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Brno, 2014



Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Bc. Rastislav Tisovčík
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Abstract

The aim of this thesis is to discuss and apply knowledge of computer graph-
ics and human-computer interaction in the field of cartography. This text
covers several topics including basic principles of cartography, representa-
tion of terrain data and possible ways how to obtain the data. Furthermore,
selected interaction techniques and devices which can be used to employ
them are also discussed.

The implementation part of the thesis introduces Land ability, a new ex-
tension of the vrecko framework. The extension allows users to visualize and
work with terrain data obtained from various sources. This includes sup-
port for real world terrain data of the Czech Republic provided by ČÚZK
along with utilisation of orthoimagery that is available via web services.
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1 Introduction

Since the origin of the field of computer graphics, its continual advances
have led to an increased demand for scientific visualization. This demand
is not related to any particular field discipline – medicine, chemistry, astro-
physics, archeology and many other fields use computer graphics for the
purpose of visualization on a regular basis.

One of the fields that can benefit from visualization of data in three-
dimensional virtual environment is cartography. After millenia of using
physical maps (both planar and globular), cartography has obtained a new
set of tools which can be used for visualization of maps and other geo-
graphical data. In this text, we focus on visualization of subset of these data,
namely topography of the land – i.e. the terrain model.

However – apart from visualization, we have to also focus on the topic
of human-computer interaction. Our interaction with physical maps and
globes in the real world is intuitive and mostly subconscious. In contrast,
interaction with virtual maps – especially in three dimensions – requires us
to study techniques and devices which we use to interact with the virtual
models.

Next chapter of this text covers several important topics related to the
field of cartography. Content of this chapter is not designed to cover all
relevant topics but rather to clarify and explain those that are important in
the context of the whole thesis.

In the third chapter, we discuss visualization of terrain model in virtual
environment. This includes internal representation of the terrain model and
ways how to obtain terrain data that correspond to real world locations.

The fourth chapter is focused on user’s interaction with terrain model
in virtual environment. Several significant interaction techniques are dis-
cussed, along with selected hardware devices that can be used to imple-
ment the interaction techniques.

Chapter five covers design of the Land ability, an extension that was
created as a practical output of the thesis. This includes design goals, de-
scription of possible data sources and data flow of the extension.

The sixth and the longest chapter contains details regarding implemen-
tation of the extension. In this part, significant ideas related to the imple-
mentation of height field and TIN are covered. Chapter seven concludes
the main text and proposes ideas for future work.

Appendix A is a guide that can be used to pre-process point cloud files
provided by ČÚZK. Appendix B lists all input parameters that are sup-
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1. INTRODUCTION

ported by the extension while appendix C contains several simplified class
diagrams that accompany extension’s design discussed in chapter five. The
thesis’ appendices conclude with appendix D which contains results of per-
formance tests and appendix E that lists and describes all files that are lo-
cated in the thesis archive in the Masaryk University Information System.
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2 Basic principles of cartography

2.1 GIS

Geographic information system (GIS) is “(...) a configuration of computer hard-
ware and software specifically designed for the acquisition, maintenance, and use
of cartographic data.”[23].

In other words, GIS is an information system specialized for use in the
fields of cartography and geoinformatics. It allows its users to access, work
with and often visualize geo-referenced data of various types.

2.2 Coordinate systems

Coordinate systems form the core of every single GIS or an application that
works with cartographical data. As defined by ESRI, “A coordinate system is
a reference system used to represent the locations of geographic features, imagery,
and observations, such as (...) within a common geographic framework.”[6].

Each coordinate system is defined by a set of properties. These include
mainly measurement framework, units of measurement and a set of op-
tional properties such as projection, central meridian or shift in a particular
direction. The usage of optional properties varies and depends entirely on
the coordinate system used.

Measurement framework of a coordinate system is either geographic
or planimetric. Geographic coordinate system (GCS) uses spherical coordi-
nates measured from the Earth’s centre – such as latitude and longitude.
This way, any location on the Earth’s surface can be addressed using spher-
ical coordinates.

Unlike the GCS, the planimetric coordinate system (PCS) works in two
dimensional plane. It is always based on a GCS and includes a map pro-
jection among its properties. This projection is used to transform a three
dimensional surface (e.g. some part of the Earth) to create its representation
in a two dimensional Cartesian plane [6].

Most of the time, a vertical coordinate system is also used along with
GCS or PCS. Vertical coordinate system defines origin for elevation values
which specify height and/or depth at a particular location. Vertical coordi-
nate systems are usually based on the elevation of a sea level – though the
reference sea and its phase (e.g. low, high or mean tide) varies across the
systems which are in use.

For the purpose of identification, each coordinate system is labeled by

3



2. BASIC PRINCIPLES OF CARTOGRAPHY

its own unique code. This code is called SRID (Spatial Reference System
Identifier) and is assigned to the coordinate system by a GIS vendor, such
as ESRI1. To achieve higher compatibility among vendors, many SRID have
already been defined and standardized by the EPSG2 authority[5].

Next section describes several coordinate systems that are significant for
the content of this thesis. Comprehensible list of many existing coordinate
systems can be found e.g. at [4], along with their definition.

2.2.1 S-JTSK

S-JTSK is a planimetric coordinate system designed by Josef Křovák in 1922.
It was intended for use in former Czechoslovakia and is still officially used
in its successor states Czech Republic and Slovakia.

The coordinate system is based on a reference ellipsoid derived by Fried-
rich Wilhelm Bessel in 1841 and uses Křovák projection to transform 3D
coordinates to map plane [24].

Throughout the history, several versions of the system were created. The
original system uses Ferro3 as a prime meridian while some modified ver-
sions of the system use the Greenwich meridian instead.

X / Y direction Prime meridian

Ferro Greenwich

South / West EPSG:2065 EPSG:5513

East / North
EPSG:5221 EPSG:5514
ESRI:102066 ESRI:102067

Table 2.1: Different versions of S-JTSK coordinate system.

Similarly, there are modifications which differ in usage of a slightly mod-
ified projection. Křovák projection in the original system maps the positive
directions of X and Y axes to south and west, respectively – as shown in
figure 2.1. However, working with this projection might not be intuitive,
due to the difference from the Cartesian coordinate system. To avoid the
confusion, a different version of S-JTSK with modified projection was cre-
ated. The modified projection is labeled as Křovák East North and maps the
positive directions of X and Y axes to east and north, respectively.

1. http://www.esri.com/
2. European Petroleum Survey Group, nowadays part of International Association of Oil & Gas
Producers (OGP)
3. Located 17◦39′46.02′′ west of the Greenwich meridian.
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2. BASIC PRINCIPLES OF CARTOGRAPHY

Several version of S-JTSK coordinate system are shown in table 2.1 along
with their identifiers. All files provided by ČÚZK (see section 3.1.1) that are
used in the implementation part of the thesis use the ESRI:102067 version.

Figure 2.1: Mapping of X and Y axes in the original Křovák (left) and mod-
ified Křovák East North (right) projections.

2.2.2 Baltic vertical datum - after adjustment

Baltic Vertical Datum – After Adjustment (translated from Czech: Výškový
systém baltský – po vyrovnání [29]) is a vertical coordinate reference sys-
tem used in several European and Asian countries, including Czech Re-
public and Slovakia. It uses average water level at Kronstadt4 (gauged in
1833, adjusted in 1977) as its origin. SI meter is used as a unit of measure-
ment of height above the sea level.The system is associated with the code
EPSG:57055.

As is the case with S-JTSK Křovák East North, all files provided by ČÚZK
(see section 3.1.1) that are used in the implementation part of the thesis use
this system for measurement of elevation.

4. Located at 60◦0′0′′N, 29◦46′0′′E in WGS 84 coordinate system.
5. http://epsg.io/5705
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2. BASIC PRINCIPLES OF CARTOGRAPHY

2.3 Map layers

A physical map offers only a static form of visualization – once a map is cre-
ated, its content cannot be easily changed. Moreover, the amount and type
of data that is displayed on a map has to be limited for the sake of clarity.
For example, we cannot display elevation of terrain surface, level of noise
pollution and average air temperature on the same map in a comprehensi-
ble way. Therefore, a real world solution might be to create several maps of
the same area, each of them displaying a different kind of information.

On the other hand, a virtual map allows for dynamic visualization and
behaviour. Apart from the ability to change the displayed area and scale, we
can also utilize a concept of layers. Using some kind of interaction, a user
might be able to dynamically select a subset of layers which are visualized
(see figure 2.2 for example). Each layer may contain data of a different type,
such as:

• Terrain – Visualization of terrain’s topography and its surface.

• Contour lines – A set of curves used to display topography of the land
on a two dimensional map.

• Cadaster – Highlighting of borders among plots of land.

• 3D models – Models of man-made structures which can greatly in-
crease the visualization’s overall level of detail.

• Labels – Textual (or pictorial) markings which are used to provide user
with informatiion related to a particular location on the map.

