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Introduction

One of the state of the art techniques of brain research, two-photon laser scan-
ning microscopy, has quickly become a powerful tool for revealing structural and
functional organization of cortical neurons in brains of living animals (Kerr et al.,
2005; Knott et al., 2006; Schneider et al., 2012).

However, measurements performed with two-photon (2P) microscope yield
gigabytes of video and/or image data. Certain questions may be answered by a
researcher after simply looking at the data (e.g., are there any astrocytes in the
observed part of brain?). On the other hand, answering more complex questions
(e.g., how many neurons are in the observed part of brain and when are they
active?) calls for automated, or semi-automated processing.

Recently, several tools which automate many tasks in processing in vitro data1

have been created, such as (Collins, 2007; Kankaanpää et al., 2012; Schneider
et al., 2012). Unfortunately, processing in vivo data2 is a lot more difficult, due
to, e.g., higher amount of noise, uneven staining of the tissue and 3D motion
artifacts.

Usually, in vivo data are processed by custom-written software pieces (Ban-
dyopadhyay et al., 2010; Cohen et al., 2011; Jarosiewicz et al., 2012), with the
code not publicly available. This means that the published experiments can not
be replicated and as it is impossible to critically judge the quality of the used
software, the credibility of such research is questionable.

While there are publicly available tools for processing data from in vivo ex-
periments, they are are restricted to a specific task, such as correction of motion
artifacts ((Greenberg and Kerr, 2009)), or image segmentation ((Miri et al., 2011;
Valmianski et al., 2010)). To our knowledge, there is no publicly available, open
source software toolkit offering wider array of tools used in the analysis of the
data from in vivo experiments.

This thesis addresses the need of a software toolkit for complex processing of
various types of data from the 2P microscope. We designed and implemented the
toolkit Two-Photon Processor (TPP), with primary aim to measure calcium tra-
ces of neurons in a full-frame3 video and using these, infer times of neuronal spikes.
The main problem was to find a suitable algorithm for automated segmentation
of neurons in a video. We therefore developed a new segmentation algorithm Se-
NeCA (Search for Neural Cells Accelerated), able to successfully segment even
in vivo data. Our main results have already been accepted for publication in the
Journal of Neurophysiology (Tomek et al., in press).

In the first chapter of this thesis, we briefly describe several relevant methods
of neuroimaging and related work in the field of processing microscope data. The
second chapter describes the resulting software toolkit TPP. The third chapter
contains the comparison of TPP to other relevant tools and the evaluation of
SeNeCA. We conclude the thesis with the discussion of the results achieved.

1Obtained from parts of brain which have been isolated from their usual surroundings.
2Obtained from living brain.
32D section of brain
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1. Imaging techniques

Due to specialized nature of this thesis, we provide an introductory chapter, both
on methods of extracting data from brain and on processing these data, listing
related work in these fields.

The first section aims to put the 2P microscope into a broader context de-
scribes several relevant small-scale functional1 recording techniques, which are
widely used in neurophysiology research.

The second section of this chapter is dedicated to the description of several
software techniques of processing data from microscopy. It contains a summary
of related work in the fields which we ourselves worked in when developing Two-
Photon Processor(TPP).

1.1 Overview of selected neuroimaging techniques

1.1.1 Electrophysiology

Figure 1.1: An example of single neuron recorded and its membrane potential
plotted over time. From (Wikipedia.org, 2009)

.

Electrophysiology is one of the oldest methods of brain research (used as long
ago as in 1950s in, e.g., (Hodgkin et al., 1952) or (Hubel and Wiesel, 1959)),
which is still used and improved today. In contrast with microscopy, which mea-
sures optical properties of the observed tissue, electrophysiology directly measures
electrical properties of cells. Such an approach is very useful for measuring neu-
ronal activity, see Fig. 1.1 for an example. There are two ways of recording such
properties: from within neurons (intracellular) or from the area around neurons
(extracellular).

1Used to analyze the processes happening in brain, rather than pure morphology. Therefore,
we do not describe CT, MRI, etc. The small-scale means that single neurons or small groups
are observed. Therefore, we omit EEG, PET or fMRI.
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1.1.1.1 Intracellular recording

Traditionally, a microelectrode was used to impale a cell and measure voltage
or current across the membrane. Hodgkin and Huxley used this technique to
observe the mechanisms driving the generation of action potentials (they have
been awarded Nobel prize in 1963). They used their observations to create a well
known model of spiking neuron (Hodgkin and Huxley, 1952).

The original method of penetrating a cell’s membrane has been improved
by the introduction of patch clamp technique. This technique is less invasive
and significantly improved the accuracy of measurement. Developed by Nehr and
Sakman in late 1970s (they received a Nobel prize in 1991 for it), this technique
does not use a sharp-tip electrode as the traditional approach, but a smooth-tip
electrode instead. The tip is pressed against the cell membrane and a suction that
forms a powerful seal is applied. The seal is often called a “gigaohm seal”, due to
high electrical resistance of the seal. Because of the high resistance, the currents
across the ion channels in the membrane may be isolated and measured. Further
reading, e.g., in (Hamill et al., 1981).

While intracellular recording offers excellent temporal resolution and may be
performed both in vivo and in vitro, it is limited to a single cell. Therefore, its
possible contribution to the research of large-scale networks is limited.

1.1.1.2 Extracellular recording

In this case, a microelectrode is inserted into extracellular space of the tissue.
It is possible to record a single cell if a thin-tipped electrode (1 micrometer)

is used.
When a thicker electrode is used, signal from several neurons is being inte-

grated, which allows larger scale of observation. However, it is often difficult to
tell how many neurons are measured and assign putative spikes to the putative
neurons (spike sorting). This problem may be partially ameliorated when multie-
lectrodes (e.g., tetrodes) are used (Harris et al., 2000). It is also possible to use
an array of multielectrodes and insert it in the brain, thus being able to record a
larger area of the neuronal network. This approach may bring better spatial re-
solution than extracellular recordings made by single multielectrodes (Lei, 2011).
However, the process of insertion (especially chronic implantation) into a living
brain leads to unfavourable changes in the tissue(e.g., loss of cells and glia) and
immune system tends to react by inflammation (Biran et al., 2005); this suggests
that the measured activity of the given part of brain may not be the same as
in its natural state. Another disadvantage of in vivo use of multielectrode arrays
(and extracellular recording in general) is the fact that the neurons may move
relatively to the recording sites and it is difficult to tell, whether the same set
of neurons is measured throughout the experiment. More about recent challen-
ges and advances in this sort of extracellular recording may be found in (Chorev
et al., 2009).

The thickness of electrode may be further increased. Then, while the possibi-
lity of telling apart different neurons is lost, local field potentials (LFP) may be
measured2. LFP is believed to represent a synchronized input and output of the
measured area.

2More about structure of LFP may be found in (Buzsáki et al., 2012).
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1.1.2 Electron microscopy

Figure 1.2: A section of myelinated axon, as seen by an electron microscope.
From (Wikipedia.org, 2008).

The electron microscope (EM) is essentially similar to ordinary light microsco-
pes, except it uses rays of electrons, rather than photons. This leads to much
higher resolution (sub-nanometer), very fine structures may be therefore obser-
ved, see Fig. 1.2 for an example. Two basic types of EM exist: The first type
is transmission electron microscope (TEM), which uses an electron gun to fire
electrons through the observed sample (a thin sample must be used). The second
type is scanning electron microscope (SEM), which raster-scans the sample with
a focused electron beam and collects secondary and backscattered electrons to
reconstruct the image. An advantage of SEM over TEM is that it is possible to
scan a block of tissue, not necessarily a thin sample. TEM offers somewhat better
resolution, however, for observing neurites and other thin structures, even SEM
offers sufficient resolution. Both TEM and SEM require the sample to be observed
in vacuum, as the molecules in air could scatter the beam of electrons. However,
this means that the sample must be dry and fixated, as water in vacuum would
become a gas and the sample would be destroyed. The environmental scanning
electron microscope (ESEM) is a reaction to this disadvantage. At the cost of
slightly decreased resolution, it is possible to observe samples containing water
in low vacuum.

Even though electron microscopes are limited to in vitro observation and they
do not detect electrical activity of neurons, they may still be an important tool
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for deciphering the functionality of brain. In volume electron microscopy, a voxel
of brain may be observed and neurite connectivity reconstructed (thin neurites
are still at least 50 nm thick, therefore easily observed by EM). The volume
electron microscopy is still a novel approach, being worked on and improved. See
(Briggman and Bock, 2011) for a review of current techniques, their advantages
and shortcomings.

Recently, Bock et al. have combined in vivo imaging of neuronal activity
with later in vitro reconstruction of neurite connectivity (Bock et al., 2011).
Such combined approaches bring further understanding of fine organization and
functionality of neuronal networks.

1.1.3 Fluorescence microscopy

Fluorescence microscopes rely on illumination of the observed tissue and collection
of photons emitted via fluorescence. Due to Stokes shift3, it is possible to separate
the reflected illuminating light from the light coming from fluorescence. One of
crucial applications of fluorescence microscopy (especially confocal and 2P) in
neuroscience is calcium imaging, with the use of fluorescent calcium indicators.
Fluorescent calcium indicators are molecules which make cells react, with the
property that the higher concentration of calcium is in the cell, the more light the
neuron emits via fluorescence. Due to near-absolute correlation(Kerr and Denk,
2008) between neuronal spikes and large increase in concentration of calcium, it
is often possible to see when an observed neuron fires an action potential, because
the firing neuron becomes brighter.

In this paragraph, we describe three principally different techniques of deploy-
ing calcium indicators to cells.

1. Chemical indicators: In general, the molecules of calcium indicators are
injected into the target tissue by a pipette and dispersed. In the most
frequently used technique, acetoxymethyl (AM) ester based multi-cell bo-
lus loading (MCBL), indicators based on BAPTA (e.g., fura-2(Grynkiewicz
et al., 1985), fluo-4(Gee et al., 2000), etc.) are used as the dye. There is a
neat trick allowing better distribution of the dye into neurons: Binding al-
cohol groups to the carboxyl groups of BAPTA-based indicators, creates an
(AM ester)-version of the indicator. The esterized indicators are lipophilic,
thus being able of entering cells through their membranes. However, once
the indicators enter a cell, cellular esterases cleave off the alcohol groups.
This has two consequences: First, the indicator becomes capable of binding
calcium (i.e., it becomes a calcium indicator again). Second, the indicator
without the alcohol groups becomes negatively charged and therefore it can
not exit the neuron anymore via diffusion4. Therefore, the calcium indica-
tors are active only after they enter cells and once they do so, they stay
there for at least 3 hours. This leads to sufficiently high concentration of cal-
cium indicators in cells and good quality staining. However, the staining is

3When a particle absorbs a photon and gets into excited state, it may get rid of its excessive
energy by emitting a photon with lower energy back. Stokes shift is the difference between the
energy of the absorbed and emitted photon.

4It will be eventually pumped out by unspecific ABC pumps after 3-5 hours.
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only temporary, due to unspecific ABC pumps transporting the fluoropho-
res out. Another problem is photobleaching: when the tissue is illuminated,
the calcium indicators are gradually damaged and they eventually cease to
be fluorescent. For a review of AM ester based MCBL, see (Eichhoff et al.,
2010).

2. Genetic knock-in: Using the technique of gene knock-in, it is possible to
genetically deliver fluorescent proteins into the cells which should be obser-
ved. The cells themselves then express the fluorescent protein. For a review
of this technique, see (Kotlikoff, 2006).

3. Viral transfection: This technique is somewhat similar to the previous one,
but instead of genetic knock-in, a modified virus is used to make cells express
fluorescent proteins. This leads to much higher rate of expression than the
genetic encoding of proteins via knock-in. This technique leads to very good
image quality, enabling imaging of finer structures, e.g., axons (Kuhlman
and Huang, 2008). See (Teschemacher et al., 2005) for a review of this
technique; see (Heider et al., 2010) for its more recent application.

When compared to electrophysiology, calcium imaging offers better spatial
resolution (i.e., it is obvious where neurons are), but somewhat worse temporal
resolution of electric signals (the sampling frequency of recording is lower). Si-
milarly to electrophysiology, calcium imaging may be performed in vivo and it
is less invasive than insertion of multielectrode array. A disadvantage of calcium
imaging is the limited depth it can visualize. It is possible to measure certain data
from tissue up to 1.6 mm deep (Kobat et al., 2011), but functional neuroimaging
is still limited to up to 1 mm (Helmchen and Denk, 2005). As the result, it is still
impossible to observe, e.g., thalamus of living mice, using calcium imaging with
conventional objectives.

We describe three types of fluorescence microscopes in the following sections.

1.1.3.1 Wide-field fluorescence microscopy

This is the oldest technique of fluorescence microscopy, when the whole obser-
ved sample is uniformly illuminated. See Fig. 1.3 for a schema and description
of a wide-field microscope, see 1.5 for an example of how data from wide-field
microscopy may look. A large disadvantage of this technique is extremely poor
z-axis resolution. I.e., neurons 0.1 mm deep will be seen in the image, as well as
neurons 0.2 mm deep, etc. This is not a problem when thin sections of tissue are
observed, but it makes the technique ill suited for in vivo recording.

1.1.3.2 Confocal microscopy

The confocal microscope takes a different approach than a wide-field microscope.
Instead of illuminating the whole sample at once, it scans the sample point by
point and collects photons via a photomultiplier tube. See Fig. 1.4 for a schema
and description of principle of a confocal microscope.

Compared to a wide-field microscope, a confocal microscope has much better
z-axis (depth) resolution, see 1.5 for a comparison. This offers several advantages
over the wide-field approach. First, signals from various depths of specimen are
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Figure 1.3: The arc lamp produces white light, filtered to produce light wi-
th a wavelength which evokes fluorescence in the observed sample (the exact
color depends on used fluorescent dye). The light with selected color is then
reflected at the sample through an objective. This should lead to excitation
of fluorophores, with the emitted photons being collected. A portion of the
arc lamp light is also reflected back. The photons from the arc light and from
fluorophores then hit the dichroic mirror and only the lower-energy photons
from fluorophores may pass through, are further filtered and then seen by an
eye or recorded by a camera. From (Mühlpfordt, 2008).

not mixed together, only one focal plane is observed at a time. This makes ob-
serving single cells much easier than when using a wide-field microscope. Second
advantage is the possibility of reconstruction of a voxel of the observed tissue. If
a stack of images from various depths5 is recorded, it may be assembled together
into a 3D image of the tissue. An electron microscope may be also used for recon-
struction of 3D voxel, but it needs the tissue to be reconstructed to be sliced and
recorded slice after slice. A confocal microscope does need such physical slicing
and therefore is easier to use for the task.

1.1.3.3 Two-photon microscopy

Developed in the 1990s by Denk (Denk et al., 1994), the 2P microscope offers
similar functionality as the confocal microscope. However, it improves its features
in several ways and therefore it became an important tool in modern research of
in vivo brain functionality via calcium imaging, e.g., (Bandyopadhyay et al., 2010;
Rothschild et al., 2010). Similarly to a confocal microscope, a 2P microscope is
a scanning microscope, but it differs from the confocal microscope in two main
ways. First, a two-photon microscope uses pulsed infrared lasers. and two infrared
photons are necessary to excite the fluorophore. Second, the two-photon excitation

5However, the maximum depth of scanning is still very limited in confocal microscope.
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Figure 1.4: The laser emits a focused beam of photons, which is targeted at a
certain point of the observed tissue in the chosen focal plane (the diagram shows
how three different focal planes may be focused). Then, the fluorophores in the
tissue emit some photons back. However, not only the fluorophores from the
focal plane are hit by the laser ray; also fluorophores above and below the focal
plane may be excited. At the first sight, confocal microscopy suffers from the
same problem as wide-field microscopy. However, this is where the central trick
of confocal microscope comes into play: the detector pinhole. It is crucial to
realize that only the photons emitted from the focal plane have such a direction
to pass through the pinhole. The photons emitted by fluorophores from above
and below the focal plane hit the solid part of the pinhole mechanism and
therefore do not pass through to the detector. As a consequence, only the
chosen focal plane is observed, when the tissue does not scatter the photons
too much. However, when scattering is an issue (e.g., deeper in brain), the
scattering leads to some photons originated from the focal plane missing the
pinhole, while some photons outside the focal plane may enter the pinhole.
Adapted from (Wikipedia.org, 2006b)

principle itself is sufficient to obtain a good z-axis resolution, rather than using
a pinhole as in the case of confocal microscope. See Fig. 1.6 for a schema and
description of a 2P microscope. We now provide a simplified description of two-
photon excitation and then give an overview of the advantages this approach
brings.

