:
https://issues.jboss.org/browse/JBIDE-19270

[23] ZHOU, Shenxue. Connection issue with node templates declared on same
base type. In: Eclipse Bugzilla [online]. 2015 [cit. 2015-05-10]. Available at:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=463917

[24] SPOOL, Jared a Will SCHROEDER. Testing web sites: Five Users Is
Nowhere Near Enough. CHI ’01 extended abstracts on Human factors in
computing systems - CHI ’01. New York, New York, USA: ACM Press, 2001,
s. 285-286. DOI: 10.1145/634067.634236. Available at:
http://portal.acm.org/citation.cfm?doid=634067.634236

[25] NIELSEN, Jakob a Thomas K. LANDAUER. A mathematical model of the
finding of usability problems. Proceedings of the SIGCHI conference on Hu-
man factors in computing systems - CHI ’93. New York, New York, USA:
ACM Press, 1993, s. 206-213. DOI: 10.1145/169059.169166. Available at:
http://portal.acm.org/citation.cfm?doid=169059.169166

[26] MILATA, Tomáš. Open ’Properties’ view together with the Batch diagram
editor. In: JBoss Issue Tracker [online]. 2015 [cit. 2015-05-09]. Available at:
https://issues.jboss.org/browse/JBIDE-19781

[27] MILATA, Tomáš. Content proposal indicator. In: Eclipse BugZilla [online].
2015 [cit. 2015-05-09]. Available at:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=466884

[28] MILATA, Tomáš. Add items to element list by dropping them onto a node in
diagram. In: Eclipse BugZilla [online]. 2015 [cit. 2015-05-09]. Available at:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=466883

45

https://github.com/jbosstools/jbosstools-javaee
https://guides.github.com/pdfs/githubflow-online.pdf
Available at: https://guides.github.com/introduction/flow/
https://github.com/jbosstools/jbosstools-javaee#contribute-fixes-and-features
https://github.com/jbosstools/jbosstools-javaee#contribute-fixes-and-features
https://www.atlassian.com/git/tutorials/merging-vs-rebasing/
https://github.com/jbosstools/jbosstools-javaee/pull/326
https://travis-ci.org/tomas-milata/jbosstools-javaee/builds
https://issues.jboss.org/browse/JBIDE-19270
https://bugs.eclipse.org/bugs/show_bug.cgi?id=463917
http://portal.acm.org/citation.cfm?doid=634067.634236
http://portal.acm.org/citation.cfm?doid=169059.169166
https://issues.jboss.org/browse/JBIDE-19781
https://bugs.eclipse.org/bugs/show_bug.cgi?id=466884
https://bugs.eclipse.org/bugs/show_bug.cgi?id=466883

References .

[29] MILATA, Tomáš. Users have problems finding the ”Parent” button in Batch
diagram editor. In: JBoss Issue Tracker [online]. 2015 [cit. 2015-05-10].
Available at:
https://issues.jboss.org/browse/JBIDE-19783

[30] KAZAKOV, Alexey. Update Sapphire to latest 9.0.0.x version. In: JBoss
Issue Tracker [online]. 2015 [cit. 2015-05-08]. Available at:
https://issues.jboss.org/browse/JBIDE-19751

[31] MILATA, Tomáš. Validation markers in Batch diagram seem like delete but-
tons to users. In: JBoss Issue Tracker [online]. 2015 [cit. 2015-05-09]. Avail-
able at:
https://issues.jboss.org/browse/JBIDE-19782

[32] MILATA, Tomáš. Confusing ¡id¿ placeholder in Batch Diagram editor. In:
JBoss Issue Tracker [online]. 2015 [cit. 2015-05-09]. Available at:
https://issues.jboss.org/browse/JBIDE-19780

[33] MILATA, Tomáš. Revert Action in Diagram. In: Eclipse BugZilla [online].
2015 [cit. 2015-05-10]. Available at:
https://bugs.eclipse.org/bugs/show_bug.cgi?id=466931

[34] MILATA, Tomáš. Visual (diagram) editor for JSR-352 batch job files. In:
JBoss Issue Tracker [online]. 2015 [cit. 2015-05-10]. Available at:
https://issues.jboss.org/browse/JBIDE-19717

46

https://issues.jboss.org/browse/JBIDE-19783
https://issues.jboss.org/browse/JBIDE-19751
https://issues.jboss.org/browse/JBIDE-19782
https://issues.jboss.org/browse/JBIDE-19780
https://bugs.eclipse.org/bugs/show_bug.cgi?id=466931
https://issues.jboss.org/browse/JBIDE-19717

Appendix A
User Documentation

A.1 Prerequisities

.You must have Java version 7 or higher installed on your system..Download an Eclipse 4.5M7 release from http://download.eclipse.org/

eclipse/downloads/drops4/S-4.5M7-201504301445/ or any 4.5 final re-
lease.