• Networks – Representation of various network which comprise the
country’s infrastructure, e.g. road and railroad systems, sewer net-
works or power line networks.

This thesis only deals with visualization of terrain and the content of
other possible layers is out of its scope. Information regarding various car-
tographical data and possible ways of their visualization is thoroughly de-
scribed and can be found in [10, p. 13 - 37].

6



2. BASIC PRINCIPLES OF CARTOGRAPHY

Figure 2.2: Example of possible map layers in a GIS. Source: [8, p. 9]
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3 Visualization

3.1 Digital elevation model

Digital elevation model (DEM) is a digital representation of a planet’s surface
– in our case the Earth’s. The model is most often stored as a set of samples,
where each sample contains an elevation at a given location in the world.

There are two common types of DEM which differ only in the meaning
of the elevation value. Unfortunately, they are frequently interchanged and
there seems to be no strict definition. For the purpose of this text we will
use the following terminology:

• Digital surface model (DSM) is a DEM which contains elevation of the
terrain and all objects that were present at the time of the measure-
ment. Depending on the quality of acquisition method, DSM can offer
a highly detailed model of the landscape, including buildings, vege-
tation and other entities.

• Digital terrain model (DTM) contains elevation of the land at its ground
level, excluding all other entities such as man-made objects and veg-
etation. For obvious reasons, DTM cannot be measured directly and
is computed from a detailed DSM using a specialized algorithm (see
[14] for more information).

Visual comparison of DSM and DTM is shown in figure 3.1.

Techniques which are used for acquisition of the elevation samples are
not covered in this text. Their description along with methods which deal
with processing of the measured data and computation of the DEM can be
found in [14, chapter 3].

3.1.1 Providers

For most users, production of DEM is not a viable option and it is necessary
to rely on external – mostly national – providers. In Czech Republic, the
main provider is Czech Office for Surveying, Mapping and Cadastre (ČÚZK)1

which offers a selection of geographical products including both DSM [25]
and DMP [26, 27, 28].

On a global scale, USGS2 provides DTM of the whole Earth – though
naturally in a lower resolution [21].

1. http://www.cuzk.cz/
2. http://www.usgs.gov/
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3. VISUALIZATION

Figure 3.1: Comparison of DSM (top) and DTM (bottom).

3.1.2 Web services

When creating a desktop application, a common approach is to store its
data on a local secondary storage. However, this is not an ideal solution in
case of geographical data.

One of the main reasons is that the application or its user may need to
work with geographical data on various locations. Moreover, the desired
level of detail may change as well which results in a need to store several
qualitatively different versions of the data. Therefore, this approach would
require the application to store vast amounts of data, which is not suitable
– especially if the application is targeted on an ordinary PC (as is the case
of e.g. Google Earth3).

To avoid this issue, many providers offer some of their geographical
data via web services. These services include e.g. WCS (Web Coverage Ser-
vice), WMS (Web Map Service) and WFS (Web Feature Service), all of them
standardized by Open Geospatial Consortium. Each service is used for dif-
ferent type of content – for example, WMS provides planar data in form
of image files and is often used as a source of orthoimagery. Usage of web

3. http://www.google.com/earth/
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3. VISUALIZATION

services is essential for web applications which rely on geographical data.
Additional advantage of web services lies in its centred maintenance.

Any data update is made only on the server side and the change is propa-
gated to all clients once they request the data (which depends on a particu-
lar implementation of the client’s cache).

3.2 Representation

Internal representation of DEM has a large influence on its properties and
the way we process its data.

3.2.1 Height field

A common way to store samples of a DEM is to utilize a height field. In
height field, all samples form a regular grid with uniform distance between
any two adjacent samples. This regularity results in several nice properties
which make height field a good choice for many applications.

Position of each sample in the grid can be inferred from its order in the
array in which the samples are stored. For this operation, we need to know
the dimensions of the regular grid, distance between the adjacent samples
and layout of samples in the grid. Therefore, there’s no need to store X and
Z coordinates of the samples which results in lower memory usage.

Another advantage of height field is easier implementation of some al-
gorithms, such as computation of normal vectors. Neighbours of any sam-
ple can be directly addressed if we modify the sample’s index accordingly.

Main drawback of the height field approach lies in the sampling fre-
quency (i.e. distance between two adjacent samples). Low frequency results
in large distance between two samples which in turn causes loss of detail –
this is especially troublesome in case of urban or mountainous enviroments.
This issue may be alleviated by sampling at higher frequency. However, do-
ing so might produce an unnecessary amount of samples in case of fields
and lowlands – and effectively waste the memory originally saved by usage
of height field.

Moreover, there’s no way to model caves or overhangs of any kind –
each point of the grid can store only one elevation sample.

3.2.2 TIN

Another common approach is to store DEM as a triangulated irregular net-
work, i.e. TIN. Elevation samples of TIN are distributed in an irregular way

10



3. VISUALIZATION

and are connected so that they form a mesh consisting of triangular faces,
as seen in figure 3.2. No restriction on the location and distribution of the
samples allows for adaptive density of samples according to the shape of
the DEM. We can therefore use a large amount of samples to store details
of the terrain in coarse areas while using only a few samples to cover large
plains.

Figure 3.2: Example of triangulated irregular network (TIN).

However, usage of TIN has several drawbacks as well. Most impor-
tantly, we have to use data structures which are designed for the irregular
nature of TIN such as different number samples and faces that are adjacent
to a sample. This also applies to algorithms, complexity of which may grow.

Another drawback is that we have to store all 3 coordinates for each
sample which may result (depending on a properties of the particular DEM)
in increased memory usage when compared to height field.

Last but not least, TIN can be used to store terrain with caves or over-
hangs – though this solution is rarely used because of complicated imple-
mentation.

3.3 Optimization

Selection of an appropriate internal representation is important but it does
not automatically guarantee us an efficient visualization. Mesh that is cre-
ated from high-quality DEM may easily contain millions of vertices and

11



3. VISUALIZATION

faces. To render such mesh effectively (i.e. at a sufficient and steady frame
rate), it is advisable to implement one of many existing techniques designed
to optimize the terrain mesh.

3.3.1 View-independent

The simplest optimization technique is to reduce number of vertices and
faces of the mesh during the pre-processing phase. This approach is espe-
cially effective when applied to height fields. For this task we may use one
of the vertex decimation algorithms, e.g. [18].

3.3.2 View-dependent

More complicated algorithms allow for dynamic optimization at run-time.
The optimization function is called repeatedly and computes a new version
of the rendered mesh according to the current position of the camera. This
allows us to render close terrain in full detail and remove a large amount of
vertices and faces which are located in the background at the moment. The
optimization function is usually called once the camera moves to a different
position which is not suitable anymore.

Dynamic optimization of terrain is covered by a wide range algorithms
such as SOAR [15], ROAM [7] or Lindstrom ’96 [16]. Dynamic optimization
which performs most computations on GPU was also proposed [1].

12



4 Interaction

This chapter describes possible ways how user can interact with a terrain
model in a virtual environment.

The first section lists several 3D interaction techniques which might be
relevant in scenarios which include terrain model – even though the terrain
itself is assumed to be a static part of the scene. The second part contains de-
scription and comparison of selected hardware devices which can be used
to implement the aforementioned interaction techniques.

4.1 Interaction techniques

4.1.1 Navigation

Movement around the scene is a task which is essential for most applica-
tions which contain some kind of virtual environment. The task of naviga-
tion consists of two distinct techniques – travel and wayfinding.

• Travel is the act of movement itself – it is “the task of performing the
actions that move us from our current location to a new target location or
in the desired direction”[3, p. 183]. In other words, travel as a technique
deals with mapping user’s actions in a physical world (e.g. pressing
a button) to movement in a virtual environment.

• Wayfinding “is the cognitive process of defining a path through an envi-
ronment, using and acquiring spatial knowledge, aided by both natural and
artificial cues” [3, p. 227]. Unlike travel, wayfinding addresses the psy-
chological aspect of navigation. The aim of wayfinding is to help user
orientate in the environment and make correct decisions regarding
their movement in a virtual environment in the near future. For this
purpose, a wide range of cues can be used. These include e.g. virtual
map and compass, signs or motion cues.

The topic of navigation is too extensive to be discussed in-depth in this
text. Detailed information related to both travel and wayfinding can be
found in [3, chapters 6, 7].

4.1.2 Selection

Another interaction technique that is fundamental for most virtual envi-
ronment applications is selection. In terms of interaction with terrain, it is

13



4. INTERACTION

mainly used for selection of a particular 0- dimensional (point) or 2- dimen-
sional (area) location on the surface of the model. The selected point or area
can then be used for a variety of purposes such as

• modification of the terrain,

• placement of objects and/or labels,

• anchor point for some travel techniques (zoom, rotation),

• obtaining information related to the selected location and more.

If we allow user to select multiple points at the same time, capabilities
of selection technique can be greatly expanded. For example, selection of
several consecutive points can be interpreted as an outline of path between
two distinct points.

