Fast Relational Learning Using Bounded LGG

Author: Andrea Fuksová¹, Advisor: Ondřej Kuželka²
¹Czech Technical University in Prague, ²KU Leuven

Problem

Sometimes, data expressed by relations make better sense than expressed as vectors of real numbers. Relational machine learning:

- Subfield of machine learning
- Learning from structured data
- Structures encoded as:
 - Labelled graphs
 - First order logic clauses
 - Relational structures
- So far, most theory based on first order logic formulation (FOL)

Preliminaries

Def. 1. Vocabulary σ is a finite set of relation symbols with associated an arity.

Def. 2. Relational structure \mathbb{A} of type σ is a pair of universe \mathcal{U}_A and a sequence of relations \mathcal{R}_A . There exists one relation $R^A \in \mathcal{R}_A$ for each $R \in \sigma$ with the same arity as R.

Def. 3. A homomorphism from a structure $\mathbb A$ to a structure $\mathbb B$ of the same type is a mapping $f:\mathcal U_A\to \mathcal U_B$ such that for every $m-\operatorname{ary} R\in \sigma$ and every $(a_1,\ldots,a_m)\in R^A$ we have $(f(a_1),\ldots,f(a_m))\in R^B$. If this homomorphism exists, we denote it by $\mathbb A\to \mathbb B$. If $\mathbb A\to \mathbb B$ and $\mathbb B\to \mathbb A$ we say that $\mathbb A$ and $\mathbb B$ are homomorphically equivalent (denoted by $\mathbb A\approx \mathbb B$).

Def. 4. A relational structure \mathbb{C} is said to be a **least** general generalization (LGG) of the relational structures \mathbb{A} and \mathbb{B} if and only if $\mathbb{C} \to \mathbb{A}$ and $\mathbb{C} \to \mathbb{B}$ and for every other relational structure \mathbb{D} such that $\mathbb{D} \to \mathbb{A}$ and $\mathbb{D} \to \mathbb{B}$ it holds $\mathbb{D} \to \mathbb{C}$.

Goal

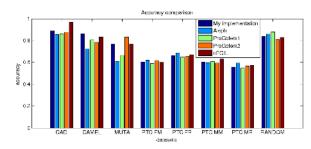
- Input: sets E⁺ and E⁻ of positive and negative examples
- Examples are relational structures
- Find a classifier: set S of relational structures
- Structure e classified as:
 - $\ \ \text{positive} \Leftrightarrow \exists s \in S : s \to e$
 - negative otherwise
- If $s \to e$, we say that s covers e

Principle

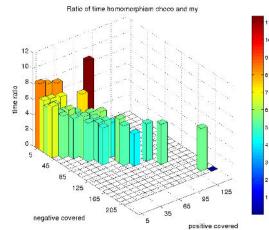
- Learning based on application of LGG on positive examples
- Homomorphism can be formulated as a Constraint satisfaction problem (CSP)
- Deciding about homomorphism for two structures is NP-complete
- Basic algorithm for finding LGG produces very large structures which need to be reduced
- Reduction without generality loss: find smallest homomorphically equivalent structure
- Result: Basic learning requires a lot of computationally costly homomorphism tests
- Idea: Exploiting polynomial-time local consistency techniques from CSP to test so called bounded homomorphism

Some results

• Effective implementation of in general exponential-time methods based on complete CSP solution is usually faster than solution based on polynomial-time bounded operations (exploiting local consistency techniques)



- Results comparable in accuracy with state-of-theart algorithms for relational machine learning
- Figure shows accuracy performance of my implementation and state-of-the-arts algorithms on eight datasets.
- Every algorithm has its own color



- My CSP solver performs on our tasks faster than widely used Choco CSP solver
- Figure shows ratio of average runtime of homomorphism test using Choco CSP solver / homomorphism test using my CSP solver
- Measured average runtime of homomorphism testing of a random structure to all structures in a data set
- Dependence on number of positive and negative examples covered

My work

- Reformulation of theory from FOL into terms of relational structures.
- This formulation should be more accessible for most scientific audience as opposed to FOL
- Effective and complex implementation of the studied methods in Java
- Implementation of a new effective CSP solver
- Investigation of runtime and accuracy performance of the methods

Example

- Results on dataset containing 80 Hexosebinding protein domains (positive examples) and 80 non-Hexose-binding protein domains (negative examples).
- Presented at the workshop Machine Learning in Computational Biology at the conference NIPS 2013
- Equivalent encoding as labelled graphs
- One vertex for every atom (labelled by the atom type + position in the amino acid)
- Edge labelled by a discretized distance (if < 4 Angstroms).
- 10-fold cross-validation accuracy 71.9 ± 5.3
- Picture: structure covering covers 39 positive examples and no negative example