A.2 Installation

. In your running Eclipse, click Help, then Install New Software..Type http://download.jboss.org/jbosstools/updates/nightly/mars/ into
the Work with: field (see figure A.1).

Figure A.1. Installation from Update Site

.Select JBoss Web and Java EE Development and click Next..Procced installation by clicking Next and confirming license agreements..After installation finish and IDE restart, the software should be successfully in-
stalled and ready to use.

A.3 Usage

Tip: See a video of almost all features at https://www.youtube.com/watch?v=

wmWFQKvTWSc..Let us suppose you have created a Java project using menu File, New, Java Project..A new batch job can be created by right clicking the project and selecting New,
Other, typing batch and selecting Batch Job XML File. See figure A.2. Select a
name of your job file and click Finish.

47

http://download.eclipse.org/eclipse/downloads/drops4/S-4.5M7-201504301445/
http://download.eclipse.org/eclipse/downloads/drops4/S-4.5M7-201504301445/
https://www.youtube.com/watch?v=wmWFQKvTWSc
https://www.youtube.com/watch?v=wmWFQKvTWSc

A User Documentation .

Figure A.2. Batch Job Wizard

.Your job file should open and you should see three tabs: Design, Diagram and
Source.. In the Diagram tab you should see a Palette view on the right, containig icons for
creating batch elements and transitions..New elements are created by clicking on one of the Flow Elements on the right
and dropping it onto a desired position. A text filed for assigning and id to a new
element is activated right after the drop..You can create a new transition by clicking a Next transition in the palette, then
clicking the source node and then the target node..At any time, you can view the source code by right clicking on any element and
selecting Show in Source..Properties of elements can be edited using a form editor by right-clicking an el-
ement and selecting Show in Properties View. Context of the Properties view is
switched according to the currently selected item. See figure A.3

Figure A.3. Properties View

48

Appendix B
Screenshots

Figure B.4. Screenshot of the diagram editor

49

Appendix C
Contents of the Attached CD

.javadoc.zip — Javadoc generated from the Batch UI plugin..src.zip — Source code of the Batch UI plugin. Only this plugin was extracted
from the whole repository due to a limited attachment size..usability-testing-p* — Records of usability tests..example.mp4 — Record of development of the weather forecast example appli-
cation..example.zip — Source code of the weather forecast example application..java-ee-batch-editor.pdf — This document.

50

Appendix D
Glossary

CDI . Context and Dependency Injection
CSV . Comma-Separated Values
EMF . Eclipse Modelling Framework
EPL . Eclipse Public License
GEF . Graphical Editing Framework
GMF . Graphical Modelling Framework
IDE . Integreated Development Environment
JEE . Java Enterprise Edition
JSF . Java Server Faces
JSL . Job Speficiation Language
JSR . Java Specification Request
SDK . Software Development Kit
WYSIWYG . What you see is what you get.
XML . eXtensible Markup Language
XSD . XML Schema Definition Language

51

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	/Figures
	Introduction
	Overview
	JEE Batch
	Building blocks
	Java API and Job Speficiation Language
	Chunking
	Transitions
	Transitions and Nested Flows

	Spring Batch vs JEE Batch

	Analysis
	Existing Tools and Related Works
	jBatchSuite
	Intellij IDEA
	Spring Batch Support in Intellij IDEA
	WebSphere Developer Tools
	JBoss Forge Addon
	Spring Tools Suite
	Spring Netbeans Module
	JBoss Tools

	Typical User and User Needs
	Features and Requirements

	Solution Design
	Initial Decisions
	GUI in Context of Frameworks

	GUI
	Eclipse Conventions
	Discussion of Diagram Structure
	Sketches & Prototypes

	Software Architecture
	Eclipse
	Sapphire

	Implementation
	Contributing to JBoss Tools project
	GitHub Flow
	Workflow of JBoss Tools

	Software Structure
	Model
	Actions
	Content Proposal
	Connections
	Layout
	Extensions
	Utilities

	Used Technologies
	Maven
	Eclipse Tycho
	JUnit
	Travis CI

	Work Process of the Project
	Preparation
	Implementation Challenges
	Merging changes

	Evaluation
	Features Implemented
	Demonstration of the Editor
	Example Weather Application
	Invalid Configuration Handling

	Usability Testing
	Participants
	Scenario of the Session
	Test Setup
	Test Execution
	Test Evaluation

	Known Issues
	Possibilities of Future Extensions
	Persistence of Diagram Layout

	Author's Personal Insights

	Conclusion
	References
	User Documentation
	Prerequisities
	Installation
	Usage

	Screenshots
	Contents of the Attached CD
	Glossary