However, selection technique raises an important question – which part
of the screen should be selected once user does an action (presses a button,
executes a gesture) that is evaluated as a selection command? Answer to
this question depends on many factors including properties of the input
device and type of selection – due its extent, it is out of the scope of this
thesis. Detailed information regarding selection can be found in [3, chapter
5].

4.2 Input devices

4.2.1 Keyboard and mouse

Standard computer keyboard and mouse (K&M) are the most common in-
put devices, available for use on almost any personal computer in the world.
Their widespread availability and ease of use make them the most appro-
priate input device for an application that is targeted for use by a general
public.

Interaction with application using K&M is not overly complicated to
implement. The most difficult part lies in figuring out an intuitive mapping
– ordinary mouse has only two degrees of freedom (DOF) which doesn’t
allow for unrestrained movement in a 3D scene. This issue can be alleviated
by usage of keys on mouse or keyboard.

Quality of the used mapping also depends on the application’s design.
If the user views the scene using a first-person perspective that is associated
with some virtual avatar, a common approach is to change position in the
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scene by keyboard and change orientation of the view by mouse. Specifi-
cally, the position is often changed by arrow or WASD keys while mouse
axes are mapped to yaw and pitch of the camera.

If the user is looking at the scene using an aerial or overhead view, a
different mapping might be used. For example, a camera which is located
above the scene can be moved, rotated around an anchor point or zoomed
to a point by dragging the mouse in an appropriate direction while one of its
buttons is pressed down. This approach is used in several map applications,
e.g. Google Earth1.

When using K&M, selection is most often executed by pressing a special
key or a button.

4.2.2 3D Mouse

A 3D mouse is a special type of input device that was specifically designed
for 3D interaction [3, p. 95]. Unlike a regular computer mouse, a 3D mouse
provides 6 degrees of freedom (6-DOF) – translation along and rotation
around all 3 perpendicular axes. This allows for very intuitive implementa-
tion of travel using only the mouse itself.

Similarly to the situation with K&M, a special key can be used to issue
the selection command. For this purpose, we can use a 3D mouse in conjuc-
tion with keyboard or a regular mouse. If available, we may also use one of
the programmable keys that are located on some 3D mice.

Unfortunately, 3D mice are not widely used due to their high cost which
makes them unsuitable for most users.

4.2.3 Motion tracking devices

Another (though less common) option is to utilize input devices that de-
tect user’s motion in real world. Motion can be detected using one of sev-
eral methods which include e.g. magnetic, mechanical, optical or acoustical
tracking [3, p. 97]. In this section, we will focus only on selected devices
based on optical tracking.

• Leap Motion is a small peripheral that tracks motion of hands and
fingers using a set of infrared cameras and LEDs. Main advantage of
the device is its high accuracy and millimetre-level precision [9]. One
possible way to implement the travel technique is to measure relative
deviation of user’s hand from the centre of device’s view frustum and

1. http://www.google.com/earth/
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interpret the deviation as a relative motion in the given direction. This
approach is already used in desktop version of Google Earth.

Main drawback of Leap Motion is that usage of the device for a longer
period of time may cause a strain on user’s hand.

• Microsoft Kinect is a motion tracking device introduced in 2010 ex-
clusively for the Xbox 360 video game console. In 2011, it was made
available for use on personal computers as well.

The device scans an area in front of it using both regular camera and
infrared laser. The reflected rays are detected by CMOS sensor and
used to create a depth map [12, p. 14]. Combination of RGB and depth
image allows the device to recognize figures and movement of sev-
eral of users.

The quality of tracking depends largely on the environment and other
objects in the room which makes Kinect unsuitable for applications
which require high level of precision. On the other hand, the device
provides user a reasonable freedom of movement – which might be
useful in implementation of the travel technique.

• NaturalPoint OptiTrack consists of multiple cameras – at least six –
that surround the user and track position of passive markers that are
attached to the user or some other object. All cameras have to be fixed
and calibrated in order to compute position of the markers in space
using triangulation. Orientation of the markers can also be tracked if
the markers form a rigid body [12, p. 12].

The OptiTrack system offers both precision and freedom of move-
ment. Tracking of position and orientation allows for intuitive im-
plementation of travel technique. However, unlike Leap Motion or
Kinect the system is targeted for professionals. For example, it is widely
used in the film and video game industries for the purpose of motion
capture.

All input devices which rely only on optical tracking share a common
disadvantage – there’s no way for user to issue commands (e.g. selection)
except of using a motion gesture. Common gestures include e.g. swipe, fin-
ger tap, waving hand – all of which affect user’s posture and precision in a
negative way, possibly .

In case of OptiTrack, this issue can be alleviated by usage of another in-
put device – ideally a wireless controller that doesn’t restrict user’s move-
ment in real world. This solution is also applicable to Kinect if the controller
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is small enough so as not to decrease quality of the motion tracking. In case
of Kinect, this issue can also be avoided by usage of voice commands which
are supported by the device.
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5 Design

This chapter covers design of Land ability – the application module which
was developed as a part of the thesis.

5.1 vrecko

The module was created as an extension of the vrecko1 programming frame-
work which is being continuously developed and used in HCI laboratory
on Faculty of Informatics of Masaryk University.

Both vrecko and the newly created extension are written in C++ and use
OpenSceneGraph2 graphics library for the purpose of rendering and man-
agement of the scene graph.

Every extension of the vrecko framework belongs to a plug-in, which
serves as a grouping of related extensions with similar functionality. Fur-
thermore, there are two types of extensions – Device and Ability. Extensions
of the Device type handle I/O communication with supported hardware
devices while the extensions of the Ability type provide almost any desired
functionality that is unrelated to the hardware devices.

The newly created extension was created as a part of the Nature plug-
in which groups abilites that deal with entities and simulations related to
natural phenomena.

5.2 Design goals

The new ability was designed with several main goals in mind:

1. Create an extensible interface that would allow the ability to support
a wide range of input terrain data.

2. Handle the loaded data in such a way that would be independent of
the type of its source and internal structure. This would also allow
other abilites to easily obtain required data from the Land ability for
their own purposes.

3. Provide an efficient rendering of the terrain data, allowing the appli-
cation to work with large and detailed landscapes.

1. http://vrecko.cz/
2. http://www.openscenegraph.org/
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5.3 Data sources

5.3.1 Real-world data

In co-operation with Laboratory on Geoinformatics and Cartography3,
ČÚZK was selected as a primary provider of the real-world terrain data
of the Czech Republic. For the purpose of further research, support for two
different file formats was implemented. All files provided by ČÚZK store
their coordinates in the S-JTSK Křovák East North coordinate reference sys-
tem (see section 2.2.1) and elevation in the Baltic Vertical Datum - After
Adjustment (see section 2.2.2).

• ZABAGED R© altimetry grid 10x10 m is a text file which stores a DTM
(see section 3.1) as an unsorted set of regularly sampled 3D points. X
and Y values specify coordinates of the sample (in S-JTSK) while the
Z value specifies elevation of the Earth’s terrain at a sampled point.
Distance between two neighbouring samples is 10 metres on both X
and Y axes. Each grid file covers approximately 18 km2 [28].

• Digital Surface Model of the 1st generation is a text file – saved in a file
with an *.xyz extension – which stores a DSM (see section 3.1) as an
unsorted set of irregularly sampled 3D points. X and Y values spec-
ify coordinates of the sample (in S-JTSK) while the Z value specifies
height of the surface at the given point. Even though a single DSM file
covers a smaller area (approximately 5 km2) than an altimetry grid, it
contains far more samples due to increased level of detail, especially
in urban areas [25].

Thanks to their similar internal structure, implementation of DSM 1G
also supports a Digital Terrain Model of the 4th and 5th generation
[26, 27]. In this case, the elevation represents height of the terrain, as
in the case of the altimetry grid.

5.3.2 Terrain generation

If the application doesn’t require real-world terrain data, usage of a terrain
generation algorithm might be appropriate. These algorithms are capable
of creating visually more or less convincing terrain surface and are often
based on fractals. Their main advantage is that the terrain data is generated
on-the-fly and no data is stored on secondary storage device.

3. http://www.geogr.muni.cz/lgc/
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This work uses slightly modified version of several algorithms (namely
Perlin noise, midpoint displacement and random faults) that were described
and implemented in [22] as another type of a possible data source, even
though the algorithms are not the focus of this thesis.

5.3.3 Raster image

Another common way is to store terrain data in a form of a raster image,
where each pixel represents a sample in a regular grid. Position of the sam-
ple is defined by pixel’s coordinates in the image file and the pixel value
specifies elevation of the sample.

However, this approach has several disadvantages – relation of the pixel
value to the absolute elevation levels is not defined. The input range [0, 255]

might represent any interval in terms of elevation, e.g. [−25.4, 68.3] or
[131.7, 958.2].

Another issue might be lowered precision of the stored values, caused
by quantization of the pixel’s values. This problem might be sufficiently
supressed by a usage of all 24 bits of RGB image to store a single value or
by a usage of 16-bit grayscale images.

