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[Problem [Principle [My work

Sometimes, data expressed by relations make bet-
ter sense than expressed as vectors of real numbers.

e Learning based on application of LGG on positive examples e Reformulation of theory from FOL into terms

Relational machine learning: e Homomorphism can be formulated as a Constraint satisfaction problem (CSP) of relational structures.
Subfield of hine 1 . e Deciding about homomorphism for two structures is NP-complete e This formulation should be more accessi-
e Subfield of machine learnin S .
& e Basic algorithm for finding LGG produces very large structures which need to be reduced ble for most scientific audience as opposed
e Learning from structured data R X i R X to FOL
e Reduction without generality loss: find smallest homomorphically equivalent structure
e Structures encoded as: e Effective and complex implementation of

e Result: Basic learning requires a lot of computationally costly homomorphism tests the studied methods in Java
— Labelled graphs e Idea: Exploiting polynomial-time local consistency techniques from CSP to test so called bounded e Tmplementation of a new effective CSP

— First order logic clauses homomorphism
. solver
— Relational structures L .
N e Investigation of runtime and accuracy perfor-
e So far, most theory based on first order logic -S mance of the methods
formulation (FOL)
o Effective implementation of in general exponential-time methods based on complete CSP solution is - le b\
B 3 N\ usually faster than solution based on polynomial-time bounded operations (exploiting local consis- P
1maries tency techniques) e Results on dataset containing 80 Hexose-
Def. 1. Vocabulary o is a finite set of relation sym- binding protein domains (positive exam-

Ay somgeisn

ples) and 80 non-Hexose-binding protein do-
mains (negative examples).

bols with associated an arity. 1 : e Results comparable in ac-
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Def. 2. Relational structure A of type o is a pair = curacy with state-of-the-
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Presented at the workshop Machine Learning

Cratent . .
of universe Ua and a sequence of relations Ra. There =I'"j°ﬂﬁﬂ'°'"3 art a}gorlth@s for relational
ezists one relation R* € Ra for each R € o with the sl = | machine learning in Computational Biology at the conference
same arity as R. Figure shows accuracy per- NIPS 2013
Def. 3. A homomorphism from a structure A to ’ formance of my implementa- e Equivalent encoding as labelled graphs
a structure B of the same type is a mapping f : Ua — Py _ tion and state-of-the-arts algo- One vertex for every atom (labelled by the
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Up such that for every m — ary R € o and every rithms on eight datasets. atom type + position in the amino acid)
(a1,...,am) € R* we have (f(ar),..., f(am)) € RE.

PTOME  PTCME  =aNOw Every algorithm has its own

If this homomorphism exists, we denote it by A — B. fr— color e Edge labelled by a discretized distance (if <

If A — B and B — A we say that A and B are homo- o ) 4 Angstroms).

morphically equivalent (denoted by A~B). ikt St e amopef A se e b Ty e 10-fold cross-validation accuracy 71.9 4 5.3
11

Def. 4. A relational structure C is said to be a least e Picture: structure covering covers 39 positive
1 e My CSP solver performs on our

general generalization (LGG) of the relational
structures A and B if and only if C — A and C — B and
for every other relational structure D such that D — A
and D — B it holds D — C.

[Goal )

e Input: sets £ and E~ of positive and negative

) examples and no negative example
tasks faster than widely used

Choco CSP solver

e Figure shows ratio of average run-

time of homomorphism test using
& Choco CSP solver / homomorphism
test using my CSP solver

time ratla

e Measured average runtime of ho-

examples [ momorphism testing of a random
e Examples are relational structures E structure to all structures in a data
e Find a classifier: set S of relational structures set

e Structure e classified as: e Dependence on number of positive

— positive & Is€ S :s —e : P and negative examples covered
3 a5

— negative otherwise negative covered

positive coverad

e If s — e, we say that s covers e