A fluorophore needs to receive a certain amount of energy from photons be
excited and subsequently emit a photon back. In single-photon excitation, such
an energy is supplied by a single photon. In two-photon excitation a beam of
photons with approximately half the energy, needed for excitation, is focused at
a point of the observed tissue. If the concentration of photons is sufficient, it may
happen that a fluorophore at the focal point receives energy from more photons
at once, thus gaining enough energy to become excited and emit a photon. As
the probability of such a simultaneous transfer of energy to fluorophores drops
rapidly outside the focal plane, only those molecules in the focal plane are excited
and produce signal.

A 2P microscope usually also offers a line-scan recording mode, an alternative
to “classical” full-frame recording. Line-scan recording may also be successfully
used in calcium imaging of neuronal activity. Illustrated in Fig. 1.7, a laser beam
does not raster-scan the entire field of view, but rather follows a specified path
instead. I.e., one pass of the scan laser in full-frame recording provides a 2D image,
while one pass of the scan laser in line-scan recording provides only a 1D image
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Figure 1.5: The same sample (cucurbita pollen grains) as seen by a wide-field
microscope (to the left) and by a confocal microscope (to the right). From
(Martial and Hartell, 2012).

Figure 1.6: The infrared laser emits a beam of photons (with lower energy
than needed for a single photon excitation) focused at a point in the chosen
focal plane. Then, the fluorophores in the tissue emit some photons back. The
photons emitted by fluorophores are separated from backscattered photons
from the illuminating laser via a dichroic mirror and then further processed.
In the case of the microscope on this particular image, the tissue presumably
contains tissue stained by two different dyes; the photons emitted by these two
types of fluorophores are later separated via another dichroic mirror and they
may be processed separately. From (Wikipedia.org, 2006a).

– a single line of pixel intensities. While the outcome of the raster scanning is
usually a set of images, using the line-scan mode, a stripe-like image is obtained
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Figure 1.7: a) contains a full-frame image of tissue, with scan path demarcated
by blue line; b) contains the respective line-scan recording over time, where one
line of the data corresponds to a single pass of scan laser through the scan path.
The red lines connecting a) and b) show the correspondence between several
neurons in the full-frame image and the line-scan recording. The yellow arrow
shows the direction of scan path.

(Fig 1.7). Each row of such an image corresponds to a single pass through the
path, the numbers of rows therefore correspond to a timeline.

On one hand, the information from line-scan data is not as complete as in full-
frame imaging, on the other hand, the data may be collected at a much higher
rate. Both full-frame and line-scan recording are viable approaches to calcium
imaging and both these methods have their uses.

2P microscopy has two key advantages when compared to confocal microscopy
(Helmchen and Denk, 2005). First, the signal is stronger as more photons emit-
ted by the tissue may be collected (the pinhole of a confocal microscope rejects
the in-focal photons which were scattered by the tissue). Second, due to longer
wavelength of light used in 2P microscopy, it is possible to scan deeper tissue
as longer wavelength light is less scattered and absorbed than light with shorter
wavelength.

See (Lütcke and Helmchen, 2011) for further information on the technique
and recent developments of 2P microscopy.

1.2 Related works in processing of microscope

data

In this section, we introduce several key problems in computer processing of
data from microscopy and list the works related to the topic of this thesis (what
we decided to use is to be found in 2.4. The discussed problems are: denoising,
extraction of spike trains from video of brain, counting cells and reconstruction
of neuronal connectivity. How are the topics relevant to this thesis? We deal with
the first two problems directly in our tool, Two-Photon Processor (TPP). While
TPP is not aimed at the third, counting cells, we believe it may be used for that
purpose too, via its segmentation functionality. Despite the fact that TPP has
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no functionality for reconstruction of neuronal connectivity, we mention recent
work done in that field as it may, in future, bring great insight into how the brain
works, which is one of higher purposes of our tool.

1.2.1 Denoising

Figure 1.8: A sample image from two photon microscope, showing how the
noise may look.

Image noise is a random perturbation of intensity and/or color information
in the original image. Noise occurs naturally in fluorescence microscopy (and
especially in calcium imaging) see Fig. 1.8 for an example of a noisy image.

There is a tradeoff between noise and data acquisition speed: noise can be
significantly reduced if slower methods of acquisition are used, but, e.g., in calcium
imaging of neuronal activity, the rate of acquisition must be high enough to
capture action potentials, which leads to higher levels of noise. Another tradeoff
is between the intensity of the excitation beam and noise. If an excitation beam
with high intensity is used, more photons are emitted by fluorophores and it is
not necessary to rely on photomultiplier tubes6 so much. However, stronger laser
used leads to higher degree of photobleaching (destruction of fluorophores). This
may not be an issue when the recording from brain lasts only a few minutes, but
in prolonged experiments, it is necessary to use less powerful laser in order to
conserve the fluorophores.

For most sorts of automated analysis, denoising of the data is necessary. In
the following paragraphs, we list several approaches to denoising.

The basic methods of denoising, Gauss filtering, mean filtering and median
filtering rely on a window sliding over the image, using the local information in
the window to reconstruct a given pixel (Dangeti, 2003). These techniques are

6Vacuum tubes detecting light and amplifying its energy.
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very fast to perform. Median filtering preserves the edges of objects rather well
(which is useful, e.g., for visualization of morphology of brain), but it does not
preserve certain properties of the original image. E.g., if we are interested in
average fluorescence of neurons in brain (which is crucial for analysis of calcium
traces over time), median filtering may alter the original intensities of objects
considerably. On the other hand, averaging algorithms (Gauss, mean filtering)
do not preserve edges of objects as well, but they tend to keep the information
about intensity in the image.

More advanced techniques include, e.g., anisotropic filtering (Perona and Ma-
lik, 1990), Wiener filtering (Yaroslavsky and Yaroslavskij, 1985), Optimal spatial
adaptation (Kervrann and Boulanger, 2006) and non-local means (Buades et al.,
2010). Especially the non-local means filtering is widely used and algorithms
building upon it are being created, e.g., (Marim et al., 2010). While non-local
approach leads to significant reduction of noise (with edges of objects well pre-
served), it may change the information of fluorescence intensity and as a result,
it is not too well suited for extracting calcium traces from denoised data. The
reason for this is that the non-local means algorithm, when denoising a given
pixel, looks for areas in the image with similar surrounding region and bases the
reconstruction of the pixel’s intensity on these regions. Thus, when a pixel in
a neuron is reconstructed, it is reconstructed using intensity information from
other neurons (possibly with different intensity or gradient of intensity), which
can change how the neuron looks considerably.

The third family of approaches uses temporal information, i.e., it uses a
sequence of images instead a single image. If the recorded area is stationary,
simple averaging of more frames leads to good reduction of noise (without alte-
ring the edges in any way). However, if occurrences of a very short phenomena are
to be observed in the sequence of images (i.e., phenomena present in a very few
consecutive images in the sequence), this approach obviously leads to loss or blur
of such information. Another recent approach to noise reduction using temporal
information (even taking the effect of photobleaching into account) may be found
in (Boulanger et al., 2009).

1.2.2 Extraction of spike trains from video of brain

The technique of calcium imaging makes it possible to record calcium traces of
neuronal activity over time, however, this alone is not sufficient for understanding
the signallization between neurons. The brain uses action potentials (spikes) in its
computation, which makes it vital to infer spike trains7 from the calcium traces.

Traditionally, this task is solved partially manually. Usually, the researcher
takes the first image from the video and encircles regions of interest (ROI) con-
taining neurons (Dombeck et al., 2009; Kerr et al., 2005; Niell and Smith, 2005).
Then, calcium traces (intensities over time) are recorded from these ROI and
specialized algorithms for inferring spike trains are used to obtain spike trains
from the ROI. Such an approach suffers from two general problems: First, it is
rather time-consuming. Second, it is subjective, as it is not always obvious what
is a neuron and what is not. Therefore, the overall result of a measurement of
brain is highly dependent on the researcher who selected the ROI.

7Times of action potentials assigned to neurons.
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Despite the two problems described above, the traditional approach using ROI
is widely used and it is feasible when used with in vitro data. However, we argue
that it is not nearly as suitable for work with in vivo data. The main problem
is with movement of the observed tissue. Motion artifacts, both in z-axis and
in focal plane occur and there is no way of avoiding them entirely. Therefore, if
a researcher draws tight circles around neurons and the neurons later move, a
major part of the measured intensities will be background noise as the neurons
slide away from the ROI. The resulting SNR (signal to noise ratio) may be so
low that it renders the measured data useless. With larger shifts in the tissue, it
is possible for the neurons to leave the drawn ROI entirely.

A researcher may draw loose circles around neurons, making sure that even
if the neurons move a bit, they will be still in their respective ROI. This par-
tially solves the problem with neurons leaving the ROI during the experiment8.
However, a new problem appears instead. When too large ROI are used, the sig-
nal from neurons is diluted by the surrounding regions and the SNR ratio drops
significantly, because a large part of measured information is noise from the area
around the neuron. Furthermore, the area around neurons usually contains other
neurites, even from other nearby neurons; therefore, if nearby neurons fire action
potentials, the area around them may become brighter due to increased concen-
tration of calcium. Therefore, if a neuron with large ROI drawn around it does
not fire, but near neurons do, the whole area may become brighter, which will
lead to a false positive detection of an action potential in the calcium trace of the
original neuron.

One could propose to discard the thought of using large ROI, draw tighter
ROI and then use automated tracking methods to track these objects’ movement
throughout the video. This is probably an approach which would work much
better than the idea of static ROI, but it suffers from the fact that due to defor-
mation of the tissue9, a neuron may disappear from the video (leaving the focal
plane) or a new neuron may appear (a neuron originally being outside the focal
plane entering it). Thus, the idea of simple tracking of manually drawn ROI is
not without major faults either.

With new objects appearing and some objects disappearing in the image, it
would probably be necessary to draw the ROI in every frame of the video (or
whenever an object appears or disappears), which is too time consuming to be
done manually on a larger dataset. This calls for automated processing . Such
a need has been recognized in (Kwan, 2010) and partially addressed in CellSort
software(Mukamel et al., 2009) and in ISA (Wong et al., 2010). Both works leave
much to be desired from the point of view of functionality and especially with
CellSort, it is not always easy to find a set of parameters which does not lead to
a crash of the software. We discuss the problems of the CellSort in section 3.2.3
and problems of ISA in 3.2.2. To the best of our knowledge, there is no other
tool which could automatically or semi-automatically detect neuronal bodies in
a video, measure their calcium traces over time and then infer spike trains from
these traces.

There are several nontrivial subproblems of automated extraction of spike

8This approach is not robust to larger shift of the observed tissue though.
9Such a deformation may be caused, e.g., by blood being pumped in a artery nearby, or a

hiccup of the animal.
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trains from a video: segmentation (determining what is a neuron and what is
not), tracking (keeping track of neurons over time and taking newly appeared
neurons into account) and inferring spike trains from calcium traces (determining
which increase in calcium traces is a spike and which is only noise). While there
are works solving one of these subproblems, the only attempts to connect them
into a processing pipeline seems to be the above mentioned CellSort and ISA.
The following sections discuss related work in the fields of these subproblems.

1.2.2.1 Segmentation

Figure 1.9: A denoised image from 2P microscope is displayed in a) as a
heatmap. The image thresholded using lower threshold is in b) and the image
thresholded using higher threshold is in c). The situation when a lower thre-
shold is used leads to the relatively dark border neurons of the neuronal group
being segmented correctly. However, central neurons of the group are merged
into one and the segmentation is completely wrong there. On the other hand,
when a higher threshold is used so that the bright neurons of the central neuro-
nal group are segmented correctly, the darker neurons are missed entirely and
the overall quality of segmentation is also very low. It is important to realize
that with as uneven background intensity as in the original image, there is no
way of finding a single threshold that could properly segment such an image.

If calcium traces of neurons are to be measured, it is crucial to segment the
image and obtain the information which parts of the recorded tissue are neurons
and which are not. We start with the description of two traditional, “elementary”
approaches. Then, we mention two important toolkits for segmentation of in vitro
data, followed by several recent approaches to cell segmentation.

Traditional, “elementary” approaches are thresholding and watershed tech-
niques. Thresholding is historically dominant approach and it is still widely used
today (Meijering, 2012). It relies on the fact that in calcium imaging, cells are usu-
ally brighter than their surroundings. Therefore, a threshold value is chosen (or
detected automatically) and all pixels lighter than the threshold are considered
to be neurons and the rest to be background. Examples of thresholding algori-
thms are, e.g., Ridler-Calvard (Ridler and Calvard, 1978), Otsu (Otsu, 1975) or
mean thresholding. Thresholding approaches may work very well with in vitro
data with uniformly dark background, as demonstrated in (Coelho et al., 2009).
However, this technique is much less suitable for in vivo data, where the intensity
of background may be uneven. The problem is illustrated in Fig. 1.9.
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The idea of watershed is based on seeing the image as a scenery with peaks
(dark areas) and valleys (light areas). In such a scenery, seeds are placed into lo-
cal minima (valleys), representing sources of water. Then, water starts springing
from the sources and starts “filling the basins”, forming lakes. When two such
lakes meet, a border is drawn between them. Later, the areas between borders
are labelled as “cells”. The original algorithm is described in (Beucher and Lan-
tuejoul, 1979). A variant, marker-controlled watershed, may be used to segment
background of cells specifically, so that the whole image is not completely divided
into cells, but it is split into putative cell objects and background. Unfortunate-
ly, the task of automated placement of seeds is difficult in images with uneven
intensity of background (similarly to thresholding). Furthermore, even with near-
ideal data with constant background intensity, marker-controlled watershed leads
to severe oversegmentation (Coelho et al., 2009).

There are certain toolkits which contain several different segmentation tech-
niques, e.g., ImageJ (Collins, 2007) or BioImageXD (Kankaanpää et al., 2012),
however, these are mostly suitable for in vitro data, as according to our experi-
ments, even the techniques supposed to cope well with uneven background tend
to perform badly.

Apart from the simple approaches, there are more sophisticated techniques,
some of which we mention in the following paragraphs.

The algorithm used in (Mukamel et al., 2009) relies on independent component
analysis of temporal signal in a video. Unfortunately, the approach suffers from
several problems, described in 3.2.3.

The regression-based algorithm described in (Miri et al., 2011) tracks the in-
tensity of pixels over time and from that, it determines which pixels belong to
neurons and which belong to background. Only the active neurons are therefore
observed. The approach relies heavily on a stationary image and as motion arti-
facts often appear in in vivo data, it is uncertain how this approach works with
them. Also, the brightness of neuropil10 is often tightly coupled with brightness of
nearby neurons, which poses a question, whether the algorithm can tell brightness
changes in neuronal somata from brightness changes in nearby neuropil.

Algorithms based on machine learning (Valmianski et al., 2010; Lin et al.,
2003) should cope well with the problem of uneven background intensity, but they
require annotated training sets and the training and performing the segmentation
tend to take a lot of time (at least 103 more times than simple thresholding).

The more sophisticated techniques described above have a nontrivial time
complexity (up to 1 minute per 512x512 image in (Valmianski et al., 2010)).
Even though they may significantly reduce the amount of manual work, they
are insufficient, e.g., for real time processing, which may become an important
application of segmentation in future (we discuss this matter in 3.2.3). Bearing
in mind the necessity of speed, as well as with the necessity of being able to
cope with uneven background intensity and other problems inherent to in vivo
data, we designed the algorithm SeNeCA (Search for Neuronal Cells Accelerated),
described in 2.4.1.3 and evaluated in 3.1.