5.4 Land ability

The ability’s design reflects the fact that Land ability has been created with
application in the field of cartography in mind. This specialization has al-
lowed us to improve the overall performance of the extension. On the other
hand, the current state of the ability doesn’t support dynamic modification
of the terrain data.

Core of the extension is the LandAbility class which is derived from
vrecko::Ability. As is the case with all vrecko abilities, its instance is
created automatically by the vrecko framework if the input file contains a
paired element <Ability> with inner elements <PluginName> and
<Name> set to “Nature” and “Land”, respectively. See 5.1 for an example
of usage.

Upon initialization, the instance of LandAbility processes the content
of its element <Parameters>. The <LandBlocks> element serves as a
grouping of any number of <Block> elements. Each <Block> element de-
fines a separate land block and contains all parameters which belong to the
same land block. Pointer to this XML node is passed as the only argument
to the constructor of the LandBlock class and is then used to initialize the
whole land block.
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The remaining parameters are loaded as global properties (see section
5.4.5 for details).

Listing 5.1: Initialization of the Land ability

<EnvironmentObject>

<ID>535969142</ID>

<Ability>

<Name>Land</Name>

<PluginName>Nature</PluginName>

<Parameters>

... <!-- Global properties -->

<LandBlocks>

<Block>

... <!-- Block 1 -->

</Block>

...

<Block>

... <!-- Block N -->

</Block>

</LandBlocks>

</Parameters>

</Ability>

</EnvironmentObject>

It is important to note that no more than one instance of Land ability
should be created. Existence of multiple instances may lead to an unex-
pected behaviour.

Furthermore, the instance of vrecko::EnvironmentObject

which contains the Land ability has to use a specific ID – 535969142 – which
is used by other abilities to discover Land ability at runtime.

Unlike most abilities which currently exist in the vrecko framework, the
Land ability is not associated with any particular geometry in the scene and
serves rather as a manager of all land blocks in the scene.

5.4.1 Land block

Instance of the LandBlock class represents an indepent block of land with
all of its associated internal structures. Each land block consists of 3 differ-
ent parts which are initialized in the following order:

1. Properties

2. Data

3. Mesh
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First of all, a set of properties is loaded from the input XML node, using
the pointer to the <Block> element that is passed to the constructor of
LandBlock). In the next step, some of these properties are used to obtain
raw terrain data using an appropriate data source. Finally, terrain data are
used to create a mesh which is rendered on the computer screen.

In order to successfully create an instance of LandBlock, all three steps
have to succeed in their actions. Any error (e.g. an invalid parameter value
or running out of system memory) results in cancellation of the initializa-
tion process. Pointers to all successfully initialized land blocks are stored in
std::vector in the sole instance of LandAbility.

5.4.2 Properties

The purpose of classes derived from Properties is to store all known in-
formation about a particular land block. Due to the difference among var-
ious data sources, the actual set of parameters which are loaded from the
XML varies as well.

The abstract class Properties contains the most general properties
which are used by every single land blocks. Its sub-classes contain special-
ized properties related to the internal structure of a land block (e.g. width
and length of a regular grid). All other classes are fully specialized and
there exists a separate sub-class for every supported type of data source.
Class diagram of this hierarchical structure can be seen in appendix C.1.

However, the higher number of derived classes may result in more com-
plicated initialization code. For that purpose the factory method design
pattern is used, implemented in the form of static method Properties::

CreateFromNode(). This method evaluates the XML node which is passed
as an argument and selects (using the value of <DataSource> element) an
appropriate sub-class instance of which is created and returned as a result.
The newly created instance automatically loads all properties in its con-
structor which concludes the first phase of the LandBlock’s initialization.

Loading properties from XML

All properties are loaded from parameters stored in the input XML node
using methods from the vrecko::ReaderWriter class. In order to suc-
cessfully load values of all properties, the parameters in the input XML
node have to satisfy two conditions:

1. All required parameters (e.g. data source) have to be set.
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2. All provided parameters – required or not – have to be valid.

If the content of the XML node fails to meet the aforementioned criteria,
the initialization process is cancelled. This error is propagated (using ex-
ceptions) to the LandAbility and the initialization of the corresponding
LandBlock is cancelled as well. On the other hand, successful creation of
the instance of Properties guarantees that all properties have been prop-
erly set.

As already stated, parameters which are not required can be omitted.
In such a case, default value is used instead. Detailed list of all parameters,
their description and their default values is located in the appendix B.2.

5.4.3 Data

After the succesful creation of an instance of Properties, the initialization
of the LandBlock continues with its next phase. The goal of this phase is
to create and initialize a new instance of LandData – or, more specifically,
one of its sub-clases – which stores the raw terrain data.

The instance of Properties is used as the input argument of another
factory method – LandData::CreateFromProperties. This method se-
lects an appropriate sub-class of LandData based on the value of the
DataSource property. Current version of the Land ability supports two
types of land data:

• HeightFieldData stores the terrain data in a form of regular grid
with uniformly spaced samples.

• TinData stores the terrain data as an unsorted list of irregular sam-
ples in a 3D space. This provides higher flexibility in terms of input
but also introduces multiple complications caused by a more general
approach.

Once created, the instance of LandData is filled with raw terrain data
in its constructor. Due to severe differences, the process which is used to
obtain the data is described in detail in sections 6.1.1 and 6.2.1. As is the case
with Properties, any error in initialization results in failed initialization
of LandBlock as well.

5.4.4 Mesh

Construction of a polygon mesh is the last phase of the LandBlock initial-
ization process. Its design shares multiple similarities with previous phase.

23



5. DESIGN

Once again, the result of a previous phase is passed to a factory method
in order to create a new instance of an appropriate sub-class. In this case,
an instance of LandData is passed as an argument to the static method
LandMesh::CreateFromLandData() which returns a new instance of
LandMesh.

As shown in section C.3, the derived classes are HeightFieldMesh

and TinMesh instances of which are created using the input terrain data in
a form of HeightFieldData and TinData, respectively.

This phase is also the only part of the ability which directly interacts
with the OSG library and scene graph of the application. In general, the
mesh construction part of Land ability addresses the following tasks:

1. Computation of normal vectors.

2. Application of textures on the surface of the mesh.

3. Segmentation of the mesh.

Given the varied internal structure of the terrain data, the mesh con-
struction process varies as well. Different techniques used by implementa-
tions of HeightFieldMesh and TinMesh are therefore described in detail
in sections 6.1.4 and 6.2.3.

It is possible to entirely skip the mesh construction phase of any block.
This way the Land ability can be used as a tool to import or generate terrain
data which are then processed by a different part of the application.

5.4.5 Global properties

It may be necessary (or useful) for some properties to share the same value
among all instances of LandBlock in the scene. This can be achieved by
utilizing the singleton design pattern which allows us to create only a sin-
gle instance of a given class. Moreover, this instance is obtained via static
method which allows us to access the instance from any place in the source
code.

In case of the Land ability, globally shared parameters are stored in a
singleton class GlobalProperties. These settings include e.g. location of
the texture cache or rendering settings. See section B.1 for detailed list and
explanation of the parameters.
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Elevation legend

One of the global properties is an instance of ElevationLegend. This
class is used to compute colour values which are assigned to vertices of an
untextured mesh. In case of a textured mesh, white colour is used instead.

An instance of ElevationLegend contains a list of pairs in the form
of (elevation, colour) which define colour of the vertex at the given elevation.
Vertex colour at any requested height is then computed by linear interpo-
lation. If the requested elevation is smaller or larger than all of the defined
levels, colours at the interval bounds are used.

Figure 5.1 displays the colouring created by an elevation legend which
contains 6 entries for the elevation levels 0, 400, 850, 1400, 1850 and 2500.

Figure 5.1: Example of an elevation legend created by linear interpolation
of 6 colour values.

5.5 Textures

In order to increase the degree of realism in our scene, we will utilize tex-
ture mapping which is without a doubt one of the most important tech-
niques designed for this purpose. However, to achieve the desired effect, it
is necessary to consider the source of the terrain data and use textures with
an appropriate content.

If our terrain data match an area in the real world, it is highly advisable
to use orthoimagery of the area as a primary texture source. This is the case
of terrain data loaded from the altimetry grid or digital surface model, both
of them provided by ČÚZK.

Another way is to compute the texture dynamically, using shader pro-
grams. In this case, we use several different textures which represent vari-
ous biomes or materials (such as grass, sand, rock or snow). These textures
are then used to compute the final blended texture at run time, according to
a pre-defined set of rules (e.g. “use grass texture in areas with lower eleva-
tion”). Source textures should be tileable, evenly lit and shouldn’t contain
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any distinct object so as to avoid visual artifacts or repeated patterns. This
option is more suitable for terrain data generated by an algorithm or for
real world data for which the orthoimagery is not available.

For the purpose of texturing, the Land ability uses orthoimagery pro-
vided by ČÚZK and noise pollution data provided by INSPIRE4. Both ser-
vices are provided via WMS (Web Map Service) without any fees for non-
commercial purposes. However, textures from these sources are only used
in land blocks which are created from real world data (altimetry grid and
digital surface model). Land blocks which are created from another type of
data source are coloured by the global elevation legend (see section 5.4.5)
instead.

5.5.1 LandTexture class

The LandTexture is an abstract class which contains a texture along with
a rectangular area (defined by boundaries in S-JTSK coordinate system)
which is covered by the texture. During its initialization, the instance of
LandTexture builds two strings. One of them is a unique identifier which
is used as a local file name for the downloaded texture (see section 5.5.2).
The other string is URL which is used to directly access the texture on a
distant server via WMS. For data transfer via HTTP, the C/C++ version of
the libcurl5 library is used.

The derived classes OrthoPhoto and NoiseTexture differ in a way
the URL is built – orthoimagery and noise pollution data are not provided
by the same WMS. Moreover, each texture type is obtained using a slightly
different set of parameters.

Each WMS can restrain the maximum dimensions of the image that is
downloaded using the GetMap request [11, p. 23]. In case of both WMS
used by LandTexture, maximum size of the image is limited to 2, 500 ×

2, 000 pixels. To optimize GPU’s performance, the LandTexture down-
loads only images with dimensions equal to a value which is power of
two. Combined with limitations of GetMap, the maximum size of an im-
age downloaded by LandTexture is 1024× 1024.

5.5.2 Cache

All textures are downloaded to a specific cache folder on the disk, where
each texture is stored as a separate JPEG (for orthoimagery) or PNG (for

4. http://geoportal.gov.cz/web/guest/wms/
5. http://curl.haxx.se/libcurl/
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noise pollution data) image file.
File name of the image comprises coordinates of the area which is cover

by the texture, size of the texture and its type. This way, the file name serves
as a hash – if the texture with required properties (area, size and type) al-
ready exists in the cache folder, it is loaded from the secondary storage. If
not, it is downloaded via WMS and stored in cache for a possible – and very
likely – repeated usage.
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6 Implementation

6.1 Height field

Support for land blocks which are based on regular height field is imple-
mented in classes HeightFieldData and HeightFieldMesh. As stated
in sections 5.4.3 and 5.4.4, these classes are derived from abstract classes
LandData and LandMesh.

6.1.1 Data storage

An instance of the HeightFieldData class contains terrain data sampled
at a uniform rate. All samples are stored in a single one-dimensional array
the elements of which cover a rectangular grid. The dimensions of the grid
– labeled as width and length – are saved in the instance of HeightField-
Properties which is associated with an instance of HeightFieldData.
Values of width and length are fixed and cannot be modified once the grid is
created.

6.1.2 Height point

Each elevation sample is stored in an instance of HeightPoint. This class
contains a single floating point value which represents an elevation of the
sample in meters above sea level. Thanks to the regular nature of the height
field, it is not necessary to store coordinates of the sample in a grid – the
coordinates can be trivially inferred from the sample’s position in the one-
dimensional array.

Invalid samples (e.g. those with no set value) use special value which
represents positive infinity – more specifically, the value provided by std::
numeric_limits<float>::infinity().

The HeightPoint class also contains implementation of arithmetical
and relational operators which handle a possible invalid value in an ap-
propriate way, along with operator which provides implicit conversion to
float.

Due to the very high number of instances, it is important to examine
the issue of memory usage. On most architectures, 4 bytes of memory are
used by a variable of the float type. The same applies to a variable of the
HeightPoint class – its only attribute being a single float variable.

Should we decide to add another variable, this will no longer apply. Ad-
dition of a bool flag that would be used to mark invalid samples (instead
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of the infinity) would result in a usage of 8 consecutive bytes. In this case, 5
bytes would be used for storage of the data itself while 3 more bytes would
be used by the compiler for proper alignment of variables in the system
memory.

6.1.3 Data provider

As stated in section 5.3, the Land ability is designed to support multiple
data sources. However, inclusion of multiple independent algorithms in the
class itself would result in needless increase of complexity. For this purpose,
the task to obtain the terrain data is therefore delegated to a different class
– namely HeightFieldProvider and all classes derived from it.

HeightFieldProvider is an abstract class which contains a single
public method ProvideData(). Implementation of this
method in a derived class has two main tasks. First of all, it allocates the
grid which belongs to the instance of HeightFieldData which is using
the data provider. In the next step, the method is used to obtain the terrain
data and fill the grid with it. In order to a gain a more exclusive access to
private attributes of HeightFieldData, the HeightFieldProvider is
is set as its friend class.

Each class derived from HeightFieldProvider supports a different
data source. The current version of Land ability supports five different data
providers, as seen in the class diagram shown in appendix C.4. An appro-
priate sub-class is selected and instantiated using the factory method design
pattern in the constructor of HeightFieldData.

Terrain generators

The derived classes MidpointDisplacementGenerator, Perlin-

NoiseGenerator and RandomFaultsGenerator implement terrain gen-
eration algorithms which are described in [22]. These algorithms can be
used to generated a land block of any size (which is specified by XML pa-
rameters) using a specific set of parameters – see appendix B.2.

Raster image importer

As its name suggests, the RasterImageImporter is used to load terrain
data from raster image files. Dimensions of the grid are set automatically
to the dimensions of the image, so that each pixel corresponds to a single
elevation sample.
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The image file is loaded as an RGBA image with 32 bits per pixel. The
elevation of each sample is computed from the pixel’s colour using one of
preset functions such as average or sum of RGB channels (see appendix B.2
for list of all available functions).

File format support depends on the list of available OSG plug-ins. In
case of vrecko, all common image formats (such as BMP, PNG, JPEG or TIFF)
are supported. It is highly recommended to use only lossless compression
to avoid any errors caused by loss of detail.

Zabaged grid importer

The ZabagedGridImporter loads terrain data from the altimetry grid de-
scribed in section5.3. Text files provided by ČÚZK contain approximately
185,000 elevation samples per file. This number of samples covers approxi-
mately 18 square kilometers of land.

Each sample is defined by three values – X and Y coordinates in the
S-JTSK coordinate reference system (see section 2.2.1) and elevation of the
sample in meters above sea level. It is important to note that all samples lie
in a discrete grid in which the distance between two 4-adjacent samples is
10 meters.

Figure 6.1 visualizes the coverage of samples in a demo file available at
[28]. It can be seen that the rectangular area covered by samples is slightly
rotated and its sides are therefore not aligned to the axes of the S-JTSK co-
ordinate system. In this particular case the sampled area is rotated by ap-
proximately 7.5◦ – though the angle varies and is based on a specific area
which is covered by samples in a file.

This rotation, along with the discrete nature of the sampled area pose
an implementation problem. In order to store the samples in a regular grid
(i.e. two-dimensional array), we must first select an appropriate strategy.
For example, we can deal with the issue using one of these two options:

(a) Transform the samples using translation and rotation so that the trans-
formed area is aligned with axes of the S-JTSK coordinate system.

(b) Store the samples in the regular grid along with all points which are
part of the axis-aligned bounding box even though their value is not
defined.

The first approach works well theoretically but its application in practice
is prone to numerical errors. These may occur during several steps of the
transformation process – computation of an approximate value of the angle,
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Figure 6.1: Coverage of samples in the demo file [28].

rotation of the original samples or computation of the new samples using
interpolation.

Another option (and the one used by ZabagedGridImporter) is to
enclose all samples in a bounding box which is aligned to the axes of the
S-JTSK coordinate system. Using this method, the height field grid stores
elevation of all points located inside of this bounding box. Points with no
defined elevation (i.e. points with coordinates that are not located in the
input file) use a special value, as stated in section 6.1.2.

The main advantage of this approach is that the samples require no ad-
ditional transformation and their original elevations can be used directly.
On the other hand, this technique requires larger grid with more elements
which also results in an increased memory usage.

In case of the demonstration file, the original altimetry grid contains
181,505 sampled points. Axis aligned bounding box of this area is 522 sam-
ples wide and 442 samples long. The final grid consists of 230,724 elements
and this technique therefore results in a memory usage increased by
∼ 27.12%.
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For practical reasons, the imported samples store only their elevation,
while the instance of Properties stores the coordinates of the bounding
box in an instance of the Area class. If necessary, the S-JTSK coordinates
of any point can be computed from its relative location in the grid and the
S-JTSK coordinates of the bounding box.

6.1.4 Mesh creation

As stated in section 5.4.4, the last phase of the land block initialization is
construction of the mesh. In case of land blocks based on regular height
field, a new instance of HeightFieldMesh is built using content of a cor-
responding instance of HeightFieldData.

In the first part of the construction process, we use the input data to
create a new vertex array. For each sample, we create a new vertex (x, y, z)

where x and z are coordinates of the sample in the input grid and y is the
sample’s elevation. Invalid samples are skipped and no vertices with their
x and z coordinates are created.