10Synaptically dense area of brain with low concentration of actual neurons. It may contain,
e.g., axons and dendrites in high concentration.
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1.2.2.2 Tracking

Once we have obtained the locations of cells in different frames of video via seg-
mentation procedures, we might be interested in relating objects found in a single
frame to the objects found in the next frame. There are two basic approaches to
tracking cell movement: Segmentation-based tracking (where each frame of vi-
deo is segmented and the objects are assigned to one another across frames) and
segmentation-free tracking (the segmentation is performed only at the beginning
of the video and the objects are then moved, without need of complete segmen-
tation)(Meijering et al., 2006). However, in in vivo data, neurons may leave or
enter the imaged focal plane; that is a problem that calls for segmentation of
every frame as it is necessary to keep track of newly appeared neurons.

The choice of tracking algorithm depends on several criteria and we shall
describe several options and discuss their usefulness for in vivo calcium imaging.

A very simple tracking algorithm is nearest neighbor tracking. The basic idea
is the following: Given two consecutive frames of video (in times i,i+1 ), find the
nearest neighbor of every neuron in time i in the frame in time i+1. These two
objects will be considered the same. With in vivo data, this alone could work
rather badly. If a neuron which was present in the frame i disappears in frame
i+1, the nearest neighbor of the former object may be found very far and it is,
obviously, a different object. There is a simple remedy to this problem: Nearest
neighbors are searched for in a given radius around the original object and if no
suitably near neighbor is found in time i+1, it is presumed that the object has
disappeared. Nearest neighbor tracking is a robust and useful technique, if the
rate of image acquisition is sufficiently high to assure that a single object may
no move too far between two frames. When objects can move too far between
images, it is possible, e.g., that cells A,B move between frames in such a way,
that A takes the position of B, while B moves further away. The simple nearest
neighbor tracking would incorrectly output that A has disappeared, B has stayed
in its place, and a new cell has appeared (while it is in fact B).

If objects in the image move in the same direction (e.g., blood cells in an
artery), it is possible to determine the best cross-correlation of frames to each
other and find the optimal alignment according to that. However, when measuring
neurons, this sort of movement is not very frequently seen.

If cells retain their shape and/or intensity across frames and they are suffici-
ently differentiated in these features between one another, it is possible to take a
sub-region of the frame in time i and, using, e.g., cross-correlation, find the best
local alignment to a region in the frame of time i+1. Unfortunately, the neurons
observed via calcium imaging move in and out the focal plane, thus changing both
shape and intensity. Therefore, the technique of local alignment is not particularly
suited for tracking neurons in living brain.

A recent graph-based solution tries to find the optimal assignment of objects
between two frames as a maximum weighted matching in a bipartite graph (where
each partite corresponds to a single frame) (Mosig et al., 2009). For nondetermi-
nistically moving cells (which is what happens in in vivo data), this technique
looks very promising.

For a further overview of tracking techniques, see (Miura, 2005). See (Hand
et al., 2009) for a review of recent state of the art software tools for tracking.
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1.2.2.3 Inferring spike trains

Once the neurons in a video are segmented and tracked, it is trivial to measure
some form of their calcium traces (e.g., average intensities of objects over time).
However, due to amount of noise in the signal, it is not a trivial matter to infer
spike trains from such calcium traces, i.e., determine which increases in a calcium
trace is a spike and which is only noise. The are not many methods for spike
train inference and these methods are generally quite complicated. Published
algorithms may be found in (Grewe et al., 2010; Vogelstein et al., 2009; Dyer
et al., 2010). As developing new methods for spike train inference is out of the
focus of this thesis, we do not discuss the topic further.

1.2.3 Counting cells

It is often important to know the concentration of cells in a tissue and, unlike other
techniques mentioned in this section, this is not limited to neurons. A common
task is measuring concentration of bacteria in blood of an organism over time,
which may give a crucial information on progression of a disease. Another common
task is measuring the amount of different cell types in blood (red cells, white cells,
etc.). This may be used to detect pathological conditions of the organism, e.g,,
inflammation. In conditions with loss of cells, e.g., Alzheimer’s disease, counting
living neurons cells over time gives information on the progress of the disease.
Counting cancer cells over time, as they multiply, may give us insight into the
speed of tumor growth. Counting cells may also give important grounding to
computational models of cell systems.

Counting is also not limited to a single type of microscope; it may be perfor-
med with data from electron microscopy, fluorescence microscopy, or any other
type able to visualize single cells. There are even automated cell counters which
rely on other than microscopic methods to extract the number of cells in a tissue,
however, these are limited only to in vitro samples. On the other hand, fluo-
rescence microscopy makes it possible to count cells in vivo. This may become
a powerful technique in research of development of brain: chronically implanted
two-photon microscope observing the brain stained via viral transfection may
prove an insight into development of brain, into the evolution of concentration of
neurons and glia.

1.2.4 Reconstructing neuronal connectivity

Determining the 3D connectivity of neurons in brain is an important step in suc-
cessful reverse engineering of brain (Peng et al., 2010; Wu et al., 2011). Due to
development of chronically implanted11 two-photon microscope, it may even beco-
me possible to observe the evolution of 3D morphology and connectivity in living
brain. However, the task of structural reconstruction is still often solved manu-
ally, using single-unit recording, e.g., (Vogt et al., 2005). Despite recent effort and
advances, the problem of larger automation of the reconstruction process is still
not satisfactorily solved. In the following paragraphs, we list recent contributions
to the topic.

11Permanently fixed in the skull of observed animal in such a way that the animal may live
and move freely.
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An electron microscope may be used to reveal even very fine morphological
properties, but it is difficult to obtain a voxel representing the measured sample.
The sample must be fixated and sliced, before the single slices may be observed
via the microscope. However, the technique may be successfully used, as in (Bock
et al., 2011).

With developments in fluorescence microscopy, it became possible to visualize
axons and dendrites. The key is to use good staining techniques and smaller depth
of scanning, so that noise is reduced. In recent years, several tools were created
to facilitate the reconstructions of neural circuitry from fluorescence microscopy
(Yuan et al., 2009; Rodriguez et al., 2009; Vasilkoski and Stepanyants, 2009; Zhao
et al., 2011; Peng et al., 2010).
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2. Software materials and

methods

This chapter is dedicated to the Two-Photon Processor (TPP) toolkit. The first
section contains a brief overview of its features. The second section discusses
the choice of programming language. The third section introduces its software
architecture. The fourth section explains the mechanisms and key algorithms
which TPP uses when solving various tasks related to its purpose. The content
of this chapter is supplemented by the user guide and technical documentation.

The author of this thesis would like to note that Mgr. Ondřej Novák imple-
mented the step 5 of 2.4.2.11, steps 3 and 4 of 2.4.4.12 and steps 1,3,4 of 2.4.5.1;
the author of this thesis incorporated the functionality into the software archi-
tecture and GUI of TPP. Mgr. Ondřej Novák also implemented the generator of
artificial data used in 3.1.4.

2.1 Feature overview

TPP provides:

❼ Automated extraction of calcium traces of neurons from both full-frame
and line-scan data. Fast mode may be used, which allows the extraction of
calcium traces in delayed real time3.

❼ Algorithms for denoising the measured calcium traces.

❼ Algorithms for inferring spike trains from calcium traces.

❼ A tool for planning a near-optimal scanning path if line-scan mode is to be
used.

❼ Several methods of visualization of measured data:

– Calcium traces and inferred spike trains of observed neurons.

– Receptive fields of observed neurons.

– Colored dots painted over neurons, based on selected neuronal features
(e.g., the neuron’s “favourite” frequency).

❼ Other qualities:

– Possibility of controlling the software both from GUI and from Matlab
console.

1This feature was added later, in reaction to one of reviews in Journal of Neuroscience. The
author of this thesis could not code the task himself due to time constraints

2It was necessary to have a working version of TPP in early 2012 and it would not be possible
for the author of this thesis to finish the code in time.

3The processing speed is sufficient, but there is a several milliseconds long lag, before a video
frame is saved to HDD by a microscope.
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– Well commented and documented code.

– A comprehensive user guide.

– Automatically tested code.

2.2 Discussion of choice of programming langu-

age

TPP has been mostly4 written in the Matlab programming language. The main
reason for choosing Matlab was the fact that it is a standard tool for scientific
computations and most laboratories interested in our software should be able
to use, understand and modify it with ease, compared to more “traditional”
programming languages, such as Java or C++. Furthermore, Matlab contains
a wide array of ready-to-use libraries from many different disciplines, which we
expected to facilitate the development of TPP.

The choice of Matlab had several positive sides, which we discovered throu-
ghout the process of developing TPP: Matlab is very well documented and offers
many useful functions out of the box and many more are created and shared by
its users. The author’s subjective feeling is that using Matlab libraries and con-
tent shared by users is much easier than in Java, C, or C#. Due to ease of using
pre-prepared functions and easy-to-use inbuilt debugger and profiler, the develop-
ment of software in Matlab was rapid and generally effective (we mention certain
problems in the next paragraph). Despite the fact that the initial background re-
search on the performance of Matlab computing suggested that Matlab could be
very slow, compared to, e.g., Java, we found out that the aspects in which Matlab
is noticeably slower (mainly the work with dynamic objects) are not an issue, as
such problems will not be encountered at all during the software development.
On the other hand, in functionality relevant to our work (e.g., filtering images,
matrix operations), our preliminary experiments have shown that while Matlab
is mostly slower than pure C, it is often faster than Java or C++.

However, Matlab also has numerous negative sides: A major problem is the
difficulty of developing larger projects. While Matlab IDE is not downright bad,
it lacks many useful features for code organization and navigation, present, e.g.,
in Netbeans, Eclipse or MS Visual Studio. Some features are too slow to be
used efficiently (e.g., code completion). While Matlab does support objects, the
work with dynamic objects is extremely slow. All this combined makes it difficult
to write larger amount of organized code. Another problem that Matlab suffers
from, is the absence of several “common” programming concepts, e.g., pass-by-
reference, work with pointers and common dynamic data structures, such as linked
lists or self-balancing trees5. The last major issue we discovered was very difficult

4When it became obvious that if a certain crucial function was sped up, real time extraction
of calcium traces would be possible, we wrote a version of the function in C and connected it
to Matlab via MEX interface.

5Except the work with pointers, there are workarounds to these problems. Passing by refe-
rence may be done when the structure to be passed is wrapped in a dynamic class, inheriting
handle class. However, doing this slows the passing of parameters considerably. Second, the
absence of common data structured may be worked around by using Java classes, which are
rather easy to use from Matlab.
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and time-consuming development of programmatic GUI.
Overall, we believe that even when ignoring the factor of usefulness of the

tool to other laboratories, the choice of implementing TPP in Matlab was a right
one, despite all the problems. Most importantly, we believe that had we used a
different programming language, the resulting amount of functionality would be
much lower as much more time would have been spent on writing functions which
are natively present in Matlab.

2.3 Software architecture

The general architecture of TPP is shown in Fig. 2.1. We strictly separated com-
putational procedures from the GUI as it is widely considered to be a good
practice and it leads to better organized code. In terms of common software ar-
chitectures, our software uses MVVM architecture (Model View View-Model, a
specialization of Model-View-Controller). However, there is no clear distinction
between the View and View-Model components as it would be difficult (and not
very useful) to separate these in Matlab.

The core functionality of TPP is represented by several static classes, each
taking care of a family of related problems the software solves. Even though using
static classes to group related functions is not a widely used concept in Matlab
programming, we believe that it is very useful in organization of the code and that
in developing this large project in Matlab, it is almost a necessity. We considered
basing our software on dynamic objects at the design stage of the project, but
we rejected the idea for several reasons: First, Matlab style of work with dynamic
objects is not very comfortable. Second, computations with dynamic objects may
be very slow. Third, it seemed not necessary to use dynamic objects in our project
at all.

There are two extensions to the core functionality. For the reasons listed below,
we did not include them in the GUI, but they are runnable as Matlab scripts.

2.4 Software description

The TPP toolkit offers a functionality for several families of tasks. This section
brings insight into how the given families of problems are treated. In each of the
family of problems, we start with a short introduction to the problem, followed
by description of how we solve it - the processing pipeline. The we discuss the
choice of algorithms and explain more complex steps of the processing pipeline
in greater depth. If there are nontrivial algorithms of our own design which we
had used in the processing pipeline, we describe them after the discussion.

2.4.1 Extracting calcium traces from full-frame data

Recording full-frame data is probably the most used format of recording brain
activity in calcium imaging. An example of a frame of the recorded video is in
Fig. 1.8. Below, we describe the general process of extracting calcium traces from
such a sort of data and we discuss the choices we made, concerning the choice
of algorithms. We conclude this section with the description and discussion of
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Figure 2.1: The user may communicate with core classes of TPP either via
Matlab console or GUI. Certain extensions of the original software are runnable
only via the console.

three nontrivial algorithms we had designed: SeNeCA, Type 1 defusion and Type
2 defusion.

2.4.1.1 The processing pipeline

1. Load a video represented by TIFF images into memory.

2. Choose the method and parameters of denoising (disk,square

or rectangle blur, or median filtering).

3. Set the parameters for future segmentation by SeNeCA.

4. Process the video sequence to obtain calcium traces of

neurons. For each frame (in time i):

(a) Average the frames i− j, i− j + 1, ..., i, ...i+ j − 1, i+ j; j is

a parameter, it may be 0.

(b) Find putative neuronal somata in the image from

previous step via SeNeCA segmentation. It is possible

to attempt splitting fused neurons. Too small or too

large objects may be filtered out.
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(c) Assign the neuronal objects from the previous step to

the neuronal objects found in frames 1, 2, ..., i − 1 via

tracking.

(d) Save average and sum intensities of the neuronal

objects found in frames 1, 2, ..., i.

5. Return the intensities of neuronal objects over time.

Pseudocode 2.1: The process of extracting calcium traces from full-frame
data.

2.4.1.2 Discussion of the processing pipeline

In the step 2, the user may choose between median filtering and disk, square or
rectangle averaging. This step is used to get rid of noise which would confuse the
later used segmentation algorithm. Despite the existence of more complicated al-
gorithms of denoising, these algorithms may not be suited to our needs (see 1.2.1.
The algorithms included in TPP work well enough and they are computationally
very cheap.

In the step 3, the researcher is supposed to determine a good set of parameters
for the segmentation to be done, see Fig. 2.2 for an example of the result. A pre-
prepared recommended set of parameters which works reasonably well for a wide
scale of data may be used, but manual tuning of the parameters is possible as
well. This is not as comfortable as fully automated segmentation, however, our
parameters have clear meaning and we supply a description of how to tune them
to get the desired result in the User guide (such a tuning obviously can not be
done with fully automated methods). Furthermore, fully automated segmentation
algorithms with good enough performance on in vivo data do not exist, according
to our knowledge. After the parameters are tuned on an image from the video,
the given set of parameters will be used for the segmentation of all the frames.
This relies on the presumption that important properties of the video will be
generally consistent across time; the presumption generally holds though.

The step 4a serves to make the segmentation algorithm more stable. If j is
chosen larger than 0, the algorithm does not segment a single frame of the video,
but an average of several frames around the given frame instead. This leads to
elimination of certain motion artifacts, but it may lead to loss of certain signal
too. Setting j larger than 0 is suggested only in the case of data heavily corrupted
by noise, when the averaging of several frames is the only way of obtaining valid
calcium traces.