Normal computation

In the next phase, we compute normal vectors of the mesh – one normal
vector for each vertex of the mesh. This step is largely simplified by regular
property of the height field grid. It allows us to compute the normal vectors
without the use of more complicated data structures [20, p. 131] which are
designed for applications that work with general meshes.

We may compute the normal vector associated with a vertex v using its
neighbouring vertices (see figure 6.2 for reference) and the following steps:

1. Label the 8 neighbouring vertices in a clock-wise order starting with
any vertex and going from v0 to v7.

2. Repeat for all x ∈ [0...7], x ∈ N. Note that v8 ≡ v0.

(a) Check whether vertices vx and vx+1 both exist.
If they do, compute normal vector of the face fx which they form
along with vertex v.

3. Compute a vertex normal by averaging all face normals computed in
step 2.

4. Normalize the vertex normal so that its length is equal to 1.
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Figure 6.2: Neighbourhood of vertex v which is used to compute its normal
vector.

Using this approach, we can design a one-pass algorithm that computes
values of all normal vectors. Its main advantage is that no additional mem-
ory (array) is used to store temporary data. This is crucial in situations in
which we deal with large amount of samples.

The drawback lies in an increased computation time caused by some
values – mainly the normal vectors of each face – which are computed re-
peatedly. This does not, however, presents any significant problem in the
initialization phase. If necessary, the computation time can be reduced by
running the algorithm in parallel. The vertex array is only used for read-
ing operations and the write operation in the normal array doesn’t affect its
neighbours.

Segmentation

Instead of creating one large block, the HeightFieldMesh internally builds
a set of smaller blocks called segments. Each segment is created as an in-
stance of HeightFieldSegment and contains its own data, independent
of other segments which belong to the same mesh.

Creation and handling of individual segments is completely managed
by the instance of HeightFieldMesh to which they belong. The segmen-
tation process is hidden from other classes – it is therefore possible to work

33



6. IMPLEMENTATION

Figure 6.3: Mesh and its segments shown as apart of a scene graph.

with the HeightFieldMesh as if it were a single large mesh.
In terms of a scene graph, each segment represents a single leaf node. All

segments that belong to the same block (and contain at least one face) are
connected under the mesh node which is located in the HeightFieldMesh
and which is accesible via public method. The resulting mesh node is then
added to the scene graph – this way the rendering process is automatically
handled by OSG library in its Draw phase. See figure 6.3 for reference.

There are two main reasons why we split mesh in many smaller parts:

1. Division of the mesh into smaller segments allows for easier texture
mapping.

2. Index array which contains too many elements may cause rendering
issues on some GPUs.
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In the first case, we’re limited by the maximum resolution of a single
texture. Even though majority of current GPUs theoretically support tex-
tures with resolution up to 163842, we have experienced practical difficul-
ties while handling textures larger than 40962 – which may not be enough
to cover larger areas (in our case 18 square kilometres).

Another approach might be to use multi-texturing and map a differ-
ent textures to a various parts of mesh. Again – each GPU is limited by a
maximum number of texture units which can be used on a single mesh. In
OpenGL, this value can be obtained by calling the library function
glGetIntegerv() with an appropriate value as a parameter (in this case
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS) [19, p. 355].

Segmentation of the mesh allows us to map a different texture on each
small segment of the large mesh. In this case, the only practical limitation is
the amount of video memory available to the application.

The second reason for segmentation of the mesh is to avoid rendering
problems. We have observed that if the element array of a vertex array ob-
ject contains more than 216 indices, visual artifacts might occur on some
systems. These range from occasional missing primitive to not rendering
the mesh at all.

As a result, every segment is a separate vertex array object with its own
vertex, normal, colour and texture coordinate arrays.

Segment size

Vertices of the mesh are split into segments based on the location of their
corresponding samples in the data grid. All segments of the land block
cover a square area and have the same size n ∈ N which represents number
of vertices which constitute a side of the square. Figure 6.4 shows segmen-
tation of the demonstration file (see section 6.1.3) using n = 50. This divides
the mesh in 99 segments. Segments that are coloured in red contain no ver-
tices and are not created at all.

Segment size across the land blocks may vary, though the minimum
(and default) size of any segment is 32. See appendix B.2 for information on
how to override this value.

It is important to note that the size of the segment is automatically in-
creased by 1. This increase in size is used by the segment to copy data from
neighbouring segments in the X and Z directions. This allows the segment
to render faces on the border between adjacent segments and produce an
illusion of a single, seamless mesh.
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Figure 6.4: Segmentation of the data grid which contains terrain samples
from the demonstration altimetry grid. Value n = 50 is used as a segment
size. Segments coloured in red contain no vertices.

6.2 TIN

Beside land blocks that are based on regular height field, the Land ability
also provides support for triangulated irregular networks (TIN), described
in section 3.2.2. As stated in sections 5.4.3 and 5.4.4, this functionality is
implemented in the classes TinData and TinMesh.

Similarly to the implementation of height field, an instance of TinData
is used to obtain the terrain data and the corresponding instance of TinMesh
uses it to construct mesh which is rendered on user’s screen.

6.2.1 Data storage

Similarly to the implementation of height field, the TinData also stores ter-
rain data in a one-dimensional array. However, the samples’ coordinates in
the XZ plane are not limited to a particular subset of R2 (as is the case with
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height field). Each elevation sample is stored as a point (x, y, z) in three-
dimensional space where x and z define the sample’s position in the XZ
plane and y specifies the sample’s elevation.

The current version of Land ability supports only one type of data source
– specifically TIN files provided by ČÚZK. These files are available in 3
versions:

• Digital Terrain Model of the 4th generation (DMR 4G) [26]

• Digital Terrain Model of the 5th generation (DMR 5G) [27]

• Digital Surface Model of the 1st generation (DMP 1G) [25]

Difference between the terrain and surface model is described in section
3.1. DMR 4G and DMR 5G differ only in their level of precision and avail-
ability – DMR 4G covers the entire area of the Czech Republic while DMR
5G offers higher precision.

Each TIN file is stored in a text file with the *.xyz extension. This
file contains an unsorted set of elevation samples which cover an area of
5 square kilometres (2.5 × 2 km). As is the case with the altimetry grid,
all samples are defined by 3 values – two of them contain position of the
sample in the S-JTSK coordinate reference system while the third contains
elevation in meters above sea level.

6.2.2 Face computation

The TIN files provided by ČÚZK contain only points (vertices) of the TIN
and no further information regarding its structure. Unfortunately, informa-
tion regarding faces is essential if we wish to construct and render TIN as a
triangular mesh. For the purpose of clarity, the vertex data which comprise
the input file will be referenced as point cloud in the further text.

This situation poses a problem, as the computation of normals and faces
from the point cloud is by no means a trivial process. We can use one of sev-
eral different techniques to obtain the required data from the initial point
cloud.

Triangulation

The most direct approach is to compute a triangulation of the point cloud.
For this task, we can use the well known Delaunay triangulation which is
thoroughly described in scientific literature, e.g. in [2, p. 191 - 215].
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The Delaunay Triangulation is designed for use in a plane but the al-
gorithm can be extended for use in 3D [17]. However, drawback of this
modified version lies in is its increased time complexity.

Still, there’s a way to use the regular Delaunay triangulation in 2D. Ma-
jority of elevation samples have unique coordinates in the XZ plane. If we
project the elevation samples to this plane, we will encounter only a few col-
lisions – most of them being building walls with one sample at the ground
level and another at roof. Once the computation is complete, we can “raise”
the vertices their original elevation and compute the missing triangulation
of the walls.

Main advantage of the triangulation is preservation of the original sam-
ples, i.e. number of vertices.

Surface reconstruction

Another approach we can take is to utilize one of the algorithms which deal
with reconstruction of the surface from a point cloud. These algorithms are
designed to create mesh from a point cloud which is usually produced by a
3D scanning device. One of the more popular algorithms used for this task
is Poisson surface reconstruction [13].

Disadvatage of this technique is that the surface reconstruction algo-
rithms create a completely new set of points. Vertices of the new mesh most
often don’t match the initial point cloud in neither location nor their count.
This may lead to an undesired loss of detail, especially visible in case of
sharp edges.

Pre-processing

Due to the high number of vertices in the point cloud (often as high as
2 million points or more), the computation is quite demanding – both in
terms of performance and time. For this reason, each point cloud file is pre-
processed before actual usage.

Because of their complexity, an implementation of any of the aforemen-
tioned algorithms is outside of the scope of this thesis. The point cloud has
to be pre-processed outside of the vrecko framework using several tools. In
short, the following course of action is taken:

1. XYZ preparation utility is used to convert point cloud to the OBJ1 file
format. The XYZ preparation utility has been created and is provided

1. OBJ specification is available at: http://www.martinreddy.net/gfx/3d/OBJ.spec
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as a part of this thesis.

During this step, all points are translated so that their x and z coor-
dinates lie in the interval [0, 2500] and [0, 2000], respectively. S-JTSK
coordinates specifying the real-world area which is covered by the
point cloud are stored in a separate text file with the *.area exten-
sion.