In the step 4b, the image is segmented and locations of neurons thus obtained:
a mask is computed. The mask is a matrix of the same size as the original image
and it contains −x inside the x-th found neuron and x on the border of the x-th
neuron. The SeNeCA algorithm is used for the segmentation and it is described
in 2.4.1.3. As none of the algorithms described in 1.2.2.1 was suited for the task
of fast segmentation of in vivo data, we had no choice but to create our own
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Figure 2.2: An example of a segmented video frame. The red curves demarcate
neuronal borders. The parameters used are displayed in the GUI behind the
segmented image.

algorithm which would fit our needs.
After the segmentation has been performed, it is possible (if the user desires

so) to attempt splitting two or more neuronal somata which have been labeled
as one (this happens, e.g., if two neurons are very close to each other). Two
algorithms may be used: Type 1 (splitting based on shape), described in 2.4.1.4.1
and Type 2 (splitting based on intensity) described in 2.4.1.4.2. After the splitting
is done, it is possible to filter objects according to their size: Too small or too
large objects may be removed (as these are likely not neurons and therefore it is
not necessary to record them). The minimum and maximum size of objects are
both selected by the user.

The step 4c makes sure that objects found in the current frame are correctly
assigned to the objects found previously: this is crucial for coherence of calcium
traces over time; the trace of a single neuron must be assigned to a single object
throughout the processing of video. We decided to use an algorithm based on
nearest neighbor tracking, because of the sufficiently high acquisition rate of data.
With the acquisition frame rate of 50-100 Hz, a neuron may not move more than
few pixels between two frames, therefore the nearest neighbor tracking has good
enough performance and it is computationally cheap. As described in 1.2.2.2, we
modified the basic nearest neighbor to be able to cope with new objects appearing.
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The modified nearest neighbor rule is simple: For a newly discovered object, find
the nearest object found in previous frames (the distance is defined as the distance
of centroids). If the nearest neighbor is closer than a given threshold (specified by
the user), it is considered to be the same object. If it is further, it is considered
to be a newly found object.

In 4d, the intensities of objects found in the current frame are recorded and
assigned to previously found objects according to tracking. While the objects
are searched for in the denoised image, the intensities are recorded from the
original image, to prevent distortion of the data by the used denoising algorithm.
Two sorts of intensities are recorded: average intensity of an object (an average
intensity of its internal pixels) and sum intensity of an object (sum intensity of
its internal pixels). It is a matter of discussion what should be done with the
objects which were previously found, but were not found in the current frame.
This may mean, e.g., that a neuron moved out of the focal plane. However, it
may eventually return and be rediscovered again. For this reason, if a previously
object is not found in the current frame, the last location of the object is recalled
and recorded. An alternative would be to record the object’s intensity as 0 when
it does not appear in the current frame and if the object reappears in future,
start recording the intensities as usual. However, the large jump at the moment
of rediscovery, from 0 to the intensity of the reappeared object could confuse the
algorithms for inferring spike trains from calcium traces into thinking that such
an event is a spike, which would be likely false. Therefore we decided to record
the last known location of an object which does not lead to such a large jump in
intensity when an object reappears.

2.4.1.3 SeNeCA

We designed the SeNeCA segmentation algorithm with several considerations in
mind. First, it was necessary for the algorithm to handle well uneven background
intensity of the processed images. Second, it should be able to cover neuronal
bodies well, not only their central parts, or, on the opposite, capture the area
outside the neuronal bodies. Third, the algorithm should be fast (less than a
second per 256x256 image). Fourth, if possible, the algorithm should be tunable
via a set of parameters so that, e.g., only well stained in-focus (i.e., with high
contrast to the background) neurons are segmented. The following algorithm,
fulfilling all of the four requirements has been created (further explanation is
below the box with pseudocode):

SeNeCA

Inputs: image, highLightThreshold, lowLightThreshold,

contrastWindowSize, minimumLight

Outputs: mask

Algorithm:

1. Precompute the matrix lightAverages, of the same size as

image, defined as image filtered by a mean averaging

filter with height and width contrastWindowSize. A mirror
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projection back to the image is used when a pixel outside

the image should be taken into account in the computation

of lightAverages.

2. Compute lightPoints as the set of all points (i, j) with the

following property: (image(i, j)· highLightThreshold >

lightAverages(i, j)) && (image(i, j) > minimumLight)

3. Initialize mask to be a matrix of the same size as image,

filled with zeros. Initialize neuronNumber to 1.

4. Foreach (xCor, yCor) in lightPoints:

(a) If (mask(xCor, yCor)! = 0), continue with the next point

in lightPoints immediately.

(b) Otherwise set mask(xCor, yCor) to −neuronNumber and

run a 8-connected BFS wave in image from (xCor, yCor),
setting the visited pixels to −neuronNumber. The wave

may stop at a point (a, b) for three reasons:

❼ The following condition holds: (image(a, b)·
lowLightThreshold < lightAverages(a, b))

❼ (a, b, ) is at the edge of the image

❼ mask(a, b) contains a positive value, other than

numberNeuron in its 8-neighborhood.

When the wave stops at the point (a, b), set mask(a, b)
to neuronNumber.

(c) After the wave has stopped entirely, increment

neuronNumber.

5. return mask.

Pseudocode 2.2: The pseudocode of SeNeCA segmentation algorithm.

Let us explain and discuss the nontrivial steps of the algorithm.
In step 2, the structure lightPoints is created to contain points which are

highLightThreshold-times lighter than the area around them. This is where
lightAverages, containing the information of the overall lightness of certain surroun-
dings, is used6. The second clause in the condition is used to reject overly dark
objects in badly stained regions. The lightPoints structure should contain at
least a few pixels from each neuronal soma in the image. However, if only this
step was used (as a sort of dynamic thresholding), the segmentation would not
be good enough. The reason is that if too high threshold was used, the somata

6To give an idea of magnitude of the constants used, in an image of 256x256 pixels with
neurons circa 20-30 pixels wide, we suggest using using contrastWindowSize of about 40 and
highLightThreshold 1.5-2, depending on the contrast of staining.
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would be only partially covered (with small area recorded, the resulting calcium
traces are more prone to be ruined by noise). On the other hand, with too low
threshold used, it is likely that even non-neuronal objects would be labeled as
such. Therefore, SeNeCA uses two thresholds - one to find very light points within
neurons (providing bad coverage of the somata so far), which will be extended
into good covering of somata via appropriately interrupted wave running from
the given light points (in a way, SeNeCA may be viewed as a combination of
dynamic thresholding and appropriately interrupted watershed).

In step 3, mask will be the resulting matrix determining what are areas inside
somata (marked with−x in the x-th neuron), what are borders of somata (marked
with x in the x-th neuron) and what is an area outside (marked with 0). The
variable neuronNumber represents a “color” used when a wave is expanded from
a neuronal core and paints the entire object segmented.

In step 4a, it is necessary to prevent more waves being ran from a single
neuronal core for computational efficiency. More points from lightPoints may
be inside a single neuron (it is very likely) and it would be pointless to run the
wave from all of them. However, after the wave is ran from a pixel inside a found
object, it “paints” the neuronal insides and borders in mask. Therefore, after the
wave is ran from the first pixel of an object in lightPoints, all other pixels from
the given object in lightPoints will be nonzero in mask.

In step 4b, the wave paints the visited area with the current “color” specified
by neuronNumber. The wave may stop at a point under three conditions. The
first condition is when the wave reaches a pixel which is not sufficiently lighter
than its surroundings. This is the most frequent way the spreading of the wave
can be terminated. The second condition is when a border of the image is hit. The
third stopping condition terminates the wave when it hits the border of another
neuron.

In step 4c, the wave demarcating object with number neuronNumber has
finished flowing and the segmentation of the object has been therefore finished.
The next object will be painted with another color, neuronNubmer + 1.

The following theorem analyzes the time complexity of the algorithm.

Theorem 1. The algorithm SeNeCA has time complexity of O(p · cws), where p

is the number of pixels in the source image and cws is contrastWindowSize.

Proof. Let us analyze the SeNeCA algorithm step by step. If a sliding window
implementation of mean filtering is used in computation of lightAverages in step
1, it is first necessary to compute the window around pixel (1, 1), which takes
cws2 time. However, this is trivially dominated by p as it makes no sense to use
cws larger than the size of the image. Then, for each pixel other than (1, 1), cws
pixels are added to the window and cws pixels are removed. This is done for p−1
pixels, therefore, the complexity of step 1 is O(p+ p · cws) = O(p · cws).

The complexity of step 2 is O(p) as for each pixel, a single condition is eva-
luated.

The complexity of step 3 is at most O(p); even if the matrix mask is not
initialized to zeros, it may be done so in one pass through it.

The complexity of step 4 is O(p), because each pixel is enqueued at most
once in the process of running waves from lightPoints. Dealing with a single
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pixel (setting mask(pixel), tests for stopping the wave, enqueuing neighbors) is
obviously a constant operation.

Therefore, the complexity of the algorithm is dominated by the first step,
which constitutes the resulting complexity O(p · cws).

2.4.1.4 Defusion algorithms in TPP

Figure 2.3: Several examples of fused neuronal somata.

The SeNeCA segmentation algorithm sometimes considers adjacent neuronal
somata to be a single object. This problem, which is common to probably all
segmentation algorithms, is called undersegmentation. Looking at the Fig. 2.3, we
can see that neuronal fusions are generally characterized by a bottleneck between
the two neurons and a decreased intensity between the neurons. However, there
are cases when one of these conditions (or neither of them) is true, such cases
are extremely difficult to segment correctly (e.g., the third fusion from the left
in 2.3). Below, we describe two algorithms we had designed as a countermeasure
against undersegmentation. Type 1 algorithm splits fusions according to their
shape, while Type 2 algorithm splits fusions according to their intensity.

2.4.1.4.1 Type 1 defusion

Figure 2.4: a) is a border of fused neuronal somata.
b) contains an example cushioning. The first two layers of cushion (black and
gray) were 4-connected, but the green one is not.
c) shows the resulting split of objects. The objects are displayed in different
colors as they will have different numbers in the resulting mask after defusion.

The basic idea is to take each object inmask provided by SeNeCA and cushion
its inside, layer after layer from the border. Once an added layer is not connected,
it means that there is a bottleneck in the point of disconnection and the object
should be split at that place. The idea is illustrated in Fig. 2.4.

Type 1 defusion

Inputs: mask, strength {mask has been obtained by SeNeCA,

strength should lie between 0 and 0.5. }
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Outputs: defusedMask

Algorithm:

1. Set numberNeurons to the maximum element in mask. Set

nextNeuronNumber to be numberNeurons+1. Initialize empty

list candidates. Add 1, 2, ..., numberNeurons to candidates.

Initialize defusedMask to be a zero matrix of the size of

mask.

2. For each neuron in candidates:

(a) Remove neuron from candidates.

(b) Set borders, insides to contain border points and inside

points of neuron in mask.

(c) Set subMask to be the smallest submatrix of mask

containing all of the pixels belonging to neuron. Let

xSize, ySize be dimensions of subMask.

(d) Set minDiameter to the minimum of xSize and ySize.

Compute numberLayers as minDiameter · strength.

(e) for i=1 to numberLayers, add a single layer inside

the previously laid layer (for i = 1, the previous

layer is the border of the object). Fill hole (or

holes) inside the newly created layer. If the pixels

from filled hole (or holes) are not 4-connected,

define numComponents be the number of disconnected

components and let components be an array indexed by

disconnected components, containing the list of pixels

belonging to the given components; also break from the

loop.

(f) If numComponents is not defined, copy subMask into

defusedMask (at the place where subMask was in

mask). Go to next neuron in the for loop.

(g) Otherwise: {There is more than one connected

component, the object can be split.}

i. Assign numbers 1,2,...,numComponents to the found

connected components.

ii. Run ‘‘turn-based’’ waves from the connected

components in components. I.e., add a layer around

the first component, then add a layer around the

second component, etc. Then go back to the first

component again. The waves are colored, i.e., it is

known which pixel was captured by which wave. The

waves may stop at a point under two conditions:

❼ The point is at a border of the original object

(before defusion) is hit.
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❼ Another wave’s point is adjacent to the current

one.

When all the waves stop, go to the next step.

iii. Save the object demarcated by the wave of connected

component number 1 into the appropriate place in

defusedMask, with the number of the original

object before splitting (saving positive numbers

at the border and negative numbers inside). Save

the other objects into defusedMask with numbers

nextNeuronNumber, nextNeuronNumber + 1, etc.

Increment nextNeuronNumber by numComponents-1.

iv. Add all the objects added to defusedMask in the

previous step to candidates {Splitting of new

objects will be attempted again.}

3. return defusedMask.

Pseudocode 2.3: The pseudocode of Type 1 (shape-based) algorithm for
splitting of fused neuronal somata.

Let us explain the nontrivial steps in the algorithm. In step 2, the list candidates
is basically a queue of objects to be split. In the following steps, an object is taken
from it: if it can not be split, it is removed; if it can, it is split and the newly
created objects are returned to the queue. This is motivated by the observation,
that a fusion of at least three neurons may not be splittable by a “cushion” of
constant thickness. Therefore, it is first split into two by a thinner cushioning and
the component which may be further split will be split in the next pass through
candidates.

In step 2b, one could propose to determine the borders and insides of an
object in a one-way pass through the original mask and then update it when new
objects are being added to defusedMask, rather than look for the borders and
insides of an object again with every neuron taken from candidates. While this
is certainly an improvement in theory, due to relatively slow loops in Matlab and,
on the other hand, very fast find in-built function, the one-way pass finding of
objects with future updates tends to be slightly slower or only marginally faster
for common number (30-50) of neurons in an image. If large images with many
objects will be processed with TPP in future, adding the variant of one-way pass
detection of borders and insides may prove useful.

In step 2c, it would be possible to work with the entire mask, instead of
subMask, but due to the speed of memory access, we found the solution with
working on a submask more efficient.

In step 2d, the number of layers (“thickness of cushioning”) is determined. It
is not always desirable to have the maximum possible number of layers, as it may
lead to oversegmentation.

In step 2e, the object’s inside is gradually cushioned and it is checked whether
the inside space of the cushioned object is connected or not. If not, the object
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will be split into two (or more, if the cushioning creates more than two connected
components).

However, it must be determined where to cut the original object and how. We
decided to use the “turn-based waves approach” in step 2g, which fairly segments
the original object into subobjects. One could argue that most of the work done
by the waves only reverses the process of cushioning. While it is true, it is not
trivial to design and implement a geometrical solution to where to cut the original
object. Furthermore, we believe that this sort of cutting the object is fast enough7

and leads to good segmentation.

2.4.1.4.2 Type 2 defusion

Figure 2.5: a) contains a simulated image of fused neurons
b) is a side-view at the scenery given by the fusion in the image in a).
c) shows three possible cuts. The red cut is too high as the area above the cut
is obviously connected. However, when one of the other (green or blue) cuts is
used, the area above the cut will be split into two. Note that in this case, it
is not possible to find a single horizontal cut which would split the object into
three disconnected components directly.

Again, each object from mask is taken and splitting is attempted. The area
containing the object is considered to be a scenery, where light points represent
peaks and darker points represent valleys. It is then attempted to cut the scenery
by a horizontal cut, starting at the highest point of the scenery. If the scenery
above the cut is connected, a lower cut is attempted, etc. Once the scenery above
the cut is not connected, the object will be split at the point of disconnection.
An illustration of what happens is in Fig. 2.5

The pseudocode of this type of defusion is below. The “outer shell” of the
algorithm is the same as of Type 1 defusion, however, we list even the steps taken
there for improved readability, rather than just reference them. Note though that
only steps 2c, 2d and 2e are different.

Type 2 defusion

Inputs: image,mask, strength {image is the image on which SeNeCA

ran, mask has been obtained by SeNeCA, precision should lie

between 0.01 and 0.2. }
Outputs: defusedMask

Algorithm:

70.1-0.2s per image with 30-50 neurons. Measured on Intel i7 2.66Ghz processor with 6MB
cache.
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1. Set numberNeurons to the maximum element in mask. Set

nextNeuronNumber to be numberNeurons+1. Initialize empty

list candidates. Add 1, 2, ..., numberNeurons to candidates.

Initialize defusedMask to be a zero matrix of the size of

mask.

2. For each neuron in candidates:

(a) Remove neuron from candidates.

(b) Set borders, insides to contain border points and inside

points of neuron in mask.

(c) Set subImage to be the smallest subimage of image

containing all of the pixels belonging to neuron.

(d) for i=1 downto 0 with step precision: Cut the scenery

in subImage in height i ∗ max(subImage). If the

pixels above the cut are not 4-connected, define

numComponents be the number of disconnected

components and let components be an array indexed by

disconnected components, containing the list of pixels

belonging to the given components.

(e) Take the cut from previous step which divides the area

above itself into the most disconnected parts; recall

its numComponents and components.

(f) If numComponents is not defined, copy the part of

mask containing neuron into defusedMask. Go to next

neuron in the for loop.

(g) Otherwise: {There is more than one connected

component, the object can be split.}

i. Assign numbers 1,2,...,numComponents to the found

connected components.

ii. Run ‘‘turn-based’’ waves from the connected

components in components. I.e., add a layer around

the first component, then add a layer around the

second component, etc. Then go back to the first

component again. The waves are colored, i.e., it is

known which pixel was captured by which wave. The

waves may stop at a point under two conditions:

❼ The point is at a border of the original object

(before defusion) is hit.

❼ Another wave’s point is adjacent to the current

one.

When all the waves stop, go to the next step.

iii. Save the object demarcated by the wave of connected

component number 1 into the appropriate place in
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defusedMask, with the number of the original

object before splitting (saving positive numbers

at the border and negative numbers inside). Save

the other objects into defusedMask with numbers

nextNeuronNumber, nextNeuronNumber + 1, etc.

Increment nextNeuronNumber by numComponents-1.

iv. Add all the objects added to defusedMask in the

previous step to candidates {Splitting of new

objects will be attempted again.}

3. return defusedMask.

Pseudocode 2.4: The pseudocode of Type 2 (intensity-based) algorithm for
splitting of fused neuronal bodies.

Let us discuss the step 2e, which is the major difference of Type 2 defusi-
on, compared to Type 1 defusion. A cut at gradually decreasing elevation is
attempted. The parameter precision specifies how fine changes are between cuts.
The smaller precision is, the more equidistant cuts will be attempted. The cut-
ting of scenery into most disconnected components is then chosen. Note that this
step heavily relies on image being already somewhat denoised or smoothed. With
noise, Type 2 defusion would lead to severe oversegmentation. When a cut is cho-
sen, the scenery above the cut is used as the centers of future “turn-based waves”
with the same semantics as the disconnected components inside cushioning in
Type 1 defusion had.

Unfortunately, it is not always sufficient to pick a single best cut for correct
segmentation, as demonstrated by Fig. 2.5. For this reason, when an object is cut
by Type 2 defusion, the resulting objects are returned to the queue for further
cutting attempts.

2.4.2 Planning line-scan path

Commonly, the scan path is drawn by hand. However, this has two drawbacks.
First, it is rather subjective and may lead to a strong bias. Second, the drawn
path may be longer than necessary.

We aimed for an automated solution which would automatically find neurons,
find the shortest Hamiltonian cycle between them and save the path into a file
which could be loaded by the microscope. After the neurons are found (using
SeNeCA described in the previous section), the task is close to a Travelling Sa-
lesman Problem (TSP) with Euclidean distance as the weight function of edges
between vertices (neurons).

Two more requirements should be taken into account when designing an au-
tomated solution. First, the scanning laser should never pass through a single
neuron more than once in a single cycle. If such a case happened, the neuron
would unnecessarily suffer from photobleaching more than other neurons. The
second requirement concerns the shape of the scanning path. Certain scanning
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Figure 2.6: a) A reference image segmented by SeNeCA with fusions split by
Type 1 defusion.
b) A path planned in the reference image, using the algorithm for not entering
a single neuron more than once in one cycle. When such a situation should
happen, the neuron is circumvented.
c) Another planned path, with the algorithm for reduction of sharp angles
used.

galvanometers may have trouble coping with abrupt changes of direction in the
scan path (e.g., following angles sharper than 90➦). Therefore, the automated so-
lution should have an option to smooth the planned path. Our solution described
below fulfills both requirements, see Fig. 2.6 for an example of possible planned
path.

To our knowledge, the only tool seriously studying the problem of optimal
laser scanning path is HOPS (Sadovsky et al., 2011)8. Unfortunately, it does
not deal with the first of our requirements. Even though HOPS is open-source,

8Some earlier works on the topic of optimizing scanning path may be found in this article.
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we came to the conclusion that it will be faster to implement our own solution
fulfilling all the requirements, rather than modify the HOPS code and connect it
to Matlab.

2.4.2.1 The processing pipeline

1. Load a reference full-frame image of the tissue to be

recorded.

2. Choose the method and parameters of denoising (disk,square

or rectangle blur, or median filtering) and denoise the

reference image.

3. Set the parameters for segmentation by SeNeCA and segment

the image.

4. Find the shortest Hamiltonian cycle in the graph where

vertices are centroids of objects found in the previous

step and edges are lines connecting these vertices. Weight

of the edges is the Euclidean distance between the vertices

demarcating the edge. The used algorithm is ANT colony

simulation.

5. (optional) Smooth the path, attempting to remove sharp

angles of the path.

6. Change the planned path so that no neuron is scanned by the

scanning laser beam more than once during a single cycle.

Pseudocode 2.5: The process of of obtaining a path for the scanning beam
of a 2P microscope.

2.4.2.2 Discussion of the processing pipeline

The steps 2 and 3 are essentially the same as in processing full-frame data, except
only the segmentation part is used here, no intensities are measured.

In step 4, we decided to use ANT colony optimization algorithm, as it was
already implemented for Matlab and available from FileExchange9. In a prelimi-
nary version of the algorithm, we used a hungry algorithm for TSP, then switched
to the well known approximation algorithm for solving TSP, but the ANT colony
optimization proved to perform better than both of these.

In step 5, which is optional, it is possible to attempt removing sharp angles in
the scanning path returned by ANT in the previous step. The galvos deflecting

9The function is a part of code of the class External which includes all the code from other
Matlab users.
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the scanning laser may have trouble with abrupt changes in direction of scanning,
which may lead to prolonged dwell times at the places of turn, etc.

In step 6, we make sure that no neuron is visited twice in one cycle. We did
not find an already published solution to this problem. A possible solution would
be to generate various near-optimal Hamiltonian cycles, waiting for one without
any conflicts (a neuron visited twice in a single cycle). However, there are cases
when a Hamiltonian cycle without conflict does not exist, therefore we rejected
this idea. We designed another algorithm which takes the path from step 4 or 5
and creates detours in places of conflicts. The algorithm is described in 2.4.2.3.

2.4.2.3 Circumvention algorithm

A scan path is defined by checkpoints - pixels which, when connected by lines
(called segments), form the resulting scan path. In case of path from step 4 of the
Processing pipeline in 2.4.2.1, checkpoints are directly the centroids of neurons
to be visited (and segments are the edges between them). If the scan path is
smoothed in step 5, the set of checkpoints from step 4 is refined to include curves
at the places of originally sharp angles.

Even though the implementation of the algorithm is rather long, the basic
idea is very simple, described in pseudocode below.

Circumvention

Inputs: path {A set of 2D coordinates of checkpoints. }
Outputs: circumventedPath

Algorithm:

1. Initialize circumventedPath to empty structure. item For

each segment=(startPoint, endPoint) in path:

(a) Determine starting and ending - the numbers of

neurons from which and to which the segment leads,

respectively.

(b) Add startPoint to circumventedPath.

(c) Iterate over line determined by segment, a line

connecting startPoint and endPoint. If a neuron with

number other than starting or ending is encountered:

i. Let x be the number of the encountered neuron. Let

entryPoint be the coordinate when line crossed the

border of neuron x.

ii. Add entryPoint to circumventedPath.

iii. Divide the border points of neuron x into two

groups, divided by line. Let shorterDetour be the

smaller set of the two. If the sets have the same

size, any of them may be taken.

iv. Add all the points in shorterDetour to

circumventedPath in correct order (i.e., the member

of shorterDetour closest to entryPoint is added

first, etc.).
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v. Set startPoint to be the last point from

shorterDetour added to circumventedPath and resume

iterating over line from there.

Pseudocode 2.6: The pseudocode of circumvention algorithm, which makes
sure that no single neuron is visited twice in one scan cycle of a line-scan.

The main idea of the algorithm is the following: When a neuron is visited,
while it should not be visited (it is not the starting, nor ending neuron of the
given segment), divide its border according to line cutting the neuron and use
the smaller of the groups of pixels as the path for scanner. Therefore, a neuron
is bypassed along its border. This could sound like exactly the opposite of what
we want to achieve: bypass a neuron. It is vital to realize that when a laser hits
a border of a neuron, almost no dye will be hit and no additional photoblea-
ching and/or fluorescence should happen. If problems occur nevertheless (e.g.,
the tissue moves a little, the detour entering neuron), it is always possible to
use diskblur with larger parameter as the denoising step before segmentation of
the image on which the path is planned. Using such a filtering leads to optical
enlargement of neurons. Another option leading to similar result is using lower
value of lowLightThreshold.

2.4.3 Extracting calcium traces from line-scan data

The line-scan data may seem unusual at the first sight and they are further
from real looks of brain than full-frame data. However working with line-scan
data may be actually easier and faster than working with full-frame data, as
there is one dimension less (full-frame recording consists of 2D images over time;
line-scan recording consists of 1D images over time). While there are software
toolkits for automating various tasks performed with full-frame data, there is no
publicly available tool for processing line-scan data to our knowledge. Therefore,
we designed and implemented our own processing pipeline for extracting calcium
traces of neurons from line-scan data. It is built on similar principles as the
extraction of calcium traces from full-frame data, yet it contains several crucial
differences. We will discuss these differences in 2.4.3.2

2.4.3.1 Processing pipeline

1. Load a line-scan image representing the recording of brain

over time into memory.

2. Choose the method and parameters of denoising (disk,square

or rectangle blur, or median filtering).

3. Set the parameters for segmentation and tracking by

Linescan-SeNeCA and segment the data.
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4. Improve the segmentation and tracking from previous step by

post-processing: joining, sorting or interpolating the output

of Linescan-SeNeCA. Also, borders of neurons over time may

be smoothed.

5. Return the intensities of neuronal objects over time.

Pseudocode 2.7: The process of obtaining calcium traces from line-scan data.

2.4.3.2 Discussion of processing pipeline

The steps 1 and 2 are very similar to those in processing of full-frame data.
However, instead of a sequence of images, only one source image is used10.

In the step 3, the recording is segmented. However, unlike in full-frame da-
ta, a neuron is not anymore represented by a circular object, but by a light
column instead. For the segmentation, we used a modified version of SeNeCA,
named Linescan-SeNeCA, which, as a side effect, tracks the neurons implicitly.
An advantage of this approach is that the set of parameters used for segmentation
is a subset of parameters used in segmentation of full-frame data, therefore the
user of the software needs to understand only one semantics of parameters for
working both with line-scan and full-frame data. Linescan-SeNeCA is described
in 2.4.3.3

Figure 2.7: a) A general shift in neuron’s position over time, caused by slow
movement of the observed tissue.
b) A brief movement of a neuron, such as caused by a hiccup.

There is a simple alternative approach, utilizing the fact, that neurons resem-
ble light columns. A single sliding column of the image could be taken and its
average intensity measured, declaring the columns sufficiently lighter than the
average of the given area (using a 1D analogy of lightAverages from processing
of full-frame data) to be neurons. Unfortunately, this approach would work only

10In reality, the Prairie Ultima IV microscope splits the recorded image into images containing
1000 lines, but we join these to produce a single 2D image.
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in case of stationary tissue. With in-plane motion artifacts, this could lead to
a rather bad segmentation, an example of such problems is in Fig. 2.7, none of
which can be properly segmented using a vertical column-like object. Both pro-
blem could be seemingly solved by using a wider column which would contain the
whole neuron over time, along its in-plane artifacts, however, such an approach
would capture too much noise and activity of neuropil, similar to the situation
with using larger-than-necessary ROI in 1.2.2.

The step 4 takes care of various improvements to the segmentation and trac-
king done by Linescan-SeNeCA, which fails to precisely track the badly stained
(or out of focal plane) neurons. There are three incremental improvements (the
user may choose which one to use) to the tracking and we use an artificial image
in Fig. 2.8a to illustrate them.

1. Joining : When a neuron temporarily becomes too dark (e.g., it leaves the
focal plane), Linescan-SeNeCA will not detect it at the dark stage and
when the neuron is rediscovered, it will be assigned a new number. Joining
of mask prevents this from happening and it joins neurons “under” one
another (their maximum distance in the x-axis is a parameter) into one, as
demonstrated in Fig. 2.8d. Aside from joining the neurons, it is possible for
the user to state a minimum activity length of neuron in this stage. The
neurons which are active less than the given percentage of the measurement
will be discarded. This is very helpful in getting rid of small non-neuronal
objects and/or noise, which appear only for a short period.

2. Sorting : This is a rather technical improvement. It reassigns numbers to
found neurons in such a way, that the leftmost neuron (according to its
centroid) gets number 1, the second leftmost gets 2, etc. This step serves
only to make observing the data more intuitive and comprehensible. The
effect of sorting is displayed in Fig. 2.8e.

3. Interpolation: Even though different parts of neuron may be associated with
one another in the process of joining, the information between different
segments of a neuron is not measured. In the process of interpolation,
borders of a neuron in time are interpolated so that the neuron will be
measured throughout the whole experiment. The process of interpolation is
depicted in Fig. 2.8f.

Another improvement of the segmentation we implemented is smoothing of
neuronal borders, which may be somewhat serrated when too much noise is left
in the image. The amount of such smoothing is given by a parameter specified
by the user.

In the step 5, the intensities (average and sum, as in full-frame data) are
recorded from the found objects, line by line. The format of the outputted calcium
traces is the same as from the full-frame recording.

2.4.3.3 Linescan-SeNeCA

The principle of Linescan-SeNeCA is fundamentally similar to the concept of
SeNeCA. The core of LineScan-SeNeCA is essentially the same as SeNeCA in
1D instead of 2D. The processing of second dimension of line-scan data (time)
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Figure 2.8: a) An artificial line-scan measurement. The image emulates one
well stained neuron (the leftmost white column), two small non-neuronal ob-
jects (e.g., visible crossing of axons) and one neuron which is rather well stained,
but has left the focal plane for a while (e.g., due to a deformation of that part
of tissue) and moved a bit to the side when returning
b) An artificial full-frame image from which the data were recorded (the full-
frame image comes from the time period when even the two small objects were
observed), along with a hand-drawn scanning path. The red cross and arrow
mark the start of the path and the direction of scanning respectively.
c) A “raw” mask of neuronal borders over time, as produced by Linescan-
SeNeCA.
d) A joined mask, built upon the previous mask. First, the two parts of the
rightmost object were joined into one (because they were close enough). Se-
cond, as only the objects active shorter than 50% time were rejected, the two
small objects are not segmented anymore.
e) A sorted mask with continuous numbering of objects.
f) An interpolated mask of the image. While the interpolation may not seem
very useful in such a simple and artificial example, it is actually very helpful
in real data.

works line by line and is different from how the second dimension is treated in
the original SeNeCA algorithm.
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Linescan-SeNeCA

Inputs: image, highLightThreshold, lowLightThreshold,

contrastWindowSize, minimumLight

Outputs: mask

Algorithm:

1. initialize mask to be a zero mask of the same size as

image. Initialize neuronNumber to 1.

2. Compute matrix lightAverages of the same size as image,

defined as image filtered by a mean averaging filter with

height 1 and width contrastWindowSize. A mirror projection

back to the image is used when a pixel outside the image

should be taken into account in the computation.

3. Compute lightPoints as the set of all points (i, j) with the

following property: (image(i, j)· highLightThreshold >

lightAverages(i, j)) && (image(i, j) > minimumLight)

4. for each (xCor, yCor) in lightPoints:

(a) If (mask(xCor, yCor)! = 0), continue with the next point

in lightPoints immediately.