2. The transformed point cloud is loaded into MeshLab and new mesh is
created from it using Poisson surface reconstruction algorithm.

3. In the last step, Blender (or any other suitable 3D modelling appli-
cation) is used to remove excess parts of the mesh – mainly vertices
which lie outside of the area covered by the original point cloud.

Detailed information including step-by-step guide is located in appendix
A.

The *.obj and *.area files are the result of the pre-processing phase.
These files are loaded by the Land ability at runtime, with their content
stored in an instance of TinData.

Implementation of an automatical pre-processing using a third-party
library such as PCL2 or CGAL3 should be considered in the future. Un-
forunately, this option was not feasible in this version due to time con-
straints.

6.2.3 Mesh creation

Once the input OBJ file is loaded, an instance of TinData contains all infor-
mation that are needed to build a mesh. Because of that, the initialization of
TinMesh is a rather straightforward process.

Geometry primitives are divided in multiple element arrays so that no
array contains more than 216 indices. This measure is taken because of the
problem that may occur if we use an index array which contains too many
elements – as previously described in section 6.1.4.

When compared to HeightFieldMesh, the real world area that is cov-
ered by the mesh is 3.6× smaller (5 square kilometers instead of 18). This
makes that the application of textures is easier as well. The highest resolu-
tion in which the orthoimagery is available uses 16 pixels per square meter.
In total, the most detailed orthophoto covering the mesh’s area would use

2. http://pointclouds.org/
3. https://www.cgal.org/
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10, 000× 8, 000 pixels. It is clear that there’s no need to use texture with size
larger than 81922. This allows us to use just a single texture for the whole
mesh and avoid any kind of segmentation, as seen in section 6.1.4.

As stated in section 5.5.1, the LandTexture downloads only textures
up to the size of 10242. However, we can join several smaller textures to
create a desired, larger texture. For example – to obtain a texture which
contains 40962 pixels, we connect 16 smaller textures downloaded sepa-
rately using LandTexture. Texture of this size is contains enough details
to sufficiently cover whole surface of the mesh.

Finally, construction of the mesh is also simplified in terms of scene
graph. Geometry of the whole mesh is contained inside of a single leaf node
which is in turn connected to a parent node which translates and scales the
mesh using the content of Properties. The parent node is then directly
connected to the root node of the scene.
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7 Conclusion

In this thesis, we studied visualization of cartographical data in virtual en-
vironment. For this purpose, we discussed several topics related to the sub-
ject such as coordinate reference systems, representation of terrain data and
selected interaction techniques.

Practical result of this work is Land ability, a new extension of the vrecko
framework. The extension is able to work with terrain data from various
sources, including digital elevation model of the Czech Republic provided
by ČÚZK. Furthermore, the extension is able to download an appropriate
orthoimagery using specialized web service and texture the terrain model
with it.

The features of Land ability were designed in co-operation with resear-
chers from Faculty of Science and Faculty of Arts, Masaryk University. The
extension is currently in a test phase and is and is expected to be soon used
in research along with several other parts of the vrecko framework.

Future improvements of the ability may include e.g. optimization of the
mesh using an appropriate algorithm, implementation of additional input
formats and support for web services which provide data other than or-
thoimagery and noise pollution. Automatical pre-processing of the point
cloud is also a significant feature implementation of which should be con-
sidered.
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A Pre-processing of point cloud

This appendix describes a sequence of steps which can be used to create a
triangulated mesh from a point cloud provided by ČÚZK. The following
software is used across this guide:

• XYZ preparation utility, created and provided as a part of this thesis.

• MeshLab v1.3.3 (64-bit)1

• Blender 2.68a (64-bit)2

The transformation process will be demonstrated on the point cloud file
pp_HLIN04_1g.xyz, available at [25].

A.1 Point cloud preparation

1. Move the point cloud file pp_HLIN04_1g.xyz to a folder which con-
tains the XYZ preparation utility executable.

2. Run the XYZ preparation utility executable and input the name of the
point cloud file (without its extension): pp_HLIN04_1g.

3. The application will automatically quit once it completes the compu-
tation.

The folder now contains two new files – pp_HLIN04_1g.obj and
pp_HLIN04_1g.area. The *.obj file contains the transformed point cloud
in OBJ file format – the Y and Z axes are swapped and all vertices have been
translated so that their X and Z coordinates lie in the interval [0, 2500] and
[0, 2000], respectively.

The small *.area file contains four values which specify a geographical
area which is covered by the point cloud data. The values represent borders
of a rectangular, axis-aligned area using S-JTSK coordinates.

A.2 Surface reconstruction

1. Open MeshLab and load the OBJ file pp_HLIN04_1g.obj.

Menu: File -> Import Mesh...

1. Available at http://meshlab.sourceforge.net/
2. Available at http://www.blender.org/
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2. Compute the normal vectors using the parameters shown in figure
A.1 and the following table:

Menu: Filters -> Point Set -> Compute normals for point sets

Neighbour num 20

Smooth Iteration 0

Flip normals w.r.t. viewpoint Yes

Viewpoint Pos. 1250 5000 1000

Get Camera Pos

Figure A.1: Parameters used for normal computation.

3. Create a mesh from the vertices and normals using the Poisson sur-
face reconstruction algorithm. Please note that this step is highly per-
formance demanding. In our experience, a desktop PC with at least
4 GB of RAM is recommended. Moreover, multiple CPU cores can
speed up the final computation time. Recommended parameters can
be seen in the following table and figure A.2.

Menu: Filters -> Point Set -> Surface Reconstruction: Poisson

Octree Depth 13

Solver Divide 8

Samples per Node 1

Surface offsetting 1

The octree depth is the most important parameter regarding level of
detail of the final mesh. Higher values produce mesh which contains
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A. PRE-PROCESSING OF POINT CLOUD

more vertices and details – and which takes far more time to com-
pute. The following table presents results for a given octree depth on a
desktop PC with Intel Core i5-2500K and 4 GB of system memory.

Octree Depth # of vertices # of faces Time

6 2,867 5,686 1.142 s
7 10,550 21,050 1.933 s
8 40,411 80,774 4.584 s
9 162,038 324,016 17.796 s
10 452,119 904,146 50.798 s
11 724,376 1,448,514 85.146 s
12 787,395 1,574,354 93.813 s
13 859,252 1,717,666 124.437 s

Note: The source point cloud consists of 884,726 vertices.

Figure A.2: Parameters used for surface reconstruction.

4. Open the Layer dialog.

Menu: View -> Show Layer Dialog

5. Select the newly created mesh (should be labeled as “Poisson Mesh”),
and export it as an OBJ file. In our case, we will overwrite the input
file pp_HLIN04_1g.obj.

Menu: File -> Export Mesh As...
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6. Close Meshlab.

A.3 Removal of excess parts

The goal of this last step is to remove excess parts of the mesh which were
created by the Poisson surface reconstruction algorithm. Unfortunately, the
decision which vertices should be removed is not automated and so the
removal process has to be done manually.

1. Open Blender and create a new scene.

Menu: File -> New...

2. Remove Camera, Cube and Lamp objects from the scene.

3. Import pp_HLIN04_1g.obj to the scene, using options shown in
figure A.3.

Menu: File -> Import -> Wavefront (.obj)

Figure A.3: Options used to import OBJ in Blender.

4. With mouse cursor above 3D view and press the N key. In the View
section, set distance to the far clipping plane (End parameter) to 10,000
units.
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5. With mouse cursor above the 3D view, press the Z key to switch ren-
dering mode to wireframe.

6. Select the imported mesh and switch from Object Mode to Edit Mode.

7. Remove all vertices which you deem not appropriate to be part of
the final TIN. For example – all vertices which have X and Y coordi-
nates outside of the range [0, 2500] and [0, 2000], respectively, can be
removed.

8. With all excess vertices removed, return back to Object Mode.

9. Select the mesh and export it to OBJ using options shown in figure
A.4. In our case, we will overwrite the input file.

Menu: File -> Export -> Wavefront (.obj)

10. Close Blender.

To complete the whole procedure, move the *.obj (exported from Blender)
and *.area (created in appendix A.1) files to the target directory, e.g.
bin/Data/Nature/Land in the vrecko installation directory.
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Figure A.4: Options used to export OBJ from Blender.
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B XML Properties

This appendix describes the XML elements which are used to initialize the
Land ability. Majority of properties are required and their omission results
in an initialization failure. If a property has a pre-defined default value, it
is not required and can be omitted.

B.1 Global properties

All global properties are placed directly inside the Parameters element of
the Land ability.

• TextureSize – Size of the texture image which is downloaded from
the Internet and stored in cache. Has to be 2n, n ∈ 1...10.
Default value is 1024.

• TextureCachePath – Location of the texture cache on the secondary
storage (see section 5.5.2). Both relative and absolute paths are sup-
ported.
Default value is "data/Nature/Land/Cache".