(b) Otherwise set mask(xCor, yCor) to −neuronNumber

and run a 1D wave in the line given by xCor

from (xCor, yCor), setting the visited pixels to

−neuronNumber. The wave may stop at a point (xCor, b)
for three reasons:

❼ The following condition holds: (image(xCor, b)·
lowLightThreshold < lightAverages(xCor, b))

❼ (xCor, b, ) is at the edge of the image

❼ mask(xCor, b) contains a positive value, other than

numberNeuron to the left or to the right.

When the wave stops at the point (a, b), set mask(a, b)
to neuronNumber.

(c) After the wave has finished running, find the centroid

of the currently found object (at the current line),

go one line up from that centroid and continue running

the wave there, etc. Stop when the pixel at the

above line is either outside the image, or is too

dark ((image(oneUpX, oneUpY )· lowLightThreshold <

lightAverages(oneUpX, oneUpY )) ).

(d) After the process of going to upper lines has stopped,

return back to the line where the original wave

started running from (xCor, yCor) and repeat the step

above, except going down, instead of going up.
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(e) After the process of going down has stopped, increment

numberNeuron and go to the next of lightPoints.

5. return mask.

Pseudocode 2.8: The pseudocode of Linescan-SeNeCA algorithm for segmen-
tation of line-scan data.

Until when the waves from lightPoints start running, the algorithm above is
almost the same as SeNeCA, with the exception, that where there was square filter
used for obtaining lightAverages, only a single-line filter is used now. The reason
is that lightAverages should contain only spatial, not temporal information.

In step 4b, a 1D wave is used to find borders of the neuron (which is a 1D object
in line-scan, if temporal axis is not considered). Other than its dimensionality,
the wave behaves exactly the same as the waves used in original SeNeCA.

In steps 4c and 4d, it is attempted to extend the found object across time,
i.e., to track it. There are two reasons for this step: First, it provides a tracking
algorithm, which would be necessary anyway. Second, because when extending the
object across time, lowLightThreshold is used instead of highLightThreshold,
it is possible to find and track even neurons which lack sufficient contrast for
most of the time of the experiment11. A typical scenario when the second reason
is very advantageous is when there is a neuron which has enough contrast for
some of its points being added to lightPoints, but only when it spikes; no points
from its non-spiking periods are contrasting enough to make it there. However,
our algorithm starts with the points from spikes of the neuron when the contrast
is sufficient and then extend the found object across time, using less demanding
threshold, therefore segmenting even the non-spiking periods of the neuron.

2.4.4 Noise removal and spike mining from calcium traces

Once the calcium traces of neurons have been obtained (see Fig. 2.9a) from full-
frame or line-scan data12, it is important to infer spike trains produced by the
neurons, because information in brain is primarily encoded by action potentials,
rather than by calcium traces. We included two algorithms solving this problem,
an example of the output of one of these algorithms is shown in Fig. 2.9b. TPP also
contains functionality, described in 2.4.4.3, which allows more advanced analysis
of neuronal features.

11This does not mean necessarily a badly stained neuron. Active areas containing a lot of
fluorescent neuropil are another example.

12Actually, it is possible to use any sort of data. As long as the traces of neuronal activity are
in a correct format, any sort of recording may be processed by this tool. This makes it useful
even for analysis of, e.g., data from single-unit electrophysiology.
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Figure 2.9: a) A calcium trace of a neuron.
b) A calcium trace of a neuron with marked occurrences of spikes, according
to a spike inferring algorithm.

2.4.4.1 Processing pipeline

1. Load a file with selected calcium traces of neurons.

2. Choose the method and parameters of denoising the trace

(FFT or FIR filtration).

3. Select an algorithm for inference of spike trains and

run it. More repeats of an experiment may be processed

together.

4. (optional) Load data describing a specific experiment

and make the software record and save post-stimulus time

histograms (PSTH) and receptive fields of neurons.

Pseudocode 2.9: The process of extraction of spike trains from calcium traces
of neurons.
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2.4.4.2 Discussion of the processing pipeline

In step 2, we included two algorithms for filtering the calcium traces loaded in
step 1. There are certain frequencies known to occur in calcium traces, which
should be removed, e.g., the pulse introduced by heartbeat. We included FFT
filtration in the TPP toolkit as it is easy to understand and often used form of
filtration. The second algorithm, FIR filtering, is also frequently used in literature
(e.g., (Bandyopadhyay et al., 2010)), which is why we also included it in TPP.

In step 3, two algorithms may be used for inference of spike trains from calcium
traces: peeling algorithm (Grewe et al., 2010) and fast non-negative deconvolution
(Vogelstein et al., 2009).

In step 4, it is possible to load additional information about an auditory
experiment and compute more neuronal properties. Both are described in the
next section, 2.4.4.3.

2.4.4.3 Advanced analysis of experiments

One of the possible designs of an auditory experiment is that the auditory stimuli
are presented to the experimental animal while the neurons in its auditory cortex
are being imaged. If the order of stimuli and their lengths are saved, it is possible
to recall this information via this functionality of TPP and associate it to the
reactions of the neurons.

Currently, there are two major types of characteristics that can be obtained
and plotted for each neuron.:

Figure 2.10: a ) A post-stimulus time histogram of an onset neuron.
b) A post-stimulus time histogram of a rebound neuron.

❼ Post-stimulus time histogram (PSTH): This is the summed activity of a
neuron across repeats of an experiment. It can be used to study, e.g., whe-
ther a neuron is an onset type (reacting shortly after a stimulus onset), see
Fig. 2.10a, an offset type (reacting shortly after the end of the stimulus),
or a rebound type (reacting longer after the end of the stimulus), see Fig.
2.10b.

❼ Receptive fields: A battery of sounds with different frequencies and ampli-
tudes may be presented to a mouse several times Then, after associating
the inputs with the neuronal responses, a map of neuron’s reactions may
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Figure 2.11: A receptive field of a neuron of I type (sharply tuned to a
single frequency). The warmer colors signal stronger reaction of the neuron to
a stimulus with given amplitude and frequency. The displayed neuron tends to
be tuned to sounds with frequency around 12000 Hz.

be drawn, see Fig. 2.11. This makes it possible to directly visualize the
selectivity of neurons to the given set of stimuli.

A future improvement of TPP worth pursuing would be an inclusion of a
tool for automated analysis of measured properties of neurons. It could prove
fruitful to perform, e.g., categorial data analysis of a type of neuron (e.g., excita-
tory/inhibitory or onset/offset) and its properties (e.g., how strictly tuned to its
“favorite” frequency it is, whether it is a burster neuron, or a sparse firing one,
etc...), discovering currently unknown correlations of properties.

2.4.5 ZScan processing

This component plays only a support role in TPP and is very straightforward.
Its main purpose is to simply visualize the observed tissue in 3D, facilitate ob-
servation of the morphology and concentration of neurons, etc. A stack of images
recorded from various depths of brain is the input of this tool, the voxel repre-
senting the tissue in 3D is created in the process.

2.4.5.1 Processing pipeline

1. Load z-series stack of images, automatically joining

different color channels.

2. Align the image from the stack.

3. Join the stack into a single voxel, providing correct

spacing between stack slices.

4. Save, load or view the voxel.
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Pseudocode 2.10: The processing of z-stacks in TPP.

2.4.5.2 Discussion of the processing pipeline

In the step 2, it is necessary to compensate the wiggling of recorded images
(caused, e.g., by breathing). We implemented a simple method of aligning images
to one another to compensate for the movement artifacts. As the whole image
moves due to the movement caused by zooming, we simply take images from
depths i and i+1, where the i-th image is already aligned, try shifting the i+1-
th image by ±x pixels in both coordinates, computing the correlation to the i-th
image. The x is a parameter. The shift the with highest degree of correlation is
then taken and aligned along the i-th image. Such a simple method works well
for movement artifacts in which the entire image is shifted a few pixels to some
side.

In the step 4, we included a simple voxel viewer, using which may a user
navigate through the voxel and display various sections of the observed tissue.
The viewer is shown in Fig. 2.12.

2.4.6 Extension 1: Realtime worker

To offer maximum computational speed of segmentation of full-frame data, we
included a lightweight version of the processing pipeline from 2.4.1.1 as a runnable
Matlab script. Although not as comfortable to use as the standard TPP GUI, it
avoids the performance overhead of a running GUI, which improves the speed of
computation.

1. Read images in a folder. For each image:

(a) Denoise the image.

(b) Segment the image using SeNeCA:

❼

❼ Compute lightAverages needed for SeNeCA using Matlab

❼ Perform the rest of segmentation by C version of

SeNeCA.

(c) Remove objects too large or too small to be neurons

(according to parameters specified by the user).

(d) Using nearest neighbor tracking, assign found objects

to the objects found previously (and register the

newly appeared ones).

(e) Measure intensities of found objects.

(f) Report if there is a notable jump in intensity,

compared to recent history. {A fast heuristics for

spike detection. }
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Figure 2.12: The voxel viewer included in TPP, showing a voxel of tissue.
The section of the screen marked by red lines contains the view from above
the brain, while the blue and yellow sections of screen display the sides of the
voxel. The screen with the viewer is clickable and clicking on any of the three
sections automatically updates the other two sections to match the selected
place.

Pseudocode 2.11: An overview of the script RealtimeWorker used to record
calcium traces of neurons in delayed real time.

Realtime monitoring of single-unit neuronal activity is one of long-term goals
in calcium imaging (we discuss the use of such monitoring in 3.2.3 in greater
depth). We measured how long would the process of monitoring neuronal activity,
described in the pseudocode above take. Using our implementation of SeNeCA
in Matlab, about 3-7 images13 per second could been processed, which, although
it allows some sort of near-realtime monitoring of neuronal activity, does not
leave a large reserve for further computation done along the segmentation (e.g.,
a more sophisticated algorithm of spike detection). Profiling the processing of
multiple images showed that about 95% time spent in the process is used by
SeNeCA. For this reason, we implemented and optimized the part of SeNeCA

13With resolution 256x256, containing 30-50 neurons.
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(after computation of lightAverages) in C and connected it to Matlab via MEX
interface. The filtration of too small or too large objects has also been written
in C. This Matlab-C hybrid approach led to a significant reduction of time spent
on segmentation and it became possible to process more than 100 images per
second using an ordinary PC. Computation of lightAverages becomes the main
bottleneck then, taking circa 40-70% time of the processing, depending on the
value of contrastWindowSize. We discuss the structure of time consumption of
segmentation in 3.1.1.

While there are possible improvements to the current speed of the script Real-
time worker, speeding up the largest bottleneck, computation of lightAverages,
may not be particularly easy, see 3.1.1.

A possible future improvement would be designing an online algorithm for
spike inference (or adapting one of the already existing algorithms). Due to fast
segmentation and preprocessing, there is a time reserve for a further nontrivial
algorithm.

As a side note, the “basic” TPP, controlled from the GUI still uses the Matlab
version of segmentation. The reason is that we wanted TPP to be rapidly usable
out of the box and making the C version of SeNeCA work may need recompiling
the code.
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3. Evaluation and discussion

This chapter consists of two independent sections. In the first section, we evaluate
only the SeNeCA segmentation algorithm, especially its performance on several
different datasets. The second section discusses other software tools useful for
similar purposes as Two-Photon Processor (TPP).

3.1 Evaluation of SeNeCA

We start this section with analysis of time consumption of SeNeCA. Then we
describe the results of three analyses which we performed on various datasets: in
vitro, in vivo and in silico data. The section is concluded by a short summary of
the whole evaluation.

All measurements were performed on an ordinary PC HP Elite 7300 (Intel
Core i7 2600 3,4 GHz, 8 MB L3 Cache, 4 cores — 8 threads, 16 GB DDR3 1333
MHz, GPU NVIDIA GeForce GT545, Motherboard Intel H67 Express, HDD 1000
GB 7200 RPM Serial ATA II).

3.1.1 On time consumption of segmentation using SeNe-

CA

Because the speed of segmentation is one of the major advantages of SeNeCA, we
describe the structure of the time consumption in greater detail. In this section,
we inspect the time consumption of a common use of SeNeCA (256x256 image,
˜40 neurons), described in Pseudocode 3.1. We measured 100 repeats of the code
and Matlab profiler was used to determine the time consumption of single steps.
Therefore the performance is lower than in real use, due to a certain profiling
overhead. Time consumption of SeNeCA on other datasets is described in 3.1.4.

1. Load an image with resolution 256x256 from HDD.

2. Denoise the image using a disk blur with parameter 4.

3. Segment the image using SeNeCA:

(a) Compute lightAverages with contrastWindowSize 20.

(b) Perform the remaining steps of SeNeCA.

4. Remove objects with diameter larger than 50 pixels or

smaller than 8 pixels.

Pseudocode 3.1: The pseudocode of segmentation using SeNeCA.

Table 3.1 summarizes the time consumption of 100 repeats of the sequence
of commands in Pseudocode 3.1, according to the language used for the task.
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Task Matlab [s] C [s]

Load image from HDD 0.16± 0.0067 -
Denoise image 0.22± 0.012 -
Segmentation: computation of lightAverages 0.33± 0.0466 -
Segmentation: remaining steps 20.09± 0.967 0.16± 0.0052
Filter objects by size 1.72± 0.12 <0.01

Table 3.1: The structure of time consumption of segmentation using SeNeCA,
measuring the runtime of Matlab code and C code on 100 images. For the first
three tasks, C code was not used and therefore it is not listed. The values are
given ± standard deviation, measured on 5 repeats.

It is obvious that the hybrid approach to segmentation, using both Matlab and
C brings a significant improvement in computational performance. Without the
profiling overhead, it is possible to process about 200 images in a single second.

There are several approaches to making the hybrid Matlab-C segmentation
even faster and we discuss them below:

❼ A trivial speedup is using a SSD HDD1, which would significantly decrease
the time spent on reading images.

❼ Denoising the image and computing lightAverages are two computationally
demanding tasks and, unfortunately, it may be difficult to improve the spe-
ed of these, as they are implemented using fast GPU (graphic processing
unit) operations in Matlab. Even when we implemented these operations
using efficient sliding window implementation in C, the CPU (Central Pro-
cessing Unit) computation was much slower. In case of dire need for future
increase in computational speed, it is possible to try using CUDA or simi-
lar GPU library directly inside the C code performing the segmentation.
However, as Matlab itself uses CUDA for the GPU operations, the increase
in computational speed is uncertain.

❼ While it may be possible to further speed up the C code performing the
segmentation, it is unlikely to bring a large improvement, as, according
to the Visual Studio profiler, 70% time spent in the C code is used for
passing parameters and outputs between Matlab and C, therefore even 90%
reduction of time spent on actual segmentation would matter very little
overall.

3.1.2 Evaluation on in vitro data

Coelho et al. made a comprehensive comparison of several segmentation algori-
thms using in vitro data of U2OS and NIH3T3 cells (Coelho et al., 2009). See Fig.
3.1 for an example of how the data look. As the datasets and used methodology
were published completely, we decided to measure the performance of SeNeCA
using the methods described in the publication, despite the fact that SeNeCA
was not primarily aimed at use with in vitro data.

1Solid state drive, a HDD with much faster read access than “ordinary” magnetic drive
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Figure 3.1: a) An example of U2OS cells.
b) An example of NIH3T3 cells.

3.1.2.1 Description of evaluation

Both datasets (U2OS and NIH3T3) contain 50 images and their copies with ma-
nual annotation of neuronal borders added. The U2OS and NIH3T3 datasets
contain, in average, 36.6 and 43.6 neurons per image, respectively. For each algo-
rithm tested in (Coelho et al., 2009), the algorithm was used to segment an image
and four classes of errors were counted, with the manual annotation used as a
reference: split (a single neuronal soma segmented as two or more by the algori-
thm), merged (several neurons segmented as one object), spurious (non-neuron
wrongly segmented as a neuron) and missing (a neuron wrongly not segmented
as such). To compare the performance of tested algorithms to human performan-
ce, manual segmentation by another researcher was performed by another human
annotator (A. Shariff), also from Murphylab.

The segmentation of a single in vitro image by SeNeCA was performed in the
following way: The image was denoised using disk blur, then segmented using
SeNeCA, with too small and/or too large objects filtered out. Parameters of Se-
NeCA were tuned manually 2, but for each dataset, only a single set of parameters
was used. Both filtering inappropriately sized objects and manual tuning of para-
meters were used in the original work of (Coelho et al., 2009), therefore SeNeCA
did not receive any special advantage.

3.1.2.2 Results

The results of SeNeCA were added to those of algorithms measured in (Coelho
et al., 2009), see Table 3.2. The table shows that SeNeCA performs very well even
on in vitro data, being notably better than other measured algorithms, almost
rivaling the performance of the human annotator. Especially important is the low
number of missing objects. In some application (e.g., counting cells), a spurious

error is just as bad asmissing, but in other applications (e.g., measuring neuronal
activity), missing errors are much more important that spurious, because the
data from spurious objects may be simply discarded.

However, let us note that we believe that there are certain errors in the original

2The tuning lasted less than a minute. No large search of parameter space was performed.

53



Algorithm Split Merged Spurious Missing Sum errors

A.S. Manual 1.6/1.0 1.0/1.2 0.8/0.0 2.2/3.2 5.5
SeNeCA 0.0/0.0 2.2/4.1 1.5/1.5 1/1.8 6.1
Mean threshold 1.3/1.4 3.4/5.1 0.9/3.1 3.6/4.8 12
Merging algorithm 1.8/1.6 2.1/3.0 1.0/6.8 3.3/5.9 13
RC Threshold 1.1/1.0 2.4/2.4 0.3/1.9 5.5/22.1 18
Watershed (gradient) 7.7/2.6 2.0/3.0 2.0/11.4 2.9/5.4 19
Otsu Threshold 1.1/0.8 2.3/2.1 0.3/1.7 5.6/26.6 20
Watershed (direct) 13.8/2.9 1.2/2.4 2.0/11.6 2.0/5.5 21
Active Masks 10.5/1.9 2.1/1.5 0.4/3.9 10.8/31.1 31

Table 3.2: The errors made by algorithms, given as the mean number of errors
of a given type related to the mean number of cells per one image. The numbers
before slash are errors on the U2OS dataset, the numbers after are errors on
the NIH3T3 dataset. The sum errors is an average of sums of all error types
between the two datasets.

annotated dataset3. First, it is not entirely consistent whether small parts of cells
at the borders of the image are segmented as such or not. Second, there are several
cases when a pair of adjacent cells is manually segmented as only one cell.

It is interesting that SeNeCA made 0/0 split errors, while the second human
annotator had 1.6/1.0 split errors. We hypothesize that this is actually not a
great feature of SeneCA, but a merged sort of error in the original annotation of
the dataset, which was discovered and correctly segmented by the second human
annotator, while SeNeCA was too simple to determine, that there are two fused
cells.

3.1.3 Evaluation on in vivo data

This part of the evaluation attempts to measure the performance of SeNeCA on
in vivo data, when a human annotation is taken as a reference.

3.1.3.1 Description of data

The data were recorded from the auditory cortex of mouse, layer II/III, loaded
with OGB-1 (a green calcium indicator staining neurons and glial cells) and
Sulforhodamin101 (used to stain astrocytes), using multi-cell bolus loading. The
rate of frame acquisition of 50 frames per second was used, with the resolution of
256x256 and field of view 150x150 ➭m. Subsequent 100 images of the recording
were taken for further processing.

3.1.3.2 Description of evaluation

A human annotator (Ondřej Novák) annotated the 100 in vivo images described
above. The same images were then annotated by SeNeCA and the same errors
as in in vitro evaluation were measured: split, merged, spurious, missing. The

3Nevertheless, wanting to have results comparable to the original published work of Murphy-
lab, we took the reference annotation as true, even though we sometimes thought it incorrect.
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parameters of SeNeCA were manually tuned on the first image of the sequence, so
that no neuron marked by the human annotator was missed. This was motivated
by the fact that for measuring neuronal activity, missing is the worst type of
error and should be avoided preferentially.

3.1.3.3 Results

When writing the numbers of errors of various classes, the numbers are written
as a percentage of the number of neurons in the image by the human annota-
tor4. After performing the segmentation of the dataset using SeNeCA, the results
were: split: 0.08%,merged: 0.3%, spurious: 48.7%,missed: 5.9%. Therefore, even
though very few neurons were missed, the drawback seems to lie in a high per-
centage of spurious objects (the human annotator marked 25.6 objects per image
in average, while SeNeCA found 36.5 per image in average).

However, it is vital to realize that of the almost 50% of spurious objects, a
nontrivial portion could be real neurons, which were not discovered by the human
annotator. It is impossible to determine with certainty, whether SeNeCA or the
human annotator were more accurate. More about this problem in 3.1.4, where
it was possible to know for sure whether an object is a neuron or not.

3.1.4 Evaluation on in silico data

When it became obvious that it is difficult to properly compare performance of
SeNeCA to human annotator, due to the lack of knowledge who is more accurate,
we decided to create an artificial dataset, where it can be determined, what is
a neuron and what is not. This in silico evaluation has three purposes: First,
to measure the performance of SeNeCA compared to a human (neuroscientist)
annotator. Second, to measure the absolute performance and computational speed
of SeNeCA on several different artificial datasets. Third, to show that SeNeCA
can deal with uneven background brightness much better than “conventional”
algorithms.

3.1.4.1 Artificial data modeling

The text of this section is taken from (Tomek et al., in press):

To be able to evaluate absolutely the level of errors produced in our algo-
rithmic segmentation, we created artificial datasets simulating real in vivo full-
frame data. We used MATLAB. For all of the different resolutions and fields of
view, we created an orthogonal space whose base had the same resolution as the
corresponding dataset and the number of pixels in the z-axis was set to one-third
of the base side. Into this space, spherical neurons (filled spheres) were placed
randomly (neurons could not be nested within each other). The number of those
neurons was calculated according to published neuronal densities (DeFelipe et al.,
2002). The diameter was given by normal distribution with an average of 9 ➭m
and a standard deviation of 1 ➭m. The minimal and maximal diameters of the
neurons were set to 6 ➭m and 12 ➭m, respectively. Dendrite-like objects were

4I.e., 3 missed neurons from 10 marked by the human annotator result in 30% missed error.
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added into the extracellular space (straight lines oriented randomly). Those lines
added zero brightness inside any neuronal body. The brightness of the cells, extra-
cellular space and dendrite-like objects was set according to values we measured
on real in vivo data from fast acquisition. Those values were 0.278 for average in-
tensity inside cell somata and dendrite-like objects and 0.15 for the extracellular
space; fractions of the intensity of a white point. Subsequently, the intracellu-
lar and extracellular spaces were separately corrupted with Gaussian noise (level
of added noise: 0.1608 extracellular spaces, 0.1243 intracellular spaces). When
the artificial cortical space was prepared, we took 100 randomly chosen sections.
To mimic real images that could be obtained using a two-photon microscope,
we corrupted the chosen sections with their neighboring sections according to
an approximate axial point spread function (PSF). The PSF was modeled as a
Gaussian distribution with 1.5 ➭m standard deviation. Given that we corrupted
the chosen sections with their neighboring sections, the values of brightness and
noise intensities, now measured from the chosen corrupted sections, inevitably
differed from those initially set for the entire artificial space. The initial values
of brightness and noise levels were appropriately changed and the process was
automatically iterated until the desired values (same as the initial ones) were
obtained from the chosen corrupted sections.

3.1.4.2 Used data

Examples of the artificial data used in this experiment, with various values of
FOV (field of view) and resolution, are in 3.2.

3.1.4.2.1 SeNeCA versus human

Two datasets were used, both with resolution 256x256, one with FOV 150 ➭m
(50 images), the other one with FOV 300 ➭m (25 images).

3.1.4.2.2 Absolute performance of SeNeCA

Six different datasets were used to test a variety of possible imaging conditions:
128x128 with FOV 150 ➭m, 256x256 with FOV 150 ➭m, 256x256 with FOV 300
➭m, 512x512 with FOV 150 ➭m, 512x512 with FOV 300 ➭m and 512x512 with
FOV 600 ➭m. See Fig. 3.2a-f for an example of these data.

3.1.4.2.3 Performance on data with uneven background brightness

Two datasets containing 100 images with resolution 256x256 and FOV 150 ➭m
and 300 ➭m, respectively, were used. They were artificially corrupted in several
different ways to model the problem of uneven background brightness.

3.1.4.3 Description of evaluation

In all the evaluations, we considered to be a neuron in-focus (therefore it should
be segmented), if its distance of its centroid from the focal plane of the section
is less than three fourths of its radius. Again, we measured the number of split,
merged, spurious and missing errors.

Even though this evaluation tries to determine qualities of SeNeCA algorithm,
we perform two support operations nevertheless, as they are an important part of
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Figure 3.2: Examples of artificial data used in evaluation: a) 128x128, FOV
150 ➭m; b) 256x256, FOV 150 ➭m; c) 256x256, FOV 300 ➭m; d) 512x512, FOV
150 ➭m; e) 512x512, FOV 300 ➭m; f) 512x512, FOV 600 ➭m;
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the segmentation process5: First, the image to be segmented is first blurred using
a disk blur to remove excess noise. Second, too large and/or too small objects are
filtered out, with the minimum and maximum size being a parameter.

We used an automated solution for counting errors. Let us have a reference

image (where locations of neurons are marked) and mask image (locations of
neurons according to the segmentation algorithm). For each object in reference,
which does not have a corresponding object at the relevant position mask6, in-
crement the counter of missing by one. Similarly, for each object in mask, which
is not present in reference, increment the counter of spurious by one. For each
object in reference which intersects at least two objects in mask, increment
split by the number of the objects the object in reference intersects. Similar-
ly, for each object in mask, which intersects at least two objects in reference,
increment merged by the number of the objects the object in mask intersects.

In all parts of the in silico evaluation, we performed a search of parameter
space to find the optimal set of parameters automatedly. For each dataset, we
repeated the following 10 times:

❼ A random image from the dataset was selected, with the optimal set of
parameters found (via search of parameter space) and saved. We allowed
use of two metrics of what is “optimal”: First, minimizing the sum of errors,
second, minimizing the number missing errors (in case of the same amount
of missing, merged was minimized).

❼ Then, the dataset was segmented and the four classes of errors counted.

The resulting performance of the algorithm is given as the average of performance
of the algorithm across the 10 repeats7.

3.1.4.3.1 SeNeCA versus human

A human annotator (Ondřej Novák) has been shown the first five images of both
datasets, along with images showing which neurons are considered to be in-plane
and should therefore be circumscribed. The annotator then annotated the dataset,
concentrating on minimizing the number of missing objects. Then, SeNeCA was
used to segment the datasets as well. The parameters of SeNeCA were tuned to
minimize the overall sum of errors.

3.1.4.3.2 Absolute performance of SeNeCA

SeNeCA was used to segment six different datasets. For each dataset, a search of
parameter space has been performed to find the best combination of parameters.
Two different metrics were used (and measured separately) to determine “the
best” parameters: minimizing the sum of errors and minimizing the amount of

5When other algorithms were tested, they were treated in the same way.
6It is not necessary for the objects in reference and mask to cover each other perfectly. It

is sufficient if there is any object in mask at the position of an object in reference to prevent
the missing error.

7This emulates the real use of the segmentation algorithm, when parameters are typically
tuned on a single image from a dataset and then used for the remainder of the data. To prevent
the use of a singular, non-typical image, we took 10 random images instead.
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missing errors8. When measuring the speed of computation, we used the fast
Matlab-C version of SeNeCA.

3.1.4.3.3 Performance on data with uneven background brightness

To verify that SeNeCA is indeed better suited for segmenting unevenly stained
data than algorithms conventionally used to segment in vitro data, we measured
the performance of SeNeCA (tuning the parameters to minimize the sum of errors)
on the two above described datasets9, corrupted in four ways:

1. No corruption.

2. Gaussian extrasomatal: Dendrites and background modulated by a Gaus-
sian distribution, such as that pixels at the border of the image were mul-
tiplied by 0.5, while pixels at the center of the image were multiplied by
1. This corruption may, in MCBL staining, occur due to poor dispersion of
the dye.

3. Gaussian global: The same as case before, but whole image (including neu-
rons) was modulated. This corruption may be a result of, e.g., objective
vignetting.

4. Linear ramp: The whole image was modulated by a 0-1 linear ramp in the
x-axis. This corruption occurs when one side of the focal plane is deeper in
the brain than the other side.

We implemented three algorithms used in (Coelho et al., 2009) to compare
SeNeCA to them. We decided to use Mean threshold and Otsu threshold, because
they scored high, along with a marker-based watershed (which should be able
to cope with uneven background too, to an extent, as it marks its foreground
according to local maxima, not global ones). In all these three algorithms, we
relaxed as many constants as possible to be parameters and performed a search
of parameter space to find the best result minimizing sum of errors.

3.1.4.4 Results

3.1.4.4.1 SeNeCA versus human

The Table 3.3 summarizes the results of SeNeCA versus human performance.
An important fact is the much lower percentage neurons missed by SeNeCA,
compared to the human annotator. In this aspect, SeNeCA clearly outperformed
the human annotator. The manual annotation led to a lower number of spurious
objects. However, even the percentage of spurious objects segmented by SeNe-
CA is not critically high. Furthermore, in calcium imaging of neuronal activity,
spurious information is not such a large problem as it may be simply discarded.
The percentage of merged and split errors is low both in human and SeNeCA,
with the human annotator being slightly better.

8If more than one combination of parameters led to the same number of missing errors, the
one minimizing merged errors was taken

9Stack slices were corrupted, before being added together, in emulation of PSF.
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The high number of objects missed by a human suggests that in 3.1.3, a
portion of “spurious “ objects found by SeNeCA could have indeed been real
neurons, which were originally missed by the annotator.

Performer FOV [➭m] Split Merged Spurious Missing Neurons

Human 150x150 0± 0 0± 0 0.2± 1.1 18.5± 9.1 27.3± 4.3
SeNeCA 150x150 0.2± 0.2 1.9± 0.6 7.0± 2.5 4.0± 4.3 27.3± 4.3

Human 300x300 0.3± 0.5 1.2± 1.3 0.1± 0.3 29.7± 7.3 108± 14
SeNeCA 300x300 0.6± 0.2 1.9± 0.6 4.8± 1.3 4.6± 2.0 108± 14

Table 3.3: The comparison of SeNeCA and a human annotator. Errors (split,
merged, spurious, missing) are given in %; the number of errors of the particu-
lar type related to the mean number of cells per one image. Values are means
± SD.

3.1.4.4.2 Absolute performance of SeNeCA

Table 3.4 shows the best performance of SeNeCA on various datasets, when
the sum of errors was minimized. Aside from excellent speed of processing, it
shows that all errors can be kept under 10% and occurrence of split and merge

errors is mostly very low. An important result is that it seems that neither the
resolution, nor the FOV seem to have a critical impact on the performance of
SeNeCA, which suggests that SeNeCA may be used for a large variety of data
types.

Table 3.5 differs from the previous one in that number of missing errors was
minimized10, instead of sum of errors. This causes a large drop in missing error
(below 3%), but it leads to a huge increase in spurious error percentage. Both
split and merged were slightly increased. Whether the large number of spurious
errors is feasible or not is dependent on the application of the segmentation. If
missing objects is very costly, while spurious objects may be simply discarded,
then the large number of spurious objects is not an issue. However, e.g., in coun-
ting cells, the large number of spurious objects is critical and would cause large
errors. The large number of spurious objects also leads to slower segmentation
(some work is spent on worthless objects) as demonstrated by the 512x512 600 ➭m
FOV dataset, processing of which took the most time from the 512x512 datasets,
unlike in Table 3.4.