• UseWireframe – Empty element which turns on wireframe render-
ing if it’s found. Default value is false.

• ElevationLegend – Defines colouring of the vertices (see section
5.4.5 for detailed information) using any non-zero number of Colour
elements. Each Colour element specifies a single (elevation, colour)
pair using two values – Height and Value.
Usage of default value results in a single colour (white) being applied
to all vertices.

– Height – Elevation at which the colour value is applied. Serves
as a map key and its value has to be unique.

– Value – Colour of the vertex at the given height. Specified by
3 integer values from the [0, 255] interval, each representing one
of the RGB channels.

B.2 Land block properties

This section provides textual description of all parameters which can be set
by user inside the <Block> element in the input XML file. The description
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is followed by a table which summarizes metadata of all properties.

B.2.1 Description

• DataSource – Defines the source of terrain data and specifies which
subset of parameters is loaded from the input XML file. Only one of
the following values can be used:

– ZabagedGrid (ZG)

– ZabagedTin (ZT)

– RasterImage (RI)

– PerlinNoise (PN)

– MidpointDisplacement (MD)

– RandomFaults (RF)

Acronym in parentheses is used as a reference in further text.

• Position – Location of the land block in the scene.

Used by all land blocks, not related to any data source.

• Scale – Scale of the land block.

Used by all land blocks, not related to any data source.

• Render – Optional parameter which disables construction of
LandMesh and its rendering. This way, the ability may be used as
a relatively simple importer of terrain data which can be then used
for other purposes. The parameter accepts all following values, with
their meaning being obvious – on, off, true, false, yes, no, 1 and
0.

• StretchInterval – Specifies value range in which the elevation
samples are linearly stretched. Useful e.g. for perlin noise which pro-
duces very small values. The stretch operation is performed iff the
first value is smaller than the second one.

Used by all land blocks, not related to any data source.

• ExportMeshPath – Specifies path to file in which the block’s mesh
is exported. Supports both relative and absolute path. If the path is
not valid, no mesh is exported.

Used by all land blocks, not related to any data source.
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• ExportImagePath – Specifies path to RGBA image file in which the
terrain data (stored as a height field) is exported. All elevation values
are stretched to the interval [0, 255] and stored in RGB channels with
alpha values set to 255. Invalid points are saved with zero value in all
4 channels. If the path is not valid, no image file is exported.

Used by ZG, RI, PN, MD and RF.

• MeshSegmentSize – Size of height field segment. Represents num-
ber of height samples on X and Z axes. Smaller values increase quality
but decrease overall performance.

Used by ZG, RI, PN, MD and RF.

• Width – Size of the height field (number of samples) on the X axis.

Used by PN, MD and RF.

• Length – Size of the height field (number of samples) on the Z axis.

Used by PN, MD and RF.

• FilePath – Path to the input file which stores the terrain data. Both
absolute and relative path is supported.

Used by ZG and ZT, though in a slightly different way. In case of
ZG, the input file is an altimetry grid provided by ČÚZK, stored in a
text file with *.txt extension. In case of ZT, the parameter contains
path to an OBJ file created from the digital surface model using se-
quence of steps described in appendix A. Moreover, an area file with
the same name but a different extension (*.area instead of *.obj)
is also loaded from the same location.

• SampleDistance – Distance between two 4-adjacent samples (in
meters).

Used only by ZG.

• TextureSource – Type of the texture which is used on the created
mesh. Only one of the following values can be used:

– OrthoPhoto

– Noise-Day

– Noise-Night

Used by ZG and ZT.
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• TextureQuality – Specifies quality (size) of the texture which is
applied to rendered TIN mesh. There are four available options - each
of them representing a texture with different dimensions:

Low 10242

Medium 20482

High 40962

Ultra 81922

Support for large textures varies among different GPUs. However,
modern desktop GPUs should safely handle textures up to 40962.

Used only by ZT.

• ImagePath – File path to image which is used as a terrain data source.
Both absolute and relative paths are supported.

Used only by RI.

• ColourFunction – Specifies function which is used to compute the
height h of each sample from its input RGBA colour value c. The fol-
lowing options are available:

R h = cr
G h = cg
B h = cb
Sum h = cr + cg + cb
Average h = 1

3
· (cr + cg + cb)

Used only by RI.

• RandomSeed – Seed value used to initialize the pseudo random num-
ber generator using the std::srand() function.

Used by PN, MD and RF.

• OctaveCount – Number of octaves in Perlin noise algorithm that are
summed up together to the composite noise. See [22] for details.

Used only by PN.

• Persistence – Persistence of the Perlin noise. See [22] for details.

Used only by PN.

• Interpolation – Type of interpolation which is used in the Perlin
noise algorithm. Only two values are allowed – linear and cosine.
See [22] for details.

Used only by PN.
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• FractalDimension – Fractal dimension of the land. See [22] for de-
tailed description.

Used only by MD.

• CornerValueRange – Value range from which the initial value of
each surface corner is pseudo randomly generated. See [22] for de-
tails.

Used only by MD.

• Iterations – Number of iterations computed by random faults al-
gorithm. See [22] for details.

Used only by RF.

• FaultValueRange – Value range from which the initial fault value
is pseudo randomly generated. See [22] for details.

Used only by RF.
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B.2.2 Metadata

Name Type Default value Allowed values

DataSource Land::DataSource — See B.2.1

Position osg::Vec3f 0 0 0 x, y, z ∈ R

Scale osg::Vec3f 1 1 1 x, y, z ∈ R− {0}

Render bool true See B.2.1

StretchInterval osg::Vec2f 0 0 x, y ∈ R

ExportMeshPath std::string (empty) path to file

ExportImagePath std::string (empty) path to file

MeshSegmentSize int 32 x ≥ 32

Width int — x ≥ 2

Length int — x ≥ 2

FilePath std::string — path to file

SampleDistance float — x > 0

TextureSource Land::TextureSource — See B.2.1

TextureQuality Land::TextureQuality — See B.2.1

ImagePath std::string — path to file

ColourFunction Land::ColourFunction — See B.2.1

RandomSeed unsigned int current time x ∈ N0

OctaveCount int — x ≥ 1

Persistence float 0.5 x ∈ (0.0, 1.0)

Interpolation Land::InterpolationType cosine See B.2.1

FractalDimension float — x ∈ [2.0, 3.0]

CornerValueRange osg::Vec2f — x ≤ y

Iterations int — x ≥ 0

FaultValueRange osg::Vec2f — 0 ≤ x ≤ y
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C Class diagrams

C.1 Properties
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C.2 LandData

C.3 LandMesh
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C.4 HeightFieldProvider
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D Performance tests

D.1 Hardware configurations

Config. 1 Config. 2 Config. 3

CPU Intel Core i5-2500K Intel Core i5-2500K Intel Core i5-2430M

3.30 GHz 3.30 GHz 2.40 GHz

RAM 4 GB 4 GB 4 GB

GPU AMD HD 6870 AMD HD 6870 AMD HD 6630M

Storage WD Caviar Black Intel SSD 330 Hitachi Travelstar Z7K320

3.5”, 7200 rpm 2.5” 2.5”, 7200 rpm

OS Win 7 (64-bit) Win 7 (64-bit) Win 7 (64-bit)

D.2 Test data

File size # of vertices # of normals # of faces

ZACL51_5g 327,716 KB 1,689,250 3,370,171 3,373,882

ZACL61_5g 476,860 KB 2,434,611 4,857,706 4,864,478

ZACL62_5g 408,272 KB 2,096,634 4,184,889 4,188,180

PARD80_1g 332,576 KB 1,726,101 3,403,796 3,448,649

pp_HLIN04_1g 159,224 KB 844,774 1,675,033 1,686,464

D.3 Results

Config. 1 Config. 2 Config. 3

ZACL51_5g 22.596 s 22.055 s 28.365 s

ZACL61_5g 32.495 s 32.304 s 40.145 s

ZACL62_5g 28.063 s 27.963 s 34.527 s

PARD80_1g 23.940 s 22.508 s 28.241 s

pp_HLIN04_1g 11.091 s 10.914 s 13.848 s

Table D.1: Time required to load TIN from OBJ file.
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E Thesis archive in IS MU

This appendix contains brief description of files that accompany this text in
thesis archive in Masaryk University Information System.

• Thesis.pdf – Text of this thesis.

• vrecko.zip – Trimmed down version of vrecko. This release con-
tains only executable vreckoApp.exe along with Land ability and con-
tent required by it. To simplify execution of the application, several
example batch files are prepared in the subfolder

vrecko/Examples/Nature/Land.

• Source codes.zip – All source codes and projects related to the
Land ability, XYZ preparation utility and text of the thesis written in
LATEX.

Note: Source codes of the Land ability can only be compiled along
with the rest of the vrecko framework. See the project’s homepage1 for
instructions on how to download and compile the framework.

• Diagrams.zip – Class diagrams of the Land ability, created in Mi-
crosoft Visual Studio 2010.

1. http://vrecko.cz/
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