Of course, this section shows only how well SeNeCA algorithm can perform,
as we automatically searched the space of parameters and found the best opti-
on. However, we believe that due to clear meaning of the parameters and pre-
dictable changes in behavior when the parameter values are changed, finding a
near-optimal set of parameters is easy even by manual tuning by a user of TPP.

3.1.4.4.3 Performance on data with uneven background brightness

10If same number of missing errors was made by several combinations of parameters, the
one minimizing the number of merged errors was taken.
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Resolution FOV TPF Split Merged Spurious Missed Neurons

128x128 150 3.1±0.3 0.9±0.2 3.0±0.7 6.1±1.0 4.3±1.6 30.8±7.3
256x256 150 6.3±0.7 0.2±0.2 1.3±0.7 8.2±6.0 5.8±3.4 27.3±4.3
256x256 300 5.7±0.8 0.6±0.2 1.7±0.5 4.8±1.2 5.6±1.9 108±14
512x512 150 27±4 0.2±0.1 1.2±0.5 9.4±3.3 3.2±1.9 25.2±6.3
512x512 300 21±2 0.4±0.2 2.0±0.7 7.9±1.8 4.3±1.8 99±12
512x512 600 21±2 0.4±0.1 1.4±0.4 4.8±1.4 9.1±4.2 417±24

Table 3.4: The absolute performance of SeNeCA, when the sum of errors was
minimized. FOV is given as a side length of the observed focal plane in ➭m.
TPF means time per frame and gives how much time was, in average, spent
on a single frame, in milliseconds. Errors (split, merged, spurious, missing) are
given in %; the number of errors of the particular type related to the mean
number of cells per one image. Values are means ± SD.

Resolution FOV TPF Split Merged Spurious Missed Neurons

128x128 150 3.1±0.2 1.1±0.1 3.5±0.2 21±10 2.8±0.9 30.8±7.3
256x256 150 6.5±0.8 0.4±0.2 1.6±0.6 14.8±4.4 2.0±1.5 27.3±4.3
256x256 300 6.5±0.8 1.0±0.1 2.6±0.4 40±15 1.4±0.5 108±14
512x512 150 27±4 0.3±0.1 1.8±0.3 19.0±2.8 1.4±0.4 25.2±6.3
512x512 300 22±2 0.5±0.1 2.4±0.3 27.2±7.1 1.6±0.3 99±12
512x512 600 31±5 0.9±0.1 2.4±0.2 61±11 1.3±0.3 417±24

Table 3.5: The absolute performance of SeNeCA, when the number ofmissing

errors was minimized. FOV is given as a side length of the observed focal plane
in ➭. TPF means time per frame and gives how much time was, in average, spent
on a single frame, in milliseconds. Errors (split, merged, spurious, missing) are
given in %; the number of errors of the particular type related to the mean
number of cells per one image. Values are means ± SD.

Table 3.6 summarizes the performance of the selected algorithms on the two
datasets. While Otsu thresholding works almost as good as SeNeCA in unmo-
dulated data, with any modulation of background brightness, SeNeCA becomes
clearly the best algorithm. Its performance decreases only slightly, compared to its
performance on the unmodulated dataset. For an example of how the algorithms
perform, we included an example of segmentation in Fig. 3.3 11

However, the numbers need further analysis. The examination of the structure
of sum of errors made by Otsu thresholding, mean thresholding and watershed
revealed that missing errors are the dominant type of error. Why was the percen-
tage of merged errors so low, when it is expected for the central group of neurons
in a gauss-modulated image to be merged together by these algorithms, as sug-
gested earlier in 1.9? Or why mean thresholding works the worst on unmodulated
data, where it should be, in theory, rather successful?

The answer lies in the filtering of objects according to their size. Fig. 3.4

11The segmented images are displayed after small objects were filtered out, but before large
objects were filtered. In the case of thresholding algorithms, not much would be left in the image
if large objects were filtered too. We believe that the selected images with the large central fusion
better reflect what the thresholding algorithms do and what are their shortcomings, which is
why we have not shown the images with large objects filtered.
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Corruption FOV [➭m] SeNeCA Otsu t. Mean t. Watershed

None 150x150 15.0± 2.3 21.5± 2.9 121.0± 3.3 56.7± 2.3
None 300x300 14.7± 1.6 26± 0.6 107.0± 2.4 83.1± 0.5

Gauss extra. 150x150 19.2± 3.1 67.6± 3.5 80.5± 1.9 59.9± 1.0
Gauss extra. 300x300 17.4± 0.7 70.2± 1.4 78.1± 1.2 80.9± 0.2

Gauss global 150x150 15.9± 1.8 73.1± 1.8 83.0± 1.0 72.5± 0.2
Gauss global 300x300 16.9± 2.2 70.9± 2.2 82.6± 1.5 87.5± 0.6

Linear ramp 150x150 15.8± 1.3 92.8± 1.3 90.7± 0.6 79.8± 1.3
Linear ramp 300x300 16.9± 2.0 88.2± 0.4 90.6± 0.8 89.6± 2.3

Table 3.6: Performance of chosen algorithms on the given dataset, with va-
rious corruptions of the original images, see 3.1.4.3.3. For each algorithm and
corrupted dataset, sum of errors is given in %; the number of errors of any type
related to the mean number of cells per one image. Values are means ± SD.

shows the segmentation performed by mean thresholding. We see that during
filtering objects by size, the whole central fusion is always deleted as it is too
large. This deletion, of course, leads to a large amount of missing neurons. To
address the question, why mean thresholding performs worse on unmodulated
data, let us compare Fig. 3.4b and 3.4d. While mean thresholding made slightly
less missing errors on the unmodulated image, it also made many more spurious
errors, by segmenting certain dendritic segments as neuronal somata. Therefore,
even though the segmentation of unmodulated data is arguably visually not as
bad (there are not as many missing cells), it leads to a higher number of errors.

Of course, it may be questioned, whether it is correct to remove too large
objects. First, we believe that it is, as we use the segmentation process to record
calcium traces of single cells. Thus, having a large neuronal fusion segmented as
single cell is useless as it is impossible to extract signals of single cells from such
a data. Second, if too large objects were not filtered out, the number of missing

errors would drop rapidly, but the former missing errors made would simply be
transformed into merged errors, therefore not impacting the sum of all types of
errors at all.

Therefore, to conclude this part of analysis, we have shown that three se-
lected simple algorithms fail to correctly segment data with uneven background
brightness, while SeNeCA performs the segmentation with a rather low number
of errors. This supports our belief that in vivo data need to be treated differently
than in vitro data: e.g., the mean thresholding had the smallest sum of errors
in (Coelho et al., 2009), but it performed abysmally on our simulated data with
uneven background brightness.

3.2 Comparison of TPP to other software tools

In 1.2.2, we mentioned several software tools, functionality of which intersects
with TPP. In this section, we compare TPP to the tools which are aimed (or could
be used) for automated extraction of calcium traces of neurons in a full-frame
video, which is one of the most important features of TPP. To our knowledge,
there is no software other than TPP, which would, on top of the recording of
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calcium traces, offer the step of inferring spike trains. In this aspect, TPP seems
to be more self-standing and complete.

3.2.1 BioImageXD and ImageJ

Both BioImageXD (Kankaanpää et al., 2012) and ImageJ (Collins, 2007) are large
software projects, capable of solving many different tasks in many sorts of data.
Compared to this approach, TPP is much more specialized. We believe that if
the functionality of TPP is not limiting to a user, the process of learning how to
operate it should be faster than in the case of large software tools.

According to our experiments, while both BioImageXD and ImageJ allow
segmentation, tracking and measurement of ROI separately, these features are
not yet integrated into a processing pipeline. However, we believe that as the
features are already separately solved and both projects are open-source, putting
them together should be possible. Similarly, both projects could be extended to
use one of the published algorithms for inference of spike trains.

Both those projects offer many simple segmentation algorithms based on thre-
sholding and watershed, but they suffer from lack of segmentation tools able to
segment in vivo data with uneven background brightness. The best algorithm for
the task in ImageJ, according to our experiments, was RATS. Unfortunately, its
performance was still quite poor (slightly better than, e.g., Otsu thresholding,
but much worse than SeNeCA). In BioImageXD, we obtained the best results
using Dynamic threshold (probably a very similar algorithm to SeNeCA; with a
single threshold), but its performance was not as good as that of SeNeCA and the
process of segmentation was extremely slow (more than four seconds per 256x256
image)12.

BioImageXD is a very recent project and although it offers a lot of functiona-
lity and it seems to be extremely well designed, its computations are rather slow
and it still suffers from frequent bugs and crashes.

3.2.2 ISA

The ISA software is, in contrast to previously discussed projects, aimed purely at
automated extraction of calcium traces of neurons in a full-frame video. It suffers
from two major problems, which, we believe, makes it ill-suited for processing in
vivo. The first problem is the only available segmentation algorithm: marker-based
watershed. As we have shown in 3.1.4.4.3, marker-based watershed is not able to
cope with uneven background brightness, often found in in vivo data images.
Even its performance on in vitro is not very good, as shown in (Coelho et al.,
2009). The second problem is the absence of tracking. ISA simply segments the
first frame of the video and then measures the intensity of the segmented regions
over time. Therefore, ISA is very vulnerable to in-plane motion artifacts and it
does not register new neurons appearing in the video.

12This may not seem to be “extremely slow”, however, let us imagine a 10 minutes long
recording at 50 frames per second captured, which yields 30000 frames. It would take more
than 30 hours to perform the most basic segmentation using BioImageXD’s dynamic threshold,
while if SeNeCA was used, the task would be finished in less than three minutes.
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3.2.3 CellSort

CellSort takes a different approach as compared to the previous three projects,
focusing on processing of temporal information in the video during segmentati-
on. Unfortunately, it fails to detect silent neurons (non-spiking) or cells which
fire synchronously (Valmianski et al., 2010). Furthermore, according to our ex-
periments, the segmentation algorithm works reasonably well only in very small
images (64x64 pixels or smaller). In larger images, it tends to detect noise (even
after denoising), rather than neurons. These drawbacks are so significant that we
do not describe this tool further.
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Figure 3.3: Examples of segmentation by various algorithms: a) The origi-
nal image (corrupted by Gauss extrasomatal modulation); b) blurred original
image with “true” neurons marked; c) Segmentation by mean thresholding; d)
Segmentation by Otsu thresholding; e) Segmentation by watershed; f) Segmen-
tation by SeNeCA.
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Figure 3.4: Performance of mean thresholding under various circumstances:
a) No modulation of image, no size filtering; b) No modulation of image, with
size filtering (tiny or large objects removed); c) External Gauss modulation
of image, no size filtering; d) External Gauss modulation of image, with size
filtering (tiny or large objects removed).
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Conclusion

This thesis described the Two-Photon Processor software toolkit for complex pro-
cessing of data from 2P microscope. It is aimed primarily at automated extraction
of spike trains from both full-frame and line-scan in vivo data and, according to
our evaluation, it seems to be the best tool for this task at the moment (compa-
rison to other tools is in 3.2). An important algorithm introduced in this thesis is
SeNeCA: a new segmentation algorithm, capable of processing full-frame in vivo
data. We published TPP and SeNeCA in (Tomek et al., in press).

The evaluation of SeNeCA (see 3.1) shows that the algorithm is extremely
fast, able to process up to 200 frames of 256x256 video per second, when a hybrid
Matlab-C implementation is used. We also showed that it provides an excellent
quality of segmentation across several different types of data. It seems to be the
first algorithm for segmenting neurons, able to rival (3.1.2) or even outclass (3.1.4)
a human annotator.

The speed of SeNeCA could be, in future, used for optogenetic experiments
(Prakash et al., 2012). Using bacterial opsins (Gradinaru et al., 2010; Gunaydin
et al., 2010; Yizhar et al., 2011), it is possible to make neurons fire action poten-
tials when they are targeted by light with a particular wavelength (different from
the wavelength employed by 2P microscope). Let us imagine a certain type of
experiment with monitoring neuronal activity in an area of brain using SeNeCA,
waiting for a specific firing patterns in neurons. After the occurrence of such a
pattern, a follow-up routine driving the second laser (used to make neurons fire)
may be triggered and within a short time latency given by SeNeCA’s segmentati-
on) perturb the firing pattern. This makes many ”what if”experiments possible
and it may be used to better understand (or even alter) learning and/or other
cognitive processes in living animals, although, at this stage, only in a rather
small scale of hundreds of neurons at most.

There are two main future extensions of Two-Photon Processor possible. First,
the current state of Realtime worker (2.4.6) uses only a simple heuristics for
detection of spikes. Its performance would be improved if a more online, in real-
time. The second possible improvement of TPP would be to include algorithms for
inference of neuronal connectome (i.e., which neuron projects to which neurons)
from a reconstructed voxel of tissue. We believe that knowing the connectivity of
neurons will facilitate the task of deciphering brain computations in future.
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ISSEROTH, Karl, HEGEMANN, Peter. Ultrafast optogenetic control. Nature
neuroscience, 13(3):387–392, 2010.

69



HAMILL, Owen P., MARTY, A., NEHER, Erwin, SAKMANN, Bert, SI-
GWORTH, F. J. Improved patch-clamp techniques for high-resolution current
recording from cells and cell-free membrane patches. Pflügers Archiv European
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List of Abbreviations

AM Acetoxymethyl

BFS Breadth-First Search

CPU Central Processing Unit

EM Electron Microscope

ESEM Environmental Scanning Electron Microscope

FIR Finite Impulse Response

FOV Field of View

FFT Fast Fourier Transform

GPU Graphic processing unit

GUI Graphic user interface

HDD Hard Disk Drive

LFP Local Field Potential

MCBL Multi-Cell Bolus Loading

MVVM Model View View-Model

PSF Point Spread Function

PSTH Post-Stimulus Time Histogram

ROI Region of Interest

SD Standard Deviation

SEM Scanning Electron Microscope

SeNeCA Search for Neuronal Cells Accelerated

SNR Signal to Noise Ratio

TEM Transmission Electron Microscope

TPP Two-Photon Processor

TSP Travelling Salesman Problem

75


	Introduction
	Imaging techniques
	Overview of selected neuroimaging techniques
	Electrophysiology
	Intracellular recording
	Extracellular recording

	Electron microscopy
	Fluorescence microscopy
	Wide-field fluorescence microscopy
	Confocal microscopy
	Two-photon microscopy


	Related works in processing of microscope data
	Denoising
	Extraction of spike trains from video of brain
	Segmentation
	Tracking
	Inferring spike trains

	Counting cells
	Reconstructing neuronal connectivity


	Software materials and methods
	Feature overview
	Discussion of choice of programming language
	Software architecture
	Software description
	Extracting calcium traces from full-frame data
	The processing pipeline
	Discussion of the processing pipeline
	SeNeCA
	Defusion algorithms in TPP
	Type 1 defusion
	Type 2 defusion


	Planning line-scan path
	The processing pipeline
	Discussion of the processing pipeline
	Circumvention algorithm

	Extracting calcium traces from line-scan data
	Processing pipeline
	Discussion of processing pipeline
	Linescan-SeNeCA

	Noise removal and spike mining from calcium traces
	Processing pipeline
	Discussion of the processing pipeline
	Advanced analysis of experiments

	ZScan processing
	Processing pipeline
	Discussion of the processing pipeline

	Extension 1: Realtime worker


	Evaluation and discussion
	Evaluation of SeNeCA
	On time consumption of segmentation using SeNeCA
	Evaluation on in vitro data
	Description of evaluation
	Results

	Evaluation on in vivo data
	Description of data
	Description of evaluation
	Results

	Evaluation on in silico data
	Artificial data modeling
	Used data
	SeNeCA versus human
	Absolute performance of SeNeCA
	Performance on data with uneven background brightness

	Description of evaluation
	SeNeCA versus human
	Absolute performance of SeNeCA
	Performance on data with uneven background brightness

	Results
	SeNeCA versus human
	Absolute performance of SeNeCA
	Performance on data with uneven background brightness



	Comparison of TPP to other software tools
	BioImageXD and ImageJ
	ISA
	CellSort


	Conclusion
	Bibliography
	List of Abbreviations

